
 

Sparse Bayesian Learning Based Off-Grid Estimation of
OTFS Channels with Doppler Squint
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Abstract: Orthogonal  Time  Frequency  Space  (OTFS)  modulation  has  exhibited  significant  potential  to  further

promote  the  performance of  future  wireless  communication  networks  especially  in  high-mobility  scenarios.  In

practical  OTFS  systems,  the  subcarrier-dependent  Doppler  shift  which  is  referred  to  as  the  Doppler  Squint

Effect (DSE) plays an important role due to the assistance of time-frequency modulation. Unfortunately, most

existing  works  on  OTFS channel  estimation  ignore  DSE,  which  leads  to  severe  performance  degradation.  In

this letter, OTFS systems taking DSE into consideration are investigated. Inspired by the input-output analysis

with DSE and the embedded pilot pattern, the sparse Bayesian learning based parameter estimation scheme is

adopted  to  recover  the  delay-Doppler  channel.  Simulation  results  verify  the  excellent  performance  of  the

proposed off-grid estimation approach considering DSE.

Key words:  orthogonal  time  frequency  space  modulation; Doppler  squint  effect; channel  estimation; sparse

Bayesian learning

1　Introduction

Orthogonal Time Frequency Space (OTFS) modulation
has been regarded as a promising candidate to promote
the  reliability  and  capacity  when  it  comes  to  the
wireless  communication  in  high-mobility  scenarios[1].
By processing the data and pilot symbols in the delay-
Doppler domain, full diversity over time and frequency
can  be  utilized  for  each  symbol,  which  helps  mitigate
the  doubly-selective  fading  caused  by  the  multipath
channel and high mobility. So far, substantial work has
been  devoted  to  OTFS  modulation  to  promote  the
performance  of  high-mobility  communication
systems[2–14].

Nevertheless,  the  acquisition  of  the  wideband  time-
variant Channel State Information (CSI) remains a core

problem due to the large dimension and fast variation.
The  threshold-based  method  was  proposed  in  Ref.  [4]
to  estimate  the  delay-Doppler  channel  coefficients
directly, which has been proved to perform worse than
the  parameter  estimation-based  techniques  due  to  the
sparse multipath property of the channel. For example,
an  efficient  approximated  maximum  likelihood
algorithm  was  proposed  in  Ref.  [5]  and  the
corresponding Cramér-Rao lower bound was derived to
verify  the  performance.  Meanwhile,  inspired  by  the
development  of  off-grid  Compressed  Sensing  (CS)
methods,  the  Sparse  Bayesian  Learning  (SBL)  based
approach was developed in Ref. [7] while the Message
Passing (MP) based scheme was adopted in Ref.  [11],
where  the  fractional  Doppler  can  be  taken  into
consideration.

Most  existing  works  on  OTFS  channel
estimation[4–12] are  developed  from  the  input-output
analysis in Ref. [2], where the Doppler shift is assumed
to be frequency-independent. However, as indicated in
Refs.  [13, 15],  non-negligible  Doppler  difference
across  the  bandwidth  exists  in  wideband  systems,
which  is  referred  to  as  the  Doppler  Squint  Effect
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(DSE).  In  OTFS  systems,  the  Doppler  shift  of  each
path  varies  within  the  bandwidth,  and  the  frequency-
dependent  offset  caused  by  DSE  will  be  accumulated
through  a  much  longer  time  duration  than  Orthogonal
Frequency  Division  Multiplexing  (OFDM),  which
causes  severe  performance  degradation  if  ignoring
DSE[13].  Actually,  DSE  is  caused  by  the  time-variant
delay  in  the  baseband  waveform.  Reference  [16]
proposed to approximate the model of DSE by ignoring
the impact  on pulse-shaping,  which does not  hold due
to  the  finite  support  of  the  pulses.  On  the  other  hand,
the  authors  in  Ref.  [17]  avoided  the  delay-Doppler
modeling  by  multiplexing  the  symbols  in  the  Mellin-
Fourier domain and carrying out the scale-delay signal
extraction,  which  is  known  as  the  Orthogonal  Delay
Scale  Space  (ODSS)  modulation.  However,  the
wideband  cross-ambiguity  with  high  resolution  is  not
practical  for  typical  wireless  communications,  it  is
more  appropriate  to  adjust  the  OTFS  characterization
and  system  design  based  on  the  narrowband  cross-
ambiguity.  Reference  [13]  considered  the  precise
characterization  of  DSE  in  OTFS  systems,  however,
the  whole  OTFS  frame  is  employed  to  estimate  the
channel  parameters  and  only  integer  Doppler  can  be
extracted.  It  is  impractical  for  realistic  system  design,
which inspires  us  to  reconsider  the channel  estimation
and  provide  schemes  with  higher  transmission
efficiency and lower estimation loss.

In  order  to  attain  accurate  CSI  with  less  pilot
overhead  for  practical  OTFS  systems  with  DSE  and
fractional  Doppler,  the  OTFS  system  with  DSE  is
investigated  in  this  letter.  Inspired  by  the  embedded
pilot[4, 11] and the input-output analysis in Ref. [13], an
off-grid SBL based scheme is proposed to execute the
parameter  extraction  and  delay-Doppler  CSI
acquisition. Though substantial work has been devoted
to  OTFS  channel  estimation  with  respect  to  Bayesian
frameworks[7–12],  the pilot  insertion and corresponding
scheme  details  require  more  elaborate  consideration
due  to  the  impact  of  DSE,  which  serves  as  the  major
contribution  of  this  paper.  Simulation  results  confirm
the performance superiority of the proposed estimation
approach considering DSE and fractional Doppler.

A A a
a AT AH A−1

Ai j Ai (i, j)
A a j

a ||a|| l2

Notations:  is  a  set,  is  a  matrix,  is  a  column
vector,  is  a  scalar. , ,  and  denote  its
transposition,  conjugate  transposition,  and  inverse,
respectively.  and  are  the  component  and
the i-th column of , respectively, while  represents
the j-th element of vector .  denotes the -norm of

a ||A||F A (·)∗
Re {·}

x
µ

Σ x ∼ CN (µ, Σ)

CN (x | µ, Σ)

Γ(x | a, b) =
baxa−1e−bx

Γ(a)
Γ(·)

⊙
u−n u

u IA (x)
x ∈ A

 and  represents  the  Frobenius  norm  of . 
denotes  the  conjugate  operation,  while  returns
the  real  part  of  the  complex  input.  Random  vector 
obeying  complex  Gaussian  distribution  with  mean 
and covariance matrix  is  denoted by ,
whose  Probability  Density  Function  (PDF)  is

.  The  PDF  for  Gamma  distribution  is

defined  as ,  where  is  the
Gamma  function.  represents  the  point-wise
Hadamard  product.  represents  without  the n-th
entry  for  vector .  Finally,  is  the  indicator
function for .

2　System Model

fc ∆ f

In  this  section,  the  wideband  OTFS  system  model  is
investigated.  Instead  of  directly  employing  the  input-
output  relationship offered in  Refs.  [2, 5],  the analysis
in Ref. [13] is adopted where DSE is taken into account
to  characterize  the  multipath  channel  more  accurately.

 and  denote  the  carrier  frequency and subcarrier
spacing, respectively.

2.1　OTFS transmitter and receiver

{x [k, l] | k = 0, 1, . . . , N −1 and l = 0, 1, . . . , M−1}
M

x [k, l]
X [n, m]

At the transmitter, a bit sequence is mapped to symbols
as  in
the  discretized  delay-Doppler  domain,  and N
represent  the  number  of  subcarriers  and  time  slots,
respectively, and k and l denote the Doppler and delay
index, respectively.  is then converted into time-
frequency  domain  symbols  by  executing  the
Inverse  Symplectic  Finite  Fourier  Transform (ISFFT),
we have
 

X [n, m] =
1
√

NM

N−1∑
k=0

M−1∑
l=0

x [k, l] · ej2π
(

nk
N −

ml
M

)
(1)

n = 0, 1, . . . , N −1 m = 0,1, . . . , M−1

gtx (t)

s (t)

for  and , n and m
are  the  time  and  subcarrier  index,  respectively.  The
Heisenberg  transform  employing  the  pulse  is
then  performed  to  create  the  continuous  baseband
transmitted waveform  as
 

s (t) =
N−1∑
n=0

M−1∑
m=0

X [n, m] ·gtx (t−nT ) · ej2πm∆ f (t−nT ) (2)

T∆ f = 1
where T is  the  duration  of  one  time  slot  and  we  have

.
r (t)

Y [n, m]
At the receiver,  the received baseband signal  is

processed  by  the  Wigner  transform  to  obtain 
as
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Y [n, m] =
r

g∗rx (t−nT ) · r (t) · e−j2πm∆ f tdt (3)

The  symplectic  finite  Fourier  transform  is  then
performed to attain delay-Doppler symbols as
 

y [k, l] =
1
√

NM

N−1∑
n=0

M−1∑
m=0

Y [n, m] · e−j2π
(

nk
N −

ml
M

)
(4)

2.2　OTFS input-output analysis with DSE

r (t)
NP

At  the  receiver,  the  baseband  signal  received  via
 paths can be derived as

 

r (t) =
NP∑
i=1

β̃i · e−j2πτi fc · ej2πνit · s
(
t−

(
τi−

νi

fc
t
))

(5)

β̃i τi νi

τi− (νi/ fc) t ≈ τi

Ts = NT

h (τ,ν) =∑NP
i=1 βi ·δ (τ−τi) ·δ (ν− νi) βi = β̃i · e−j2πτi fc

(νi/ fc) t

H (t, f )
r (t) =

r
H (t, f )·

S ( f ) · ej2π f tdt

where , , and  denote the attenuation, propagation
delay and the Doppler shift at the carrier frequency for
the i-th path, respectively. If the frame duration is small
or  the  mobility  is  slow  enough,  then 
holds  true  within  a  frame  duration ,  which
deduces  the  conventional  sparse  multipath  channel
model[2] in  the  delay-Doppler  domain  as 

 by  denoting .
However, the offset  is non-negligible in OTFS
channels  due  to  the  much  longer  frame  duration  than
that  of  traditional  OFDM  system.  As  a  result,  if  the
time-variant  frequency  response  is  adopted  to
characterize the equivalent channel as 

, we have
 

H (t, f ) =
NP∑
i=1

βi · e
j2π
νi

fc
( fc+ f )t

· e−j2πτi f (6)

νi( fc+ f )/ fc
From Eq. (6), it is clear that the Doppler frequency of

each  path  is  frequency-dependent  as ,
which is referred to as DSE.

grx (t) = gtx (t) =
1
√

T
I[0, T ](t)

The practical rectangular pulses are employed in this

letter,  where  we  have .

τi = li/M T νi = ki∆ f /N pi = fc/νi β′i = βi · ej2πτiνi

li

1/(M∆ f )

ki

, , ,  and 
are adopted for ease of illustration, where  is positive
integer  by  assuming  wideband  system design,  i.e.,  the
delay  resolution  is  sufficient  to  approximate
the path delays to the nearest sampling points.  is not
necessarily integer. The input-output relationship in the
delay-Doppler domain can be characterized[13] as
 

y [k, l] =
NP∑
i=1

N−1∑
k′=0

M−1∑
l′=0

β′i ·ψi
k, l [k′, l′] · x [k′, l′]+w [k, l]

(7)
w [k, l] ∼ CN (0, σ2)

ψi
k, l [k′, l′]

where  are  the  white  Gaussian
noise,  and  can be derived as  Formula (10),
shown  at  the  bottom  of  this  page.  The  index  sets  are
defined as
 

Li
ISI =

{l′ ∈ N | M− li+1 ⩽ l′ ⩽ M−1}, pi > 0;
{l′ ∈ N | M− li ⩽ l′ ⩽ M−1}, pi < 0

(8)
and
 

Li
ICI =

{l′ ∈ N | 0 ⩽ l′ ⩽ M− li}, pi > 0;
{l′ ∈ N | 0 ⩽ l′ ⩽ M− li−1}, pi < 0

(9)

Li
ICI

Y [n, m] X [n, m] Li
ISI

Y [n, m] X [n−1, m]
Li

ICI Li
ISI

NM/pi N = 128 M = 1024
v = 500 NM/pi 0.07

5×10−4

y = Hx+w
ylN+k = y [k, l] xlN+k = x [k, l] HlN+k, l′N+k′ =∑NP

i=1 β
′
i ·ψi

k, l [k′, l′] wlN+k = w [k, l]

where  is  derived  from  the  relation  between
 and ,  while  embodies  the

property  between  and .  The
explicit  definition  of  and  varies  with  the
mobility  direction,  which  is  different  from  prior
analysis in Ref. [5] neglecting DSE. The approximation
of  Formula  (10)  is  determined  by  the  small  value  of

.  For  example,  when , ,  while
 km/h,  is  less  than ,  while  the

approximated  error  of  Formula  (10)  is  approximately
bounded  by [13].  The  input-output  relation  in
Eq. (7)  can also be reformulated as ,  where
we  have , , 

, and .
 

ψi
k, l [k′, l′] ≈ e

−jπ(M−1)
(

li+l′−l
M

)
× ej2πνi

l′T
M ×

sinπ×M×
(

li+ l′− l
M

− N −2
2pi

)
M× sinπ×

(
li+ l′− l

M
− N −2

2pi

) × sinπ× (N −1)×
(

ki+ k′− k
N

+ M−1
2pi

)
N × sin×π

(
ki+ k′− k

N
+

M−1
2pi

) × ejπ(ki+k′−k)× ejπ (N−2)(M−1)
2pi × e−j2π ki+k′

N , l′ ∈ Li
ISI;

sinπ×M×
(

li+ l′− l
M

− N −1
2pi

)
M× sinπ×

(
li+ l′− l

M
− N−1

2pi

) × sinπ×N ×
(

ki+ k′− k
N

+
M−1
2pi

)
N × sinπ×

(
ki+ k′− k

N
+

M−1
2pi

) × ejπ N−1
N (ki+k′−k)× ejπ (N−1)(M−1)

2pi , l′ ∈ Li
ICI

(10)
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NM/pi ejπ MN
2pi

NM/|pi|

NT ×M∆ f = NM
pi = fc/νi

3×10−4 N = 128 M = 512
500

NM
pi

Compared  with  the  derivation  in  Refs.  [2, 5]  where
DSE is ignored, extra delay-Doppler extension appears
due  to  the  phase  modification  of  sinc  functions  in
Formula  (10),  which  can  be  approximately  measured
by . An extra rotation approximated as  is
also  introduced  due  to  DSE.  As  a  result,  the
significance  of  DSE  can  be  roughly  evaluated  by  the
maximum value of , which stands for the ratio
between  the  size  of an  entire  time-frequency  resource
block  and  the  mobility  parameter

.  From  the  results  of  Ref.  [13],  significant
performance  degradation  occurs  due  to  the  negligence
of DSE, e.g.,  Normalized Mean Square Error (NMSE)
of  more  than  1% and  Bit  Error  Rate  (BER)  floor  of
about  when ,  with  the
maximum  mobility  as  km/h  even  though  perfect
knowledge  of  parameters  can  be  attained.  Therefore,
DSE requires elaborate consideration in OTFS receiver
design more especially when  is comparable to the
mobility  parameter ,  which  inspires  us  to  develop
DSE-aware  schemes  to  exploit  the  potential  of  OTFS
systems.

3　Proposed SBL-Based Channel Estimation

τmax = lmaxT/M
νmax = kmax∆ f /N

In  this  section,  the  delay-Doppler  channel  recovery
considering  DSE  is  depicted  in  detail,  where  the
embedded  pilot-aided  scheme  and  SBL-based
parameter  estimation  are  employed.  Since  Formula
(10)  has  indicated  extra  delay-Doppler  spread  due  to
DSE,  additional  guard  space  over  traditional  impulse-
based technique in Refs. [4, 7] is required to guarantee
the estimation quality,  which certainly necessitates the
adjustment of scheme details to employ SBL in OTFS
channel  estimation  rather  than  deploy  the  SBL-based
one  in  Ref.  [7]  directly.  Let  and

 denote  the  maximum  time  delay  and

fcDoppler frequency corresponding to , respeclively, to
simplify the notation.

3.1　Problem formulation

xd [k, l] xpLet  and  denote  the  data  symbol  and  the
pilot  symbol,  respectively.  As  shown  in Fig.  1a, Q1
grids  are  reserved  to  avoid  the  data  interference
between  data  and  pilot  symbols,  while Q2 grids  are
employed  to  enhance  the  performance  of  channel
estimation,  respectively.  The  transmitted  symbols  in
delay-Doppler domain can be derived as
 

x [k, l] =


xp, k = kp and l = lp;

0, kp− k̃ ⩽ k ⩽ kp+ k̃ and lp− l̃ ⩽ l ⩽ lp+ l̃;
xd [k, l], elsewhere

(11)

k̃ = 2kmax+Q1+Q2 l̃ = lmax+Q1+

Q2 Q1

Q2

Q1

Q1 = 0

M = 512, N = 128, Q1 = 10, Q2 = 5, lmax = 20
kmax = 16 10.29%

7.39%

where  we  have  and 
.  grids are reserved to avoid the data interference

between  data  and  pilot  symbols,  while  grids  are
employed  to  enhance  the  performance  of  channel
estimation.  The pilot  pattern is  similar  to  that  in  Refs.
[4, 7, 11]. However, extra interference brought by DSE
forces  additional  guard  interval  compared  with  the
prior  design,  which  is  embodied  in .  Taking  the
delay axis as an example,  is  enough to prevent
the  data  interference  if  DSE  is  ignored,  which  brings
significant  data  interference  due  to  the  power  leakage
caused  by  DSE  in  Formula  (10).  Taking  the  typical
value  as ,
and , the pilot overhead is , which is a
little  higher  than prior  pattern[4, 7] as .  However,
the reliability is enhanced significantly considering the
extra  delay-Doppler  extension  caused  by  DSE,  which
can be shown clearly in Section 4.

y [k, l]/xp kp− kmax−Q2 ⩽ k ⩽ kp+ kmax+Q2 lp−
Q2 ⩽ l ⩽ lp+ lmax+Q2

As  illustrated  in Fig.  1b,  the  received  symbols
 for  and 

 are  utilized  for  channel
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Fig. 1    Symbol patterns of transmitter and receiver.
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yT

estimation.  The  interference  from  data  symbols  is
absorbed into the measurement noise. According to Eq.
(7)  and  Formula  (10),  the  truncated  region  can  be
reformulated as
 

yT =ΨT (k, l) ·β+wT (12)

yT , wT ∈ CMT NT×1 MT = lmax+2Q2+1
NT = 2kmax+2Q2+1

ωT

β β′i

where  with  and
.  In  this  paper,  the  data

interference  is  absorbed  into  the  measured  noise ,
which  is  similar  to  Ref.  [7].  is  the  vectorized ,
while the truncated measurement matrix can be derived
by
 

ΨT (k, l) = [ψT (k1, l1), ψT (k2, l2), . . . , ψT (kNP , lNP )]
(13)

ψT (ki, li) ψi
k, l [kp, lp]

ΨT

where  denotes the vectorized  for
the  channel  estimation  region  in Fig.  1b.  Since  the
formulation  in  Eq.  (12)  is  still  non-linear  due  to  the
unknown  delay  and  Doppler  shift  in ,  we  employ
the  Taylor  expansion  to  transform  the  estimation
problem to a linear one, which can simplify the process
significantly.

k̃g = {̃k0, k̃1, . . . , k̃Nν }
[−kmax, kmax]

rν = 2kmax/Nν Nν

k̃ni

ki

ψT (ki, li)

Let  denote  the  uniform
sampling  grid  in  the  Doppler  range  with
the  virtual  Doppler  resolution ,  is  the
number  of  sampling  grids.  Suppose  that  is  the
nearest  grid  point  to ,  the  measurement  vector

 can  be  approximated  using  first-order  linear
expansion as
 

ψT (ki, li) ≈ ψT
(

k̃ni , li
)
+ψ′T

(
k̃ni , li

) (
ki− kni

)
(14)

ψT
(

k̃ni , li
)

ψ′T
(

k̃ni , li
)

rτ = 1 Ng = lmax (Nν+1) κ

k

where  and  can be obtained from
Formula  (10).  Meanwhile,  since  no  fractional  delay  is
considered,  it  is  natural  to  set  the  virtual  delay
resolution as . Let  and  denote
the  total  number  of  measurement  vectors  and  the  off-
grid parts of , respectively. For ease of illustration, we
employ the notation as
 

A = [ψT (̃k0,1), . . . , ψT (̃kNν , 1), ψT (̃k0, 2), . . . ,

ψT (̃kNν , 2), . . . , ψT (̃k0, lmax), . . . , ψT (̃kNν , lmax)],

B = [ψ′T (̃k0,1), . . . , ψ′T (̃kNν , 1), ψ′T (̃k0, 2), . . . ,

ψ′T (̃kNν , 2), . . . , ψ′T (̃k0, lmax), . . . , ψ′T (̃kNν , lmax)]

ΨT (κ) = A+B ·diag(κ), κ ∈
[
− rν

2
,

rν
2

]Ng
(15)

with which the channel estimation problem in Eq. (12)
can be reformulated as
 

yT =ΨT (κ) ·β+wT (16)

wT

κ

β

where  is  the  additive  white  Gaussian  noise  vector
and  the  parameters  required  to  be  estimated  are 
and .

3.2　SBL-based channel estimation scheme

lg kg

A B

The  formulation  in  Eq.  (16)  can  be  easily  solved  by
employing  classical  SBL.  Since  SBL has  been  widely
employed in sparse signal recovery, we only provide a
basic  introduction  to  its  key  concepts  and  derivations
here.  and  are employed to represent the delay and
Doppler  grids,  respectively,  from  which  and  are
expanded.  The  hierarchical  hyper-prior  distribution  is
employed to exploit the sparsity.

α0

c d
First,  the  noise  precision  is  assumed  to  follow  a

Gamma hyper-prior parameterized by  and  as
 

p (α0; c, d) = Γ(α0 |c, d),

p (yT | κ, β, α0) = CN (yT |ΨT (κ) ·β, α−1
0 I) (17)

Γ (α0 | c, d) = [Γ (c)]−1 ·dc ·αc−1
0 · e−d·α0 c dwhere .  and 

are required to be small enough to attain a broad hyper-
prior.

β

p (β; ρ) =
r

p (β | α) · p (α; ρ) dα ρ > 0 Λ =

diag (α)

Second,  the  two-stage  prior  for  is  adopted  as
,  where , 

 and
 

p (β | α) = CN (β | 0, Λ),

p (α ; ρ) =
Ng∏

n=1

Γ (αn | 1, ρ) (18)

Re {β} Im {β}

β

Since  and  are  also  Laplace  distributed
which is strongly peaked at the origin, the prior above
tends to favor most elements of  being zeros.

κ

κ ∼U
([
− rν

2
,

rν
2

]Ng
)Third,  because  there  is  no  other  information  for ,

the  uniform  prior  is  assumed
corresponding to its bound.

Finally, the joint probability distribution is
 

p (yT , β, α0, α, κ) =
p(yT |κ, β, α0) · p (β | α) · p (α) · p (α0) · p (κ) (19)

where the distribution on the right can be found in the
above derivation.

β

β

The  Expectation-Maximization  (EM)  algorithm  can
be implemented  to  solve  Eq.  (16)  with  the  probability
analysis  before,  where  can  be  treated  as  a  hidden
variable. From Ref. [18], the posterior distribution of 
can be represented as follows:
 

p (β | yT , α0, α, κ) = CN (β | µ, Σ) (20)

we have
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Σ = (α0 ·ΨH
T (κ) ·ΨT (κ)+Λ−1)−1,

µ = α0 ·Σ ·ΨH
T (κ) · yT (21)

µ Σ α0 α κ

E (log p (yT , β, α0, α, κ)) α0 α

κ

To  obtain  and , ,  and  are  required.  By
maximizing ,  and  can be
updated,  while  the  update  of  off-grid  parts  can  be
obtained by solving
 

αnew
n =

√
1+4ρ (|µn|2+Σnn)−1

2ρ
,

αnew
0 =

c−1+Ng

d+ ||yT −ΨT (κ) ·µ||2+α−1
0

Ng∑
n=1

(1−α−1
n Σnn)

(22)

 

κnew = arg min
κ ∈

[
− rν

2 ,
rν
2

]Ng
κT Pκ−2vTκ (23)

where we have
 

P = Re {(BHB)∗⊙ (µµH+Σ)},
v = Re {diag (µ∗) ·BH · (yT − A ·µ)−diag (BH · A ·Σ)}

(24)
∂

∂κ

(
κT Pκ−2vTκ

)
= 2(Pκ− v)

κnew P

κ̆ = P−1 · v ∈
[
− rν

2
,

rν
2

]Ng

κnew = κ̆ κ

Based on the fact that , the
computation  of  can  be  simplified.  If  is

invertible  and ,  the  optimal
solution  of  Eq.  (23)  is .  Otherwise,  can  be
updated elementwise. First, we let
 

κ̆n =
vn− (Pn)T

−n ·κ−n

Pnn
(25)

κThen we can update  by carrying out
 

κnew
n =


− rν

2
, κ̆n ⩽ −

rν
2

;

κ̆n, −
rν
2
< κ̆n <

rν
2

;
rν
2
, κ̆n ⩾

rν
2

(26)

κ = 0 α =
|AH · yT |
MT ·NT

α0 =
100

var{yT }
β

Niter
||αnew−α||
||α|| ϵ

k̂ = kg+κ l̂ = lg β̂ = µ
Ĥ N̂P

Consequently,  the  proposed  SBL-based  OTFS
channel  estimation  scheme  is  summarized  in
Algorithm 1. After initializing the hyper-parameters as

,  and ,  the  distribution
of  is  updated  according  to  Eq.  (21),  and  the  hyper-
parameters  are  updated  employing  Eqs.  (22)  and  (23)
iteratively.  The  iteration  is  terminated  when  the
maximum  number  of  iteration  is  reached  or

 is  smaller  than  a  predefined  tolerance .
The  estimation  of  channel  parameters  is  provided  by

, , and . Finally, the channel matrix
 can be  recovered by employing the  first  largest

β̂ N̂P

Σ

O (MT ·NT ·N2
g )

O (Niter ·MT ·NT ·N2
g )

amplitude  elements  of ,  where  is  a  predefined
parameter  representing  the  maximum  acceptable
sparsity.  The  major  computational  load  lies  in  the
update  of  for  each  iteration,  whose  complexity  can
be  bounded  as  based  on  efficient
inversion  algorithms.  As  a  result,  the  total  complexity
order  of  the  proposed  SBL-based  OTFS  channel
estimation  scheme  is .  It  is
obvious  that  considering  DSE  does  not  increase  the
system  complexity  since  the  determinants  keep  the
same as the scenarios ignoring DSE[7].  The major cost
of  DSE-aware  schemes  is  the  ever-decreasing
transmission  efficiency  due  to  the  additional  guard
space reserved to avoid interference caused by DSE.

4　Simulation Result

βi ∼ CN (0,1/NP)

In  this  section,  the  performance  of  the  proposed
channel  estimation  scheme  will  be  evaluated  by
simulation  results.  The  typical  value  of  relevant
simulation  parameters  is  provided  in Table  1.  The
complex  gain  of  each  path  is  randomly  generated  as

.  The  NMSE  of  the  delay-Doppler
channel is defined as
 

NMSE = E

 ||Ĥ−H||2F
||H||2F

 (27)

kp = N/2
lp = M/2 Q1 = 10 Q2 = 5

c = d = 10−4 ρ = 10−2 ϵ =

10−3 Niter = 20 N̂P = 20

For  the  transmission  frame,  we  have  and
 for the location of pilot,  and , 

for the guard interval. We set , , 
, ,  and  to  implement  Algorithm

1. The performance of  the SBL-based method without

 

Algorithm 1　SBL-based OTFS channel estimation scheme

yT rν c d ρ lg kg ϵ Niter N̂PInput: , , , , , , , , , and 

k̂ l̂ β̂ HOutput: , , , and the recovered channel matrix 
A B  1: Generate  and  employing Eq. (15);

κ = 0 α =
|AH · yT |
MT ·NT

α0 =
100

var{yT }
  2: Initialize , , ;

  3: Repeat
ΨT (κ) = A+B ·diag (κ)  4: 　 ;

µ Σ  5: 　Update  and  using Eq. (21);
α α0  6: 　Update  and  according to Eq. (22);
κ  7: 　Update  by solving Eq. (23);

  8: until stopping criteria satisfied

k̂ = kg +κ l̂ = lg β̂ = µ  9: , , ;
N̂P β̂

Ĥ
10: Select the first  largest amplitude elements of  to
　  recover the channel matrix .

k̂ l̂ β̂ Ĥ11: Return , , , and the recovered channel matrix .

    1826 Tsinghua Science and Technology, December 2024, 29(6): 1821−1828

 



SNR = 1/σ2

1
|xp|2

SNRp

NM
SNRp = 45

DSE (namely SBL-NDSE) in Ref. [7], OMP-based on-
grid  method  with  DSE  (OMP-DSE)[13],  and  OMP-
based  on-grid  method  without  DSE  (namely  OMP-
NDSE)[6] are  treated  as  the  comparison.  The  system
Signal-to-Noise Ratio (SNR) is defined as ,
where the power of per bit is set as . Similar to Refs.
[6, 7, 11], the pilot power  is assumed to be 30 dB
higher  than  that  of  per  bit  to  guarantee  the  quality  of
estimation.  Though the pilot  SNR denoted as  is
usually  a  high  value,  such  as  45  dB  like  Refs.  [4, 6,
11],  ISFFT  will  spread  the  power  uniformly  into 
time-frequency  grids,  e.g.,  dB  leads  to  an
extra  SNR  less  than  3 dB  under  the  simulation
parameters  in  the  time-frequency  domain,  which  is
quite bearable in practical system design.

SNR = 15

rν
rν

ΨT

rν
rν < 0.5 rν = 0.5

rν = 0.5

In Fig.  2,  we  set  dB  and  illustrate  the
NMSE  performance  against  the  virtual  Doppler
resolution .  It  is  obvious  that  NMSE decreases  with

 decreasing. However, the computational complexity
increases significantly with the larger dimension of 
caused  by  decreasing ,  which  obtains  little  NMSE
superiority  when .  So  is  enough  to
implement  the  channel  estimation.  When ,
OMP-DSE  even  outperforms  SBL-NDSE  by  reducing
59% of NMSE, which demonstrates the essentiality of
considering DSE. SBL-DSE can reduce 37% of NMSE
further by taking both DSE and fractional Doppler into
account,  which  proves  the  performance  superiority  of
this work.

SNR rν = 0.5
10−2

SNR ⩾ 10

Figure  3 presents  the  NMSE  performance  against
 with . It is clear that the error floor whose

level  is  about  can  be  diminished  by  considering
DSE  for  both  SBL-based  and  OMP-based  schemes.
OMP-DSE  attains  less  NMSE  than  SBL-NDSE  when

 dB,  which  motivates  the  development  of
estimation  schemes  taking  DSE  into  consideration.
SBL-DSE reduces about more than 30% of the channel

SNR = 10NMSE compared with OMP-DSE when  dB.

5　Conclusion

In  this  paper,  DSE  in  OTFS  systems  is  taken  into
account,  where  the  embedded  pilot  in  the  delay-
Doppler  domain  is  employed  to  estimate  the  channel.
An  off-grid  SBL-based  scheme  is  then  proposed
inspired by the input-output relationship with DSE and
the  embedded  pilot.  Simulation  results  verify  the
performance  superiority  compared  with  the  estimation
scheme  ignoring  DSE  and  grid  mismatch.  For  future
work,  it  is  meaningful  to  consider  the  optimization  of
symbol  patterns,  pulse  shapes  and  off-grid  estimation
schemes  considering  DSE,  which  is  helpful  for
promoting  the  transmission  efficiency  and  the
reliability further.
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