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Abstract: The  formation  control  of  unmanned  aerial  vehicle  (UAV)  swarms  is  of  significant  importance  in

various  fields  such  as  transportation,  emergency  management,  and  environmental  monitoring.  However,  the

complex dynamics,  nonlinearity,  uncertainty,  and interaction among agents make it  a challenging problem. In

this paper, we propose a distributed robust control strategy that uses only local information of UAVs to improve

the stability and robustness of the formation system in uncertain environments. We establish a nominal control

strategy  based  on  position  relations  and  a  semi-definite  programming  model  to  obtain  control  gains.

Additionally,  we  propose  a  robust  control  strategy  under  the  rotation  set  to  address  the  noise  and

disturbance in the system, ensuring that even when the rotation angles of the UAVs change, they still  form a

stable formation. Finally, we extend the proposed strategy to a quadrotor UAV system with high-order kinematic

models and conduct simulation experiments to validate its effectiveness in resisting uncertain disturbances and

achieving formation control.

Key words:  multi-unmanned  aerial  vehicle  (UAV)  systems; formation  control; uncertain  perturbation; robust

distributed control

1　Introduction

Over  recent  decades,  formation  control  of  unmanned
aerial  vehicle  (UAV)  swarms  has  drawn  considerable
attention in various domains such as transportation[1−3],
emergency  management[4−6],  environmental
monitoring[7, 8], and military defense[9, 10]. For instance,
Yinka-Banjo and Ajayi[11] discussed different  types  of
UAVs  and  their  use  in  crop  irrigation,  health

monitoring,  animal  mustering,  geo-fencing,  and  other
agricultural  activities,  showcasing  their  potential  in
advancing sustainable farming practices. Outay et al.[12]

pointed out that drones have played a significant role in
accident  investigation  and  damage  assessment
pertaining to bridges and sidewalks. Furthermore, they
are  expected  to  utilize  computer  vision  integration
algorithms  to  extract  crucial  information  from  videos
and  images  captured  by  drones,  which  will
subsequently  contribute  to  risk  assessment  processes.
According  to  Ref.  [13],  major  industry  players  like
Amazon  have  been  employing  drones  for  package
delivery since 2013.

With  the  increasing  complexity  and  variability  of
deployment tasks, the significance of the UAVs control
problem  has  become  increasingly  prominent[14].
Among these, fixed-wing UAVs stand out due to their
long  endurance  and  long-distance  communication
capabilities,  giving  them  a  clear  advantage  in  task
execution.  Consequently,  numerous  scholars  have
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conducted  extensive  research  on  the  control  of  fixed-
wing  UAVs.  Dierks  and  Jagannathan[15] introduced  a
novel  nonlinear  controller  for  a  quadrotor  UAV
utilizing  neural  networks  (NNs)  and  output  feedback.
The proposed approach incorporates an NN to learn the
complete dynamics of the UAV in real time. Li et al.[16]

proposed  a  UAV  speed  control  framework  based
fairness  data  collection  scheme  to  enhance  data
collection fairness in intelligent transportation systems.
Paw and  Balas[17] introduced  an  integrated  framework
for the development of small UAV flight control which
offers  a  systematic  procedure  for  designing  flight
control,  accompanied  by  a  suite  of  design  tools  that
enable  control  engineers  to  efficiently  synthesize,
analyze,  and  validate  controller  designs.  However,
fixed-wing  UAVs  are  extremely  vulnerable  to
uncertain  disturbances  in  the  external  environment
when  performing  tasks  (flights),  so  we  will  focus  on
the  problem  of  UAV  swarm  formation  control  in
uncertain environments.

The  intricate  dynamics,  nonlinearity,  uncertainties,
and  interactions  between  agents  present  substantial
challenges  in  realizing  effective  formation  control  for
UAVs[18].  To  address  this  challenge,  a  wide  array  of
control  strategies  have  been  proposed,  predominantly
encompassing  centralized  control  and  distributed
control  paradigms.  Cao  et  al.[19] introduced  a  novel
approach  to  control  a  swarm  of  fixed-wing  UAVs,
enabling  them  to  maintain  a  parallel  formation  of  a
specific  geometry.  This  scalable  method  utilizes
decentralized  cooperative  control  laws  that  ensure
global  stability.  It  considers  the  nonholonomic
dynamics of the UAVs and input constraints, allowing
for flexible initial positions. Li et al.[20] investigated the
cooperative  control  problem  in  feedforward  nonlinear
time-delay  multiagent  systems.  In  this  system,  a  static
low-gain  observer  is  proposed  for  each  following
UAV, and a distributed output feedback controller with
a static gain is designed to achieve consensus. Bayezit
and Fidan[21] presented a distributed control scheme for
decentralized  cohesive  motion  control  of  autonomous
vehicles  or  robot  formations  in  three  dimensions.  The
scheme  ensures  that  a  formation  can  still  be  formed
when  damage  occurs  to  one  UAV.  In  Ref.  [22],  a
behaviour-based algorithm has been proposed for UAV
formation.  Zhang  et  al.[23] proposed  a  UAV  system
control  theory  based  on  the  backstepping  method  to
enable the UAVs to form a stable formation quickly. In

addition, Slotine and Sastry[24] designed a sliding mode
controller  to  improve  UAV  vibration.  Wu  et  al.[25]

proposed  a  tracking  control  method  for  a  high-order
UAV system by integrating adjacent UAV information
with consensus theory.

Most  existing  studies  on  formation  problems
predominantly  address  ideal  environments  with
simplistic  systems,  often  overlooking  the  uncertainties
and  disturbances  inherent  in  the  formation  systems.
Hence, it becomes imperative to explore the formation
of  multiple  UAV  systems  in  the  context  of  these
uncertainties  and  disturbances[26].  Existing  literature
proposes  a  variety  of  control  methods  to  resist  the
influence  of  uncertain  disturbance  on  UAV  formation
control,  such  as  sliding  control[24],  fuzzy  control[27],
neural network control[28], and robust control[29]. Wang
et  al.[30] designed  a  disturbance-based  observation  to
compensate for external disturbances and established a
sliding film control model within a consecutive time to
achieve  the  formation  of  drones  in  an  uncertain
environment.  Zhang  and  Yan[31] proposed  a  novel
control  strategy  for  three  fixed-wing  unmanned  aerial
vehicle  formation  flights  with  wind  fields,  ensuring
precise  air-to-ground  strikes.  The  integrated  controller
establishes  a  theoretical  framework  to  maintain  UAV
formation  geometry  and  achieve  stable  and  robust
consensus control. Islam et al.[32] proposed an adaptive
input  algorithm  for  autonomous  flight  control  of  a
quadrotor unmanned flying robot vehicle with the help
of an energy function, which can guarantee asymptotic
stability  and  tracking.  Liu  et  al.[33] presented  a
distributed  robust  controller  that  encompasses  both  a
position  controller  for  managing  the  translational
motion  of  the  desired  formation  and  an  attitude
controller  for  regulating  the  rotational  motion  of  each
quadrotor.  Zhao  et  al.[34] presented  a  formation
controller  for  quadrotors  using  a  hierarchical  control
scheme and reinforcement learning.

Inspired  by  robust  control  methods[35, 36],  we
investigate  the  formation  challenges  faced  by  multi-
UAVs  in  uncertain  environments.  In  response,  we
introduce a distributed robust control strategy aimed at
enhancing  the  stability  and  robustness  of  the  UAV
formation  system.  In  this  paper,  we  only  need  to  use
the  local  information  of  UAVs  (relative  positions  and
velocities) to converge to the expected formation under
the  proposed  robust  control  strategy.  Specifically,  we
initially present a nominal control strategy grounded in
positional  relationships for  UAVs adhering to a  single
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integrator  model.  Subsequently,  we  formulate  a  semi-
definite  programming  model  to  determine  the  control
gains  within  this  strategy.  To  address  the  noise  and
disturbance in the system, we propose a robust control
strategy  under  the  rotation  set  and  prove  the
convergence  and  robustness  of  the  UAV  control
system.  Even  when  the  rotation  angles  of  the  UAVs
change, they still move towards the expected direction
and  form  a  stable  formation.  Furthermore,  we  extend
the  proposed  robust  control  strategy  to  a  quadrotor
unmanned  aerial  vehicle  system  with  high-order
kinematic  models.  Finally,  we  apply  the  proposed
control  strategy  to  a  group  of  quadrotor  unmanned
aerial  vehicle  systems  and  conduct  simulation
experiments.  The  results  show  that  the  UAV  swarm
can  resist  uncertain  disturbances  and  form  a  stable
formation  under  two  different  simulation
environments.  The  contributions  of  our  work  are
summarized as follows:

● In this  paper,  a  distributed robust  control  strategy
is  proposed  to  improve  the  stability  and  robustness  of
multi-UAV  formation  systems  in  uncertain
environments.  Under  this  control  strategy,  UAVs  can
autonomously form a desired formation based on local
information.

Ω

●  To  counteract  system  noise  and  disturbances,  we
introduce  a  novel  robust  control  strategy  based  on  the
rotation  set .  This  approach  guarantees  the
convergence  and  robustness  of  the  UAV  control
system,  ensuring  that  UAVs  maintain  their  intended
trajectory and achieve a  stable  formation,  even amidst
varying rotation angles.

●  The  proposed  control  strategy  is  extended  to  a
quadrotor  unmanned  aerial  vehicle  system  with  high-
order  kinematic  models.  Through  simulation  tests
across  two distinct  environments,  it  is  evident  that  the
UAV  swarm  effectively  counteracts  uncertain
disturbances, consistently achieving a stable formation.

The  organisational  structure  of  this  paper  is  as
follows. In Section 2, we introduced the robust control
architecture for UAVs under a single-integrator model
and  a  new  control  gain  based  on  semidefinite
programming  is  presented.  In  Section  3,  we  extended
the  proposed  control  strategy  to  a  UAV  system  with
higher-order  linear  dynamics  and  applied  the  gains
under the single integrator to this higher-order system.
Next,  we conduct  simulation experiments in Section 4
to  typify  the  robust  control  strategy  for  the  UAVs
formation  system.  Specifically,  we  present  the

experimental  results,  perform parametric  analysis,  and
perform  experimental  comparisons.  Finally,  we
concluded  the  paper  and  illustrated  future  work  in
Section 5.

2　Robust  Control  Architecture  under
Single-Integrator Model

i i
I

G Ω

In  this  section,  we  focus  on  designing  a  distributed
robust  controller  tailored  for  each  UAV ,  where 
belongs to  set ,  to  facilitate  stable  platoon formation
amidst  uncertain  conditions.  As  shown  in Fig.  1,  we
depict  the  system  scenario  and  an  implementation
framework  of  a  robust  control  approach  for  UAV
swarm. The robust control method is conceptualized to
address  the  inherent  uncertainties  and  external
disturbances  that  the  UAV  swarm  might  encounter
during  its  operations.  Firstly,  based  on  the  two-
dimensional  (2D)  initial  position  information  and  the
desired  formation  information  of  UAV  swarms,  we
propose  closed-loop  dynamic  equations  for  UAVs
under  interference.  Then,  we  employ  a  semi-definite
program  (SDP)  model  to  determine  the  control  gain
matrix  under  the  rotation  set .  Leveraging
uncertain  rotation  matrices,  we  further  devise  a
position-centric robust control approach. The notations
are summarized in Table 1.

2.1　Nominal control strategy of UAVs

N = {1,2, . . . ,n} i

In this section, we introduce a nominal control strategy
for  a  UAV  swarm  without  external  perturbations.
According  to  Refs.  [34]  and  [35],  the  single-integral
model is able to provide a mathematically feasible and
computationally  satisfying  expression  for  UAV’s
motion. For simplicity, the set of the UAVs is denoted
by . For the UAV , the single-integrator
dynamic equation has the following form
 

ṡi = ui, i ∈ N (1)

si = [xi,yi]T ∈ R2 i
ui i

where  is the 2D coordinate of UAV 
and  is  the  control  signal  of  the  UAV .  In  order  to
make  the  UAV  reach  the  pre-set  formation
configuration, we adopt the following control strategy
 

ui =
∑
j∈Ni

gi j
(
s j− si

)
(2)

gi j ∈ R2×2

gi j

where  is  the  gain  matrix  under  control
strategy Eq. (2) and sj is  the 2D coordinate of UAV j.

 is  a  constant  matrix,  and  its  solution  will  be
explained in detail later. Usually, its expression is
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gi j =

[
ai j bi j
−bi j ai j

]
, ai j and bi j ∈ R (3)

s j si

Based on the research conducted by Refs. [37, 38], it
has been demonstrated that the information obtained in
the  local  coordinate  system,  namely  and ,  is
consistent  with  the  information  obtained  in  the  global
coordinate  system.  As  a  result,  even  when  we  obtain
the  local  relative  position  of  the  UAV  under  the
distributed  control  strategy,  the  strategy  can  still  be
applied and analyzed in the global coordinate system.

For  all  UAVs,  we  define  the  composite  state  and
control vectors as
 

S =
[
sT

1 , s
T
2 , . . . , s

T
i , . . . , s

T
n

]
,S ∈ R2n;

U =
[
uT

1 ,u
T
2 , . . . ,u

T
i , . . . ,u

T
n

]
,U ∈ R2n (4)

Thus, the closed-loop dynamics equation of the UAV
swarm can be deduced as
 

Ṡ =GS (5)
G ∈ R2n×2nwhere gain matrix  and

 

G =



−
n∑

j=2

g1 j g12 · · · g1n

g21 −
n∑

j=1
j,2

g2 j · · · g2n

...
...

. . .
...

g1n g2n · · · −
n−1∑
j=1

gn j



(6)

j i
Ni gi j 0

G

G

Note  that  when  does  not  belong  to  UAV ’s
neighbour  set ,  then  all  elements  in  are .
Furthermore, every 2 × 2 matrix on the diagonal in  is
equal to the negative of the sum of the other matrices.
Since  has  the  block  Laplacian  structure,  define  the
following vectors:
 

L1 = [1,0,1,0, . . . ,1,0]T ∈ R2n,

L2 = [0,1,0,1, . . . ,0,1]T ∈ R2n (7)

L1 L2 L1G = 0 L2G = 0
L1 L2 G

where  and  satisfy  and ,
therefore,  and  are in the kernel of .

S ∗

S ∗ = [s∗T1 , s
∗T
2 , . . . , s

∗T
i , . . . ,

s∗Tn ] S
∗

S
∗
= [s∗T1 , s

∗T
2 , . . . , s

∗T
i , . . . ,

s∗Tn ]
G

L1 L2 S ∗ S
∗

G

G

Let  denote  the  ideal  coordinates  of  all  UAVs  in
the  desired  formation,  i.e., 

.  denotes  the  coordinate  of  UAVs  when  the
rotation  angle  of  this  desired  formation  around  the
origin  is  a  right  angle,  i.e., 

.  To ensure that  the UAV swarm converges to the
desired formation, the gain matrix  should satisfy two
conditions[33]: (1) , , , and  are in the kernel
of ;  (2)  except  for  the  four  zero  eigenvalues
associated  with  these  empty  vectors,  all  other
eigenvalues of  contain negative real parts.

 

 
Fig. 1    System scenario and implementation framework of robust control approach for UAV swarm.

 

Table 1    Basic notations in this paper.
Symbol Description

N = {1,2, . . . ,n} Set of UAVs
Ni N iSubset of  which includes neighbors of 

G = (V,E) Undirected graph
V Set of vertices
E Set of edges

[xi,yi] iCoordinate of UAV 
ui i, i ∈ NControl variables of UAV 

Ni = { j ∈ V|(i, j) ∈ E}

Note: 1If UAV i and UAV j obtain each other’s position
information in the coordinate system, then UAV i and j are
called neighbours.
2The subset 
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2.2　Control gain design

S ∗

S
∗

1 1
E = [S ∗,S

∗
,1,1] E

Suppose  is the coordinate information of all UAVs
in  the  desired  formation,  is  the  coordinate
information after rotating 90 degrees around the origin,

 and  are  given  by  Eq.  (7),  and  the  definition  set
.  In  addition,  rewrite  as  a  singular

value decomposition form:
 

E =CQVT,C = [R,R] (8)

R ∈ R2n×(2n−4) 2n−4
C

where Q is a diagonal matrix and the diagonal elements
are singular values of the matrix E. The transpose of V
is an orthogonal matrix.  is the last 
columns of .

G G = RTGR

f (G)
G

i t
Pr(t)

Pr(t)

In  this  decomposition  form  of  Eq.  (8),  it  can  be
inferred  that  both  and  possess  identical
non-zero  characteristic  terms.  Next,  we  proceed  to
solve  using  the  fastest  mixed  Markov  process
approach[39].  When  given  an  undirected  graph ,  we
consider its Markov process in continuous time, where
the state transition probabilities of UAV  at time  are
described by the probability density function . The

 is
 

Pr(t) = Pr(0)e−tL (9)
Pr(0)

L
G

t t→ +∞

Pr(t)
λG(G)

λG(G)

M1

where  represents the probability density vector of
the  initial  state,  and  is  the  Laplacian  matrix  of  the
graph .  We  can  observe  that  the  probability  density
decays  exponentially  with  time ,  and  when ,
the probability distribution tends to a stable equilibrium
state (uniform distribution).  According to Ref. [40],  the
convergence  speed  of  to  uniform  distribution  is
determined  by  the  smallest  positive  eigenvalue 
of the Laplacian matrix. Specifically, smaller values of

 indicate  a  faster  convergence  of  the  Markov
process  towards  a  uniform  distribution.  Therefore,  in
order to achieve the fastest convergence speed, we pose
the model .
 

min
ai j,bi j
λG(G)

s.t., GE = 0,
trace(G) = constant

(10)

0
G G = RTGR

M1
M2

In order to effectively eliminate the  eigenvalues of
,  we  adopt  the  projection ,  and  then  the

problem  can  be  transformed  into  maximisation
model .
 

G = arg max
ai j,bi j

λG(−G)

s.t., GE = 0,
trace(G) = constant

(11)

f (·)where  represents  the  smallest  eigenvalue  of  the

matrix. The model Eq. (11) is a concave maximization
problem[41],  and  then  we  transform  it  into  an  SDP
model
 

G = arg max
ai j,bi j,Φ

Φ

s.t.,G+ΦI ⩽ 0,
GE = 0,
trace(G) = constant

(12)

Φwhere  is a new decision variable and I is unit matrix.
Then,  we  transform  the  original  concave

optimization model Eq. (11) into an SDP model, which
is an epigraph optimization model. The SDP model can
be  solved  through  existing  algorithms  specifically
designed for solving SDP problems.

G = RTGR
E range(R) =

range(E) G
G range(E)

G
G G

Remark  1　By ,  it  can  be  observed  that
the  set  is  an  orthogonal  matrix,  and 

. Therefore, we can deduce that  restricts the
orthogonal  complement  of  in  the  and
eliminates the 0 eigenvalues in . This also shows that
the non-zero eigenvalues of  and  are equivalent.

2.3　Robust control under rotation set Ω

Ω

In practical control systems, disturbances such as white
noise  and  uncertain  parameters  often  exist.  These
uncertainties  can  significantly  affect  the  control
system’s  performance,  leading  to  undesired  behaviour
or  even  instability.  To  address  this  issue,  a  robust
control  strategy  is  proposed  in  this  study.  In  practical
control  systems,  disturbances  like  white  noise  and
uncertain  parameters  frequently  arise.  Such
uncertainties can profoundly impact the performance of
the  control  system,  potentially  causing  undesirable
behaviour  or  even  system  instability.  To  tackle  these
challenges,  this  study  introduces  a  robust  control
strategy.  The  proposed  strategy  enables  all  drones  to
move along the desired trajectory even under uncertain
disturbances and ultimately form the desired formation.
Based on this,  we propose  an uncertain  rotation set 
and  develop  a  corresponding  robust  control  strategy
under this set. We prove the stability and convergence
of this strategy under disturbances.

α ∈
[
−π

2
+ ϵ,

π
2
− ϵ
]

ϵ > 0
L > 0 Ω

Theorem  1　 If  radian  parameter 
with  an  arbitrarily  small ,  and  there  exists  a
constant ,  the  rotation  set  is  defined  as  the
following form:
 

Ω =

[
cos(α) −sin(α)
sin(α) cos(α)

]
(13)

ΩBased  on  this  rotation  set ,  the  robust  control
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istrategy of UAV  can be designed as
 

ui = LΩi

∑
j∈Ni

gi j
(
s j− si

)
(14)

Ωiwhere  is a rotation matrix of UAV i, and all UAVs
under  the  single-integrator  dynamics  can  achieve  the
desired formation.

Proof　 For  all  UAVs,  the  closed-loop  dynamics
system can be deduced as
 

Ṡ = PGS (15)

Pwhere  is  a  perturbation  matrix  which  has  the
following form:
 

P = diag(LΩ1,LΩ2, . . . ,LΩn) ∈ R2n×2n (16)

V = −UTGU G
V

V = 0
U ∈ ker(G) V

Assumed  that  the  Lyapunova  function  is
. Due to the gain matrix  being negative

semidefinite,  the  Lyapunov  function  is  positive
semidefinite.  This  means  that  if  and  only  if

. Next, the derivative of  is
 

V̇ =− U̇TGU −UTGU̇ =

−UTG
(
PT+P

)
GU (17)

Ωi PFor the rotation set  in , we can deduce
 

Ωi+Ω
T
i =

 cos(αi) 0

0 2cos(αi)

 (18)

|αi| <
π
2

L > 0 Ω+ΩT

(PT+P)
U < ker(G) V̇ < 0

Ṡ = PGU ker(G)

when  and ,  the  matrix  is  positive
definite.  Furthermore,  is  also  block  diagonal
and  positive  definite.  If  all , .
According  to  LaSalle’s  invariance  principle[42],  the
trajectories  of  converge to the ,  which
shows  that  even  in  the  presence  of  uncertain
disturbances,  the  robust  control  strategy  Eq.  (14)  can
still  ensure  that  all  UAVs  achieve  the  desired
formation. ■
3　Control  Architecture  under  Higher-

Order Model

i
(m > 2)

Suppose  the  state  matrix  of  UAV  with m-order
dynamics  system is
 

Xi = [S ,S (1), . . . ,S (m−1),S (m)] (19)

mand its -order derivative is
 

X(m)
i = [Ṡ , Ṡ (1), . . . , Ṡ (m−1), Ṡ (m)] (20)

Thus  the  compact  form  of  UAVs’ dynamics  can  be
deduced as
 

X(m)
i = M1Xi+M2U (21)

where
 

M1 =



0 I 0 · · · 0
0 0 I · · · 0
...
...
...
. . .

...
0 0 0 · · · I
0 0 0 · · · 0


, M2 =



0
0
...
0
I


(22)

GBased  on  the  control  gain  obtained  by  the  SDP
model Eq. (12) and robust controller Eq. (14) designed
in  Section  3,  the  robust  control  strategy  of  the  UAV
swarm can be written as
 

U = p0GS + p1GS (1)+ · · ·+ pmGS (m) (23)
p0, p1, . . . , pm

L
where  are the scalar control gains, which
are related to the uncertain rotation set and [43]. Thus,
the state equation of UAVs can be written as
 

X(m)
i = MXi (24)

where
 

M =



0 I 0 · · · 0
0 0 I · · · 0
...

...
...

. . .
...

0 0 0 · · · I
p0G p1G p2G · · · pmG


(25)

m
Next,  we  will  demonstrate  that  a  robust  control

strategy  for -order  dynamic  systems  can  ensure  that
all UAVs achieve the desired displacement.

f (α)Theorem 2　Suppose the polynomial function 
is
 

f (α) = λm+1− pmαλ
m− · · ·− p1αλ− p0α (26)

λ f (α) = 0
α ∈ ker(G)

where  is  an  eigenvalue.  When ,  all  nonzero
roots  have  negative  real  parts.  Under  the
robust  control  strategy,  the  UAVs  with  dynamics  Eq.
(24)  have  global  convergence  which  shows  that  all
UAVs can achieve the desired formation.

M
Proof　By observing  Eq.  (24),  it  can  be  found that
 is a controllable canonical matrix. According to Ref.

[43], its characteristic equation can be written as
 

λm+1I− pmλ
mG− · · ·− p1G− p0G = 0 (27)

G
m X(m)

i = MXi

ker(G)

Thus,  the  eigenvalues  of  have  the  negative  real
part.  The -order  dynamic  system 
converges to the ,  which shows that  even in the
presence  of  uncertain  disturbances,  the  robust  control
strategy Eq. (23) can still ensure that all UAVs achieve
the desired formation.

4　Simulation Experiment

In  order  to  validate  the  effectiveness  of  the  proposed
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control  method,  we  conduct  simulations  of  the  UAV
platforming in two distinct scenarios. Furthermore, we
investigate the impact of the gain parameter  on the
system’s  stability.  Lastly,  a  comparative  analysis  is
conducted  to  verify  the  robustness  of  the  control
strategy.  In  addition,  all  simulations  of  the  proposed
control  method  are  implemented  using  a  combination
of  MATLAB  modelling  toolbox  and  convex
programming  solver.  The  convex  programming  solver
can be used to solve the SDP model Eq. (12) through a
specific  interface  in  MATLAB  to  obtain  the  gain .
This program is run on 2.8 GHz 64-bit Core i5-8400U
CPU machine under Windows 10 Professional.

4.1　Simulation result

Xi = [xi, yi, ẋi, ẏi, θi, φi, θ̇i, φ̇i]T

Ui = [uy
i , ux

i ]T

In  this  section,  we  present  a  2D  state  equation  of  the
UAV  dynamics  system[44].  Specifically,  we  only
consider the lateral dynamics of the UAV along x- and
y-axis and assume that the height (z-axis) of the drone
in  space  is  fixed.  Thus,  the  2D  state  vector  is:

,  and  the  control  vector
is: . The corresponding state equation has
the following form
 

Ẋi =


0 I 0 0
0 0 I 0
0 0 0 I
0 0 0 0

Xi+


0
0
0
I

Ui (28)

I ∈ R2n×2nwhere .  Based  on  the  state  equation,  we
design  two  desired  formation  cases  for  different
numbers of UAVs.

U1
i = p0GXi+ p1GẊi G

p0 = 0.1 p1 = 1.0

Scenario  1: We  perform  a  simulation  on  a  small-
scale  swarm  of  4  UAVs,  defining  the  final  desired
platoon  as  a  square.  The  robust  control  strategy  of
Scenario 1 is .  The control  gain 
can  be  solved  by  model  Eq.  (12)  and  parameters

 and .
Scenario  2: We  simulate  a  large-scale  swarm  of  9

UAVs  and  define  the  final  desired  arrangement  as  a
square grid shape. The control strategy of Scenario 2 is

U2
i = p0GXi+ p1GẊi+ p2GẌi+ p3G

...
Xi

G

G [0.72,−10.00]
p0 = 0.1 p1 = 1.0 p2 = 0.8 p3 = 1.0

.  Note  that  the
control  gain  is  obtained  by  calculating  the  SDP
model,  which  ensures  the  stability  and  robustness  of
the platoon; the value range of  is  and

, , , and .

U2
i

The  robust  control  algorithm  is  summarized  in
Algorithm  1.  Next,  we  demonstrate  the  formation
effects  of  the  proposed  robust  control  strategy  in  two
distinct  scenarios. Figures  2 and 3 provide  top-down
views of the UAVs at distinct time intervals across two
different  scenarios,  with  the  perception  topology
among the  UAVs depicted using grey lines.  In Fig.  2,
the  dynamic  trajectories  of  4  UAVs are  captured  over
four  time  instances.  Beginning  with  their  initial
positions in Fig. 2a, the UAVs transition towards their
target  square  formation,  as  portrayed  progressively  in
Figs.  2b−2d,  under  the  influence  of  the  robust  control
strategy. Conversely, Fig. 3 presents the evolution of a
group of 9 UAVs in Scenario 2. The starting positions
of  each  UAV,  complemented  by  their  perception
topology,  are  highlighted  in Fig.  3a. Figures  3b−3h
sequentially  depict  the  UAVs’ movements  at  various
moments.  Notably,  under  the  control  strategy ,  all
UAVs  can  follow  the  intended  trajectory,  culminating
in a well-defined square grid formation.
 

Algorithm 1　Control algorithm of UAV swarm
S ∗

pm
T

Input: The desired formation coordinates ; the scalar control
gains ; the initial coordinates of all UAVs; simulation time

.
m1. Construct the -order state equation;

E = [S ∗,S
∗
,1,1]2. Let ;

E E =CQVT C = [R,R]3. Decompose : , ;
R 2n−4 C4. Define  is the last  columns of ;

G5. Compute the gain matrix  by SDP model Eq. (10);

U = p0GS + p1GS (1) + · · ·+ pmGS (m)
6. Generate the control signal:

Output: The global coordinates, velocity, and relative distance of
UAVs.

 

 
Fig. 2    Coordinate information (x-axis and y-axis) of the 4 UAVs when the expected formation is a square (Scenario 1).
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Furthermore, Figs.  4 and 5 depict  the  velocities,
encompassing both angular and linear velocities, of all
the  UAVs  in  two  distinct  scenarios. Figures  4a−4d
present the angular and linear velocities of the 4 UAVs
with respect to the time variable . It is evident that the
drones  progressively  establish  the  desired  square
formation at approximately 3 s, followed by formation
adjustment  and  convergence  towards  a  stable  state.
Similarly, Figs. 5a−5d showcase the angular and linear
velocities of the 9 UAVs in relation to the time variable
.  All  the  drones  successfully  achieve  the  desired

formation  within  the  time  interval  [7, 8]  s  and
subsequently  converge  to  a  stable  state,  ultimately
forming a square-shaped configuration.

Besides,  we  demonstrate  the  relative  distances

d1,2

7.434

between UAVs in two different scenarios in Figs. 6 and
7,  where  represents  the  distance  between  UAV  1
and  UAV  2.  From Fig.  6,  it  can  be  observed  that  the
distances  between  the  four  drones  gradually  converge
to a stable spacing of  m as they form the desired
square  formation  over  time.  Similarly, Fig.  7 shows
that  the  distances  between  the  nine  UAVs  gradually
converge  to  a  stable  spacing  of  8.235  m as  they  form
the desired line formation.

4.2　Parametric analysis

pm

In  this  section,  we  explore  the  effect  of  the  gain
parameter  on  the  stability  and  safety  of  the
formation  system.  For  observation  purposes,  we
simulate  a  large-scale  swarm  consisting  of  9  UAVs

 

 
Fig. 3    Coordinate information (x-axis and y-axis) of the 9 UAVs when the expected formation is a square grid (Scenario 2).

 

 
Fig. 4    Velocity (x-axis and y-axis) of the 4 UAVs in Scenario 1.

 

 
Fig. 5    Velocity (x-axis and y-axis) of the 9 UAVs in Scenario 2.
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pmunder  Scenario  2.  Specifically,  the  gain  parameter 
is taken in the following four cases:

p0 = 0.1 p1 = 5.0 p2 = 5.0 p3 = 1.0Case 1: , , , and ;
p0 = 0.1 p1 = 0.9 p2 = 5.0 p3 = 2.0Case 2: , , , and ;
p0 = 0.1 p1 = 5.0 p2 = 2.3 p3 = 5.0Case 3: , , , and ;
p0 = 0.1 p1 = 5.0 p2 = 5.0 p3 = 5.0Case 4: , , , and .

pm

Figure  8 visually  presents  the  velocities  of  nine
UAVs forming a structured square grid formation with
different  gain  parameters,  encompassing  both  angular
and  linear  velocities.  The  selection  of  parameter 
notably  influences  the  stability  of  the  formation
system.  It  is  evident  that  under  Case  1,  the  UAV
velocities  exhibit  instability,  failing  to  meet  the
required  velocity  consistency  for  formation.  However,
in Case 4,  the angular velocity of the UAVs begins to
stabilize  at  40  s,  and  the  linear  velocity  of  the  UAVs
starts  to stabilize at  15 s.  Moreover, Fig.  9 depicts the
relative  distances  between  each  pair  of  connected
UAVs,  clearly  illustrating  that  the  choice  of  the  gain
parameter  in  Case  4  enhances  the  overall  stability  of
the formation shaping system.

4.3　Comparative experiment

U = p0GS + p1GS (1)+ · · ·+ pmGS (m)

U = KX = K1S +K2S (1)+ · · ·+
KmS (m)

In  this  section,  we  compare  the  proposed  SDP  gain-
based  robust  control  strategy  with  the  linear  feedback
control  (LF  control)  strategy  in  two  scenarios.  In  our
proposed  method,  the  control  strategy  (SDP-based
control)  is .  The
linear feedback control is 

, where K is gain matrix.

0

Figure  10 presents  the  ultimate  formation
configuration  of  the  four  UAVs  in  Scenario  1,  along
with the relative distance error bands encompassing the
entire  formation  system.  As  depicted  in Figs.  10a  and
10b,  it  is  evident  that  the  UAVs,  employing  both
control  strategies,  successfully  achieve  the  desired
formation.  However,  it  is  noteworthy that  the distance
error between the UAVs progressively increases under
the  LF  control  method  (Fig.  10d),  whereas  the  error
band under the SDP control method converges to zero
after  30  s,  underscoring  the  effectiveness  of  the
proposed  control  approach.  Similarly, Fig.  11
illustrates  the  ultimate  formation  configuration  and
relative  distance  error  bands  of  the  nine  UAVs  in
Scenario  2.  Notably, Figs.  11a  and 11b  clearly  depict
that the 9 UAVs operating under the LF control method
fail  to  achieve  the  intended  arrangement,  specifically
the square grid shape. In contrast, the UAVs under the
SDP-based  control  method  successfully  establish  a
stable formation. Subsequently, as evident in Figs. 11c
and 11d, the spacing error among the nine UAVs under
the  SDP-based  control  method  gradually  converges  to

, while the distance error under the LF control method
progressively  increases,  ultimately  preventing  the
UAVs from attaining the desired formation.

Furthermore, Table  2 presents  the  average  relative
distance error and the corresponding standard deviation
between  interconnected  UAVs  for  various  control
methods  and  scenarios  throughout  the  entire  time
system.  Remarkably,  when  compared,  the  proposed
SDP-based control  method exhibits  a  smaller  standard
deviation  across  different  scenarios  in  comparison  to
the LF control method. This observation highlights the
enhanced  robustness  and  system  safety  assurance
provided by the SDP-based control method.

n = 12

Finally,  in  order  to  verify  the  superiority  of  the
proposed  robust  control  strategy,  we  conduct  an
expansion experiment in which the UAV swarm size is
scaled  up  to . Figure  12 shows  the  switching
trajectories of 12 UAVs under 6-time slots, from which

 

 
Fig. 6    Relative distance of 4 UAVs in Scenario 1.

 

 
Fig. 7    Relative distance of 9 UAVs in Scenario 2.
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it  can  be  seen  that  the  UAVs  start  from  the  initial
position  (Fig.  12a)  and  move  towards  the  desired
square  under  the  proposed  robust  control  strategy
(Figs.  12b−12e).  Eventually,  all  UAVs  form  a
rectangular  network-like  formation.  In  addition,  we
compute  the  relative  distance  between  12  UAVs  in
Fig.  13,  where  represents  the  distance  between
UAV 4 and UAV 7. We can observe that as the UAV
swarms  form  a  triangular  formation,  the  distance

between  them gradually  converges  to  a  stable  spacing
of 7.267 m. Besides, Table 3 shows the execution time
of the proposed robust algorithm method for the UAVs.
As  can  be  seen,  the  formation  of  12  UAVs  can  be
computed in less than 0.3000 s.

5　Conclusion

In  this  study,  we  presented  a  robust  formation  control
method  for  UAV  swarms  to  ensure  stability  and

 

 
Fig. 8    Velocity (x-axis and y-axis) of 9 UAVs under different pm.

 

 
Fig. 9    Relative distance of 9 UAVs under different pm.

    1350 Tsinghua Science and Technology, October 2024, 29(5): 1341−1354

 



robustness  during  formation  flight.  Relying  on  an
undirected topology, a position-based feedback control

strategy  was  introduced.  Within  this  strategy,  the
control  gain  is  determined  by  solving  an  SDP  model.
Recognizing the challenges posed by noise interference
in  uncertain  environments,  we  also  proposed  and

 

 
Fig. 10    Comparative  experiments  of  4  UAVs  under
different control strategies. SDP-based control (left) and LF
control (right).
 

 
Fig. 11    Comparative  experiments  of  9  UAVs  under
different control strategies. SDP-based control (left) and LF
control (right).
 

Table 2    Mean  (Avg.)  and  standard  deviation  (Std.)  of  the
relative  distance  between  UAVs  for  SDP-based  control  and
LF control.

Scenario
Relative distance (m)

SDP-based control LF control
Avg. Std. Avg. Std.

1 6.701 0.665 8.113 0.873
2 8.942 2.235 9.184 2.846

 

 
Fig. 12    Coordinate information (x-axis and y-axis) of the 12
UAVs when the expected formation is rectangular.
 

 
Fig. 13    Relative distance of 12 UAVs.

 

Table 3    Execution time of robust control algorithm.

Scenario
Number of UAVs

4 UAVs 9 UAVs 12 UAVs
SDP-based time 0.0411 s 0.0860 s 0.2486 s
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proved  a  robust  control  strategy  under  uncertain
rotation sets that ensured the convergence of all UAVs
to the desired formation. Simulation experiments were
conducted to validate the effectiveness of the proposed
control  strategy.  Our  research  contributed  to  the
advancement  of  robust  control  methods  for  UAV
swarms,  showcasing  potential  applications  in  areas
such  as  search  and  rescue,  monitoring,  and
transportation.  Our  future  work  will  centre  on
enhancing  UAV-to-UAV  communication  to  avert
collisions  during  platoon  formation.  Furthermore,  we
intend  to  explore  the  reliability  of  such
communications, aiming to uphold both the stability of
UAV formation and communication reliability.
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