
 

Online Weakly DR-Submodular Optimization Under
Stochastic Cumulative Constraints
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Abstract: In this paper, we study a class of online continuous optimization problems. At each round, the utility

function is the sum of a weakly diminishing-returns (DR) submodular function and a concave function, certain

cost  associated  with  the  action  will  occur,  and  the  problem  has  total  limited  budget.  Combining  the  two

methods, the penalty function and Frank-Wolfe strategies, we present an online method to solve the considered

problem.  Choosing  appropriate  stepsize  and  penalty  parameters,  the  performance  of  the  online  algorithm  is

guaranteed,  that  is,  it  achieves  sub-linear  regret  bound  and  certain  mild  constraint  violation  bound  in

expectation.
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1　Introduction

t ∈ [T ]
xt ∈ X X

Ut : X→ R

In  the  era  of  information,  a  large  number  of  data  are
produced rapidly,  and it  is  urgent  to  make a  relatively
optimal  choice  for  the  future  based  on  the  history
information.  Repeat  in  this  way,  this  is  online
optimization. Generally speaking, at each round ,
first the learner makes a decision , where  is the
fixed  constraint  set,  then  the  environment  feeds  back
the  utility  function .  The  goal  is  to  make  a
sequence of decisions such that  the following quantity
is as small as possible:
 

RT :=max
x∈X

T∑
t=1

Ut(x)−
T∑

t=1

Ut(xt).

{xt}t∈[T ]It  means  that  we  pursuit  to  get  decisions ,
which  can  produce  total  utility  as  good  as  the  largest
utility  we  can  get  at  the  fixed  point  in  hindsight  to
some  extent.  At  a  glance,  since  we  make  current
decision  only  with  history  information,  it  seems

impossible  to  get  guaranteed  result.  However,  some
rigorous  results  about  online  optimization  have  been
obtained, especially in convex setting[1, 2].

In  real  world  applications,  the  involved  functions
may  not  have  convex  (concave)  structure.  It  is  well
known  that  nonconvex  optimization  is  hard  to  solve,
both  in  offline  and  online  settings.  Submodularity,
which is neither convex nor concave property, has been
studied extensively in recent years, such as in machine
learning[3, 4],  etc.  In  the  offline  setting,  consider  the
following problem:
 

max
x∈X

U(x),

U : X→ R+

xt

t

where  is  of  submodular  property.  There
have been some guaranteed approximation algorithms,
deterministic  or  stochastic  type,  under  certain
assumptions.  That  is,  the  algorithm  outputs  vector 
after  iterations with
 

U(xt) ⩾ r max
x∈X

U(x)− loss(t),

r > 0 loss(t)

r

where  is  the  approximation  ratio,  and 
reprensents the loss term[4–12] . It is natural to introduce
certain factor  for the comparator in the online setting,
that is, to measure the following:
 

Rr
T := r max

x∈X

T∑
t=1

Ut(x)−
T∑

t=1

Ut(xt).

It is obvious that we are devoted to design algorithms

 
   Junkai  Feng, Ruiqi  Yang, Yapu  Zhang, and Zhenning  Zhang

are  with Beijing  Institute  for  Scientific  and  Engineering
Computing, Beijing University of Technology, Beijing 100124,
China. E-mail: fengjk@bjut.edu.cn; yangruiqi@bjut.edu.cn;
zhangyapu@bjut.edu.cn; zhangzhenning@bjut.edu.cn.

* To whom correspondence should be addressed.
    Manuscript  received: 2023-02-01;  revised: 2023-04-18;

accepted: 2023-05-05 

TSINGHUA  SCIENCE  AND  TECHNOLOGY
ISSN  1007-0214    04/20   pp1667−1673
DOI:  10 .26599 /TST.2023 .9010039
Volume 29, Number 6, December  2024

 
©  The author(s) 2024. The articles published in this open access journal are distributed under the terms of the

Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).



r Rr
T

T

r

with  higher  factor  and  lower  upper  bound  on 
which  is  needed  at  least  sub-linear  with  respect  to ,
meaning that the total utility of the algorithm produced
is as good as the utility at the fixed benchmark point in
handsight  multiplied  by  in  average.  Guaranteed
results  for  online continuous diminishing-returns (DR)
submodular  optimization  can  be  found  in  Refs.
[13–15], etc.

In the case of limited budget available, in addition to
make  actions  to  maximize  the  utility,  we  need  to
consider  the  consumption  occured  by  decisions  in
every  round  such  that  the  true  cost  does  not  violate
much  from  the  budget.  Mathematically,  the
corresponding offline problems is
 

max
T∑

t=1

Ut(xt),

s.t.,
T∑

t=1

ct(xt) ⩽ B,

xt ∈ X, ∀t ∈ [T ],

ct

where  we  have  one  more  constraint.  Note  that,  in  the
online  setting,  may  be  given  before  or  arrive  in
online  form.  Compared  with  the  unconstrained  form
online  problem,  we  need  to  add  the  measure  for
constraint violation, that is,
 

CT :=
T∑

t=1

ct(xt)−B.

Ut ctFor  some  certain  settings  of  and ,  different
online algorithms have been proposed[16–19].

Since  the  problem  in  real  world  is  not  of  perfect
property,  it  is  necessary  to  study  problems  that  cover
more  utility  functions  and  constraint  functions
appeared in real application. In this work, we consider
a  class  of  online  continuous  weakly  DR-submodular
maximization  problems  with  stochastic  linear  long
term  budget  constraint.  At  each  round,  the  utility
function  is  the  sum  of  two  terms:  one  is  weakly  DR
submodular,  the  other  is  concave,  the  revealed  linear
constraint  vectors  are  stochastic  and  independent
identically  distributed  with  certain  unknown
distribution.  By  the  approach  of  penalty  function
method  and  Frank-Wolfe  method,  we  propose  our
online  algorithm.  The  sub-linear  regret  bound  is
guaranteed  in  expectation  under  mild  assumptions,  as
well as certain bound for constraint violation.

2　Preliminary
T [T ] {t ∈ N :For  any  integer ,  denotes  the  set  of 

1 ⩽ t ⩽ T } x = (xi)i∈[n]

y = (yi)i∈[n] ∈ Rn x ⪯ y xi ⩽ yi, ∀i ∈ [n] x∨ y
x∧ y

∀i ∈ [n]

.  For  any  two  vectors ,
,  means that . 

and  denote  the  element  wise  maximum  and
minimum vector, respectively, , that is
 

(x∨ y)i =max{xi,yi}, (x∧ y)i =min{xi,yi}.
S ⊆ Rn S

PS

Rn S [·]+ := PR+

Given  nonempty  set .  If  is  closed  and
convex,  we  use  to  denote  the  metric  projective
operator of  onto . In particular, we use .

f : S → R
x,y ∈ S x ⪯ y

f (x) ⩽ f (y) f : S → R
∇ f (x) ⪰ ∇ f (y)

∀x,y ∈ S x ⪯ y f
∇i f (·) ⩾ 0, ∀i ∈ [n] ρ = sup{ρ1 ⩾ 0 : ∇ f (x) ⪰ ρ1∇ f (y),
∀x ⪯ y} 0 ⩽ ρ ⩽ 1
f ρ

A  function  is  said  to  be  monotone  if  for
any  two  vectors  with ,  it  holds  that

.  Suppose that  is  differentiable,  it
is  called  DR-submodular  function  if ,

,  with .  Moreover,  if  is  monotone,
,  set 

, then  is well defined, and we call that
 is -weakly DR-submodular at this time.

3　Problem Model

In  this  paper,  we  consider  the  online  continuous
maximization  problem  with  linear  stochastic
cumulative  constraint.  The  corresponding  offline
problem is as follows:
 

max
T∑

t=1

Ut(xt) := ft(xt)+ θt(xt),

s.t.,
T∑

t=1

⟨c, xt⟩ ⩽ B,

xt ∈ X, ∀t ∈ [T ]

(1)

B > 0 X ⊆ Rn

T
t ∈ [T ]

xt ∈ X ft, θt : X→ R

ct

c N.

T∑
t=1

Ut(xt)

T∑
t=1

⟨c, xt⟩ ⩽ B xt ∈

X Ut(·)

where  and  are  known  budget  and
constraint set, respectively. Under online environment,
it  means  that  integer  is  time horizon,  at  each round

,  two  actions  will  occur  in  order.  (1)  The  user
executes ;  (2)  the  utility  functions 
are revealed, as well as the stochastic constraint sample
vector  with  certain  unknown  distribution:
expectation  and  covariance  matrix  The  target  of
online  optimization  is  to  maximize  the  total  utility

 with  decision  vectors  satisfying  the  linear

constraint .  Since the algorithm gives 

 without knowing information about ,  naturally,
it is unreasonable to measure the performance of online
algorithm  similar  to  the  offline  case.  Before  putting
forward  the  measure  criterion,  we  make  the  following
clear assumptions about online optimization model (1).

X
0 ∈ X ⊆ Rn

+ X
Assumption  1 (1)  About  the  constraint  set :

, and  is compact and convex.
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t ∈ [T ]
Ut : X→ R+ Ut(·) := ft(·)+ θt(·)
ft, θt : X→ R

Ut ft
θt ρ

(2)  At  each  round ,  the  utility  function
 is  of  structure ,  where
 are  monotone  and  differentiable,  and  the

gradient  of  is  Lipschitz  continuous.  Moreover, 
and  are -weakly  DR-submodular  and  concave,
respectively.

{ct}t∈[T ]

D c
N. {ct}t∈[T ]

(3)  The  revealed  stochastic  vectors  are
independent  identically  distributed  with  certain
unknown distribution : expectation  and covariance
matrix  Meanwhile,  the  sample  vectors  are
nonnegative and bounded.

D,L,C1,C2,C3 > 0
Observation  1　 Based  on  these  conditions,  there

exist , such that
D := max

x,y∈X
∥x− y∥ =max

x∈X
∥x∥(1) ,

{Ut}t∈[T ] L ∀t ∈ [T ], x,y ∈ X(2)  are -smooth, that is ,
 

∥∇Ut(x)−∇Ut(y)∥ ⩽ L∥x− y∥,

{Ut}t∈[T ] C1

∀t ∈ [T ], x,y ∈ X
 are -Lipschitz  continuous,  that  is

,
 

|Ut(x)−Ut(y)| ⩽C1∥x− y∥,
{ct}t∈[T ](3)  The  sample  vectors  has  the  following

property:
 

∥ct∥ ⩽C2,∀t ∈ [T ],

C3 = max
p∼D(c,N),x∈X

∣∣∣∣∣⟨p, x⟩− B
T

∣∣∣∣∣ <∞.
C =max{C1,C2,C3} > 0For simplicity, set .

{xt}t∈[T ]

Applying an algorithm to online form of optimization
problem  (1),  it  will  output  at  the  end.  We
define  two  notions:  regret  and  constraint  violation  to
evaluate the performance of the algorithm.

{xt}t∈[T ]Definition  1　Let  be  outputs  of  an  online
algorithm for problem (1).

X̃ =
x ∈ X,

T∑
t=1

⟨c, x⟩ ⩽ B


(
1− 1

eρ

)
{xt}t∈[T ]

(1)  Take .  The -

regret with respect to  is defined as
 

RρT :=
(
1− 1

eρ

)
max
x∈X̃

T∑
t=1

Ut(x)−
T∑

t=1

Ut(xt).

{xt}t∈[T ]

(2) The stochastic constraint violation with respect to
 is defined as

 

CT :=
T∑

t=1

⟨c, xt⟩−B.

4　Proposed Algorithm

Inspired by the penalty function method for constrained

optimization  and  Frank-Wolfe  algorithm,  we  propose
our  online  algorithm  for  solving  online  maximization
problem (1).

5　Performance Analysis

{xt}t∈[T ]

x ∈ X
Lemma 1　Let  be the sequence generated by
the Algorithm 1. Then we have, for any ,
 
 

Algorithm 1　Online algorithm of primal-dual type
X T K

α > 0 β > 0 β =
1
αC2

Input: The constraint set , time horizon , integer , stepsize

, and penalty parameter  with .
{xt}t∈[T ]Output: Action sequence .

L0(·) ≡ 0 v(k)
0 = 0,∀k ∈ [K]Initialize , .

t = 1 Tfor  to  do

x(1)
t = 0.　　

k = 1 K　　for  to  do

v(k)
t = PX(v(k)

t−1 +α∇xLt−1(x(k)
t−1,λt−1)) (2)

x(k+1)
t = x(k)

t +
1
K v(k)

t  (3)
　　end for

xt = x(K+1)
t xt　　Set  and act .

Ut(·) = ft(·)+ θt(·)
ct

　　Observe the utility function  and the
random constraint vector sampled as .

c̃t =
1
t

t∑
i=1

ci Lt : Rn ×R→ R

Lt(x,λ) = ft(x)+ θt(x)+
1

2β
λ2 −λht(x) ht(·) = ⟨c̃t, ·⟩−

B
T

　　Set , and construct function  as

, where .

λt = β[ht(xt)]+.　　Compute 
end for

 
  (

1− 1
eρ

) T∑
t=1

Ut(x)−
T∑

t=1

Ut(xt) ⩽

LD2T
2K

+
D2C2β

2
+

T
β
+

T∑
t=1

λtht(x) (4)

Proof　The proof is done in four steps.
Step 1: To show the following claim:

U(·) = f (·)+ θ(·) f , θ : X→ R
ρ

U(y)−U(x) ⩽
1
ρ
⟨∇U(x),y⟩, ∀x,y ∈ X

Suppose  that ,  and  are
monotone  and  differentiable,  and  they  are -weakly
DR-submodular  and  concave,  respectively.  Then

.
f ρSince  is -weakly DR-submodular, then

 

f (y)− f (x) ⩽
1
ρ
⟨∇ f (x),y− x⟩, ∀x,y ∈ X,y ⪰ x.

x,y ∈ X
f

Thus,  for  any ,  it  follows  from  the
monotonicity of  that
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f (y)− f (x) ⩽ f (y∨ x)− f (x) ⩽
1
ρ
⟨∇ f (x),y∨ x− x⟩ =

1
ρ
⟨∇ f (x),y− y∧ x⟩ ⩽ 1

ρ
⟨∇ f (x),y⟩.

θAccording  to  the  concavity  and  monotonicity  of ,
we get
 

θ(y)− θ(x) ⩽ ⟨∇θ(x),y− x⟩ ⩽ 1
ρ
⟨∇θ(x),y⟩,

thus we get the claim.
x ∈ X k ∈ [K]Step  2: To  proof  that  for  any , ,  the

following relational expression holds:
 

T∑
t=1

⟨∇xLt(x(k)
t ,λt), x− v(k)

t ⟩ ⩽
D2

2α
+αC2T +αC2

T∑
t=1

|λt |2

(5)

∀k ∈ [K], t ∈ [T ],
Since  the  projection  operator  is  nonexpansive,  it

follows from Formula (2) that, 
 

∥v(k)
t − x∥2 ⩽

∥v(k)
t−1+α∇xLt−1(x(k)

t−1,λt−1)− x∥2 =

∥v(k)
t−1− x∥2+α2∥∇xLt−1(x(k)

t−1,λt−1)∥2+

2α⟨∇xLt−1(x(k)
t−1,λt−1),v(k)

t−1− x⟩,
k ∈ [K],1 < t ∈ [T ],thus, for any 

 

2α⟨∇xLt−1(x(k)
t−1,λt−1), x− v(k)

t−1⟩ ⩽

∥v(k)
t−1− x∥2−∥v(k)

t − x∥2+α2∥∇xLt−1(x(k)
t−1,λt−1)∥2 =

∥v(k)
t−1− x∥2−∥v(k)

t − x∥2+α2∥∇xUt−1(x(k)
t−1)−λt−1c̃t−1∥2 ⩽

∥v(k)
t−1− x∥2−∥v(k)

t − x∥2+2α2C2+2α2C2|λt−1|2.
t

T +1
By summing up the above inequalities over indices 

from 2 to , we obtain that
 

2α
T+1∑
t=2

⟨∇xLt−1(x(k)
t−1,λt−1), x− v(k)

t−1⟩ ⩽

∥v(k)
1 − x∥2+2α2C2T +2α2C2

T+1∑
t=2

|λt−1|2.

By arranging the above formula, we get the Formula
(5).

x ∈ XStep 3: To show that for any , it holds that
 

T∑
t=1

Ut(x)−
T∑

t=1

Ut(xt) ⩽ (1− ρ
K

)K
T∑

t=1

Ut(x)+

1
K

T∑
t=1

K∑
j=1

(
1− ρ

K

)K− j [LD2

2K
+λtht(x)+λt ·

B
T
−

λt⟨c̃t,v
( j)
t ⟩− ⟨∇xLt(x( j)

t ,λt),v
( j)
t − x⟩

]
(6)

Lt(·) L x
∀k ∈ [K], t ∈ [T ],

Since  is -smooth  with  respect  to  variable,
we conclude from Formula (3) that, 
 

Lt(x(k)
t ,λt) ⩽Lt(x(k+1)

t ,λt)+

⟨∇xLt(x(k)
t ,λt), x

(k)
t − x(k+1)

t ⟩+
L
2
∥x(k)

t − x(k+1)
t ∥2 =Lt(x(k+1)

t ,λt)−

1
K
⟨∇xLt(x(k)

t ,λt),v
(k)
t ⟩+

L
2K2 ∥v

(k)
t ∥2 =

Lt(x(k+1)
t ,λt)−

1
K
⟨∇xLt(x(k)

t ,λt),v
(k)
t − x⟩+

L
2K2 ∥v

(k)
t ∥2−

1
K
⟨∇xLt(x(k)

t ,λt), x⟩

(7)

Notice that
 

− 1
K
⟨∇xLt(x(k)

t ,λt), x⟩ = −
1
K
⟨∇Ut(x(k)

t )−λtc̃t, x⟩ ⩽

− ρ
K

(Ut(x)−Ut(x(k)
t ))+

λt

K
⟨c̃t, x⟩,

where  the  inequality  follows  from  the  conclusion  of
Step 1.

Lt

v(k)
t

Substituting it into Formula (7), and combining with
the  definition  of ,  iterative  Formula  (3)  and  the
bound of , we obtain that
 

Ut(x)−Ut(x(k+1)
t ) ⩽ (1− ρ

K
)(Ut(x)−Ut(x(k)

t ))−

1
K
⟨∇xLt(x(k)

t ,λt),v
(k)
t − x⟩+ 1

K

[LD2

2K
+

λtht(x)+λt ·
B
T
−λt⟨c̃t,v

(k)
t ⟩

]
.

Using the above recurrence formula, we get that
 

Ut(x)−Ut(xt) = Ut(x)−Ut(x(K+1)
t ) ⩽(

1− ρ
K

)K
(Ut(x)−Ut(x(1)

t ))+

1
K

K∑
j=1

(
1− ρ

K

)K− j [LD2

2K
+λtht(x)+λt ·

B
T
−

λt⟨c̃t,v
( j)
t ⟩− ⟨∇xLt(x( j)

t ,λt),v
( j)
t − x⟩

]
,

t
thus  we  get  Formula  (6)  by  summing  up  the  above
inequalities over .

x ∈ XStep 4: To show that for any , it holds that
  (

1− 1
eρ

) T∑
t=1

Ut(x)−
T∑

t=1

Ut(xt) ⩽

LD2T
2K

+
D2

2α
+αC2T +

T∑
t=1

λtht(x)

(8)
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xt =
1
K

K∑
j=1

v( j)
tNotice  that ,  it  follows  from  Formulas

(5) and (6) that
 

T∑
t=1

Ut(x)−
T∑

t=1

Ut(xt) ⩽
1
eρ

T∑
t=1

Ut(x)+
LD2T

2K
+

T∑
t=1

λtht(x)−
T∑

t=1

λtht(xt)+
D2

2α
+αC2T +αC2

T∑
t=1

|λt |2.

On the other hand,
 

αC2|λt |2−λtht(xt) =

αC2β2[ht(xt)]2
+−β[ht(xt)]+ht(xt) = 0,

λt [·]+
where the two equalities follows from the definitions of

 and operator , respectively. Thus we get Formula
(4).

β =
1
αC2Using the relation , we get Lemma 1. □

{c̃t}t∈[T ]Lemma  2　Let  be  random  vectors  defined
in Algorithm 1. Then,

t ∈ [T ] CE[∥c̃t − c∥2] ⩽
Tr(N)

t
(1) For any , ;

CE

 T∑
t=1

∥c̃t − c∥
 ⩽ 2

√
T +1

√
Tr(N)(2) .

c̃t =
1
t

t∑
i=1

ci {ct}t∈[T ]

D(c,N) CE[c̃t] = c

Cov(c̃t) =
N
t

Proof　 (1)  Since  and  are  i.i.d.

with distribution , we obtain that  and

. Thus we conclude that
 

CE[∥c̃t − c∥2] = CE[(c̃t − c)T(c̃t − c)] =

CE[Tr((c̃t − c)(c̃t − c)T)] =

Tr(CE[(c̃t − c)(c̃t − c)T]) =

Tr(Cov(c̃t)) =
Tr(N)

t
.

√·(2) It follows from the concavity of function  that
 

CE[
√
∥c̃t − c∥2] ⩽

√
CE[∥c̃t − c∥2].

Hence
 

CE

 T∑
t=1

∥c̃t − c∥
 = T∑

t=1

CE[∥c̃t − c∥] ⩽
T∑

t=1

√
CE[∥c̃t − c∥2] ⩽

T∑
t=1

√
Tr(N)

t
⩽ 2
√

T +1
√

Tr(N).

□
K =
√

T β =
4√TTheorem  1 Take , .  Then  we  have

the following upper bound of the regret in expectation
sense,

 

CE[RρT ] ⩽
LD2

2

√
T +

D2C2

2
4√

T+

4√
T 3+2CD

√
Tr(N)

4√
T
√

T +1.

x∗ ∈ argmax
x∈X̃

T∑
t=1

Ut(x) x = x∗Proof　Take . Substitute 

in Fomula (4), and take expectation in both sides of the
inequality, we get that
 

CE[RρT ] ⩽
LD2T

2K
+

D2C2β

2
+

T
β
+

CE[Term1]+λt ·CE

 T∑
t=1

(
⟨c, x∗⟩− B

T

) ⩽
LD2T

2K
+

D2C2β

2
+

T
β
+CE[Term1]

(9)

Term1 :=
T∑

t=1

λt

(
ht(x∗)−⟨c, x∗⟩+ B

T

)
x∗ ∈ X̃

where ,  and  the  last

inequality follows from .
Moreover, we observe that

 

Term1 =
T∑

t=1

λt · ⟨c̃t − c, x∗⟩ ⩽ D∥λ∥∞∥g∥1 ⩽ DCβ∥g∥1,

λ = (λ1,λ2, . . . ,λT )T g = (∥c̃1− c∥,∥c̃2− c∥, . . . ,
∥c̃T − c∥)T

λt

where , 
,  and  the  last  inequality  is  based  on  the

definition of . Therefore, it comes from Lemma 2 (2)
that
 

CE[Term1] ⩽ 2CD
√

Tr(N)β
√

T +1,

substituting into Formula (7), we get the conclusion of
Theorem 1.

K =
√

T , β = 4√TTheorem 2　Take .  Then  we  have
the following upper bound of the constraint violation in
expectation sense,
 

CE[CT ] ⩽
CT
B

4√
T 3+

T
B

√
T +

LD2T
2B

4√
T+

D2C2

2B
T +2D

√
T +1

√
Tr(N).

x = 0
ht

Proof　 Take  as  the  fixed  vector  in  Formula
(4), and according to the definition of , we conclude
that
 

T∑
t=1

λt ·
B
T
⩽

LD2T
2K

+
D2C2β

2
+

T
β
+TC,

hence
 

T∑
t=1

[ht(xt)]+ =
T∑

t=1

λt

β
⩽
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LD2T 2

2KβB
+

D2C2T
2B

+
T 2

β2B
+

T 2C
βB
=

CT
B

4√
T 3+

T
B

√
T +

LD2T
2B

4√
T +

D2C2

2B
T.

On the other hand, we have
 

CT =

T∑
t=1

⟨c, xt⟩−B =

T∑
t=1

ht(xt)+
T∑

t=1

⟨c− c̃t, xt⟩ ⩽

T∑
t=1

[ht(xt)]++
T∑

t=1

∥c− c̃t∥∥xt∥.

Thus,  the  above  two  relationships  together  with
Lemma 2 (2) yield the conclusion. □

6　Conclusion

We  consider  a  certain  class  of  nonconvex  online
continuous  optimization  problems  with  stochastic
linear  budget  constraint,  where  the  objective  function
at  each  round  is  composed  of  two  parts:  weakly  DR-
submodular  and  concave  function.  We  present  an
online  algorithm  of  primal-dual  type  to  solve  it.  The
expectation  of  the  regret  related  with  the  weakly  ratio
achieves  sub-linear  bound  with  respect  to  the  time
horizon.  Meanwhile,  the  violation  constraint  obtains
certain bound in expectation.
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