
 

Dynamic Modeling of Robotic Manipulator via an
Augmented Deep Lagrangian Network
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Abstract: Learning  the  accurate  dynamics  of  robotic  systems  directly  from  the  trajectory  data  is  currently  a

prominent research focus. Recent physics-enforced networks, exemplified by Hamiltonian neural networks and

Lagrangian neural  networks,  demonstrate  proficiency in  modeling ideal  physical  systems,  but  face limitations

when  applied  to  systems  with  uncertain  non-conservative  dynamics  due  to  the  inherent  constraints  of  the

conservation laws foundation.  In  this  paper,  we present  a novel  augmented deep Lagrangian network,  which

seamlessly integrates a deep Lagrangian network with a standard deep network. This fusion aims to effectively

model uncertainties that surpass the limitations of conventional Lagrangian mechanics. The proposed network

is applied to learn inverse dynamics model of two multi-degree manipulators including a 6-dof UR-5 robot and a

7-dof  SARCOS  manipulator  under  uncertainties.  The  experimental  results  clearly  demonstrate  that  our

approach exhibits superior modeling precision and enhanced physical credibility.

Key words:  deep  Lagrangian  network; nonconservative  dynamics; multi-degree  manipulator; inverse  dynamic

modeling

1　Introduction

A  robotic  manipulator,  as  a  mechanical  device
composed  of  joints,  links,  and  actuators,  is  often  a
complex  system  with  high  nonlinearity  and  strong
coupling.  Discovering  its  governing  equations  is
crucial  in  understanding,  comprehending,  and
controlling  the  behavior  occurring  in  robotic
manipulator system. Traditional modeling methods for
robotic  manipulators  typically  involve  manual
mathematical  and  analytical  techniques  based  on

fundamental  principles  from  mechanics  and  physics,
such  as  Newtonian,  Lagrangian  or  Hamiltonian
mechanics.  For  example,  using  Euler-Lagrange
equation,  the  equations  of  motion  for  robotic
manipulators  with  flexible  joints[1],  legged  robots[2],
and  the  robotic  manipulator  with  a  flying  multirotor
base[3] are  obtained.  The  manual  modeling  methods
rely  on  the  accurate  physical  parameters  and  known
structure  of  the  robot  which  are  not  easy  to  get  under
certain  conditions.  The  complex  analytical  process,
high  manual  calculation  load,  and  intricate  physical
parameters pose substantial challenges in achieving the
accurate modeling for a robotic system.

With  the  advances  of  machine  learning,  data-driven
methods has proven extremely useful in robotic system
modeling.  The  representative  methods  include
unstructured multi-layer  perceptron (MLP)[4–6],  locally
weighted projection regression (LWPR), support vector
regression  (SVR),  and  Gaussian  processes  regression
(GPR). However, they possess the same limitation: the
lack of physical plausibility, model interpretability, and
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generalization  capability.  Moreover,  these  methods
require  a  high  amount  of  dataset  and  often  are
constrained by computational inefficiency, the curse of
dimensionality, and a proneness to overfitting.

In  recent  years,  the  physics-inspired  learning
methods  are  gradually  being  employed  in  robot
dynamic modeling[7–13]. Reference [11] constructs deep
Lagrangian  networks  (DeLaN)  based  on  Lagrangian
mechanics,  which  can  effectively  learn  the  system
dynamics  equations  while  ensuring  their  physical
validity. The physics-inspired learning methods do not
require  specific  knowledge  of  each  system  to  obtain
interpretable  kinematic  and  dynamic  models,  and  the
learned  model  guarantee  compliance  with  Lagrangian
mechanics[12].  However,  physics-inspired  deep
networks  are  often  outperformed  in  simulating
articulated  rigidbodies  without  any  uncertainty[13].
When  it  comes  to  real  manipulator  systems  involving
undeniable  factors  such  as  actuator  and  inter-joint
friction,  the  modeling  performance  falls  short
compared  to  standard  deep  networks.  Many  studies
have integrated friction in some specific model into the
physics-inspired  networks[12, 14–16].  However,  the
intricate occurrences of friction, hysteresis, and contact
are  often  observed  to  happen  simultaneously,  posing
challenges  in  describing  them  within  certain  specific
models.  As  feedforward  neural  networks  (FFNN)  are
able to well perform nonlinear regression, it can locally
learn correlations of the torques and system state which
are ignored by the network topology of DeLaN[11, 12].

Inspired  by  the  above  discussions,  in  this  paper,  by
combining  a  DeLaN  and  a  standard  FFNN,  a  novel
deep  Lagrangian  network  called  as  DeLaN-FFNN  to
learn  dynamics  models  is  proposed  and  applied  to
model  robot  manipulator  systems.  This  network  can
learn  both  the  aspects  of  manipulator  dynamics  that
adhere  to  Lagrangian  mechanics  and  the  uncertainties
that deviate from Lagrangian mechanics. This network
is  an augmented DeLaN and can be widely applied to
model  a  large  class  of  the  physical  body  system
including  multi-body  robot,  legged  robot,  robot  car,
and  so  on.  In  this  paper,  we  apply  the  proposed
network  to  model  two  multi-degree  of  robotic
manipulator systems under unknown disturbances, and
the  simulation  results  have  shown  the  validity  and
superiority.

The  rest  of  this  paper  is  organized  as  follows:  In
Section  2,  we  extensively  review  Lagrangian
dynamics,  exploring  the  integration  of  Lagrangian

priors with deep learning to produce DeLaN. In Section
3,  we  introduce  the  structure  of  integrated  deep
Lagrangian  network,  accompanied  by  a  thorough
explanation  of  its  principles  and  functions.  In  Section
4,  several  experiments  are  conducted  to  confirm  the
effectiveness of our method in enhancing the accuracy
of  robotic  arm  dynamic  modeling  while  maintaining
model rationality.

2　Preliminary

Given that our work is conducted within the framework
of  DeLaN,  it  is  necessary  to  provide  a  concise
introduction  to  it.  DeLaN  achieves  transparency
through  the  integration  of  prior  knowledge  and  the
enforcement of physical plausibility. This transparency
facilitates  a  clearer  comprehension  of  the  learned
components  within  the  function  and  how  the
approximation aligns with the actual model.

2.1　Lagrangian dynamics

L
q

The  Lagrangian  in  Lagrangian  mechanics  is  a
function of generalized coordinates  that describes the
dynamics  of  a  system.  While  the  Lagrangian  is  not
unique,  any  function  that  produces  the  correct
equations  of  motion  is  considered  valid.  The
Lagrangian is generally chosen to be
 

L(q, q̇ ) = T (q, q̇ )−V(q) =
1
2

q̇ TH(q)q̇ −V(q) (1)

T (q, q̇) V(q)
H(q)

where  is the kinetic energy,  is the potential
energy, and  is the symmetric and positive definite
inertial  matrix  of  the  manipulator.  By  utilizing  the
calculus  of  variations,  we  get  the  Euler-Lagrange
equation with non-conservative forces described by
 

d
dt

∂L(q, q̇ )
∂q̇

− ∂L(q, q̇ )
∂q

= τ (2)

and further
 

∂
2L(q, q̇ )

∂
2q̇

q̈ +
∂L(q, q̇ )
∂q ∂q̇

q̇ − ∂L(q, q̇ )
∂q

= τ (3)

τ Lwhere  is  the generalized forces.  Substituting  with
the  kinetic  and  potential  energy  in  Eq.  (1)  yields  the
second  order  ordinary  differential  equation  described
by
 

H(q)q̈ + Ḣ (q)q̇ − 1
2

(
q̇ T ∂H(q)

∂q
q̇
)T

︸                           ︷︷                           ︸
=C(q,q̇ )

+
∂V(q)
∂q︸ ︷︷ ︸
=g(q)

= τ (4)
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c(q, q̇)
g(q)

where  represents  the  centrifugal  force  and
Coriolis  force  matrix,  and  represents  gravity
vector.  The  Lagrangian  method  is  a  commonly  used
approach  for  inverse  dynamics  analysis,  which  allows
for  the  establishment  of  the  simplest  form  of  inverse
dynamics models.

2.2　Construction of the parametric network

Different  deep  networks  have  been  proposed  to  learn
the physical dynamics models. Figure 1 provides a set
of comparative flowcharts for learning continuous-time
inverse  models  using  three  distinct  types  of  networks,
including  one  standard  network  and  two  physics-
inspired  deep  networks.  One  simple  standard  deep
network flowchart is given as Fig. 1a. Apparently, this
approach  represents  a  more  direct  and  raw  form  of
learning  directly  from data,  disregarding  the  influence
of  the  underlying  physical  structure.  By  contrast,
DeLaN  is  one  kind  of  representative  physics-inspired
deep network,  which integrates  specific  structures that
conform  to  the  Lagrangian  mechanics  to  enhance
physical rationality.

Figure  1b  is  the  architecture  of  DeLaN-structured
Lagrangian.  It  has  two  independent  deep  networks  to
parameterize  kinetic  and  potential  energy  separately,

and  then  obtains  the  Lagrangian  and  inverse  model.
DeLaN-Black-Box  Lagrangian[13] is  another  kind  of
DeLaN whose structure is shown as Fig. 1c, with only
one  single  deep  network  directly  parameterizes  the
Lagrangian. Note that the foundation of this work is the
DeLaN-structured Lagrangian. For the sake of brevity,
the  term “DeLaN” is  used  afterwards  in  this  paper  to
refer  to  the  DeLaN-structured  Lagrangian  without
confusion.

H(q) V(q)
V(q)

V̂(q,ϕ)
ϕ H(q)

H(q)

H(q)

Ĥ(q)
L̂(q)

As shown in Fig. 1b, DeLaN approximates the mass
matrix  and the potential energy  by utilizing
separate  feed-forward  networks.  For ,  a  common
deep network has been adopted, thus there is no need to
elaborate further. Its approximation is taken as ,
where  is the respective network parameter. For ,
compared  with  the  traditional  model  learning
approaches  which  learns  from  data  directly,
DeLaN  exploits  the  matrix’s  symmetric  positive
definite property and gets  through a more rational
and scientific approach. The approximated mass matrix

 can  be  decomposed  as  a  product  of  a  lower-
triangular matrix  with its transpose as follows:
 

Ĥ(q;θ) = L̂(q;θ)L̂(q;θ)T (5)
θwhere  is the network parameters of mass matrix, and

 

 
Fig. 1    Three  flowcharts  for  a  continuous-time  inverse  model  utilizing  the  deep  networks,  where  (a)  is  a  standard  deep
network, (b) is a DeLaN in the form of a structured Lagrangian, and (c) is a DeLaN in the form of a Black-Box Lagrangian.
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L(q;θ)
θ L

 is the feedforward neural network parameterized
by . The Lagrangian  can be approximated as
 

L̂(q, q̇ ;θ,ϕ) =
1
2

q̇ TĤ(q;θ)q̇ − V̂(q;ϕ) (6)

θ ϕ

τ = f −1(q,
q̇, q̈; θ, ϕ)

where  and  are  the  respective  network  parameters.
By  employing  this  parametrization,  the  inverse  model
can  be  derived.  Then  the  inverse  model 

 is approximated by
 

f̂ −1(q, q̇, q̈ ;θ,ϕ) =Ĥ(q;θ)q̈ + ˙̂H (q;θ)q̇−
1
2

(
q̇ T ∂Ĥ(q;θ)

∂q
q̇
)
+
∂V̂(q;ϕ)
∂q

(7)

±π

τ

The  input  of  the  network  is  position-related
information  of  the  generalized  coordinates,  velocity,
and  acceleration.  The  issue  of  angle  wrapping  at 
poses  challenges  in  function  approximation  if
continuous  revolute  joints  are  without  angular  limits.
Sine/cosine  feature  transformations  are  commonly
employed as a mitigation strategy for this issue[13]. The
network’s  output  is  the  approximated  torque  as  Eq.
(7),  which  enables  us  to  determine  the  torque  of  each
joint from the joint position-related data corresponding
to the desired trajectory. The optimization objective of
the Lagrangian dynamics can be expressed as follows:
 

(θ∗, ϕ∗) = argmin
θ, ϕ

∥∥∥ f̂ −1(q, q̇, q̈; θ, ϕ)−τR
∥∥∥2

WτR
(8)

τR

∥·∥W
WτR

where  represents  the real  torque collected from the
physical manipulator,  represents the Mahalanobis
norm,  and  represents  the  diagonal  covariance
matrix  of  the  generalized  forces.  It  is  necessary  to
normalize  the  loss  function  using  covariance  matrix
since the torque magnitude may vary greatly from joint

to joint.

Ĥ
It  is  worth  noting  that  the  optimization  problem  of

Eq. (8) should be solved under the constraints that  is
positive-definite and the corresponding derivatives can
be  well  approximated.  For  this  issue,  Ref.  [11]
proposed an efficient network which can guarantee the
positive-definite  constraint  for  all  parameters  and
analytical  derivatives  approximation.  The  detailed
network structure are omitted here, please see Fig. 2[11].
By  means  of  this  network  topology,  DeLaN can  learn
the  physical  model  trained  with  standard  end-to-end
optimization techniques.

3　An  Augmented  Deep  Lagrangian
Network: DeLaN-FFNN

In a traditional manual dynamics modeling method, the
system  identification  approach  and  DeLaN  typically
rely  on  the  Lagrangian  equation  and  the  exact
knowledge  of  the  kinematics.  This  promotes
extrapolation,  but  neglects  the  impact  of  uncertain
physical  factors  and  dynamics  on  the  modeling
accuracy  of  mechanical  systems[17].  Anything  that  is
not modeled in physics prior cannot be learned, such as
friction[18],  hysteresis,  and  contact[16].  Then  a  solitary
application  of  Lagrangian  mechanics  may  prove
insufficient  in  describing  non-conservative
dynamics[19]. We create an augmented deep Lagrangian
network  model  by  combining  DeLaN  that  gives  the
main  conservative  dynamics  model  and  a  standard
feedforward  network  that  approximates  the  existing
non-conservative  forces.  The  simple  feed-forward
network  can  well  learns  the  uncertainty  that  is  not

 

 
Fig. 2    DeLaN-FFNN predicts  dynamics  by  decomposing  the  forces  into  the  forces  that  comply  with  Lagrangian  mechanics
and the forces that do not conform to Lagrangian mechanics. In the network model, the green represents the network’s input
and output, the orange portion represents DeLaN, and the blue portion represents the standard deep network. This structure
of the dynamics network model better aligns with the actual conditions of the manipulator.
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considered  by  DeLaN,  which  enhances  the  modeling
accuracy  while  maintaining  the  level  of  physical
plausibility.

3.1　Manipulator dynamics model

DeLaNs  are  designed  for  continuous  control
applications and are specifically tailored to model rigid
body  dynamics[20].  However,  in  most  cases,  the  robot
manipulator  system cannot  be treated as  an ideal  rigid
body.  Building  upon  Lagrangian  mechanics,  we
incorporate  the  error  terms  into  the  dynamics
modeling,  the  inverse  dynamics  model  of  manipulator
is described by Refs. [21, 22],
 

H(q)q̈+C(q, q̇)+g(q)+ε(q, q̇, q̈) = τR (9)
τR ε(q, q̇ , q̈ )where  is the generalized forces,  represents

all the uncertainties that may appear in the manipulator
system, mainly include the following factors:

(1)  Friction  forces:  Friction  in  robot  joints  is  a
common  nonlinear  factor  that  introduces  errors.
Friction  forces  can  be  categorized  into  static  friction
and  dynamic  friction,  and  they  can  be  modeled  using
various  approaches,  such  as  Coulomb  friction  model
and viscous friction model[23, 24].

(2)  Elastic  forces:  Robot  components  such  as
linkages,  transmission  systems,  or  other  parts  may
exhibit  elasticity.  When  a  torque  is  applied,  these
components  undergo  elastic  deformation,  resulting  in
the generation of opposing forces[25].

(3)  Nonlinear  dynamic  effects:  In  certain  cases,
manipulator  systems  may  involve  nonlinear  dynamic
effects,  such  as  nonlinear  bending,  complex  periodic
motions, chaos, etc.[26]

(4)  External  disturbance  forces:  During  operation,
manipulators may experience external forces capable of
disrupting  their  motion,  such  as  wind  forces,
vibrations, or impacts from other objects.

(5)  Sensor  errors:  In  practical  manipulator  systems,
sensors  may  exhibit  noise,  drift,  or  other  sources  of
error. These errors can be reflected in the error terms of
the inverse dynamics equations.

(6)  Other  model  errors:  Dynamics  models  are
typically  created  using  mathematical  models  to
describe  the  behavior  of  the  manipulator.  However,
these  models  often  cannot  fully  accurately  reflect  the
real-world  conditions.  Model  errors  can  include  errors
caused  by  approximations  or  unmodeled  dynamic
characteristics, among other reasons[27].

Apparently,  the  priors  of  Lagrangian  mechanics  are

unable  to  adequately  describe  the  intricate  nonlinear
phenomena and other uncertainties mentioned above.

3.2　Construction of the parametric network

H(q) V(q)

ε(q, q̇, q̈)

ε(q, q̇, q̈)
ε̂(q, q̇, q̈; ψ) ψ

ε̂(q, q̇, q̈; ψ)

The structure of the DeLaN-FFNN is shown in Fig. 2.
The  portion  highlighted  in  orange  represents  the
structure  of  DeLaN,  where  the  parameters  include

and  are to be trained. The portion highlighted
in  blue  represents  the  structure  of  FFNN,  where  and

 is  to  be  trained.  FFNN  is  a  standard  neural
network  without  a  model  prior  and  applied  to  model
the  uncertainty  term .  The  approximated
uncertainty term is named as  where  are
the corresponding network weight.  Combining DeLaN
referred as Eq. (7), FFNN referred as , Eq.
(9), and
 

τc = f̂ −1(q, q̇, q̈; θ, ϕ, ψ) (10)
the  approximated  robotic  manipulator’ inverse  model
can be described by
 

f̂ −1(q, q̇, q̈; θ, ϕ, ψ) =Ĥ(q; θ)q̈+ Ĉ(q, q̇; θ)+
ĝ(q;ϕ)+ ε̂(q, q̇, q̈; ψ) (11)

We define our optimization objective as follows:
 

(θ∗, ϕ∗, ψ∗) =argmin
θ, ϕ, ψ

(
λε̂(q, q̇, q̈; ψ)2+

∥∥∥ f̂ −1(q, q̇, q̈; θ, ϕ, ψ)−τR
∥∥∥2

WτR

)
(12)

λ

τR ∥·∥W WτR

τc f̂ −1

τR

τ

ε(q, q̇, q̈)
ε(q, q̇, q̈) τR

where  is  a  positive  value  used  to  adjust  the
proportion  of  first  loss  term  in  the  overall  loss  value,

, , and  are as defined for Eq. (8). It is worth
noting  that  when  we  optimize  this  model,  (or )
should  recover  ground  truth ,  and  we  maximize  the
utilization  of  the  output  torque  from  DeLaN  while
minimizing  as much as possible, specifically,
to  eliminate  the  effect  of  the  term  when 
does not contain any uncertainties.

4　Experiment

In the experiments, we employ DeLaN-FFNN, DeLaN,
and  FFNN models  to  acquire  the  inverse  dynamics  of
both  a  simulated  manipulator  and  a  real  manipulator.
The  objective  is  to  test  whether  DeLaN-FFNN  can
provide  more  accurate  modeling  of  the  manipulator’s
dynamics and maintain physical plausibility. As that in
Ref. [11], the performances of all the learned model are
evaluated  using  the  error  on  training  and  test
trajectories  with  the  mean  squared  error  (MSE)  as  the
indicator  and  compared  to  the  other  learned  models.
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The  JAX  deep  learning  framework  is  utilized  to
construct  neural  networks,  with  the  automatic
differentiation  function  employed  for  calculating
partial derivatives within the dynamics model[28].

4.1　Simulated manipulator experiments

Simulation  environment  is  built  on  the  Pybullet
engine[29].  We  utilized  the  6-dof  UR-5  manipulator
simulation  model  as  the  modeling  object  for  the
dynamic  network  model.  The  simulation  of  the  UR-5
manipulator is depicted in Fig. 3a.
4.1.1　Ideal simulation manipulator

q
q̇ q̈

τ

We  first  consider  the  ideal  case  which  means  all  the
uncertain  factors  do  not  exist  in  the  simulated
manipulator.  The  simulation  is  only  based  on  rigid-
body dynamics.  We created  a  trajectory  dataset  of  the
UR-5  manipulator  including  the  joint  position  data ,
joint  velocities  data,  joint  acceleration ,  and  the
joint  torque  by  running  the  manipulator  randomly

(q, q̇, q̈, τ)

and getting various multi-segment motions. This torque
data is obtained using the inverse dynamics calculation
function  in  Pybullet.  The  inverse  dynamics  are
computed using the  recursive  Newton-Euler  algorithm
(RNEA)[30],  which  computes  the  feedforward  torque
using estimated physical  properties  of  the system, i.e.,
the  link  dimensions,  masses  and  moments  of  inertia.
The training dataset consists of a total of 60 667 sets of
joint states and joint torques . The following
comparisons  evaluating  the  the  modeling  accuracy  of
each  dynamic  network  model  are  all  based  on  this
dataset.  The  simulation  environment  and  three
trajectory  test  examples  (0−2)  are  depicted  in
Figs. 3b−3d.

λ = 0.0001
In  this  experiment,  for  the  optimization  objective  of

DeLaN-FFNN, we set the weight parameter .
The  results  of  the  inverse  model  are  visualized  in
Fig.  4.  Due  to  DeLaN’s  capability  of  learning  the
underlying  physical  model,  on  average,  DeLaN

 

 
Fig. 3    (a)  UR-5 manipulator  in  the  simulation environment.  (b−d)  Complete  trajectory of  the  end effector  of  the  simulated
manipulator in the three test sets are depicted as red lines in figures.
 

 

H(q)q̈ c(q, q̇) g(q)
Fig. 4    (a)  Learned  inverse  model  using  the  entire  training  dataset  consists  of  60  667  samples.  (b)  Predicted  force
decomposition into the inertial force  , (c) the Coriolis and Centrifugal forces , and (d) Gravitational force .
The last row represents the normalized MSE of the six joints on the data samples.
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τ

H(q)q̈ c(q, q̇)
g(q)

τR

ε(q, q̇, q̈)
ε(q, q̇, q̈)

ε(q, q̇, q̈)

achieves  a  lower  MSE  compared  to  FFNN  in
predicting  both  the  torque  and  the  inertial  force

,  the  Coriolis  and  centrifugal  forces ,  and
the  gravitational  force .  Because  FFNN  is  a
standard  neural  network  without  a  model  prior,  it  is
unable  to  learn  the  underlying  physical  model  of  the
manipulator, resulting in poorer modeling performance.
Among  different  DeLaN  models,  DeLaN-structured
Lagrangian  achieves  better  modeling  performance
compared  to  DeLaN-Black-Box  Lagrangian.  This  is
because  DeLaN-structured  Lagrangian  incorporates
deeper-level  Lagrangian  dynamics  prior  knowledge,
allowing  it  to  capture  and  represent  the  underlying
system dynamics more effectively.  Regarding DeLaN-
FFNN,  it  achieves  modeling  performance  that  is  very
close  to  DeLaN-structured  Lagrangian.  Compared  to
DeLaN-Black-Box  Lagrangian  and  FFNN,  DeLaN-
FFNN  achieves  a  lower  MSE.  Therefore,  it  is
reasonable to infer that when the actual torque  does
not  contain  uncertainties  or  when
uncertainties  is  very  small,  DeLaN-FFNN is
capable  of  eliminating  or  approximately  eliminating
the influence of uncertainties .
4.1.2　Injecting  damping  terms  into  the  simulated

manipulator

ε(q, q̇, q̈)

(q, q̇, q̈, τ)

In  this  experiment,  we  consider  the  case  that  the
simulated  manipulator  may  work  under  a  uncertain
environment.  We  configured  linear  damping,  angular
damping,  and  joint  damping  terms  for  the  simulated
manipulator  using  the  changeDynamics  function  in
Pybullet  to simulate uncertainties .  Similar to
the ideal case, we create a trajectory dataset of the UR-
5 manipulator under this condition. We collected a total
of  58  494  sets  of  joint  states  and  joint  torques

 as  the  training  dataset.  The  following  tests
are all based on this dataset.

λ

λ

λ

λ

λ

λ

Firstly,  to  see  the  influence  of  the  weight  parameter
 in  the  optimization  of  DeLaN-FFNN,  a  series  of

experiments are conducted by training the model under
different  values  of .  The  result  is  shown  in Fig.  5.
When  the  weight  parameter  is  large  enough  in
DeLaN-FFNN,  the  test  error  becomes  very  similar  to
that of DeLaN-structured Lagrangian. From Fig. 5, we
see  that  as  the  value  of  in  DeLaN-FFNN  gradually
decreases,  the  test  error  will  exhibit  fluctuating
changes. When  becomes small enough, the test error
of  DeLaN-FFNN  will  start  to  decrease  significantly.
After  reaching  a  certain  point,  further  decreasing  the
value  of  will  not  lead  to  significant  changes  in  the

λ

λ

λ

test  error  of  DeLaN-FFNN.  It  indicates  there  exist  a
optimal  value  or  an  optimal  range  of  for  achieving
the  best  learning  performance  using  DeLaN-FFNN.
Beyond  this  range,  the  impact  of  on  improving  the
model’s  test  error  becomes less  evident  and may even
lead  to  a  decrease  in  modeling  accuracy.  Therefore,
selecting  an  appropriate  value  during  the  model
training  process  is  crucial  in  achieving  optimal
performance.

Then the comparative experiments are performed by
utilizing  DeLaN-FFNN  and  the  other  three  models  to
learn  the  inverse  model  the  UR-5  manipulator.  The
results can be found in Figs. 6 and 7. From Fig. 7, we
see  that  the  modeling  performance  of  DeLaN-
structured  Lagrangian  and  DeLaN-Black-Box
Lagrangian  on  three  test  sets  is  quite  similar.  FFNN
shows some improvement in modeling accuracy, but it
still  falls  short  of  achieving  a  significantly  better
modeling  performance.  Apparently,  DeLaN-FFNN
outperforms  the  other  three  dynamic  network  models
and  gets  a  more  accurate  modeling  result.  The
modeling  performance  of  DeLaN-FFNN  on  the  three
test  sets  is  shown  in Fig.  6.  DeLaN-FFNN
demonstrated  superior  modeling  performance  for  the
UR-5 manipulator under uncertainties.

4.2　Real manipulator experiments

To demonstrate that DeLaN-FFNN is more suitable for
real environments compared to DeLaN, we conduct the
inverse  dynamics  model  learning  experiments  on  a
publicly  available  dataset
(http://gaussianprocess.org/gpml/data).  This  dataset  is
specifically  designed for  tackling an inverse  dynamics

 

 
Fig. 5    Trend  of  test  error  of  DeLaN-FFNN  as  the  weight
parameter λ in  the  optimization  objective  varies.  The  value
of λ corresponding  to  the  purple  pentagon  represents  the
point with the minimum testing error. The test error of other
models are fix.
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problem  associated  with  a  7  degrees-of-freedom
SARCOS  anthropomorphic  manipulator.  The  dataset
encompasses  a  21-dimensional  feature  space,  which
includes 7 joint positions, 7 joint velocities, and 7 joint
accelerations.  Each  input  instance  in  the  dataset  is
accompanied  by  corresponding  7  joint  torques.  The
dataset consists of 44 484 training examples and 4449
test  examples[31].  We  utilized  all  44  484  training  data
samples  for  the  training.  In  order  to  visualize  the
comparison  results  effectively,  we  randomly  selected
100  test  data  samples  from  the  total  of  4449  test
samples  for  testing  and  comparison.The  visualization
results can be seen in Fig. 8.

We test the modeling performance of each model on
the  subset  of  100  data  samples  and  the  entire  set  of
4449 data samples, and the results of the inverse model
are  summarized  in Table  1.  The “Sum” column
represents the sum of MSE values for each joint in the
corresponding dynamic network model. From Table 1,
regardless of the test dataset size, whether it is a subset

of  100  samples  or  the  full  4449  samples,  DeLaN-
structured  Lagrangian  and  DeLaN-Black-Box
Lagrangian  exhibit  similar  MSE  on  each  joint.
Therefore,  DeLaN-structured  Lagrangian  and  DeLaN-
Black-Box  Lagrangian  achieve  comparable  modeling
results. However, their MSE values are higher than that
of FFNN, indicating that their modeling accuracy is not
as  good  as  FFNN,  which  lacks  any  prior  physical
constraints. Among all these neural networks, DeLaN-
FFNN  shows  the  lowest  MSE  for  each  joint,
demonstrating  superior  modeling  performance.  This
demonstrates  that  DeLaN-FFNN  is  better  suited  for
dynamic  modeling  of  real  physical  systems  compared
to DeLaN.

In Figs.  8a−8g,  DeLaN-FFNN  is  capable  of
accurately modeling the inverse dynamics of the seven
joints of the SARCOS manipulator. In Fig. 8h, we have
visually  compared  the  modeling  accuracy  of  various
neural  networks  for  the  SARCOS  manipulator’s
dynamics,  On  average,  when  compared  to  DeLaN,

 

 
Fig. 6    Correspond to the inverse dynamics modeling of the six joints (0−5) of the manipulator using DeLaN-FFNN. The red
color represents the predicted values by DeLaN-FFNN, and the black color represents the ground truth values.

 

 
Fig. 7    Normalized MSE of the six joints on the data samples for different models in Test(0−2).
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FFNN  achieved  a  lower  MSE.  Therefore,  in  the  real
manipulator  applications,  FFNN  has  demonstrated
better  modeling  performance  compared  to  DeLaN-
Black-Box  Lagrangian  and  DeLaN-structured
Lagrangian.  Additionally,  among  all  the  networks,
DeLaN-FFNN  achieved  the  lowest  MSE,  indicating
that  its  modeling  accuracy  surpasses  that  of  FFNN.
DeLaN-FFNN  has  demonstrated  the  most  precise
modeling  results  and  is  considerably  better  suited  for
modeling the dynamics of real physical systems.

5　Conclusion

This work proposes a novel Deep Lagrangian Network
based  on  the  Deep  Lagrange  Network.  While
maintaining  the  advantage  of  preserving  the  physical
rationality  of  DeLaN,  this  network  incorporates  a

standard  deep  network  to  approximate  the
nonconservative  dynamics  that  can  not  be  fully
represented  by  the  DeLaN.  Then  by  applying  this
network,  we  learn  the  inverse  model  of  two  multi-
degree  of  manipulators:  UR-5  and  SARCOS
manipulator  under  uncertainties  from  the  trajectory
data.  The  experiments  evaluate  the  model  learning
performance for these two manipulators and the results
show  that  DeLaN-FFNN  outperforms  existing
approaches.  In  future  work,  this  network  should  be
applied  to  model  a  wider  system  class  and  a  real
physical robot system. The application of the proposed
network in model based control is also to be studied.
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Fig. 8    (a-g) correspond to the inverse dynamics modeling of the seven joints (0−6) of the manipulator using DeLaN-FFNN. (h)
represents the MSE of the seven joints in a specific data sample  among the 100 test data samples.

 

Table 1    Data in the table represents the MSE between the actual torque values and the predicted torque values for each joint
of a model.

Value of
samples Model Joint 0 Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6 Sum
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