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Abstract: Multipath signal recognition is crucial to the ability to provide high-precision absolute-position services

by  the  BeiDou  Navigation  Satellite  System  (BDS).  However,  most  existing  approaches  to  this  issue  involve

supervised  machine  learning  (ML)  methods,  and  it  is  difficult  to  move  to  unsupervised  multipath  signal

recognition because of the limitations in signal labeling. Inspired by an autoencoder with powerful unsupervised

feature extraction, we propose a new deep learning (DL) model for BDS signal recognition that places a long

short-term  memory  (LSTM)  module  in  series  with  a  convolutional  sparse  autoencoder  to  create  a  new

autoencoder structure. First, we propose to capture the temporal correlations in long-duration BeiDou satellite

time-series  signals  by  using  the  LSTM  module  to  mine  the  temporal  change  patterns  in  the  time  series.

Second,  we develop a convolutional  sparse autoencoder method that  learns a compressed representation of

the input data, which then enables downscaled and unsupervised feature extraction from long-duration BeiDou

satellite series signals. Finally, we add an  regularizer to the objective function of our DL model to remove

redundant  neurons  from  the  neural  network  while  ensuring  recognition  accuracy.  We  tested  our  proposed

approach on a real urban canyon dataset, and the results demonstrated that our algorithm could achieve better

classification performance than two ML-based methods (e.g.,  11% better than a support vector machine) and

two existing DL-based methods (e.g., 7.26% better than convolutional neural networks).

Key words:  convolutional  sparse  autoencoder; BeiDou  Navigation  Satellite  System  (BDS); long  short-term

memory (LSTM); multipath classification

1　Introduction

Nowadays,  the  BeiDou  Navigation  Satellite  System

(BDS)  is  an  important  element  of  the  Global
Navigation  Satellite  System  (GNSS),  which  provides
all-weather,  all-day,  high-precision  location  services 
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for  autonomous  driving,  intelligent  transportation,
robot  navigation,  and other  related  fields[1−3].  Usually,
BDS  can  reach  centimeter-level  positioning  accuracy
in  open  areas[2].  However,  multipath  interference
dramatically  reduces  the  positioning  accuracy  of  BDS
in  the  so-called “urban  canyon”[4].  The  multipath
interference  depends  on  the  satellite  elevation  angle
(ELE),  the  environment  around  the  receiving  antenna,
the distance from the reflecting surface to the receiver,
the  reflection  coefficient  of  the  reflecting  source,  and
the  antenna  characteristics.  This  leads  to  multipath
interference  becoming  the  main  error  source  in  the
field of BDS and GNSS high-accuracy positioning[5−8].

In  the  urban  canyon  environment,  satellite  signals
develop  multiple  propagation  paths  by  specular
reflection  and  bypassing.  These  extra  signals  interfere
with the direct signals from the satellite at the receiver
antenna,  generating  the  multipath  effect[9].  For  the
BDS, there  are  two types of  signals  causing multipath
errors:  line-of-sight  (LOS)  multipath  signals  and  non-
line-of-sight  (NLOS)  signals.  NLOS-based  errors  tend
to be worse than LOS-based errors.  Examples of LOS
and  NLOS  signals  are  shown  in Fig.  1.  The  LOS
contains  only  the  one  direct  signal  emitted  by  the
satellite,  and  the  NLOS  contains  only  the  one  signal
reflected by the environment near the receiver[10]. LOS
multipath can easily reduce the GNSS accuracy to tens
of  meters.  NLOS  positioning  errors  can  be  several
hundred  meters  above[11].  Therefore,  some  current
studies[11, 12] are  focusing  on  the  issue  of  multipath
interference with the aim of mitigating its influence on
satellite positioning accuracy.

Exploring how to  cope with  the  satellite  positioning
offset  problem  caused  by  multipath  interference  has
received wide attention. Proposals have mainly been in
the  areas  of  hardware  upgrading  and  software
processing.  Hardware  devices  such  as  anti-multipath
antennas[13] are  used  to  filter  multipath  interference,

which  not  only  increases  the  size  of  the  receiving
device, but also increases its cost. Meanwhile, sidereal
filtering  (SF)[14],  multipath  hemispherical  maps
(MHM)[15],  3D  city  models[16],  and  other  software
methods  have  been  proposed  to  mitigate  multipath
interference.  However,  the  SF  method  requires
precalculation  of  the  satellite  operational  period.
Because  the  operational  period  of  each  satellite  varies
slowly over time, there is a consequent decrease in the
multipath mitigation effect. The MHM method requires
a  very  large  matrix  of  multipath  models,  which
increases the computational load and does not establish
a fully accurate multipath model. In addition, real-time
updating of 3D city models is difficult.

Artificial  intelligence  (AI)  is  a  rapidly  developing
technology  that  can  learn  multipath  signals  from
sufficient  data  without  the  need  to  build  complex
mathematical  models  and  shows  great  potential  for
identifying  multipath  in  urban  canyon  environments.
These  multipath  signal-recognition  methods  can  be
divided  into  supervised  and  unsupervised  cases.
Supervised  algorithms  for  recognizing  multipath
signals  include  decision  tree  (DT)[17],  support  vector
machine  (SVM)[18],  k-nearest  neighbor  (KNN)[19],  and
neural  network  (NN)[20].  They  have  own  advantages,
and  which  algorithm  to  choose  for  a  specific  task
should  be  considered  according  to  the  data
characteristics.  For  example,  SVM  has  strong
generalization  ability  for  small  samples,  but  it  is
relatively  slow  in  processing  large  data  sets.  Overall,
supervised  learning  has  two  main  limitations:  the
construction of databases containing a large number of
labels  is  difficult,  and  the  recognition  accuracy  of  the
models  needs  to  be  improved.  However,  some  recent
works  have  attempted  to  explore  the  use  of
unsupervised  multipath-signal-recognition  methods.
For  example,  the  generative  adversarial  network
considers  unsupervised  domain  adaptation  (UDA)-
based  models[21] to  reduce  the  discrepancy  between
real  and  simulated  data.  In  Ref.  [22],  a k-means
clustering  approach  was  used  to  achieve  unlabeled
multipath  signal  recognition.  Unfortunately,  this
process includes the problems of high-dimensional data
redundancy and low classification accuracy.

In  this  paper,  we  propose  an  unsupervised
convolutional  sparse  autoencoder  containing  a  long
short-term  memory  (LSTM)  module  to  improve  the
accuracy  of  NLOS  multipath  recognition.  First,  to
tackle the twin issues of the high dimensionality of the
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Fig. 1    Two types of BDS signal: LOS and NLOS multipath.
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training  samples  and  the  need  for  a  large  number  of
labels,  we  use  a  convolutional  autoencoder  to  realize
descending and unsupervised signal feature extraction.
Then, to learn more fully the information related to the
time series of BDS signals, we employ multiple LSTM
modules to capture the time series variation patterns of
BDS  signal  features  such  as  carrier-to-noise  ratio
(C/ ),  ELE, and the pseudorange residual  (PR).  This
enables  the  model  to  learn  the  underlying  features  of
the  signal.  Furthermore,  to  deal  with  the  high-
dimensional  data  redundancy  in  convolutional
autoencoder  models,  we  propose  to  add  an 
regularizer  to  the  objective  function  of  the
unsupervised  deep  learning  (DL)  model  of  a
convolutional  autoencoder  with  an  LSTM  module,
which  can  remove  redundant  neurons  from  the  NN
while  obtaining  high  classification  accuracy.  Finally,
the performance of our model has been evaluated using
a  real  urban  canyon  dataset,  demonstrating  superior
performance to that of existing models.

The  main  contributions  of  this  paper  can  be
summarized as follows:

(1) We develop a convolutional autoencoder method
that  learns  a  compressed  representation  of  the  input
data  for  downscaling  and  unsupervised  feature
extraction  of  long-duration  time-series  signals
containing multipath.

(2)  We  employ  an  LSTM  module  to  capture  the
temporal  correlation  of  the  long-duration  time-series
signals  from  BeiDou  satellites  and  thereby  mine  a
temporal change law for the time series.

l1/2(3)  We  add  an  regularizer  to  the  objective
function  of  an  unsupervised  DL  model  of  a
convolutional  autoencoder  with  an  LSTM  module  to
achieve the removal of redundant neurons from the NN
while  obtaining  higher  sparsity  and  recognition
accuracy.

(4)  We  develop  a  novel  convolutional  sparse
autoencoder  and  LSTM  network  model  for  NLOS
multipath classification.

The rest of this paper is organized as follows. Section
2  reviews  related  work.  Section  3  illustrates  the  BDS
features with different signal types. Section 4 describes
the proposed DL networks and is explained in detail. In
section  5,  we  present  the  environment  where  the  data
set  is  collected,  followed  by  signal  type  labeling
method  using  the  combination  of  sky  mask  and  code
pseudorange  double  difference  observable.  Then,  the
experimental  setup  and  classification  results  are

provided  and  analyzed  in  section  6.  Furthermore,  we
present  a  discussion  in  this  section.  Finally,
conclusions are drawn in Section 7.

2　Related Work

Numerous  works  have  been  studied  in  the  field  of
multipath  identification.  The  research  includes  three
main  kinds  of  methods:  3D,  machine  learning  (ML),
and  DL-based  methods.  In  the  following,  we  review
the  closely  related  works  and  highlight  the  novelty  of
our contributions.

2.1　3D-based methods

The 3D city models have been widely used in the field
of  multipath  environmental  positioning.  Typically,  a
combination  of  shadow  matching  and  3D  mapping
aided  (3DMA)  was  presented  in  Ref.  [23],  and  the
method  can  identify  satellite  signal  types  by  building
boundaries.  The  sky  and  building  contours  are
estimated  by  fitting  data  curves  to  a  smooth  spline
model, and building boundaries are calculated using an
adaptive weighting scheme. Reference [24] introduced
a shadow-matching classifier and a confidence check to
improve  the  NLOS  classifier  accuracy.  Moreover,
exploring  how  to  build  applications  over  the  NLOS
also  achieved wide  attention.  For  example,  applying a
3D  model  to  correct  positions  so  that  the  NLOS
contributes to the absolute positioning[25]. Some works
use  3D  maps  and  ray  tracing  to  correct  the
localization[26].  However,  3DMA-based  methods  rely
on  the  timely  updating  of  3D  models.  This  poses  a
great  challenge  in  data-intensive  computations.  To
avoid  the  limitations  of  this  3D  city  model,  ML  was
adopted.

2.2　Machine learning-based methods

N0

Due to the complex and variable architectural structure
of  the  urban  environment  in  which  the  receiver  is
located. Making the establishment of accurate physical
models  is  difficult.  Nevertheless,  ML  can  mine  the
underlying  features  of  large  amounts  of  data.  The
gradient boosted the decision tree (GBDT)[17] was used
to  classify  LOS,  multipath,  and  NLOS  with  three
features: C/ , PR, and ELE. Reference [19] compared
various  ML algorithms  such  as  KNN,  NN,  SVM,  and
DT. LOS/NLOS classifiers based on the signal-to-noise
ratio (SNR), number of received satellites (NRS), ELE,
PR,  pseudorange  residual  percentage  (PRP),  and
normalized  pseudorange  residual  (NRP)  are
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established.  In  particular,  the  SVM[18, 20] has  played  a
vital role in multipath detection, where they are used to
learn  the  features  of  national  marine  electronics
association  (NMEA),  receiver  independent  exchange
(RINEX),  and  correlator  levels.  However,  traditional
ML methods  can  only  process  information  within  one
epoch, and it is easy to lose the data features in the time
domain.  Thus,  some  researchers  have  considered
applying 3D techniques to identify multipath.

2.3　Deep learning-based methods

Recently,  with  the  continuous  development  of  AI
techniques,  the  popular  DL  techniques  have  been
widely  adopted  in  various  fields  and  have  achieve
outstanding performances. Meanwhile, many works are
using  the  DL  techniques  to  identify  NLOS.  For
example,  the  fully  connected  neural  networks
(FCNNs)[27] and  LSTM[28] were  applied  to  the
classification  of  LOS and  NLOS.  In  Ref.  [29],  a  deep
convolutional  neural  network  (CNN)  was  used  to
detect  multipath  and  further  improve  the  final
localisation  accuracy.  Considering  the  successful
application of CNN in the image field. The mapping of
the correlator output signal to a two-dimensional input
image is proposed for classification. A deep CNN was
used  to  detect  the  correlator  output  multipath[30],  and
this deep CNN method outperformed the SVM method.
DL can be applied not only for signal classification but
also for positioning correction. Deep Neural Networks
(DNN)  is  used  to  learn  a  set  of  PR  and  the  satellite
LOS  vector  as  the  position  correction,  which
outperforms the weighted least  square (WLS) baseline
on  real  data[31].  In  contrast  to  traditional  model-based
methods,  DL  has  shown  great  potential  in  solving
complex  multipath  interference  problems.  However,
the training database for multipath studies based on DL
is difficult  to construct and requires a large amount of
labeled  data.  In  addition,  the  problems  of  high
dimensional  data  redundancy  and  low  classification
accuracy  exist  in  the  process  of  multipath  signal
recognition.

To  tackle  the  above  challenge,  in  this  paper,  we
proposed  an  unsupervised  convolutional  sparse
autoencoder  with  LSTM  structures  to  recognize  the
NLOS  multipath.  To  address  the  difficulty  of
constructing  a  large  number  of  labeled  multipath
databases,  we  proposed  an  unsupervised  deep  feature
extraction  method  with  a  convolutional  autoencoder.
Also  considering  the  problem  of  low  classification
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accuracy,  we  used  the  LSTM  method  to  extract  the
relevant information from the time series. To solve the
problem of high dimensional  data redundancy,  we use

 regularizer  to  maintain  the  classification
performance  while  removing  redundant  neurons  and
increasing the model sparsity. Finally, the NLOS signal
was  classified  by  the  constructed  convolutional  sparse
autoencoder with the LSTM model.

3　Features  Selection  and  Analysis  of
Collected Data

N0

In  this  section,  we  analyze  the  collected  data.  By
comparing  the  features  of  BDS  signals, C/ ,  ELE,
and  PR[14] are  selected  as  the  input  data.  At  the  same
time, we provide a data normalization method.

3.1　Carrier to noise ratio (C/N0)

N0

N0

N0

The C/  is  the  ratio  of  the  received  carrier  signal
power to the noise signal and is an important indicator
of  satellite  signal  quality.  Usually,  the  receiver  in  an
unobstructed environment receives mostly LOS signals
with  a  high C/ .  In  the  complex  urban  environment,
the  signal  is  blocked by  high-rise  buildings  as  well  as
reflections,  making  the  signal  change  propagation
direction  and  go  through  multiple  paths  to  reach  the
receiver,  so  that  the C/  of  the  NLOS  is  usually
lower.

3.2　Elevation angle (ELE)

θ

The  ELE  is  the  magnitude  of  the  angle  between  the
receiver’s  horizontal  plane  and  the  satellite  in  the  sky
and  is  an  important  indicator  of  satellite  visibility.
Generally  speaking,  in  the  same  environment,  the
satellite  signal  interference  is  usually  greater  at  low
angles,  so  the  low  angle  is  more  likely  to  be  NLOS.
Thus,  satellites  with  high  ELE  are  not  easily  blocked
by high-rise buildings and are usually LOS. The ELE 
can be calculated as
 

θ(i) = −arcsin
(
ui

D/r̂
)

(1)

ui
D

r̂

where  is the component of the distance between the
satellite  and  the  receiver  in  the  local  Cartesian
coordinates coordinate system in the “Up” direction. 
is  the  estimated  value  of  the  distance  between  the
receiver and the satellite.

3.3　Pseudorange residual (PR)

The PR is  the part  of  the observation after  subtracting
the  useful  information,  and  it  is  a  relatively  objective
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standard  for  evaluating  the  quality  of  the  signal.
Normally,  the  PR  of  LOS  is  around  zero  with  less
jitter. This is due to the fact that LOS is the signal from
the satellite that arrives at the receiver via a direct path,
without  reflections  from  redundant  paths.  Conversely,
the NLOS signal quality is poor and the PR is generally
larger. The position of the receiver is related to the PR
measurements and the satellite position.

Satellite  positions  can  be  obtained  directly  from the
broadcast  ephemeris.  The  state  of  the  receiver  can  be
calculated  using  a  PR  equation  estimated  by  the  least
squares method, which can be expressed as
 

γ = (GTG)
−1

GTρ (2)
γ ρ Gwhere  is the receiver state.  denotes pseudorange. 

denotes  the  matrix  consisting  of  the  unit  LOS  vector
between  the  satellite  and  receiver,  which  can  be
expressed as
 

G =



u(1)
N u(1)

E u(1)
D −1

u(2)
N u(2)

E u(2)
D −1

...
...

...
...

u(i)
N u(i)

E u(i)
D −1


(3)

Once  the  pseudorange  and  satellite  states  are
obtained, the PR can be expressed as
 

η = ρ−G ·γ (4)

ζ

In  addition  to  the  above  features,  the  raw  data
consists of the horizontal dilution of precision (HDOP),
vertical  dilution  of  precision  (VDOP),  azimuth  angle
(AZ),  consistency  between  delta  pseudorange  and
pseudorange  rate  ( )  and  Number  of  visible  satellites
(NS),  geometric  dilution  of  precision  and  the  doppler
shift  frequency  in  the  RINEX  format.  We  explore
which features contribute more to deep learning based
classifier.  When  more  features  are  used,  the  accuracy
decreases greatly for most models. This may be due to
the  fact  that  these  features  are  not  strongly  associated
with  the  type  of  signal,  e.g.,  sky  occlusion  varies  in
different  environments,  and  it  is  not  possible  to
determine  the  type  of  signal  from  a  high  or  low
azimuth angle.

3.4　Normalization of features

Due  to  we  adopted  a  Convolutional  AutoEncoder
(CAE) to extract features, the inputs and outputs of this
structure  should  have  the  same  range  of  values.
Meanwhile,  the  range  of  the  selected  features  varies

N0

widely.  Normalization  can  eliminate  the  influence  of
the  different  ranges  of  data  to  ensure  the  stable
convergence of the weights and deviations. In addition,
data without normalization will slow down the training
speed of the network. Therefore, the input data features
C/ , ELE and PR need to be normalized so that they
remain  between  [0−1].  We  adopt  the  min-max
normalization method, which can be expressed as:
 

x∗i =
xi− min

0⩽ j⩽n

{
x j

}
max
0⩽k⩽n

{xk}− min
0⩽ j⩽n

{
x j

} (5)

xi max
0⩽k⩽n

{xk}

min
0⩽ j⩽n

{
x j

}where  is any value in the input sample,  and

 denote the maximum and minimum values of
the sample, respectively.

4　Non-Line-of-Sight  Multipath
Classification  Method  for  BDS  Using
Convolutional  Sparse  Autoencoder  with
LSTM

In  this  section,  we  first  introduce  the  convolutional
sparse  autoencoder  network  model  with  an  LSTM
module for identifying BDS signals. Next, we describe
the  objective  function  of  the  convolutional  sparse
autoencoder.  Furthermore,  We  also  present  the  details
of this training process of the proposed algorithm.

4.1　Convolutional sparse autoencoder with LSTM
neural network architecture

In  this  part,  we first  present  the  overall  process  of  the
proposed  method.  Meanwhile,  each  process  of  our
method  from  the  original  signal  to  the  BDS  signal
classification  is  described  in  detail.  Then,  the  basic
principles  of  convolutional  sparse  autoencoder  with
LSTM module are presented.
4.1.1　Proposed method
The  identification  of  single-moment  BDS  signal  type
makes it easy to lose time correlation information, and
the  extraction  of  BDS signal  time series  features  is  of
great  significance  for  signal  identification.  DL usually
requires  a  large  amount  of  labeled  data,  which  is  a
difficult  task.  In  contrast,  unsupervised  learning
networks  require  less  labeled  data.  Autoencoder
networks,  as  an  important  unsupervised  learning
network  can  achieve  downscaling  and  feature
extraction  of  signals  using  only  unlabeled  data.
However, the training process of autoencoder networks
is prone to overfitting and there is a possibility that the
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output layer simply copies the input layer.
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To  address  the  above  problems,  a  convolutional
sparse autoencoder with an LSTM module is proposed
for  the  recognition  of  BDS  signals.  The  proposed
method  structure  is  shown  in Fig.  2.  First,  a
convolutional  sparse  autoencoder  is  used  to  learn  the
compressed  representation  of  the  input  data.  Second,
The  output  feature  data  of  the  encoder  is  fed  to  the
LSTM  layer  to  learn  the  sequential  dependencies
between  the  feature  data.  Then,  an  regularizer
sparsity constraint is added to the objective function of
the  method  to  further  reduce  the  redundancy  of  the
neural  network.  Unsupervised  high-level  feature
extraction  of  BDS  signals  can  be  achieved  with  this
network.  Finally,  to  further  improve  the  classification
accuracy  of  the  proposed  method,  we  replace  the
softmax  layer  of  the  last  layer  of  the  autoencoder
module  with  a  decision  tree  to  form  a  hierarchical
network, which in turn outputs the NLOS/LOS class of
BDS  signals.  In Fig.  2,  the  encoder  part  of  the  one-
dimensional convolutional sparse autoencoder network
used in this paper consists of three convolutional layers
and three maximum pooling layers. Each convolutional
layer  uses  Rectified  Linear  Unit  (ReLU)  as  the
activation  function.  The  first  convolutional  layer

comprises 16 filters, the subsequent convolutional layer
comprises  32  filters,  and  the  final  convolutional  layer
comprises  64  filters.  The  kernel  size  of  all
convolutional layers is set to 1 × 2.

The  decoder  part  of  the  convolutional  sparse
autoencoder  replaces  the  original  pooling  layers  with
inverse  pooling  layers  and  consists  of  three  one-
dimensional convolutional layers and three upsampling
layers.  The  number  of  filters  is  the  opposite  of  the
encoder part, 64, 32, and 16, respectively. The kernels
of all convolutional layers are also set to 1 × 2. The 1D
convolutional  layers  are  mainly  responsible  for
extracting data features from the time series. Maximum
pooling  is  a  down-sampling  operation  that  retains  the
maximum  value  in  each  channel  of  the  output  of  the
previous  layer,  which  can  effectively  avoid  over-
fitting.  The  maximum  pooling  means  that  only  the
strongest of these features are retained while discarding
other  weak  features.  The  network  parameters  can  be
effectively  reduced  to  prevent  over-fitting  of  the
model.  This  pyramidal  architecture  can  eliminate
redundant  features  while  learning  a  compressed
representation of the BeiDou satellite series signal.
4.1.2　Convolutional autoencoder
The  autoencoder  is  a  typical  representation  learning
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algorithm  that  can  achieve  unsupervised  feature
extraction  from  data.  An  autoencoder  consists  of  an
input layer, a hidden layer, and an output layer forming
an encoder and a decoder. The network is trained by a
backpropagation algorithm to make the output equal to
the  input[32].  In  the  encoder  part  of  a  recognition
network,  the  hidden  layer  is  responsible  for  learning
the  compressed  representation  of  the  input  layer  data.
In the decoder part of a generative network, the output
layer  is  responsible  for  reconstructing  the  input  data
from the hidden layer. The structure of the autoencoder
is shown in Fig. 3.

x ∈ Rn

h ∈ Rk (k < n)

x̂ ∈ Rn

The  process  of  reconstructing  the  input  data  by  the
autoencoder  can be briefly  described as  follows.  First,
for  the  input  data ,  the  hidden  layer  feature

  can be obtained by the encoder. Then the
output  layer  in  the  decoder  reconstructs  the  output

 from  the  hidden  layer.  However,  autoencoder
often  leads  to  the  degradation  of  feature  learning
performance when dealing with high-dimensional  data
due  to  the  excessive  amount  of  parameters.  CNN  has
the  features  of  local  connectivity  and  weight  sharing,
which can reduce the network parameters and speed up
the computation of the network. And the unsupervised
learning  feature  of  the  autoencoder  can  prevent  the
network  from  overfitting.  Moreover,  there  are  local
correlations  in  continuous  data.  CNN  can  perceive
richer  local  features  of  the  signal  using  convolutional
kernels.  Convolutional  sparse  autoencoder  combined
with  operations  such  as  convolution  and  pooling  in
CNN  can  achieve  unsupervised  training.  One-
dimensional  convolution  is  processed  on  BeiDou
satellite time series data to achieve feature extraction to
generate  new  feature  maps.  The  convolutional  sparse
autoencoder network is trained many times so that the
Beidou  satellite  signal  data  output  from  the  decoder

can  approximately  replicate  the  input  data  from  the
encoder.
4.1.3　LSTM module

h C
h

C

LSTM  can  effectively  solve  the  problems  of  gradient
explosion,  gradient  disappearance,  and  the  inability  to
preserve  historical  information  for  a  long  time  during
the  training  process[33].  Therefore,  we  adopt  LSTM to
solve the problem of long distance dependence of time
series  data.  As shown in Fig.  4,  each module contains
the previous module’s hidden state  and cell  state .
Among them, the hidden state  can achieve short-term
memory  and  the  cell  state  can  achieve  long-term
memory.  Satellite  features  have  a  high  degree  of
temporal correlation, and LSTM can effectively extract
the  temporal  information  of  the  features,  thus
improving  the  recognition  capability.  The  internal
structure of the LSTM neural network is shown in Fig.
4. The retention and forgetting of historical information
is  achieved  by  three  gating  units.  The  forget  gate
determines which information needs to be deleted from
the  cell  state.  The  input  gate  determines  which  new
information  is  added  to  the  cell  state.  The  output  gate
determines  which  state  features  of  the  cell  are  output.
The computational process of LSTM can be expressed
as follows:
 

ft = σ(W f · [ht−1, xt]+b f ) (6)
 

it = σ(Wi · [ht−1, xt]+bi) (7)
 

C̃t = tanh(WC · [ht−1, xt]+bC) (8)
 

Ct = ft ∗Ct−1+ it ∗ C̃t (9)
 

ot = σ(Wo · [ht−1, xt]+bo) (10)
 

ht = ot ∗ tanh(Ct) (11)

ft
t

In  the  method  proposed  in  this  paper,  the  LSTM
memory  module  in  the  forgetting  gate  obtains  the
BDS signals at time . The information that can reflect
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ht

the  characteristics  of  the  satellite  signal  type  is
memorized  using  the  sigmoid  function,  and  the
information that cannot reflect the characteristics of the
satellite  signal  type  is  forgotten.  The  sigmoid  in  the
input  gate  will  determine  which  important
information in the output value of tanh that can reflect
the  type of  BDS signal  is  to  be  retained.  Cell  state 
allows  the  new  BDS  signal  information  found  by  the
neural  network  to  be  updated  into  the  cell  state.  The
output  gate  is  used  to  determine  the  BDS  signal
information  that  the  hidden  state  should  carry.  The
hidden state is used as the output of the current cell. At
the  same  time,  the  new  cell  state  and  the  new  hidden
state are passed to the next time step.

l1/24.2　Objective function with the  regularizer

The objective function of  the sparse neural  network is
constructed by imposing a sparse constraint, which can
be expressed as
 

J (ω) =min
ω

1
N

N∑
i=1

L (yi, f (xi;ω))+λΩ (ω) (12)

y = f (xi;ω)
x ∈ Rd

ω y ∈ R0

L (·, ·) Ω (·)

λ ∈ (0,1)

where  is  represented  as  a  generic  deep
neural  network  with  a  vector  as  input.  After
propagation through the neural  network weight  matrix

 formed by the hidden layers, the output vector 
is obtained.  is denoted as the loss function, 
denotes  the  canonical  constraint  imposed  by  the
network,  and  denotes  the  parameter  used  to
balance the loss and canonical terms.

l1/2The objective function of the  regularizer method
in our study is
 

J (ω) =min
ω

1
N

N∑
i=1

(y− x)2+λ∥ω∥
1
2
1
2

(13)

∥·∥
ω x
x = {x1, x2, ..., xN}T ∈ RN y λ > 0

λ∥ω∥ 1
2

where (and henceforth)  denotes the Euclidean norm,
 is  the  weight  matrix,  is  the  input  signal,

,  is the output signal,  is
a  regularization  parameter,  and  is  a
regularization term.

l1/2To  solve  the  nonconvex  and  nonsmooth  norm
regularized  problem,  we  use  the  proximal  gradient
descent  method[34] to  solve  Eq.  (13),  find  its  gradient,
and set it to zero to get Eq. (14):
 

ωi−ai+
λ

2

∆

|ωi|
1
2

 = 0 (14)

ai = ωi−

∆

ωi (y− x)2 ∆

(
|ωi|

1
2

)
=

sign(ωi)
2
√
|ωi|

where . Because ,

we have
 

ωi−ai+
λsign(ωi)

4
√
|ωi|

= 0 (15)

i ω∗i
ω∗i ai > 0
ωiai > 0 i

for  any  fixed ,  the  solution  must  be  satisfied
.  Next,  we  simply  consider  the  case  where
 for any .
ωi > 0

√
|ωi| = z

ωi = z2
Case 1: : At this point, we can make .

Thus  we  can  obtain .  Thus  Eq.  (15)  can  be
written in the form of a cubic algebraic of Eq. (16):
 

z3−aiz+
λ

4
= 0 (16)

ai

r =

√
|ai|
3
,P =

−ai

3
q =
λ

8

For  the  cubic  algebraic  equation  of  Eq.  (16),  the
solution  can  be  found  using  the  Cardano  formula[35].
With  the  different  signs ,  the  solution  of  Eq.  (14)  is

different.  This  can  be  written  as 

, and .
q2

4
+

p3

27
< 0 a >

3
4
λ

2
3 ϕλ = arccos

( q
2r3

)
z1 = −2r cos(

ϕλ
3

)
,z2 = 2r cos

(
π
3
+
ϕλ
3

)
, and z3 = 2r cos

(
π
3
− ϕλ

3

)
When , , ,  the

solution  to  Eq.  (16)  can  be  expressed  as 

.

ωi > 0 z1

z2 z3

z2 z3 z2 > z3 z3

ω∗i ∈ RN

Since , so  less than zero is not a solution of
Eq.  (16),  and ,  greater  than  zero  is  a  solution  of
Eq.  (16).  Further,  analyzing , ,  because , 
is the only solution to Eq. (16). Therefore, in this case,
Eq.  (16)  has  a  unique  solution .  This  unique
solution can be written as
 

ω∗i =
2
3
|ai|

(
1+ cos

(
2π
3
− 2ϕλ (ai)

3

))
(17)

ϕλ (ai) = arccos

λ4
(
|ai|
3

)− 3
2
where .

ωi < 0
√
|ωi| = z

ωi = −z2
Case 2: : At this point, we can make .

Thus  we  can  obtain .  Thus  Eq.  (13)  can  be
written in the form of a cubic algebraic Eq. (18):
 

z3+aiz+
λ

4
= 0 (18)

Following  the  Cardano  formula  for  solving  cubic
algebraic equations and performing an analysis similar
to  that  of  the  first  case  for  Eq.  (18),  we  obtain  the
unique solution:
 

ω∗i = −
2
3
|ai|

(
1+ cos

(
2π
3
− 2ϕλ (ai)

3

))
(19)

ωi = 0⇔ |ai| ⩽
3
4
λ

2
3
iWhen .

By analyzing the above two cases, we can obtain the
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solution of Eq. (14) as
 

ω∗i =


2
3
|ai|

(
1+ cos

(
2π
3
− 2ϕλ (ai)

3

))
, ai >

3
4
λ

2
3 ;

−2
3
|ai|

(
1+ cos

(
2π
3
− 2ϕλ (ai)

3

))
, ai < −

3
4
λ

2
3

(20)

ωTherefore,  the  weight  parameter  in  the  objective
function will be updated according to Eq. (20).

4.3　Proposed  convolutional  sparse  autoencoder
with LSTM algorithm

l1/2

x
fθ hl

j θi

hl
j

ht ht

y
fϕ ϕi

Ji

x
ht

We proposed a new method for BDS signal recognition
that  combines  a  convolutional  sparse  autoencoder  and
an  LSTM  network.  During  the  training  phase,  the
encoder can learn the compressed representation of the
input  data,  and  the  decoder  implements  the
reconstruction  of  the  input  data.  The  LSTM  layer
embedded at the end of the encoder learns the temporal
features  between  the  data.  We  design  the  mean  loss
update  parameter  with  an  regularizer  thereby
suppressing  redundant  information.  We  use  DT  to
complete  the  classier.  Herein,  the  details  of  this
training process are summarized in Algorithm 1. First,
a  convolutional  sparse  autocodeer  with  LSTM  is
trained  with  the  original  input  data .  This  allows  the
encoder  to  output  and  obtain  the  parameters .
Next,  the LSTM learns the temporal correlation of the

 generated  by  the  encoder  and  outputs  the
dimensionality-reduced  data .  Furthermore, 
obtains the reconstructed data  after going through the
decoder  function  and  updating  the  parameters .
Then,  we  use  the  backpropagation  algorithm  to
compute  the  gradient  of  the  loss  function  of  the
weights  and  deviation  vectors  and  optimize  the
autoencoder  with  a  stochastic  gradient  descent
algorithm. Thereby each sample  can be mapped to a
new feature space . Finally, the DT model is used to
classify and output the BDS signal type.

5　Experiment

In  this  section,  we  first  describe  the  BDS  signal
collection  scheme.  Second,  we  illustrate  the  urban
complex environment of BDS signal acquisition. Then,
we  depicted  the  BDS  signal  labeling  method.  Finally,
the data preprocessing is given in Section 5.3.

5.1　Data collection

Figure 5 shows the BDS signal collected device, which
consists of a fisheye camera, a tripod, a pair of GNSS

antennas, two u-blox F9 GNSS modules, a laptop, two
rechargeable  batteries,  and  a  small  portable  foldable
table.  Above  the  base,  the  fisheye  camera  can  be
installed on the tripod, and other devices can be placed
on  the  table.  Due  to  the  double  differential  approach
that  can  get  more  accurate  positioning  results,  we  use
two GNSS antennas for capturing the BDS signals, one
of  which  is  used  as  a  base  station  and  the  other  as  a
mobile  station.  The  u-blox  F9  GNSS  module  is  used
for  high-precision  positioning,  and  it  requires  a
rechargeable  battery  for  continuous  power  supply.  In
addition, the laptop is used to store the raw BDS data.

The  BDS  signals  were  collected  at  four  different

 

Algorithm 1　Training the convolutional sparse autoencoder
with LSTM

x = {x1, x2, ..., xN }T ∈ RN

λ

Input: Training input data , positive
　　　parameters .
Output: The type of the BDS signal.

hl
j = [h1,h2, ...hM] ∈ Ml hi

i l
, where  is the number of hidden units

in layer  and  is the number of hidden layers.

y =
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y1,y2, ...yz

] ∈ Zl yi

i l
, where  is the number of output units in
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]
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i j, b̂
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}
2 , where 

(θ,ϕ)←− initialize3 
gradient descent not converged4 while Stochastic     do

M∼X5　  (sample minibatch of data)
xi ∈M6　　for  do

hl
j = f (

∑
i∈M j x ∗W l

i j +bl
j)7　　　

ht ←− LSTM
(
hl

j = xt
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8　　　

hl−1
j = ht9　　　
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∑

i∈N j hl−1
j ∗ Ŵ l

i j + b̂l
j)10　　　

11　　Let the loss J be defined as (using Eq. (13))

Ji←−minω
1
N

∑N
i=1 (y− x)2 +λ∥ω∥

1
2
1
2

12　　

ω13　　Compute stochastic gradient of the loss w.r.t each 

l1/214　　using  regularizer trick (Eq. (20)).

∇J̄ = ∇θ,ϕ
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1
|M∑

Ji|

)
15　　

16　　Update network parameters by backpropagation
(θ,ϕ)←− Stochastic gradient descent optimizer17　　     

hl
j = [h1,h2, . . . ,hM] ∈ Ml18　　for  do

hl
j19　　　To classification on the data  using DT

The type of the BDS signal θ ϕ20　　return      , , 
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locations  in  Tianhe,  Guangzhou.  This  environment  is
densely  populated  with  high-rise  buildings,  and  many
of  them are  higher  than  80  meters.  Therefore,  we  can
collect  a  large  number  of  NLOS.  From October  10  to
13 in 2022, we collected data from four Locations,  A,
B,  C,  and  D,  using  the  equipment  in Fig.  5,  and  each
location  collected  4  hours  of  static  data  of  BDS  L1
signals in RINEX format with the sampling frequency
set to 1 s. Thus, four BDS signal datasets (A, B, C, and
D) were constructed.

Figure  6b  shows  a  sky  image  of  the  data  collection
location,  where  grey  is  the  area  shaded  by  buildings
and white is the sky area in the figure. Our data include
four  different  sky  obscuration  scenarios.  Generally
speaking,  the  more  sky  occlusion  area,  the  easier  the
satellites are occluded by buildings, and there are fewer
LOS signals  in  the  dataset.  One  side,  two  sides,  three
sides  and  four  sides  of  the  sky  occlusion  cases  are
selected  in  the  experiment,  which  includes  the  typical

sky  occlusion  cases  in  urban  canyons,  and  effectively
avoids the problem of poor model generalisation ability
brought  by  a  single  data  distribution.  Location  A
corresponds to a situation where one side is blocked by
a building and the other three sides are open. Similarly,
Location B corresponds to a situation where two sides
are  blocked.  Location  C  corresponds  to  a  situation
where  three  sides  are  blocked  by  the  building  and  the
other  sides  are  open.  Location  D  represents  a  deep
urban environment blocked by four sides. This location
contains more NLOS due to building blockage.

5.2　Data labeling

Labeling the true signal type on BDS data collected for
DL is necessary. In this study, a fisheye camera is used
to  assist  in  data  labeling,  and  the  labeling  is  achieved
by  the  method  of  oprojections.  The  flow  of  data
labeling  is  shown  in Fig.  7.  First,  a  sky  image  with
building  boundaries  and  sky  regions  is  captured  by  a
fisheye camera. Moreover, the sky image is segmented
into  sky  area  and  non-sky  area  using  an  image
segmentation  algorithm,  where  the  non-sky  area
corresponds to the part obscured by buildings. Finally,
the  ELE  and  AZ  of  the  satellites  acquired  by  the
receiver  are  projected  onto  the  fisheye  camera  sky
image  using  an  isotropic  projection  method,  and  the
satellites  falling  in  the  non-sky  regions  are  NLOS
satellites  and  those  falling  in  the  sky  region  are  LOS
satellites.

An example of  the method shown above is  given in
Figs. 6b and 6c, where the original sky image taken by
the  fisheye  camera  is  shown  in Fig.  6b,  and  the  sky
image after satellite projection is shown on Fig. 6c. The
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Fig. 5    Data collection equipment.
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Fig. 6    BDS data collection in an urban environments. (a) Real environment; (b) Fish-eye image; (c) Sky plot.
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white area corresponds to the sky,  and the black color
indicates the buildings.  Thus,  the white areas are LOS
satellites, marked with green dots. The black areas are
NLOS satellites, marked with red dots.

5.3　Data preprocessing

We collected  4  hours  of  BeiDou  satellite  data  at  each
location,  which  in  turn  created  a  signal  classification
dataset  that  can be used by the proposed unsupervised
DL model. To meet the requirements of the input data
format  of  our  proposed  algorithm,  we  use  a  sliding
window  to  split  the  BDS  signal  data.  Specifically,  a
window  of  length n and  sliding  step m is  used  to
intercept  the time series  by sliding to  the right  one by
one, with each window n corresponding to one sample.
Figure  8 shows  the  time  series  data  format  we  used.
Green  is  4  hours  of  BDS  signal  data  collected  at  the
same  location.  In  purple  is  the  length  of  a  single
sample, chosen to be 128 s. A single sample of data is
slid along the yellow arrow to the right to intercept the
time  series,  and  the  sliding  step  is  chosen  to  be  10  s.
The  data  is  labeled  at  the  last  moment.  Thus,  the
construction of the BeiDou satellite time series data set
is completed.

Table  1 shows  the  specific  form  of  the  input  data
after  pre-processing,  where n is  the  time  stamp.  Our

proposed  NLOS  signal  classification  method  will
identify  the  signal  type  of  the  last  epoch based on the
characteristics  of  the  signal  in  each  sample.  However,
the value of n is not as small as possible. Too small n
will  lead  to  insignificant  sample  differentiation  in
different  types  of  data,  and  the  model  will  have
difficulty  in  achieving  better  recognition  results.  Here
the  input  data  length  is  taken  as  128  s,  and  the
sampling frequency of this paper is 1 Hz, thus a sample
contains 128 epochs. In this paper, the sliding window
is  chosen  to  be  10,  and  the  sliding  window  selection
process is described in detail in the next section.

6　Experimental Result and Discussion

l1/2

l1/2

In  this  section,  we  mainly  show  the  experimental
results.  First,  we describe the effects of different input
data lengths and sliding window sizes. Second, the 
regularizer  is  compared  with  several  commonly  used
regularization, and introduces the parameter adjustment
of the regularization. Next, several common evaluation
methods for assessing the performance of classification
methods are discussed.  Then, we conduct comparative
experiments using supervised learning methods such as
DT,  SVM,  and  CNN.  Finally,  sparsity  analysis
experiments are implemented for the  regularizer.

6.1　Data parameter analysis

To  optimize  the  performance  of  the  the  proposed
method, adjustments to some parameters are necessary.
The data format we use is  the BDS signal time series.
Therefore, we conduct experiments on the selection of
the  appropriate  BDS  signal  time  series  length  on  the
four  Datasets  A,  B,  C,  and  D.  The  results  of  the
experiments are shown in Fig. 9.

We  can  find  the  classification  accuracy  of  the
datasets from Locations A, B, C, and D is comparable
when the input data length is 16 s, and the accuracy is
relatively low. When the input data length is increased
to  32  s,  the  classification  accuracy  improves  slightly,
albeit  not  significantly.  However,  as  the  length  of  the
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Fig. 7    Flowchart  of  fish-eye  image-aided  determination  of
LOS or NLOS satellites.

 

Table 1    Description of the time series data structure.
Number of epoches Feature

C/N0 ELE PR
1 CNR1 ELE1 PR1

2 CNR2 ELE2 PR2

... ... ... ...

n−1 CNRn−1 ELEn−1 PRn−1

n CNRn ELEn PRn
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Fig. 8    BDS signal data format.
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BDS  signal  time  series  is  further  increased  to  48  s,
64  s,  80  s,  and  96  s,  the  classification  performance  of
the  proposed  method  progressively  improves.  An
increase  in  the  input  BDS  time  series  from  96  s  to
128  s  results  in  a  smaller  improvement  in  the
classification  accuracy.  Subsequently,  as  the  length  of
the time series data continues to increase to 144 s,  the
classification accuracy begins to decrease. Overall, the
experimental  results  demonstrate  that  128  s  is  the
optimal  length  for  the  BDS  signal  time  series.  The
input  time series  data  length being too short  results  in
an incomplete expression of the temporal correlation in
the data. Conversely, the length of the input time series
data  is  too  long,  and the  data  is  easily  affected  by the
environmental noise of the urban canyon. This leads to
the  proposed  method  of  learning  noisy  information
about the data features, which reduces the classification
accuracy.

In  addition  to  the  time  series  length,  choosing  an
appropriate  sliding  window  is  equally  important.  We
determined  this  parameter  by  the  experiences.
Figure  10 reveals  that  the  accuracy  of  the  method
proposed in this paper is poor on all four datasets when
the  sliding  step  size  is  set  to  5  seconds.  However,  the
accuracy  of  the  method  on  all  four  datasets  shows  a
significant  improvement  when  the  sliding  step  is
increased  to  8  seconds.  Furthermore,  the  proposed
method attains the highest classification accuracy on all

datasets  when  the  sliding  step  is  set  to  10  seconds.
Nevertheless,  when the sliding step length of the BDS
time  series  data  is  increased  to  12  seconds,  the
classification  accuracy  decreases  slightly.  Moreover,
when  the  sliding  step  is  further  increased  to  16
seconds,  the  classification  accuracy  decreases  even
further. Therefore, based on these experimental results,
it  can  be  concluded  that  10  seconds  is  the  most
appropriate  sliding  step  for  the  proposed  method.  It
should be noted that the experimental outcomes reveal
that if the sliding window of the time series data is too
short,  the  data  fluctuation  is  small,  and  the
representation  of  data  types  with  less  distinctive
features.  On the other hand,  if  the sliding step of time
series  data  is  too  long,  it  cannot  extract  more  critical
feature information of the BDS signal. Consequently, a
balance  must  be  struck  to  achieve  optimal
performance.

6.2　Regularizer parameter analysis

l1/2
l1/2

l0 l1/2
l1

l1/2
lp 0 < p < 1

Our  proposed  model  employs  the  regulariser,
mainly  because  the  regulariser  is  easier  to  solve
than  the  classical  regulariser.  The  regulariser
produces  sparser  solutions  than  the  now  popular 
regulariser.  Experiments  have  shown  that  the 
regulariser  can  replace  the  ( )  regulariser,
which has an important and wide applications.

l1 l2

l1/2

l1/2

l1/2

We  compare  the  proposed  regularizer  with  some
different    regularizers,    including    the    LOG
regularizer[36, 37],  and  the  MCP  regularizer[38].  We
chose MCP and LOG as the comparison methods. This
is  due  to  the  fact  that  the  and  regularizers
compress not only the smaller weights to 0, but also the
larger  ones,  resulting  in  biased  solutions.  To
compensate  for  this  deficiency,  the  nonconvex
regularisers  MCP  and  LOG  are  proposed,  which
compress  smaller  weight  values  close  to  0  while
obtaining  approximate  unbiased  estimates  for  larger
weights.  Thus,  the  non-convex  regularisation  methods
are  more  robust  and  are  able  to  obtain  more  accurate
features.  These  regularization  methods  were  used  to
sparsely  constrain  the  objective  function  of  the
convolutional  sparse  autoencoder  with  the  LSTM
module. As shown in Fig. 11, we can see that the use of
the  regularizer  yielded  the  highest  classification
accuracy across all  datasets.  The LOG regularizer was
slightly  less  effective  than  the  regularizer,  while
the MCP regularizer produced the lowest classification
accuracy.  Therefore,  our  results  show  that  the 

 

 
Fig. 9    Classification results of different window lengths.

 

 
Fig. 10    Classification results of different sliding steps.
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regularizer  is  the  most  appropriate  regularization
method for this particular model.

l1/2
λ

λ

λ

λ

λ

λ

λ

l1/2

Furthermore, the  regularizer approach involves a
regularization  parameter ,  that  must  be  adjusted  for
the  optimal  performance  of  the  regularization
technique.  In  this  study,  was  set  to  0.08,  0.1,  0.12,
0.14, and 0.16, and the resulting classification accuracy
of  the  the  proposed method was  evaluated across  four
environmental  datasets,  as  depicted  in Fig.  12.  The
figure indicates that when  is set to 0.08, the method's
accuracy is marginally lower than when  is set to 0.1.
Notably,  the  classification  accuracy  of  our  method  is
highest  when  is  set  to  0.1  across  all  datasets.
However,  as  increases  beyond  0.1,  the  method's
accuracy decreases, suggesting that  of 0.1 is the most
optimal parameter for the  regularizer method.

6.3　Evaluation metrics

We employ accuracy, precision, recall, and F1-score to
evaluate the proposed method’s performance. Accuracy
and  recall  were  used  to  evaluate  the  classification
methods  concerning  a  particular  aspect  of  actual  or
predicted  values  to  measure  their  efficacy.  Given  that
the sum of false positives (FP) and false negatives (FN)
is a constant value, it is not achievable to enhance both
precision  and  recall  evaluation  metrics.  The  F1-score,
which integrates both precision and recall into a single
metric, is an alternative evaluation metric that enables a

more objective assessment of the classification method.
Accuracy  pertains  to  the  fraction  of  accurately

classified  samples  from  the  entire  pool  of  samples.
Precision  represents  the  ratio  of  the  accurately
classified  positive  samples  to  the  positive  samples
recognized  by  the  classifier.  The  recall  is  the  measure
of the accurately classified positive samples relative to
the actual positive samples. The F1-score is an average
of  the  precision  and  recall  rates.  By  utilizing  the
pertinent  parameters,  the  formulas  for  accuracy,
precision,  recall,  and  F1-score  can  be  derived  as
follows:
 

Overall accuracy =
TP+TN

TP+TN+FP+FN
(21)

 

Recall =
TP

TP+FN
(22)

 

Precision =
TP

TP+FP
(23)

 

F1-score = 2
R ·P
R+P

(24)

TP TF FP FN

R P

where , , ,  and  represent  the  number  of
true positives,  true negatives, false positives,  and false
negatives,  respectively.  Furthermore,  and 
represent recall and precision, respectively.

6.4　Performances analysis

To assess the effectiveness of the proposed method for
recognizing  BDS  signals,  we  compare  the  proposed
method  with  the  existing  methods,  including  DT[17],
SVM[18],  CNN[29],  and  Convolutional  Sparse
Autoencoder  (CSAE).  The  first  two  comparison
methods are based on traditional ML, and the latter two
are  based  on  DL  architecture.  To  be  specific,  the  DT
method  adopts  a  CART-type  structure  for
classification.  The  CNN  method  uses  3  convolutional
layers to obtain features and a softmax classifier for the
output  layer.  The  structure  of  the  CSAE  method  is
similar  to  the classifier  part  of  this  paper  but  does not
include the LSTM module.

% % % %

The  evaluation  results  are  listed  in Tables  2−5.  we
can  see  that  our  proposed  method  surpasses  other
methods in terms of accuracy, precision, recall, and F1-
score  performance  metrics  across  four  different
locations.  Specifically,  our  proposed  method  achieved
accuracy of 92.96 , 90.85 , 79.37 , and 77.51  on
the  datasets  of  the  four  locations,  respectively.
Compared  to  traditional  ML  algorithms  and  common
CNN  methods,  our  proposed  algorithm  yielded

 

 
Fig. 11    Classification results of different regularizers.

 

 
Fig. 12    Classification results of different λ.
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significant improvements in accuracy, precision, recall,
and  F1-score.  For  instance,  our  method  achieved  a
classification  accuracy  of  92.96  on  location  A,
whereas  the  DT,  SVM,  CNN,  and  CSAE  method
achieved  81.4 ,  82.23 ,  85.70 ,  and  90.69 ,
respectively.  This  indicates  that  our  proposed  method
is more accurate and stable than other methods, with a
maximum  difference  in  accuracy  of  11.56  and  a
minimum  difference  of  1.86 .  Overall,  the  proposed
algorithm  demonstrates  significant  improvement
compared  to  traditional  ML  algorithms,  with  high
accuracy,  precision,  recall,  and  F1-score  reaching
92.96 ,  84.72 ,  87.29 ,  and  82.62 ,  respectively,

on the dataset of Location A.
In  addition,  accuracy  is  crucial  for  NLOS

recognition,  as  NLOS  signals  can  have  a  detrimental
impact  on  positioning.  Thus,  we  give  an  in-depth
analysis  of  accuracy,  and  the  results  are  illustrated  in
Fig.  13.  This  analysis  visually  demonstrates  that  our
proposed  method  outperforms  other  methods  in  terms
of  accuracy  across  four  datasets.  The  convolutional
sparse  autoencoder  with  LSTM  method  suggested  for
the  recognition of  BDS signals  holds  great  promise  in
its ability to effectively utilize a substantial quantity of
unlabeled  data  and  a  comparatively  small  amount  of
labeled  data,  while  simultaneously  accounting  for
temporal  continuity  through  the  unsupervised  training
process.  In  comparison  to  ML  techniques  that  merely
identify  features  at  a  particular  point  in  time,  the  NN
method proposed by us can extract brief fluctuations in
the  time-series  features  of  the  BDS  signals.  The
method is valuable for applying DL in the field of BDS
signal recognition.

% %
% %

Finally,  we  analyze  the  mean  evaluation  metrics  of
four  location  datasets,  and  the  results  of  the
experiments are presented in Fig. 14. It is observed that
SVM, DT, and CNN exhibited high accuracy, but low
performance  in  other  metrics,  indicating  a  lack  of
method  robustness.  The  method  in  this  research
achieved  notable  accuracy  rates  of  85.17 ,  81.27 ,
82.08 ,  and  80.59  in  terms  of  accuracy,  F1-score,
precision,  and  recall,  respectively,  outperforming  all
other experimental methods. These results validate the
effectiveness  of  the  proposed  method.  The  CSAE
method also performed well  in  terms of  accuracy,  F1-
score,  precision,  and recall,  but  its  metrics were lower
than those of the proposed method, suggesting that the

 

Table 2    Performance comparison of Location A.

Method
Evaluation index

Acc (%) F1-score (%) Prec (%) Recall (%)
DT[17] 81.40 67.56 67.91 67.24

SVM[18] 82.23 45.12 41.12 50
CNN[29] 85.70 74.64 75.61 73.80
CSAE 90.69 79.58 82.78 77.20

Proposed method 92.96 84.72 87.29 82.62

 

Table 3    Performance comparison of Location B.

Method
Evaluation index

Acc (%) F1-score (%) Prec (%) Recall (%)
DT[17] 86.50 86.12 86.30 85.98

SVM[18] 73.04 72.24 72.40 72.13
CNN[29] 86.96 86.63 86.68 86.59
CSAE 88.89 88.54 88.85 88.31

Proposed method 90.85 90.56 90.83 90.34

 

Table 4    Performance comparison of Location C.

Method
Evaluation index

Acc (%) F1-score (%) Prec (%) Recall (%)
DT[17] 75.63 68.22 68.45 68.02

SVM[18] 73.67 42.42 36.83 50
CNN[29] 77.56 69.90 70.04 69.78
CSAE 78.35 71.17 71.59 70.80

Proposed method 79.37 72.40 72.78 72.06

 

Table 5    Performance comparison of Location D.

Method
Evaluation index

Acc (%) F1-score (%) Prec (%) Recall (%)
DT[17] 74.69 74.63 74.61 74.65

SVM[18] 64.52 61.36 67.78 63.10
CNN[29] 75.42 75.31 75.30 75.33
CSAE 76.34 76.21 76.20 76.20

Proposed method 77.51 77.38 77.40 77.35
 

 
Fig. 13    Classification performance of different methods.
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addition of the LSTM module can further enhance the
method's  performance.  It  is  worth  noting  that  SVM
approaches  achieve  such  poor  performance  compared
to  other  methods.  The  main  reason  may  be  that  SVM
can  map  low-dimensional  data  into  high-dimensional
space  by  kernel  function,  and  then  improve  the
classification  accuracy.  Therefore,  SVM  is  more
suitable  for  classification  problems  with  low-
dimensional small-sample data.

l1/26.5　Sparsity  analysis  of  the  weights  with  the 
regularizer layer

l1/2

l1 l2

To analyze  the  sparsity  of  the  regularizer,  we  use
the  sparsity  evaluation  metric  proposed  by  Hoyer’s
sparsity[39] to  calculate  the  sparsity  of  the  feature
representation  learned  by  the  proposed  method.  And
this  method  uses  the  difference  between  the  and 
parameters of the vector to evaluate the sparsity of the
vector. The sparsity can be expressed as
 

Hoyer’s sparsity(x) =

√
n−

(∑n
i=1 |xi|/

√∑n
i=1 x2

i

)
√

n−1
(25)

x n
x

[0,1]

x

l1/2

where  is  the  sample  vector  and  is  the
dimensionality of . The value of Hoyer’s sparsity is in
the  range  of ,  and  the  more  larger  the  Hoyer’s
sparsity,  the  greater  the  difference  between  the
elements in the vector, indicating that  is more sparse.
In Fig.  15,  the  correlation  between  the  quantity  of
iterations  and  the  scarcity  of  the  proposed  method  is
illustrated.  The  results  of  the  experiment  demonstrate
that  the  regularizer  progressively  approaches  a
consistent  level  of  scarcity as  the number of  iterations
is  raised.  While  preserving  a  high  standard  of

classification,  sparsity  is  ensured.  This  indicates  that
the  algorithm  is  capable  of  acquiring  more  effective
features of BDS signals.

6.6　Discussions

l1/2

In our experiments,  we investigate the performance of
our  proposed  convolutional  sparse  autoencoder  with
the LSTM method in real  environments with a variety
of sky occlusion scenarios. In contrast to ML methods
such as SVM and DT, we propose a convolution-based
DL method. In addition, unlike CNN and convolutional
sparse  autocoder  methods,  our  method  incorporates
LSTM  into  the  method  to  extract  important  timing
information. We also propose adding an  regularizer
to  the  objective  function  to  induce  strong  sparsity
among  the  parameters.  Specific  performance
comparisons  of  our  method  against  existing  methods
are listed as follows.

%
% % %

(1)  From  the  detailed  comparisons,  as  shown  in
Tables  2–5,  it  is  clear  that  the  proposed  method  is
superior  to  ML methods  such  as  SVM and DT for  all
metrics.  Our  proposed  DL  method  improved  the
accuracy,  precision,  recall,  and  F1-scores  by  11.56 ,
17.16 , 19.38 , and 15.38 , respectively,  compared
with  the  DT  method.  The  results  suggest  that  the
proposed  method  extracts  rich  features  in  the  training
process  and can further  improve performance across  a
variety of sky occlusion environments.

%
%

%

(2) Compared with existing DL methods such as the
CNN and CSAE methods, as shown in Tables 2–5, the
proposed  method  improved  accuracy  by  7.26  and
2.27 ,  respectively.  The  proposed  method  obtained
better recognition accuracy in four environments (e.g.,
92.96  for  Dataset  A,  as  shown  in Fig.  13).

 

 
Fig. 14    Average  classification  performance  of  different
methods.

 

 
l1/2Fig. 15    Sparsity performance of  regularizer.
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Furthermore,  by  checking  the  average  values  for
accuracy,  F1-score,  precision,  and  recall,  we  note  that
all  metrics  for  the  method  proposed  in  this  paper
exceed 80 , which is not achieved by any of the other
methods, as shown in Fig. 14.

l1/2

l1/2

l1/2

%
l1/2

(3)  In Fig.  11,  the  performances  of  various
regularizers  when  using  the  corresponding  optimal
parameters  are  summarized.  Here,  the  regularizer
achieves  the  best  classification  performance  across  all
datasets,  which  indicates  that  the  regularizer  is
robust  and  can  improve  sparsity.  A  comparison  of
Hoyer’s  sparsity  is  shown  in Fig.  15,  where  the 
regularizer  pruned  unnecessary  weights  from  the  NN
(e.g., around 72  of the total across the four datasets).
Furthermore, the  regularizer could converge faster
with fewer training epochs.

7　Conclusion

In  this  paper,  we  have  presented  an  efficient
convolutional  sparse  autoencoder  with  an  LSTM
training  framework  to  address  the  NLOS  signal
classification  problem.  Specifically,  to  prevent  high-
dimensional  data  redundancy  in  DL  methods,  we
implemented  dimension  reduction  and  feature
extraction  through  a  convolutional  sparse  autoencoder
module structure.  To capture the temporal correlations
in  long-duration  time-series  signals,  we  proposed  an
LSTM  module  that  uses  an  input  gate,  a  forget  gate,
and  an  output  gate  to  obtain  information  about  the
evolution of the BDS signal over time. Then, to reduce
unnecessary  weights,  we  applied  a  regularizer  to  the
weights  of  the  hidden  layers,  which  offered  results
beyond  those  for  the  LOG  and  MCP  regularizers.
Finally,  the  trained  and  simplified  DL  could  provide
accurate  classification  of  BDS  NLOS  signals  in  real
urban canyon environments.

% %

l1/2

Experiments  with  classification  and  pruning  were
conducted on four datasets with different sky occlusion
scenarios. Compared with ML methods such as DT and
SVM,  our  DL  method,  with  its  convolutional  sparse
autoencoder and LSTM module, demonstrated superior
performance.  Moreover,  compared  with  existing  DL-
based  methods  such  as  CNNs  and  SCAEs,  the
proposed  method  achieved  7.26  and  2.27
improvement in accuracy, respectively. Compared with
the  LOG  and  MCP  regularizers,  the  proposed 
regularizer used for NN pruning enabled our proposed
method to induce strong sparsity in the parameters. The
results  demonstrate  that,  across  all  environments,

% %
l1/2

%

through  seeking  deep  sparse  representations  during
propagation,  the  proposed  method  can  improve
classification  performance  by  1 –2 .  Furthermore,
the  proposed  regularizer  can  largely  remove
unnecessary  weights  while  retaining  the  classification
performance.  In  particular,  it  can  reduce  over  20  of
the  parameters  while  maintaining  a  significantly  high
classification  accuracy  for  all  urban  canyon
environments. The main reason may be that the method
we  proposed  method  that  learns  a  compressed
representation  of  the  input  data  for  downscaling  and
unsupervised  feature  extraction  of  long-duration  time-
series  signals  containing multipath.  The cited methods
also  uses  an  unsupervised  approach,  but  the  cited
methods  uses  a  machine  learning  approach,  and  the
recognition  accuracy  is  significantly  lower  than  the
deep  learning  unsupervised  feature  extraction  method
used in this paper.

However,  there  are  two  main  limitations  of  our
algorithm:  (1)  The  proposed  algorithm  only  considers
urban  canyon;  (2)  The  classification  generalisation
performance  of  the  proposed  algorithm  needs  to  be
improved. In order to address the above problem, in the
future work, we will  continue our studies of multipath
signal-recognition-based  unsupervised  DL  methods  in
more diverse and complex urban environments such as
urban  forests,  overpasses,  and  viaducts.  We  note  that
our  method  loses  information  about  the  satellite
environment,  so  we  are  considering  learning  the
representation  of  indirect  environmental  information
using a transformer.  We are also working on inducing
sparsity  in  DL  algorithms  that  involve  a  CNN
architecture,  which  should  be  more  efficient  for  more
complex DL environments.
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