
 

A Temporal Knowledge Graph Embedding Model
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Abstract: Knowledge  representation  learning  (KRL)  aims  to  encode  entities  and  relationships  in  various

knowledge graphs into low-dimensional continuous vectors. It is popularly used in knowledge graph completion

(or  link  prediction)  tasks.  Translation-based  knowledge  representation  learning  methods  perform  well  in

knowledge  graph  completion  (KGC).  However,  the  translation  principles  adopted  by  these  methods  are  too

strict  and  cannot  model  complex  entities  and  relationships  (i.e.,  N-1,  1-N,  and  N-N)  well.  Besides,  these

traditional  translation  principles  are  primarily  used  in  static  knowledge  graphs  and  overlook  the  temporal

properties  of  triplet  facts.  Therefore,  we  propose  a  temporal  knowledge  graph  embedding  model  based  on

variable translation (TKGE-VT). The model proposes a new variable translation principle, which enables flexible

transformation  between  entities  and  relationship  embedding.  Meanwhile,  this  paper  considers  the  temporal

properties  of  both  entities  and  relationships  and  applies  the  proposed  principle  of  variable  translation  to

temporal  knowledge  graphs.  We  conduct  link  prediction  and  triplet  classification  experiments  on  four

benchmark  datasets:  WN11,  WN18,  FB13,  and  FB15K.  Our  model  outperforms  baseline  models  on  multiple

evaluation metrics according to the experimental results.

Key words:  knowledge  graph; knowledge  graph  completion; variable  translation; temporal  properties; link

prediction; triplet classification

1　Introduction

(h,r, t) h t

Knowledge  graphs  (KGs)  are  large-scale  semantic
network  graphs  in  which  nodes  represent  entities  and
edges represent relationships between them. Each edge
in  KGs  corresponds  to  a  fact,  represented  by  a  triplet

,  and  represent  the  head  and  tail  entities,

rrespectively,  and  represents  the  relationship.
Nowadays,  more  and  more  large-scale  knowledge
graphs are constructed, such as Freebase[1], WordNet[2],
YAGO[3],  and NELL[4],  they usually consist of a large
number of facts in the real world and have been widely
used  in  different  fields,  such  as  semantic  analysis[5–7],
node  classification[8–11],  text  classification[12],  and
personalized diagnosis[13], etc. However, since KGs are
constructed manually or semi-manually, the incomplete
phenomenon  of  knowledge  graphs  is  common.  For
example,  there  are  about  three  million  human  entities
in Freebase, but 71% of the entities have no birthplace
information, and 91% of the entities have no education
information[14].  Therefore,  predicting  missing  entities
or  relationships  in  the  triplets,  which  is  called
knowledge graph completion  (KGC),  has  always  been
a  vital  issue.  KGC  aims  to  solve  the  data  sparseness
problem in KGs and improve their integrity.
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Knowledge representation learning is popularly used
in  knowledge  graph  completion  tasks  due  to  its  high
computational efficiency and low complexity. Generally,
traditional translation-based methods (such as TransE[15]

and  TransH[16],  etc.)  all  adopt  the  same  translation
principle , such principle is too strict and cannot
model  complex entities  and relationships  (i.e.,  N-1,  1-
N,  and  N-N).  For  example,  for  the  1-N  relationship
is_author_of, there are three triplets associated with it,
i.e.,  (WilliamShakespeare,  is_author_of,  Hamlet), 
(WilliamShakespeare,  is_author_of,  Othello),  and
(WilliamShakespeare,  is_author_of,  Macbeth).  As
shown  in Fig.  1a,  considering  the  ideal  embedding  of

 in  TransE,  the  entities  Hamlet,  Othello,  and
Macbeth  will  get  the  same  embedding  vector.  To
alleviate this problem, TransF[17] and TransE-DT[18] are
proposed.  TransF  presents  a  flexible  translation
principle (FT):  (or ),  which extends
the  embedding  range  of  entities  and  relationships  to  a
line.  As  shown  in Fig.  1b,  considering  the  flexible
translation  principle  in  TransF,  the  entities
Hamlet,  Othello,  and Macbeth  will  get  the  embedding
vectors  with  the  same  direction  but  different
magnitude.  The  principle  of  flexible  translation
proposed  by  TransF  is  universal  and  effective,  but  it
limits the distribution of entity orientations. TransE-DT
proposes  a  dynamic  translation  principle  (DT)

 to  solve  this  problem.  DT
extends  the  embedding  range  of  entities  and
relationships  to  a  plane  by  introducing  parameters ,

, and . As shown in Fig. 1c, the ideal embedding of

h r t+αt

+αHamlet +αOthello

+αMacbeth

DT is that the embeddings of the three entities Hamlet,
Othello,  and  Macbeth  are  flexible  in  magnitude  and
direction. However, we noticed that the DT model also
has  flaws,  e.g.,  if  and  are  given,  is  a  fixed
vector. For example, if given WilliamShakespeare and
is_author_of,  Hamlet ,  Othello ,  and
Macbeth  are  fixed  vectors.  Besides,  these
traditional  translation  principles  are  mostly  used  in
static  knowledge  graphs.  However,  many  facts  in
knowledge graphs are not  static;  they are usually only
true for a certain period or timestamp. For example, the
triplet (Bill_Clinton, president of, US) is true just from
1993  to  2001,  and  the  triplet  (Steve_Jobs,  diedin,
California) is true only on October 5, 2011.

(h+βh+φ) (r+βr +λ) ≈ (t+βt +α)

t+αt

+ βHamlet + βOthello

+ βMacbeth

To  solve  the  above  problems,  this  paper  proposes  a
temporal knowledge graph embedding model based on
variable  translation,  TKGE-VT.  The  proposed  method
further relaxes the constraint of the translation principle
in DT and proposes a new variable translation principle
(VT):  +   .  In  our
model,  the  embedding  range  of  entities  and
relationships  is  still  a  plane.  Unlike  DT,  we  do  not
strictly  restrict  to  be  a  fixed  vector,  but  allow
them to be in the same direction and the magnitude is
flexible.  As  shown in Fig.  1d,  the  ideal  embedding  of
VT  is  that  the  embeddings  of  the  three  entities  of
Hamlet,  Othello,  and Macbeth  are  on a  plane,  and the
directions  of  Hamlet ,  Othello ,  and
Macbeth  are  same,  but  the  magnitudes  are
flexible. Moreover, the proposed method considers the
temporal  properties  of  entities  and  relationships  in
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Fig. 1    Illustration of TransE, FT, DT, and our method.
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triplets  and  applies  the  proposed  principle  of  variable
translation to temporal knowledge graphs (TKGs).

Hits@10

In  order  to  verify  the  effectiveness  and applicability
of the model, we conducted link prediction experiments
on WN18 and FB15K, as well as experiments on triplet
classification  on  WN11,  WN18,  and  FB13.  The
evaluation results show that TKGE-VT has significantly
improved in  MeanRank (MR), ,  and accuracy
(ACC) metrics.

The main contributions of this paper are as follows:
● This  paper  proposes  a  temporal  knowledge  graph

embedding  model  based  on  variable  translation —
TKGE-VT.  The  model  proposes  a  variable  translation
principle  (VT),  which  relaxes  the  strict  constraints  of
the  translation  principle  in  DT,  and  can  better  model
triplet facts;

●  The  proposed  model  considers  the  temporal
properties of triplet facts, adding temporal properties to
the  head  entity,  relationship  and  tail  entity,
respectively,  and  applies  the  proposed  principle  of
variable translation to temporal knowledge graphs;

●  We  conduct  link  prediction  and  triplet
classification  experiments  on  four  real  knowledge
graph  datasets,  and  the  experimental  results  show that
our method outperforms classic models such as FT and
DT.

2　Related Work

2.1　Static knowledge graph representation

(h,r, t)
t h

r (h,r, t) h+ r ≈ t

(h,r, t)
h t

wr

Knowledge  representation  learning  represented  by
translation-based  methods  has  attracted  extensive
attention from many researchers.  TransE[15] is  the first
proposed  translation-based  knowledge  representation
learning model. For each triplet , TransE regards
tail  entity  as  the  translation  from  head  entity  by
relation ,  i.e.,  when  triplet  holds, .
TransE  performs  well  when  dealing  with  1-1
relationships  but  cannot  handle  complex  and  diverse
relationships  such  as  N-1,  1-N,  and  N-N relationships
well. To alleviate this problem, TransH[16] proposed an
improved translation model on the hyperplane. For the
triplet , TransH projects the embeddings of head
entity  and  tail  entity  into  a  relation-specific
hyperplane by the relation-specific mapping matrix .
Both  TransE  and  TransH  project  entities  and
relationships to the same vector space, but they belong
to different types of objects.  To this end, TransR[19] is
proposed.  TransR projects  entities  and relationships to

Mr

(h,r, t)

Mrh = lrp lhp + Id×k Mrt = lrp ltp + Id×k lhp ltp
lrp ∈ Rk

h+ r ≈ t

entity  space  and  relationship  space,  respectively,  then
defines  a  mapping  matrix  to  project  entity
embeddings  into  relationship  space.  In  TransR,  the
mapping  matrix  is  the  same  for  all  entities.  However,
different  types  of  entities  have  different  properties.
TransD[20] is  proposed  based  on  this  idea.  Given  a
triplet ,  TransD  defines  two  mapping  matrices
for  the  head  entity  and  tail  entity  respectively:

 and , where , ,
  .  In  order  to  solve  the  problem  of  entity

distribution  optimization,  TranSHER[21] leverages
relation-specific  translations  between  head  and  tail
entities  to  relax  the  constraint  of  hyper-ellipsoid
restrictions, which can provide more direct guidance on
optimization  by  introducing  an  intuitive  and
straightforward  relation-specific  translation.  To  solve
the  problem  that  the  TransE  model  cannot  handle
complex attributes well, TransP[22] proposes a knowledge
graph embedding model based on entity attributes and
relationship  attributes,  it  introduces  the  idea  of
hyperplane  projection  to  map  the  head  entity  and  tail
entity to the plane of a specific relationship to enhance
the  model’s  ability  to  handle  complex  relationships.
However, these traditional translation-based models all
adopt  the  same  translation  principle ,  which  is
too  strict  and  cannot  model  complex  entities  and
relationships.

2.2　Temporal knowledge graph representation

(h,r, t)

(h,r, t,T ) T

Temporal  knowledge  graph  is  obtained  by  adding
temporal  information  to  the  traditional  knowledge
graph.  Compared with  static  knowledge graphs,  it  can
better  capture  the  time  properties  of  triplet  facts,  so
temporal  knowledge  graph  completion  has  become  a
current  research  hotspot.  In  order  to  make  knowledge
graphs  dynamic,  t-TransE[23] adds  a  separate  time
dimension  in  triplet  to  extend  the  fact
representation  in  knowledge  graphs  into  a  quadruple

,  represents  the  time  dimension  feature  of
the triplet. BoxTE[24] proposes a box embedding model
for  temporal  knowledge  graph  completion  (TKGC),
building  on  the  static  knowledge  graph  embedding
model  BoxE[25],  which  allows  to  additionally  capture
inference  patterns  across  time  and  model  certain
temporal relational information. ATiSE[26] incorporates
time  information  into  entity/relationship
representations  using  Additive  Time  Series
decomposition.  Moreover,  considering  the  temporal
uncertainty  during  the  evolution  of  entity/relationship
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representations  over  time,  ATiSE  maps  the
representations of temporal  knowledge graphs into the
space  of  multi-dimensional  Gaussian  distributions.
EvoKG[27] captures  the  ever-changing  structural  and
temporal  dynamics  in  TKGs  via  recurrent  event
modeling and models  the  interactions  between entities
based  on  the  temporal  neighbourhood  aggregation
framework.  Further,  EvoKG  achieves  accurate
modeling  of  event  time  using  flexible  and  efficient
mechanisms based on neural  density  estimation.  TLT-
KGE[28] models  semantic  information  and  temporal
information  as  different  axes  of  complex  number  or
quaternion space. Meanwhile, two specific components
carving  the  relationship  between  semantic  and
temporal  information  are  devised  to  buoy  the
modeling. Inspired by diachronic word embeddings, R.
Goel  et  al.[29] defines  entity  embedding  as  a  function
that  takes  entities  and  timestamps  as  input,  which
maintains  time-aware  features  of  entities  at  any  time
point. T-GAE[30] employs LSTM network to learn new
time-aware  relational  embeddings  to  incorporate  time
information.  Then,  it  utilizes  these  time-aware
relational  embedding  and  GATs  considered  as
neighbourhood  aggregators  to  learn  the  entity  and
relational features of the central entity neighbourhoods.
In this paper, we also consider the temporal properties
of  triplet  facts,  different  from  the  above  methods,  we
learn  the  temporal  properties  of  the  head  entity,
relationship, and tail entity, respectively. Thus, we can
represent  the  correct  triplet  for  any  timestamp  instead
of just representing triplet facts at a specific timestamp
or  period  as  in  t-TransE.  Finally,  we  apply  the
proposed  principle  of  variable  translation  to  temporal
knowledge graphs.

3　Method

In this paper, we propose a temporal knowledge graph
embedding  model  based  on  variable  translation  —
TKGE-VT,  which  can  better  model  complex  and
diverse  entities/relationships.  TKGE-VT  is  also  a
translation-based  model,  which  adopts  the  variable
translation principle to relax the strict constraint of the
translation  principle  in  DT.  Besides,  to  consider  the
temporal  properties  of  triplet  facts,  the  proposed
method  extends  the  variable  principle  to  temporal
knowledge graphs.

3.1　Motivation

Knowledge  representation  learning  methods  are

h+ r ≈ t h+ r ≈ αt

h r
t+αt

effective  for  knowledge  graph  completion  tasks.
Traditional  translation-based  methods  adopt  the
translation principle of  (or ). However,
such  translation  principles  are  too  strict  and  cannot
correctly model complex entities and relationships. DT
model  adopts  the  dynamic  translation  principle  and
extends  the  range  of  entities  and  relationships
embedding vectors  to  a  plane,  which  relaxes  the  strict
constraints  of  the  traditional  translation  principle.
However, we noticed that the DT model also has flaws,
e.g.,  if  the  head  entity  and  relationship  are  given,

 is a fixed vector, as shown in Fig. 1c. To alleviate
this  issue,  the  proposed  method  further  relaxes  the
constraint of the translation principle in DT, so that the
model  can  better  handle  complex  entities  and
relationships.

Furthermore,  the  triplet  facts  are  valid  just  for  a
specific  timestamp  or  period,  that  is,  the  facts  in
knowledge  graphs  all  have  temporal  properties.
However, we note that traditional translation principles
are  primarily  used  in  static  knowledge  graphs  and
ignore  the  temporal  properties  of  triplet  facts.  The
temporal  properties  provide  more  helpful  information
about entities and relationships. Therefore, we consider
applying the proposed principle  of  variable  translation
to temporal knowledge graphs.

3.2　TKGE-VT

3.2.1　Principle of variable translation

h
r

t
t+βt α

t+βt βt

t r
h

h+βh φ

h+βh

βh

In  order  to  solve  the  existing  problems  in  DT  model
(i.e.,  the  translation  principle  is  too  strict  and  ignores
the  temporal  properties  of  triplet  facts),  we  propose  a
temporal knowledge graph embedding model based on
variable  translation —TKGE-VT.  The  key  intuition
behind  TKGE-VT  is  to  provide  a  higher  degree  of
freedom  for  the  embeddings  of  entities  and
relationships. TKGE-VT proposes a variable translation
principle to relax the strict constraint of the translation
principle  in  DT.  Specifically,  if  the  head  entity  and
relationship  are given, we allow the embedding range
of  to be a plane, and the magnitude of the embedding
vector  is flexible,  as a hyperparameter to adjust
the  magnitude  of  (see Fig.  2a),  where  is  the
parameter vector of the tail entity. Similarly, if the tail
entity  and  relationship  are  given,  we  allow  the
embedding range of  to be a plane, and the magnitude
of  the  embedding  vector  is  flexible,  as  a
hyperparameter  to  adjust  the  magnitude  of  (see
Fig.  2b),  where  is  the parameter vector of the head
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entity;  if  the  head  entity  and  tail  entity  are  given,
we allow the embedding range of  to be a plane, and
the  magnitude  of  the  embedding  vector  is
flexible,  as a hyperparameter to adjust the magnitude
of  (see Fig. 2c), where  is the parameter vector
of  the  relationship.  Therefore,  the  variable  translation
principle is defined as
 

(h+βh+φ)+ (r+βr +λ) ≈ (t+βt +α) (1)
φ λ α ∈ Rm×nwhere , ,  and   .  Correspondingly,  the

scoring function of TKGE-VT is
 

fr(h, t) = ∥(h+βh)+ (r+βr)− (t+βt)+µ∥L1/L2
(2)

µ µ = φ+λ−α L1

L2 L1 L2

where  is a hyperparameter, and .  and
 represent -norm and -norm, respectively.
For the above variable translation principle, we give

the following theoretical proof:
(h,ri, t) ∈ S

i ∈ 1,2, ...,n r1+βr1 = t−h−λ1, ...,rn+

βrn = t−h−λn r+βr

(1) In the case that there are many triplets 
with ,  we  will  get 

.  In  this  way,  is  no  longer  a  fixed
vector, but a set of vectors with different magnitudes in
the same direction.

r
(h,r, ti) ∈ S , i ∈ 1,2, ...,n t1+βt1 = h+

r−α1, ..., tn+βtn = h+ r−αn t+βt

(2)  In  the  case  that  is  an  1-N  relationship  with
triplets , we will get 

.  Therefore,  is  not  a
fixed  vector,  but  a  set  of  vectors  with  variable
magnitudes in the same direction.

r
(hi,r, t) ∈ S , i ∈ 1,2, ...,n h1+βh1 = t−

r−φ1, ...,hn+βhn = t− r−φn h+βh

(3)  In  the  case  that  is  a  N-1  relationship  with
triplets , we will get 

.  In  this  way,  is  also
not  a  fixed  vector,  but  a  set  of  vectors  of  different
magnitudes in the same direction.
3.2.2　Time-aware embedding

(h,r)
t

(r, t)
h

The DT model  projects  entity  and relationship vectors
into  the  same semantic  space  for  the  static  knowledge
graphs.  However,  temporal  property  is  the  primary
source  of  N-1,  1-N,  and  N-N  relationships.  For
example,  for  1-N  relationships:  pairs  may  be
associated with different tail entities  at different time
points; similarly, for N-1 relationships:  pairs may
be associated with different head entities  at different

time points.

T

h,r, t,T
h,r, t, [Ts,Te] h t

r T = [Ts,Te]
Ts Te

(h,r, t)
Ts Te

T
T = [Ts,+∞]

G =GT1∪
GT2 ∪ · · ·∪GTi Ti, i ∈ 1,2, . . . , T

GT1 ,GT2 , . . . ,GTi

T1,T2, . . . ,Tn

hT rT tT

To  eliminate  the  ambiguity  in  the  above  issue,  we
consider  that  both  entities  and  relationships  all  have
temporal  properties  and  learn  time-aware  embeddings
of  them,  respectively.  Specifically,  we  add  a  separate
time dimension  to the triplet to make the knowledge
graphs  dynamic  and  represent  triplet  facts  with
temporal  annotations  by  quadruples  ( ).  We  use
( )  to  denote  the  fact  that  and  has
relation  during  the  time  interval ,  where

 and  denote  the  start  and end time during which
the triplet  is valid. For some facts that happened
at a certain time and did not last, we have  = ; for
some  facts  that  do  not  end  yet,  we  represent  as

. Unlike t-TransE, we incorporate this time
meta-fact  directly  into  our  learning  algorithm  to  learn
temporal  embeddings  of  the  knowledge  graph
elements.  Given  the  timestamps,  the  dynamic  graph
can be dismantled into several  static graphs consisting
of triplets that are valid in the respective time step, e.g.,
knowledge  graph  can  be  expressed  as 

,  where   are  the  discrete
time  points,  and  represent  static
graphs  at  time  points ,  respectively.  We
use  TransE  to  learn  time-aware  embeddings  of  head
entities, relationships and tail entities, and denote them
as , ,  and ,  respectively.  Therefore,  our method
can  represent  the  correct  triplet  for  any  timestamp,
instead  of  just  representing  triplet  facts  at  a  specific
timestamp or period like previous models.

h+hT

r+ rT t+ tT

(h+hT +βh+φ)+
(r+ rT +βr +λ) ≈ (t+ tT +βt +α)

Therefore, the joint temporal properties’ head entity,
relationship,  and  tail  entity  can  be  denoted  as ,

,  and .  In  order  to  apply  the  proposed
variable  translation  principle  to  the  temporal
knowledge  graph,  we  incorporate  the  learned  time-
aware  embeddings  of  head  entities,  relationships  and
tail  entities  into  the  variable  translation  principle,
respectively.  The  variable  translation  principle
incorporating  entity-aware  embedding  of  entities  and
relationships  can  be  expressed  as 

.  Thus,  for  the  given
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Fig. 2    Principle of variable translation.
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t+ tT +βt +α

t r h h+hT +βh+φ

h t
r r+ rT +βr +λ

embeddings  of  and ,  tail  entity  is  expressed  as
 (see Fig. 3a); for the given embeddings of

 and ,  head  entity  is  expressed  as 
(see Fig.  3b);  for  the  given  embeddings  and ,
relationship  is  expressed  as  (see
Fig.  3c).  Therefore,  we  design  the  scoring  function  of
TKGE-VT as
 

fr(h, t) = ∥ (h+hT +βh)+ (r+ rT +βr)−
(t+ tT +βt)+µ∥L1/L2

(3)

3.3　Training

(h,r, t)

(h,r, t)

h t

In order to improve training speed and model prediction
accuracy,  it  is  necessary  to  construct  negative  triplets
from  positive  triplets.  Given  a  positive  triplet ,
traditional  methods  randomly  select  an  entity  or
relationship  in  knowledge  graphs  to  replace  the
entity/relationship in  to obtain negative triplets.
However,  the  random  negative  sampling  method
usually generates low-quality negative triplets and only
effectively  handles  1-1  relationships.  When  dealing
with 1-N, N-1,  and N-N relationships,  it  is  possible to
mark the original positive triplet as the negative triplet.
To avoid this issue, we use the probabilistic method to
construct  negative  samples,  i.e.,  we  replace  and 
with  different  probabilities.  Meanwhile,  when
replacing  entities  in  triplets  to  generate  negative
triplets,  we  choose  entities  with  similar  semantics  to
improve the ability of the model to distinguish entities.
3.3.1　Replace head and tail entities by probabilistic

method
r

(Beijing,City_of,China)

(Shanghai,City_of,China)

h t

For  the  relationship ,  the  number  of  corresponding
head  entities  and  tail  entities  is  often  unbalanced,  and
this  will  generate  some  false  negative  samples  using
the  traditional  random negative  sampling  method.  For
example,  for  a  positive  triplet ,
replacing  the  head  entity  may  generate  a  negative
triplet , and it is still a correct
triplet,  we  call  such  triplet  false  negative  triplet.  In
order  to  reduce  the  probability  of  generating  false
negative  samples,  we  set  different  replacement
probabilities  for  and ,  respectively  according  to

h
t

Gender
male female

relationship  types,  that  is,  we  replace  with  a  higher
probability  for  1-N  relationships  and  replace  with  a
higher  probability  for  N-1  relationships.  For  example,
the relationship “ ” has many head entities, while
the tail entities are only  and , we are more
likely to get  a  natural  negative triplet  by replacing the
tail entity.

r

tqh
hqt tqh/(tqh+hqt)

hqt/(tqh+hqt)

Given  a  relationship  and  all  positive  triplets
associated  with  it  during  model  training,  we  first
calculate  the  average  number  of  tail  entities  per  head
entity: , and the average number of entities per head
entity: . Then we adopt the probability 
to  replace  the  head  entities  and  the  probability

 to replace the tail entities. This sampling
method  reduces  the  probability  of  false  negative
samples  and  greatly  reduces  the  computational
complexity of the model.

tqh < hqt < r
tqh > hqt > r
tqh ⩾ hqt < r
tqh < hqt ⩾ r

We  stipulate  that  if   1.5  and   1.5,  is
regarded  as  1-1;  if   1.5  and   1.5,  is
regarded  as  N-N;  if   1.5  and   1.5,  is
regarded  as  1-N;  if   1.5  and   1.5,  is
regarded as N-1.
3.3.2　Select entities based on semantic similarity

lives
in

In  knowledge  graphs,  we  find  that  entities  with  the
same  type  tend  to  be  distributed  in  a  close  area  in
vector  space.  For  example,  for  the  relationship “

”,  its  corresponding  head  entity  is  often  name  of
person  and  tail  entity  is  often  name  of  area,  name  of
person  will  be  concentrated  in  one  area  and  name  of
area  will  be  concentrated  in  another  area.  However,
some head and tail entities may gather in close area, as
shown in Fig. 4, distinguishing entities gathered in the
same area is often difficult. Therefore, during negative
sampling,  we select  entities  with similar  semantics for
replacement  so  that  the  model  can  better  distinguish
entities.

Generally  speaking,  the  higher  entity  similarity
denotes  that  the  semantics  of  entities  are  closer.
Therefore, we judge the similarity of entities based on
their semantic similarity. Semantic similarity is usually
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Fig. 3    Simple illustration of TKGE-VT.
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represented  by  the  vector  similarity  in  distributed
representation models[31], defined as
 

dis
(
h,h′
)
=

√√√ k∑
j=1

(
h j−h′j

)
(4)

h j

h′j

dis(, )
(h,r, t)

h (h
′
,r, t)

h′ dis(h,h
′
)

t
(h,r, t

′
) t′ dis(t, t

′
)

where  represents  the  head  entity  of  the  triplet  that
exists  in  the  knowledge  base,  and  represents  the
head  entity  selected  to  replace  when  corrupting  the
positive  triplet  to  generate  the  negative  triplet.  The
smaller  value  of  represents  the  higher  similarity
of  entities.  Therefore,  given  a  positive  sample ,
when replacing  to generate a negative triplet ,

 is  chosen  to  ensure  is  the  smallest.
Similarly,  when  replacing  to  generate  a  negative
sample ,  we  choose  to  guarantee  is
the smallest.

During  model  training,  to  encourage  discrimination
between  positive  and  negative  triplets,  we  adopt  the
following  margin-based  ranking  loss  function  as  the
training objective:
 

L =
∑

(h,r,t)∈S

∑
(h′,r,r′)∈S ′

max
(
fr(h, t)+γ− fr

(
h′, t′
)
,0
)

(5)

S S
′

max(x,y)
x y γ

In  Eq.  (5),  is  the  set  of  positive  triplets,  is  the
set  of  negative  triplets,  denotes  return  the
maximum  value  of  and ,  and  is  the  margin  of
positive and negative triplets. Therefore, the goal of the
loss  function  is  to  distinguish  the  correct  triplets  from
the wrong triplets as much as possible.

4　Experiment

We  evaluate  the  proposed  method  on  link  prediction
and  triplet  classification  tasks.  In  this  section,  we
introduce  the  experimental  implementation  in  detail,

then present and analyze the experimental results.

4.1　Dataset

In the experiment, we evaluate the proposed TKGE-VT
for link prediction and triplet classification tasks on the
benchmark datasets, including WN18, FB15K, WN11,
and  FB13.  FB15K  and  FB13  are  two  subsets  of
Freebase, a large-scale KG containing many knowledge
facts.  WN11,  and  WN18  are  subsets  of  WordNet,  a
database featuring lexical relations between words. The
details of the above datasets are shown in Table 1.

4.2　Link prediction

(?,r, t) (h,r,?)
h t

Given a triplet  or , the link prediction task
aims  to  predict  the  missing  or  in  the  triplet.  The
task emphasizes  the  ranking of  the  correct  head entity
or  tail  entity,  rather  than  just  finding  the  best  one.  In
this  task,  we  select  WN18  and  FB15K  as  evaluation
datasets.  Besides,  to  prove  that  our  model  can  handle
complex  relationships  better,  we  also  performed
complex relationships experiment on FB15K.

MeanRank MR Hits@10 MeanRank

Hits@10

MR
Hits@10

Evaluation metrics. Similar to traditional translation-
based  methods,  we  report  two  evaluation  metrics:

 ( )  and ,  where 
represents  the  mean  rank  of  correct  triplets  and

 represents  the  proportion  of  correct  triplets
ranked in the top 10. The above two evaluation metrics
are  consistent  with  the  purpose  of  the  link  prediction
task,  so  we  consider  these  two  evaluation  metrics.  A
good  model  should  achieve  lower  and  higher

.

α

γ k
µ

u
B

unif α

γ k µ B α

γ k µ B
bern α

Implimentation. In  the  experiment,  we selected  the
learning rate  in {0.0001, 0.001, 0.005, 0.01}, margin

 in {0.25, 0.5, 1.5, 2, 4, 4.5}, embedding dimension 
in  {50,  100,  150,  200},  hyperparameter  in  {0,  0.1,
0.5,  1,  2},  random  number  in  {0.0001,  0.001},  and
batch  size  in  {20,  75,  120,  1200,  4800,  9600}.  The
validation set determines the optimal parameters. In the
“ ” setting,  the  optional  configurations  are:  =
0.0001,  = 5,  = 100,  = 0.1,  = 4800 on WN18;  =
0.0001,  = 4,  = 200,  = 0.1,  = 4800 on FB15K.
In the “ ” setting, the optional configurations are:  =
 

Table 1    Dataset statistics.
Dataset Ent Rel Train Valid Test
WN18 40 943 18 141 442 5000 5000
FB15K 14 951 1345 483 142 50 000 59 071
WN11 38 696 11 112 581 2609 10 544
FB13 75 043 13 316 232 5908 23 733
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Fig. 4    Examples  of  entities  that  are  not  easily
distinguishable.
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γ k µ B α

γ k µ B
0.0001,  = 4,  = 200,  = 0.1,  = 4800 on WN18;  =
0.001,  =  4,  =  200,  =  0.1,  =  4800 on FB15K.
For both datasets, all training triplets will be trained for
500  epochs.  In  order  to  be  consistent  with  the
implementation  of  the  baseline  model,  we  conducted
each set of experiments ten times and took the average
of these ten results as the final results.

MeanRank Hit@10
Hits@10

Experimental  results  and  analysis. Table  2 shows
the  link  prediction  results.  From Table  2,  we  can  see
that our model does not perform as well as the baseline
models  on  WN18.  This  may  be  due  to  the  limited
number  of  relationships  in  WN18,  and  our  model’s
advantage  in  handling  complex  relationships  is  not
reflected.  However,  TKGE-VT  achieves  state-of-the-
art  performance  on  both  and  on
FB15K. Among them, on the  metric,  TKGE-
VT  has  increased  by  3.1% and  7.7% respectively  on
FB15K  compared  with  TransE-DT.  This  may  be
because  FB15K  contains  more  complex  relationships
(i.e.,  1-N,  N-1,  and  N-N),  and  our  model  can  better
adapt  to  complex  datasets,  which  shows  that  TKGE-
VT can better handle complex relationships.

To further  verify  the  ability  of  TKGE-VT to  handle
complex  relationships,  we  conducted  a  complex
relationships  experiment  on  FB15K. Table  1 shows
that  FB15K  contains  1345  relationships,  in  which
26.2% are  1-1  relationships,  22.7% are  1-N
relationships, 28.3% are many-to-one relationships and
22.8% are  many-to-many  relationships.  Therefore,

Hit@10
Hit@10

FB15K  is  considered  a  large  dense  dataset.  In  this
experiment, we use the optimal parameter combination
on FB15K to  test  the  scores  under  1-1,  1-N,  N-1,  and
N-N  relationships,  respectively.  As  can  be  seen  from
Table  3,  the  proposed  model  achieves  state-of-the-art
performance  on  Predicting  Left  under  1-N,  N-1,  N-N
relationships  and  Predicting  Right.  Among  them,  on
Predicting  Left,  of  1-N  relationships  reached
96.9%;  on  Predicting  Right,  of  N-1
relationships reached 95.6%, which further proves that
TKGE-VT can improve the performance of  the model
in handling complex relationships.

4.3　Triplet classification

(h,r, t)

σr

(h,r, t)
σr

For  a  triplet ,  the  goal  of  triplet  classification  is
to  determine  whether  it  is  correct,  this  is  one  of  the
knowledge  graph  completion  tasks.  In  this  task,  we
need  to  set  a  relation-specific  threshold ,  which  is
obtained when the accuracy of  triplet  classification on
the  validation  set  is  maximized.  For  a  given  triplet

,  if  the score obtained by the scoring function is
less  than  the  set  threshold ,  then  the  triplet  will  be
classified as positive. Otherwise, it is a negative triplet.
In  the  experiment,  we  selected  three  public  datasets,
WN11,  FB13,  and  FB15K,  the  details  are  shown  in
Table 1.

ACC
Evaluation metric. For triplet classification task, we

use  accuracy  (ACC)  as  the  evaluation  metric. 
represents  the  proportion  of  positive  triplets  and

 

Table 2    Link prediction results.

Method
WN18 FB15K

MeanRank Hit@10 (%) MeanRank Hit@10 (%)
Raw Filt Raw Filt Raw Filt Raw Filt

TransE[15] 263 251 75.4 89.2 243 125 34.9 47.1
TransH[16] 401 388 73.0 82.3 212 87 45.7 64.4

DistMult[32] 987 902 79.2 93.6 224 97 51.8 82.4
TranSparse[33] 223 211 80.1 93.2 190 82 53.7 79.9

STransE[34] 219 206 80.9 93.4 219 68 51.6 79.7
TransE-RS[35] 385 371 80.4 93.7 161 63 53.2 72.1
TransE-DT[18] 228 216 76.2 88.4 212 80 50.7 72.1

TransAt[36] 169 157 81.4 95.0 185 82 52.9 78.2
OPTransE[37] 211 199 79.2 91.7 141 53 51.0 69.9

RPJE[38] 205 183 79.1 91.1 186 50 51.5 70.3
ERDERP[39] 258 246 79.9 93.2 189 54 49.1 71.1
TransP[22] 160 144 78.7 91.7 151 57 50.9 71.0

TransE-ETF(max)[40] 137 125 77.2 88.8 149 47 53.7 74.9
TKGE-VT (unif) 316 299 78.3 93.2 172 24 53.2 83.2
TKGE-VT (bern) 353 336 78.4 92.7 140 37 53.8 79.8
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ACC

ACC
ACC

ACC

negative triplets correctly predicted by the model to the
positive triplets and negative triplets in the training set,
a better model should have a higher  value. Since
triplet classification aims to determine whether a given
triplet  is  correct  and  consistent  with  the  metric,
we  use  as  the  evaluation  metric  for  triplet
classification.  is defined as follows:
 

ACC =
Tpos+Tneg

Npos+Nneg
(6)

Tpos

Tneg

Npos Nneg

where  is  the  number  of  correctly  predicted
positive  triplets,  is  the  number  of  correctly
predicted  negative  triplets,  and  denote  the
number  of  positive  triplets  and  negative  triplets  in  the
training set, respectively.

α γ

k
µ

u B

α γ k µ B L1

α γ k µ B L1

α γ k µ B L1

Implimentation. In  the  SGD process,  we  chose  the
learning rate  in {0.001, 0.01, 0.1}, margin  in {1, 2,
4, 4.5, 5, 10}, embedding dimension  in {20, 50, 100,
200},  hyperparameter  in  {0,  0.1,  0.5,  1,  2},  random
number  in {0.0001, 0.001}, and batch size  in {20,
120,  480,  960,  4800}.  We  obtain  the  optimal
configuration  parameters  by  the  accuracy  on  the
validation set. The optional configuration on WN11 is:

 = 0.001,  = 10,  = 100,  = 0.1,  = 4800, and 
as dissimilarity;  the optimal configuration on FB13 is:

 = 0.001,  = 5,  = 200,  = 0.1,  = 4800, and  as
the  dissimilarity;  the  optimal  configuration  on  FB15K
is:  = 0.001,  = 5,  = 100,  = 0.1,  = 120, and 
as the dissimilarity.

Experimental results and analysis. Table 4 lists the
experimental  results  of  triplet  classification.  From

Table 4, we can see that the proposed method—TKGE-
VT  achieves  optimal  performance  on  WN11,  FB13,
and  FB15K.  Compared  with  TransE-DT,  TKGE-VT
improved by 1.2%, 6.7%, and 10.4% on WN11, FB13,
and  FB15K,  respectively.  Among  them,  we  find  that
the performance improvement of TKGE-VT on FB15K
is the most significant, which indicates that TKGE-VT
is effective in dealing with complex relationships.

5　Conclusion and Future Work

In  this  paper,  we  present  TKGE-VT,  a  temporal
knowledge  graph  embedding  model  based  on  variable
translation.  TKGE-VT  proposes  a  variable  translation
principle  and  can  better  capture  the  complex  and

 

Table 3    Hit@10 of each type of relations in FB15K.
(%)

Method
Predicting Left (Hits@10) Predicting Right (Hits@10)

1-1 1-N N-1 N-N 1-1 1-N N-1 N-N
TransE[15] 43.7 65.7 18.2 47.2 47.2 19.7 66.7 50.0
TransH[16] 66.8 87.6 28.7 28.7 65.5 39.8 83.3 67.2

TranSparse[33] 87.1 95.8 44.4 81.2 87.5 57.0 94.5 83.7
STransE[34] 82.8 94.2 50.4 80.1 82.4 56.9 93.4 83.1

TransE-RS[35] 87.4 96.3 35.3 71.7 86.5 44.2 95.4 75.2
TransE-DT[18] 84.7 94.5 34.1 72.1 83.1 41.7 93.8 74.6
OPTransE[37] 93.1 93.4 55.0 80.8 90.8 57.4 91.7 81.3
TransMS[41] 91.4 95.9 44.9 78.5 91.6 54.1 93.6 82.0

RPJE[38] 92.2 96.0 54.4 81.6 91.1 73.9 91.3 83.3
ERDERP[39] 78.1 86.3 49.5 70.3 79.1 51.7 85.6 73.3

TransP[22] 87.4 92.6 44.2 66.5 85.9 45.5 92.2 76.4
TKGE-VT (unif) 91.4 96.9 67.4 81.7 91.2 74.9 94.5 84.4
TKGE-VT (bern) 92.4 96.6 57.2 81.8 93.0 60.1 95.6 84.3

 

Table 4    Triplet classification accuracy of different models.
(%)

Method WN11 FB13 FB15K
TransE[15] 75.8 81.5 79.7
TransH[16] 78.8 83.8 87.7

TranSparse[33] 86.8 87.5 88.5
STransE[34] 86.4 89.1 83.2

TransE-RS[35] 85.3 83.0 81.9
TransE-FT[17] 86.4 82.1 90.5
TransE-DT[18] 86.6 85.3 83.3

TransAt[36] 88.2 89.1 —
OPTransE[37] 82.3 87.2 90.5

RPJE[38] 84.7 — 91.3
ERDERP[39] — — 91.2

TransE-ETF(max)[40] 85.7 85.5 —
TKGE-VT(this paper) 87.4 90.5 93.7
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diverse  entities/relationships  in  KGs.  In  addition,  we
add  temporal  properties  for  entities  and  relationships
respectively,  and  apply  the  proposed  principle  of
variable translation to temporal knowledge graphs. We
performed  extensive  experiments  on  four  popular
datasets  for  link  prediction  and  triplet  classification,
and  experiment  results  show  that  our  method
outperforms classic models (such as FT and DT).

In  future  work,  we  intend  to  make  further
improvements  to  TKGE-VT.  In  this  paper,  we  only
combine  the  variable  translation  principle  with
temporal  information.  Therefore,  we  will  consider
incorporating  the  proposed  variable  translation
principle  with  more  multi-source  information  such  as
entity  description,  type  information,  and  relation  path,
etc.  Furthermore,  in  addition  to  the  common  tasks  of
link  prediction  and  triplet  classification,  we  will
consider applying the proposed model to tasks such as
semantic parsing and relation extraction, etc.
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