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Abstract: Network  updates  have become increasingly  prevalent  since the broad adoption  of  software-defined

networks (SDNs) in data centers. Modern TCP designs, including cutting-edge TCP variants DCTCP, CUBIC,

and  BBR,  however,  are  not  resilient  to  network  updates  that  provoke  flow  rerouting.  In  this  paper,  we  first

demonstrate  that  popular  TCP  implementations  perform  inadequately  in  the  presence  of  frequent  and

inconsistent  network  updates,  because  inconsistent  and  frequent  network  updates  result  in  out-of-order

packets and packet drops induced via transitory congestion and lead to serious performance deterioration. We

look  into  the  causes  and  propose  a  network  update-friendly  TCP  (NUFTCP),  which  is  an  extension  of  the

DCTCP variant, as a solution. Simulations are used to assess the proposed NUFTCP. Our findings reveal that

NUFTCP  can  more  effectively  manage  the  problems  of  out-of-order  packets  and  packet  drops  triggered  in

network updates, and it outperforms DCTCP considerably.

Key words:  software defined data center networks; network updates; DCTCP; out-of-order packets; packet drop;
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1　Introduction

Computer  networks  are  dynamic,  complex,  and  have
diverse critical infrastructures. In order to maintain the
availability,  correctness,  and  performance  of  networks
in  an  efficient  manner,  network  operators  frequently
involve  in  various  tasks  of  updating  the  routing
policies,  changing  the  security  policies,  recovering
from link failures, migrating flows, etc. These tasks are

termed as  network  updates[1].  In  a  modern  data  center
network  (DCN),  network  updates  are  becoming  even
more  frequent  as  some  new  scenarios  of  network
updates include: (1) virtual machines migration among
physical  servers,  (2)  reconfiguration  between  a  load
balancer  and  its  backend  servers,  (3)  examining  the
functionality  and  compatibility  of  a  new  switch  on-
boarding  through  moving  traffic,  (4)  installation  of  a 
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new  firmware  version  at  the  switch,  and  so  on[2–4].
Network updates in software-defined DCN (SD-DCN)
may  have  various  additional  reasons  and
circumstances,  which  inevitably  lead  to  reroute  the
traffic[5, 6].

Rapidly  expanding  companies  have  employed  the
software-defined  network  (SDN),  which  provides
considerable  advantages  over  traditional  DCN  in
managing  data  transfer.  For  example,  Microsoft[7] and
Google[8] interconnect  their  data  centers  with  SDN  to
achieve high network performance. Google reports that
the link utilization can attain near about 100%, whereas
traditional  networks  can  only  achieve  an  average  of
30% to  40%[8].  An  SDN-enabled  network  often
requires  frequent  and  fast  network  updates  to  manage
rapid flow rescheduling decisions and utilize a virtually
centralized  controller  to  fulfill  the  different
requirements  at  the  data  plane.  Specifically,  the
procedures  for  updating  the  rules  are  performed  over
non-synchronized  machines,  and  implementing  the
properties  of  consistency  with  rules  dependencies
demands frequent and fast updates to avoid forwarding
anomalies and exacerbated network performance[9–13].

During the execution of successive network updates,
various  processes  are  carried  out  in  a  non-blocking
manner,  thereby ensuring the consistency properties  is
crucial[14].  In  SDN setups,  frequent  flow rescheduling,
if  not  carried  out  carefully,  may  cause  major  network
update issues referred to as network confusions[1], such
as  link  congestion,  network  policy  violation,
forwarding  blackhole,  and  forwarding  looping.
These  issues  lead  to  inconsistencies  in  network
updates.  As  a  result,  problems  such  as  out-of-order
packets  and  packet  drops  occur.  In  order  to  preserve
network  consistency  properties  during  updates,  the
majority  of  previous  research  has  focused  on  link
congestion[2, 7, 9, 11, 12, 15–18],  forwarding  blackhole  and
forwarding  looping[2, 7, 9, 11, 19–22],  and  policy
violations[10, 22].

In  view  of  the  aforementioned  discussion  on  the
network  update  scenarios  and  consistency  properties
maintenance,  we  notice  the  key  observations  as
follows.

(1) Almost every scenario involving network updates
requires  rerouting  of  the  flows  or  traffic,  which  may
lead  to  the  issues  of  out-of-order  packets  and  packet
drops.

(2)  If  the  rescheduling  of  flows  is  not  handled
carefully,  it  may  cause  inconsistent  network  updates,
resulting  in  transient  congestion  and  rerouting.

Therefore,  out-of-order  packets  and  packet  drops  can
occur.

According  to  Ref.  [23],  observations  show  that
transmission  control  protocol  (TCP)  traffic  accounts
for 99.91% of the traffic in data centers. However, the
rerouting violates TCP’s assumption and has a negative
repercussion  on  TCP  traffic,  resulting  in  severe
network  performance  degradation.  When  rerouting,
out-of-order packets and packet drop are serious issues.
The  predicted  difficulties  of  TCP  can  be  classified  as
follows when the network is updated:

(1) Certain disorders may result in the suppression of
window  size  and  unusual  retransmission.  Many
researchers  attempt  to  address  the  difficulties  using
timer  or  DUPACK  threshold  estimate  to  solve  the
problems.

(2) TCP invariably begins with a “slow start”. When
rerouting a flow, a network gives the new route with a
“quick start” that can result in out-of-order packets and
severe  congestion,  particularly  if  the  updates  are
frequent  and  inconsistent  or  if  the  flow  scheduling  is
imperfect.

Given  these  issues  related  to  TCP,  the  performance
of  TCP  is  inevitably  poor  whenever  the  network  is
being  updated.  As  pointed  out  previously,  network
update  occurs  frequently.  For  example,  Hedera[3]

updates the network every 5 s, and the authors of Ref.
[3] believe even sub-second and possibly sub- 100 ms
networking updates are achievable, as evidenced by the
work  of  Ref.  [24],  which  updates  the  network  using
1  ms,  5  ms,  and  1000  ms.  However,  TCP  performs
significantly worse when updates occur frequently.

There  exist  many  TCP  variants.  However,  to  the
authors’ best knowledge, so far no one has studied how
TCP variants will react to the aforementioned problems
during  the  network  updates  or  reroutes.  To  further
investigate  the  issues  related  to  TCP  variants,  in  this
paper,  we  first  perform  extensive  experiments  using
cutting-edge  TCP  variants  including  DCTCP[23],
CUBIC[25, 26],  and  BBR[27] to  observe  their  behaviors
during network updates. Our results show that CUBIC,
BBR  and  DCTCP  face  the  serious  problems  during
inconsistent  and  frequent  network  updates,  thereby
confirming that the existing TCP variants are incapable
of  dealing  with  frequent  and  inconsistent  network
updates effectively.

1.1　Motivation

Motivated  by  this  experimental  investigation  of  TCP
variants,  we  propose  a  TCP  modification  based  on
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DCTCP,  named  network  update  friendly  TCP
(NUFTCP),  to  overcome  the  aforementioned  issues
when networks are updated in SD-DCN[26]. The key is
to  understand  how  existing  TCP  designs,  particularly
DCTCP,  can  be  extended  to  handle  network  updates
more  gracefully.  The  fundamental  challenges  of
smoothing  network  updates  are  handling  packet
reordering  and  avoiding  packet  drops,  which  may
reduce the window size even though there is no actual
congestion.  By  limiting  window  size  and  delaying
duplicated  acknowledgments  (ACKs),  NUFTCP  can
perform  better  than  DCTCP,  especially  when  the
updates of networks are inconsistent and frequent.  We
investigate  how the  proposed NUFTCP can cope  with
frequent and inconsistent network updates in detail and
demonstrate  through  simulations  that  our  model
accurately  captures  the  essences  of  network  updates.
Our  NUFTCP  remains  resilient  at  frequent  and
inconsistent  network  updates,  and  it  outperforms
DCTCP.  The  main  contributions  of  this  paper  are
summarized as follows.

(1)  Extensive  experiments  are  conducted  and  the
results  are  analyzed  to  better  understand  and  pinpoint
“flaws” in  the  current  TCP  designs  utilized  in  data
centers  when  networks  are  updated  frequently  and
inconsistently.

(2) We focus on the issues with out-of-order packets
and dropped packets caused by network updates, which
substantially impacts the real-time transmission of data.

(3)  We propose  a  novel  NUFTCP,  a  TCP extension
of DCTCP that gracefully handles network updates.

(4)  Simulations  are  used  to  evaluate  NUFTCP,  and
the  results  obtained  reveal  that  it  achieves  more
satisfactory  performance  in  SD-DCN  during
inconsistent and frequent network updates.

The remaining sections of the paper are organized as
follows. In Section 2, we present extensive experiments
and detailed analysis of existing TCP solutions with an
example  to  demonstrate  why  gracefully  handling
network updates are crucial  in SD-DCNs. Section 3 is
devoted  to  our  proposed  NUFTCP  design.  We  use
simulation  based  evaluations  to  demonstrate  that
NUFTCP works  well  in  different  scenarios  in  Section
4.  In  Section  5,  the  relevant  literatures  are  reviewed,
and in Section 6, we conclude this paper.

2　Analysis  of  TCP  Variants  in  Network
Updates

The performance of TCP is investigated in the context

of  inconsistent  and  frequent  network  updates.
Specifically,  we  perform  a  series  of  tests  to  see  how
different  TCP  variants  perform.  The  experimental
results are analyzed and explained.

2.1　Experimental setup

The  topology  we  employed  in  the  experiments  is
depicted  in Fig.  1.  The  network  comprises  four  Intel
Xeon  X5650  servers  with  six  cores  running  at
2.67  GHz  that  function  as  both  senders  (Server  1  and
Server  2)  and  receivers  (Server  3  and  Server  4).  We
utilize  the  Linux  kernel  version  4.9.  The  senders  and
receivers  are  connected  to  the  two  switches,  H3C
S6800 (Switch 1) and H3C S6300 (Switch 2). Both the
switches implement OpenFlow 1.3 and have a 10 Gbps
link  speed.  They  are  connected  by  two  ports.  As  a
result,  there  are  two  ways  for  a  sender  to  reach  a
receiver.  A  third  port  connects  the  SDN  H3C  VCF
Controller to the switch.

{ fn} → { fm}
→

{ fn}
→ ln
{ fm} lm

The  actual  path  of  each  flow  is  controlled  by  the
controller. In the experiments, two groups of flows are
used, and they are : Server 1  Server 3 and :
Server 2  Server 4. Switch 1 receives these flows and
then forwards to Switch 2. The network is shown in its
starting  condition  in Fig.  1.  The  two  groups  of  flows
are  forwarded  as  follows  in  their  normal  state: :
Server  1  Server  3  through  link  (Switch  1  to
Switch  2); :  Server  2  to  Server  4  through  link 
(Switch 1 to Switch 2).

ln lm
{ fn}

lm { fm}
ln

ln
{ fn+ fm}

lm

During the network update, routes change frequently,
and the traffic on link  shifts to link  and vice versa.
Then, the network state is as follows: : Server 1 to
Server  3  via  link  (Switch  1  to  Switch  2); :
Server 2 to Server 4 via link  (Switch 1 to Switch 2).
Another  scenario  is  when  link  failure  happens,  and
the network state is as follows: :  Server 1 and
Server 2 to Server 3 and Server 4 via link  (Switch 1
 

fn

fm

f n

fm

ln

lm
Switch 1 Switch 2

Server 1

Server 2

Server 3

Server 4

SDN 
controller

 
Fig. 1    Network  topology  for  network  updates  with  TCP
variants.
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lmto Switch 2). The scenario of link  failure is similar.

lm
ln

To  investigate  the  behavior  of  TCP  variants  during
frequent  network  updates,  we  reroute  the  flow  traffic
initiated  by  Server  1  towards  link  and  the  flow
traffic  initiated  by  Server  2  towards  link .  These
rerouting  occur  each  time  the  controller  initiates  a
network  update.  During  the  five-minute  experiment,
the  duration  for  each  route  change  is  at  most  one
second.  The  other  system  parameters  for  the
experiment  are  specified  in Table  1.  The  experiment
settings  emulate  unpredictable  and  frequent  network
update situations, which may result in link congestion,
dropped  packets,  and  out-of-order  packets.  Due  to
excessive  retransmissions  and  reduced  flow
throughput,  there  will  be  a  significant  reduction  in
throughput.

2.2　Analysis for consistent network updates

We  first  investigate  the  performance  of  the  TCP
variants  in  consistent  network  updates.  The
requirement  for  consistency  demands  that  the
transmission  of  flows  is  seamlessly  toward  new  paths
of  routing  or  rerouting,  in  order  to  enforce  the
implementation rules with their interdependence in the
flow  tables  across  multiple  switches  on  a  routing
path[28].  Therefore,  the  most  important  aspect  of
maintaining  consistency  is  the  correct  order  of
updates[29], and the updates follow the right sequencing
are called consistent updates.

The  impact  of  network  update  frequency  on  the
achievable network performance of the TCP variants is
investigated  in Fig.  2.  It  can  be  seen  that  given  the
network  update  frequencies  of  ten  seconds,  five
seconds,  three  seconds  and  one  second,  the
corresponding  network  performance  degradations  are
more than two percents, five percents, ten percents and
thirty percents, respectively. In practice, frequent DCN

updates often occur, initiated by operators, software or
in  unusual  cases  of  failure[2].  The  controller  and  data
plane  must  quickly  update  in  real-time  because  of  the
recurring flow dynamics[30]. Since tens of thousands of
flows  may  occur  in  just  a  few  milliseconds,  high
efficiency in network updates is crucial[7].

Below  we  examine  how  the  TCP  variants  behave
during consistent network updates, in terms of the total
number of packet drops,  average throughput,  variation
in  congestion  window  size  cwnd  and  average  number
of  retransmissions.  In  the  experiment,  by  defining  a
threshold,  the  SDN  controller  initiates  a  network
update with reference to rerouting every second. Using
the  same  topology  with  two  scenarios  of  large  buffer
size and small buffer size, we run the experiment.
(1)　Number of retransmissions
Figures  3 and 4 plot  the  cumulative  distribution
functions  (CDFs)  of  the  numbers  of  average
retransmissions  for  the  three  TCP  variants  during
consistent network updates with large and small buffer
sizes,  respectively.  There  are  different  reasons  for
retransmissions,  e.g.,  timeouts,  damaged  packet  data,
out-of-order  packets,  etc.  For  the  case  of  large  buffer
and  at  the  CDFs  of  20%,  80%,  and  100%,  BBR
requires  100,  200,  and  280  retransmissions,  and
DCTCP  requires  180,  400,  and  600  retransmissions,
while  CUBIC  imposes  380,  580,  and  800
retransmissions. For the case of small buffer and at the
CDFs  of  20%,  80%,  and  100%,  BBR  requires  130,
300,  and  500  retransmissions,  and  DCTCP  requires
200,  350,  and  550  retransmissions,  while  CUBIC
imposes  180,  350,  and  550  retransmissions.  It  is
evident  that  BBR  in  the  both  cases  outperforms  the
other  two  TCP  variants.  For  BBR,  larger  buffer
improves  the  performance  and  reduces  the  number  of

 

Table 1    Parameters of experimental system.
Parameter Value

Packet MTU size 1500 B
Queue type RED

Traffic flow pattern Pre-defined
Small buffer size 200 kB
Large buffer size 1.0 MB

Link capacity 10 Gbps
Measurement time 120 s − 300 s

ACK delay threshold 2 packets
ACK delay timeout 200 ms

Reroute time 1 s

 

Time 
Fig. 2    Effect of network update frequency on performance
of TCP variants. Network updates are consistent.
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retransmissions,  also  see  Ref.  [31].  BBR  attempts  to
find  the  optimal  operating  point  during  network
updates  by  estimating  the  bandwidth  and  round-trip
propagation delay to take care of bandwidth and round-
trip time. BBR also ignores packet loss as a congestion
signal[27, 32].  It  can  also  be  seen  that  with  the  small
buffer size, the retransmission performance of DCTCP
and CUBIC improve.
(2)　Throughput
Figures  5 and 6 depict  the  CDFs  of  the  average
throughput for the three TCP variants during consistent
network updates with the large and small  buffer  sizes,
respectively.  For  the  large  buffer  and  at  the  CDFs  of
20%,  80%,  and  100%,  CUBIC  can  reach  around
3.5 Gbps, 4.8 Gbps, and 6 Gbps, and DCTCP achieves
around  2.8  Gbps,  4.7  Gbps,  and  5  Gbps,  while  BBR
reaches  around  3.3  Gbps,  4.5  Gbps,  and  5  Gbps.  It
appears  that  CUBIC has the edge in this  case.  For the

small  buffer  scenario,  the  three  TCP  variants  have
similar performance. Specifically, at the CDFs of 20%
and  80%,  the  three  schemes  achieve  around  3.3  Gbps
and 4.8 Gbps, while at the CDF of 100%, CUBIC and
BBR achieve about 5.2 Gbps, but DCTCP has a slight
edge reaching near 6 Gbps.
(3)　Variation in congestion window
Figures  7 and 8 characterize  the  variations  in  the
average  congestion  window  size  cwnd  by  the  three
TCP  variants  with  large  and  small  buffer  sizes,
respectively.  For  the  large  buffer  and  at  the  CDFs  of
20%, 80%, and 100%, the cwnd sizes of BBR are 150
kB,  280  kB,  and  350  kB,  and  DCTCP  has  the  cwnd
sizes  of  220  kB,  450  kB,  and  650  kB,  while  CUBIC
has the cwnd sizes of 400 kB, 750 kB, and 820 kB. For
the  small  buffer  and  at  the  CDFs  of  20%,  80%,  and

 

 
Fig. 3    Numbers  of  average  retransmissions  during
consistent  network  updates  for  TCP  variants  with  large
buffer size.

 

 
Fig. 4    Numbers  of  average  retransmissions  during
consistent  network  updates  for  TCP  variants  with  small
buffer size.

 

 
Fig. 5    Average  throughput  during  consistent  network
updates for TCP variants with large buffer size.

 

 
Fig. 6    Average  throughput  during  consistent  network
updates for TCP variants with small buffer size.
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100%, BBR has the cwnd sizes of 140 kB, 280 kB, and
330 kB, and DCTCP has the cwnd sizes of 200 kB, 430
kB,  and  550  kB,  while  CUBIC  has  the  cwnd  sizes  of
230 kB,  450 kB,  and 700 kB.  It  is  seen that  BBR has
the smallest  cwnd and the buffer  size has little  impact
on  its  congestion  window  size.  This  is  because  BBR
controls the congestion window by setting cwnd to two
times the estimated bandwidth-delay product (BDP)[31].
DCTCP  uses  an  effective  multiplicative  reduction
technique to adjust cwnd based on the level of network
congestion.  Specifically,  DCTCP  uses  the  explicit
congestion notification (ECN) to estimate the predicted
proportion  of  the  marked  packets  and  appropriately
modifies its cwnd size[23]. CUBIC has the largest cwnd
because it has a tendency to fully fill a buffer.
(4)　Number of packet drops
DCTCP  and  CUBIC  have  no  dropped  packets  in
consistent  network  updates  with  a  large  buffer.

Therefore,  we  perform  an  experiment  with  the  small
buffer  size,  and  the  numbers  of  packet  drops
experienced  by  the  three  TCP  variants  are  shown  in
Fig.  9.  The  results  indicate  that  BBR  has  the  worst
performance  and  DCTCP  has  the  best  performance.
More specifically,  BBR drops 18 336 packets,  CUBIC
drops  7865  packets,  and  DCTCP  drops  merely  3693
packets, respectively.

When  packet  loss  is  observed,  BBR  ignores  it  as  a
congestion  indication  and  does  not  perform  back  off.
Hence,  it  has  no  mechanism  for  congestion  detection
and  reaction  to  congestion[31].  Due  to  the  fact  that
CUBIC  has  an  ACK-based  congestion  control
mechanism, it cannot deal with packet drop. DCTCP is
also  unable  to  control  packet  loss  if  there  are  severe
and  short-lived  traffic  bursts[23].  Therefore,  traditional
TCP  variants  are  unable  to  deal  efficiently  with  the
packet  drop  problem  in  frequent  consistent  network
updates.

2.3　Analysis for inconsistent network updates

Inconsistencies  arise  when  data  plane  state  changes
violate policies or update rules due to varying delays in
coordination  or  no  coordination  across  multiple
switches or between controller and switch[28].  Delayed
updates in the network may cause inconsistent network
updates.  To  evaluate  TCP  variants,  we  use  switches
with  an  SDN  controller  to  produce  an  update  delay
inconsistency of 100 ms, with a large buffer size.
(1)　Number of retransmissions
As  can  be  seen  from Fig.  10,  BBR  exhibits  the  best
retransmission  performance,  while  CUBIC  has  the
worst  retransmission  performance,  which  is  similar  to
Fig.  3.  Specifically,  at  the  CDFs  of  20%,  80%,  and

 

Average cwnd (kB) 
Fig. 7    Variations in average congestion window size during
consistent  network  updates  for  TCP  variants  with  large
buffer size.

 

Average cwnd (kB) 
Fig. 8    Variations in average congestion window size during
consistent  network  updates  for  TCP  variants  with  small
buffer size.
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Fig. 9    Average numbers of  packet  drops during consistent
network updates for TCP variants with small buffer size.
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100%,  BBR  requires  100,  200,  and  320
retransmissions,  and  DCTCP  requires  200,  450,  and
650  retransmissions,  while  CUBIC  imposes  250,  520,
and  800  retransmissions.  The  retransmission
performance  of  BBR  and  DCTCP  are  slightly  worst
than  the  corresponding  performance  under  consistent
network  updates  given  in Fig.  3,  but  CUBIC  has
slightly better performance.
(2)　Throughput
Figure  11 shows  the  throughput  of  the  three  TCP
variants  during  inconsistent  network  updates.  All  the
three TCP variants exhibit  similar performance, which
is  different  from Fig.  5.  In  particular,  for  the  CDF
above  40%,  the  throughput  of  all  the  three  TCP
variants are very close.
(3)　Variation in congestion window
Figure  12 represents  the  average  congestion  window

size  variations  in  inconsistent  network  updates  with  a
large  buffer  size,  which  are  similar  to Fig.  7.  As
mentioned  in  Subsection  2.2,  BBR  controls  the
congestion  window  by  setting  cwnd  to  two  times  the
BDP and it shows the least window size growth, while
CUBIC  uses  an  ACK-based  congestion  control
mechanism  to  maximally  grow  the  window  size.
DCTCP is ECN-based and it squeezes the window size
based on ECN-marked packets.
(4)　Number of packet drops
According  to Fig.  13,  CUBIC  shows  the  worst
performance  with  623  packets  dropped,  and  the  BBR
shows  the  best  performance  with  11  packets  dropped,
while  DCTCP  drops  187  packets.  BBR  with  a  large
buffer  size  has  less  packet  loss  and  retransmissions
because the inflight cap limits the usage of the buffer at
around  one  BDP,  which  prevents  packet  loss  most  of

 

 
Fig. 10    Numbers  of  average  retransmissions  during
inconsistent  network  updates  for  TCP  variants  with  large
buffer size.

 

 
Fig. 11    Average  throughput  during  inconsistent  network
updates for TCP variants with large buffer size.

 

Average cwnd (kB) 
Fig. 12    Variations  in  average  congestion  window  size
during  inconsistent  network updates  for  TCP variants  with
large buffer size.

 

d
n

 
Fig. 13    Average  numbers  of  packet  drops  during
inconsistent  network  updates  for  TCP  variants  with  large
buffer size.
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the  time[31].  It  can  easily  be  inferred  that  the  situation
would  worsen  with  a  small  buffer  size  during
inconsistent  network  updates.  Recalling  that  DCTCP
and  CUBIC  have  no  dropped  packets  in  consistent
network updates with a large buffer, it can be seen that
the problem of packet  drops becomes much serious in
inconsistent network updates.

2.4　Conclusions of TCP variants analysis

α

In  the  scenario  of  consistent  and  frequent  network
updates  with  large  buffer  size,  DCTCP  and  CUBIC
have  no  dropped  packets  but  they  impose  higher
average  number  of  retransmissions  and  larger  growth
in  cwnd  size  than  BBR.  In  the  same  scenario  with
small  buffer  size,  BBR  has  the  largest  number  of
dropped packets  and DCTCP has  the  smallest  number
of  dropped  packets.  This  is  because  the  sender  in
DCTCP  estimates  the  buffer  size  by  maintaining  an
estimate  of  fraction  of  packets  that  are  experiencing
congestion. The estimated fraction of packets , can be
updated  after  one  RTT  (round-trip  time)  for  every
window of data as follows.
 

α = (1−g)×α+g×F (1)
(1−g)×α
α g×F

α

g

α α

K

BDP

where  the  term  represents  the  decay  of
previous value of , while the term  represents the
new  information  from  the  feedback  or  increase  in 
due  to  the  current  packet  being  marked  as  congested.
The gain factor  controls  the relative weight  of  these
two terms. Consequently, Eq. (1) is used to update the
value  of  based  on  the  current  value  of  and  the
feedback  received  from  ACKs  and  negative
acknowledgments  (NAKs).  Thus,  upon  reception  of
every packet, the sender receives ECN-marks when the
queue  length  is  higher  than  threshold  value .
Moreover,  the  value  of  estimation  close  to  1  indicates
high  congestion  and  close  to  0  indicates  low
congestion.  While  the  performance  of  the  three  TCP
variants are closer in terms of retransmission. It can be
observed  from  the  experimental  results  that  BBR  has
the smallest cwnd size. The reason is that BBR controls
the cwnd based on the bandwidth delay product, ,
as follows:
 

cwnd = 2×BDP (2)
BDPwhere  can be calculated as

 

BDP = Br ×RTTmin (3)
Br

RTTmin

Here,  is the smallest data rate (bottleneck data rate)
and  is  the  minimal  RTT.  Conversely,  the

cwndDCTCP calculates the  as
 

cwnd = cwnd×
(
1− α

2

)
(4)

α

cwnd
cwnd

Hence,  when  is  close  to  0,  indicating  low
congestion,  reducing  the  window  slightly.  As  the
DCTCP  senders  reducing  gently,  therefore,  its
average  is larger than BBR.

The  situation  is  similar  in  terms  of  retransmission
and  cwnd  size,  when  updating  the  network
inconsistently  with  large  buffer  size,  but  all  the  three
TCP  variants  suffer  from  the  problem  of  dropped
packets. This indicates that the problem of out-of-order
packets  is  more  serious  when  the  network  is  updated
inconsistently  and  frequently.  It  may  also  be
reasonably  inferred  from  the  results  that  the
performance  of  TCP  variants  will  deteriorate  in  the
case of small buffer size.

3　NUFTCP design

The  previous  simulation  experiments  have  revealed
that  the  state-of-the-art  TCP  variants  are  ineffective,
particularly when the network is updated inconsistently
and  frequently.  This  motivates  us  to  design  a  better
solution that is capable of coping with network updates
smoothly.  Specifically,  we  develop  the  NUFTCP
design, which aims to mitigate the problem of dropped
packets  during  network  updation  by  restricting  the
window size, managing the queue and handling out-of-
order  packets  in  SD-DCN.  More  specifically,  two
modifications are introduced. The first one restricts the
size  of  the  transmit  side  window  to  mitigate  dropped
packets  in  inconsistent  network  environments.  This  is
because  the  transmission  window  on  the  sending  side
decides the amount of data that can be sent before the
receiver  sends  an  acknowledgment,  ensuring  that  it
does  not  exceed the receiver’s  buffer.  The second one
diminishes out-of-order packets by delaying duplicated
ACKs on the recipient side. The main symbols utilized
in the design are listed in Table 2.

3.1　Limit the window size and queue management

(1)　Why  NUFTCP  cares  about  packet  drop  not
congestion avoidance

NUFTCP  does  not  focus  on  ordinary  congestion
avoidance;  instead,  it  avoids  severe  congestion,  which
leads  to  packet  drop.  A  TCP  protocol  keeps  adding
packets  to  the  queue  until  a  packet  is  dropped.  Then
TCP  extends  queues  to  accommodate  transient  traffic
bursts,  and  hence  the  average  queue  length  is  quite
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long.  Therefore,  the  rate  of  dropped  packets  is
incredibly  low  until  a  queue  is  full,  thereafter  it  is
possible  that  all  the  incoming  packets  from  all  flows
are lost. Consequently, packet drop slows down all the
TCP  flows.  In  the  worst-case  scenario,  a  packet  drop
can result in significant data corruption or possibly the
loss of a link completely. For this reason, we are more
apprehensive about packet drops. NUFTCP utilizes the
inherent  negative  feedback  to  prevent  the  problem  of
packet drops triggered by severe congestion.
(2)　Relationship  among  data  size,  flow

throughput, and RTT
Since  TCP  is  not  aware  of  the  congestion  of  the
underlying  network,  it  relies  on  a  time  limit,  which
shows the duration a sender waits before retransmitting
a  lost  segment  to  estimate  whether  the  forwarded
segment  is  dropped  or  not.  Specifically,  if  an
acknowledgment  is  not  received  by  the  sender  side
within the defined time limit, it is considered a segment
drop. In the context of standard TCP, the time limit is
referred  to  as  the  retransmission  timeout  (RTO).  The
RTO is  not  a  fixed  value,  but  rather  it  is  dynamically
adjusted  based  on  the  estimated  RTT.  The  RTO  is
maximum  amount  of  time  that  TCP  will  wait  for  an
ACK for a segment before retransmitting it.  The RTO
is typically set to a few times the estimated RTT, which
is  the  time  it  takes  for  a  segment  to  travel  from  the
sender to the receiver and back. It is helpful to account
for  factors  such  as  network  delays  and  processing

t r
s t s = r× t

times. Further, if TCP retransmits a segment too many
times  without  receiving  an  ACK,  it  assumes  that  the
connection is congested and will slow down its sending
rate.  This  is  known  as  congestion  control.  The  reason
TCP  relies  on  time  limits  or  timeouts  to  estimate
congestion is because it  does not have direct access to
network  information  such  as  buffer  occupancy  and
queue  lengths.  Therefore,  the  RTO  is  one  of  the
common  ways  to  determine  the  packet  drop.
Accordingly,  TCP  keeps  track  of  RTT  for  each
segment.  A  TCP  connection  receives  an  estimated
maximum  data  size  that  the  receiver  side  can
accommodate. Let RTT be  and flow throughput be .
Then data size  transmitted in  is given by . In
other words, the flow throughput is proportional to the
data size and inversely proportional to the RTT. When
a link begins to exhibit congestion, the queue length for
the  link  is  increased,  which  induces  the  rise  in  the
queuing latency of the packets going through the link.
This  implies  that  the  RTT  of  the  corresponding  flow
will be longer and the throughput will be lower in order
to  alleviate  the  congestion.  Therefore,  when  we
transmit  the  data  size  in  one  RTT,  the  throughput  is
controlled  by  negative  feedback.  There  will  be  no
packet  drop  as  long  as  the  buffer  size  of  the  queue  is
sufficiently large.
(3)　Queue management

s1 = r1× t1 s2 = r2× t2 s1 r1 t1
fn s2 r2 t2

fm r1 = r2 = c t1 = t2 = t̂

We will  use the example of Fig. 14 to illustrate queue
management. Prior to the update, assume that we have

 and ,  where , ,  and  are
related  to  flow ,  while , ,  and  are  related  to
flow . In this case,  and .

fn
fm

fn
fm

l
τ = l/c

s1 = r′1× t′1
s2 = r′2× t′2 t′1 = t′2 = t̂+τ r′1+ r′2 = c

l =
∑
i

si− c× t̂
∑
i

si ⩽ 2× c

l ⩽ c× t̂
lmax < l+

∑
i

si

l

Assume  that  when  the  network  first  commences
updating,  it  offers  an  inconsistent  network  state.
Subsequently, the network state of  is updated and its
route is altered, while the network state of  remains
unchanged.  Specifically,  flow  is  routed  to  the
intermediate  node  that  is  currently  using.  Both  the
flows  now  utilize  the  same  link,  and  the  queue  is
overburdened, resulting in packet loss. For the sake of
simplicity,  suppose  that  the  queue  length  (in  bytes)  in
the  stable  state  is .  Dividing  the  queue  length  by  the
link  capacity  yields  the  queuing  latency .  After
the  inconsistent  network  update,  and

 with  and . Hence, we
have .  Because ,  we  have

.  Thus,  the  maximal  queue  length  should  be
 (if the queue length in the previous RTT

is more than , the queue length will not be increased).

 

Table 2    Main notations.
Symbol Meaning
{ fi} Set of flows
{si} Set of data size
{ti} Set of round-trip times (RTTs)
{ri} Set of flows’ throughput

t̂ RTT without queuing latency
c Link capacity
l Queue length

lmax Maximum queue length
τ Queue latency
w Window size

s Data size acknowledged
α Estimated marked packets
F Fraction of marked packets

BDP Bandwidth delay product
Br Smallest data rate

RTTmin Minimum RTT
cwnd Congestion window
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Therefore, we can draw the conclusion:
 

lmax < 3× c× t̂ (5)
c = 10 t̂ = 250 l < 937.5For example, if  Gbps and  μs, 

kB. It implies that if the buffer size is 1 MB, no packets
should drop.  Equation (5)  ensures  that  packets  are  not
dropped and network stability is maintained throughout
network  updates.  The  conclusion  can  be  extended  to
more  general  cases.  Algorithm  1  describes  the  queue
management process of NUFTCP.
(4)　How NUFTCP limits window size

w

w
w ≈ s

Benefiting  from  negative  feedback,  NUFTCP  aims  to
limit the window size  when a congestion occurs. As
aforementioned,  congestion  avoidance  protocol  grows
the  window  size  constantly  and  linearly,  which  may
cause  large  number  of  packet  drops  in  severe
congestion  situation.  NUFTCP  limits  the  maximum
window  size  to  avoid  this  issue.  When  there  is  a
congestion,  the  window  size  is  nearly  equal  to  one
TCP  flow,  i.e., .  If  the  flow  does  not  face

w s

s t̂
1.5× s

t̂

congestion,  may be significantly greater than . TCP
uses  an  exponentially  weighted  moving  average
(EWMA) to keep track of the fluctuations of RTT over
time,  and  it  places  approximately  20  percent  of  the
weight  on  the  most  recent  RTT  measurement.
Therefore,  NUFTCP keeps  track of  the  average actual
data  size  acknowledged  in  the  past  using  EWMA.
The upper window size limit is then adjusted to 
in  the  following ,  where  the  factor  1.5  is  employed
because the window size must be able to grow gently.

Since NUFTCP is based on DCTCP, packets will not
be  discarded  due  to  random  early  detection  (RED),
which  is  founded  on  statistical  probabilities  and  is
more  balanced  than  the  tail  drop.  However,  DCTCP
will decrease the slow start threshold when the transmit
side  receives  packets  with  an  explicit  congestion
expected  (ECE)  flag,  which  is  part  of  an  explicit
congestion  notification  (ECN)  protocol.  If  NUFTCP
does  not  receive  a  packet  with  the  ECE  flag  in  10
consecutive RTTs, it will reset the slow start threshold.
This  is  because  to  prevent  the  excessive  window  size
limit,  avoiding  congestion,  and  proactively  addressing
potential  packet  loss  in  the  network.  Algorithm  2
presents  the  congestion  control  and  window  size
adjustment of NUFTCP.

3.2　Delay duplicated ACKs

T

T

NUFTCP can rectify the out-of-order issue by delaying
the  delivery  of  duplicate  ACKs  during  the  network
update. The duplicated ACK will only be returned if it
is  postponed  for  period  and  the  accompanying  data
packet has not yet been delivered. A duplicated ACK is
rejected  in  all  the  other  cases.  Here,  is  a
preconfigured  time  threshold  that  equals  to  the
maximal  RTT  difference  on  different  paths,  typically
smaller than 1 ms or 2 ms. Since the window size limit
avoids the packet drop, the impact of delaying the fast
recovery is tolerable.

To  be  able  to  correctly  delay  duplicate  ACKs,
NUFTCP  needs  to  first  identify  network  update.  The
cooperation  of  switches,  like  ECN,  is  necessary  for
NUFTCP.  A  version  number  is  assigned  to  each  flow
table  entry  in  the  switches.  Each  time  the  controller
recalculates a flow table entry, the version number will
be  raised  by  one.  Each  packet  that  matches  the  entry
will be marked with the current version number of the
entry  (if  the  version  number  is  greater  than  the  one
carried in the packet). The first 4 bits in the TTL field
are  used  for  version  number  tagging  because  it  is

 

SDN
controller

Sender 1 Sender 2
Receiver 1

Receiver 2

fm
fm

fn
fn

 
Fig. 14    Topology  of  a  software  defined  data  center
network.

 

Algorithm 1　NUFTCP queue management algorithm
l c t̂

S i fi ti
fi τ

  1: Input:  (queue length in bytes),  (link capacity),  (time
　  ween RTTs),  (Data size for flow ),  (Transmission
　   time for flow ),  (Queuing latency)

lmax  2: Output:  (maximum queue length)
lmax← 0  3:  ▷ Initializing variable
l←∑

i si − c× t̂  4:  ▷ Update queue length
lmax← 3× c×τ  5:  ▷ Calculating maximum queue length

lmax > l  6: if  then
l← lmax  7: 　Set  ▷Updating queue length

lmax  8: 　Drop packets until queue length is reduced to 
  9: end if

si← si −
(
τ× si

lmax

)
10:  ▷ Calculating data size for each flow (si):

si11: Transmit data for each flow ( )
12: Repeat steps 5−11 until queue is empty
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generally  futile  for  intra-data  center  traffic  whose
maximal  hops  are  smaller  than  15.  By  tracking  TTL
modifications,  NUFTCP  has  the  capacity  to  explicitly
identify  network  updates  and  defer  repeated  ACKs.
Table  3 presents  the  performance  comparison  of
BBR[27],  CUBIC[25],  DCTCP[23],  and  the  proposed
NUFTCP.  Algorithm  3  describes  the  duplicate  ACK
delay mechanism of NUFTCP.

4　Evaluation

The    currently    available    network    updating
methods[2, 3, 7, 9–11, 20, 29] take into account the violations

of  consistency  properties  and  network  update
frequency.  Hence  the  comparison  between  NUFTCP
and  these  methods  is  unsuitable,  as  NUFTCP  is
concerned with  how dropped packets  and out-of-order
packets  issues  of  network  updates  influence  TCP
performance.  For  this  reason,  we  compare  NUFTCP
with  the  state-of-the-art  TCP  variant  DCTCP,  which
has  been  shown  to  outperform  other  TCP  variants  as
demonstrated in the experiments of Section 2.

4.1　Simulation network topology and parameters

t̂ ≈ 500 μs

We  assess  NUFTCP  using  NS3  based  simulations
under two different conditions of large and small buffer
sizes. We use SD-DCN topology to compare NUFTCP
and  DCTCP.  As  illustrated  in Fig.  14,  we  utilize  an
advanced conventional 2-tier Clos network topology in
DCN attached through an SDN controller. The network
makes  use  of  equal-cost  multipath  routing  (ECMP).
Each link has a 10 Gbps capacity with  RTT
without  queuing  latency.  The  large  and  small  buffers
have  1  MB  and  0.5  MB  in  size,  respectively.  The
controller  transmits  the  updated  information  towards
the  edge  switches  every  25  ms,  assuming  one  of  the
aggregation  layer  switches  is  down  (or  upgrading).
Flows  passing  precisely  via  the  down  (or  upgrading)
switches  must  modify  their  transmitting  pathways
backward  and  forward  in  this  format.  NUFTCP
strategy  utilizes  four  bits  of  the  packet  header’s  TTL
field  to  indicate  the  version number,  and hence in  our
simulations, the utmost multitude of distinct versions is
sixteen.

fn
fm

Our  network  architecture  states  that  flows  are
transmitted from Sender 1 to Receiver 1 and  flows
are  transmitted  from  Sender  2  to  Receiver  2
simultaneously.  Because  there  is  inconsistency  across
switches  during  the  update,  we  simulate  update  delay
of  0 − 1  ms  in  the  switches.  The  variation  in  update
time is produced at random, similar to Ref. [24].

4.2　Results and discussion

(1)　Packet drops and out-of-order packets
A randomized  delay  is  used  to  preserve  inconsistency
throughout  the  network  updates.  In  the  scenario  of
large  buffer  size,  we  execute  several  simulations  and
find  that  the  numbers  of  packet  drops  caused  by
DCTCP are 1188, 1294, 1159, and so on. The average
number of dropped packets is 1213, which is displayed
in Fig. 15. By contrast, NUFTCP never drops a packet
as can be seen from Fig. 15. As shown in Fig. 16, the

 

Algorithm 2　Congestion control and window size adjustment
in NUFTCP

s
ECE_flag

  1: Variables:  (Average actual data size acknowledged in the
　   past using EWMA),  (Explicit congestion
　   expected flag)

w  2: Output:  (Window size)
w← s ▷ w  3:   Initialize congestion window 
SST← s ▷  4:   Initialize slow start threshold
ECE_flag_counter = 0 ▷  5:   Initialize ECE flag counter

  6: while true do
  7: if 　congestion detected then

w← s ▷  8: 　　   Update window size
  9: 　end if
10: 　if congestion is not detected then

w < SST11: 　　if  then
w←min(w+1,SST) ▷12: 　　　   Gradually increase window

size
13: 　　else

w←min(w+1.5s,wmax) ▷ w
1.5

14: 　　　   Update  using weight =
　　　　  
15: 　　end if
16: 　end if

ECE_flag17: 　if an  is received then
SST← s ▷18: 　　   Update slow start threshold
ECE_flag_counter← 0 ▷ ECE_flag_counter19: 　　   Reset 

20: 　else
ECE_flag_counter++ ▷ ECE_flag_conter21: 　　   Increment 

22: 　end if
ECE_flag_counter == 1023:　 if  then
SST← s ▷24: 　　   Reset slow start threshold
ECE_flag_counter← 0 ▷ ECE_flag_counter25: 　　   Reset 

26: 　end if
w←min(w,SST) ▷27: 　   Update window size

w28: 　Transmit data using window size 
29: end while
30: Repeat steps 6−29 until congestion is resolved or slow start
threshold is reached
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Table 3    Performance comparison of different TCP variants.
Feature BBR[27] CUBIC[25] DCTCP[23] Proposed NUFTCP

Objective High bandwidth
utilization

Fairness and high
throughput

Data center congestion
control

Addresses packet drop problem
during frequent consistent

network updates in SD-DCN

Congestion control type Delay-based Window-based ECN-based ECN-based on inherent
negative feedback

Congestion signal RTT Packet loss ECN markings Inherent negative feedback

Response to congestion Proactive, aims to
prevent congestion

Reactive, reduces window
size upon congestion Proactive, utilizes ECN Proactive, utilizes inherent

negative feedback
Awareness of frequent

network updates Low Low Moderate High

Throughput behavior Aims for high
throughput Tends to oscillate Balances throughput

and low latency High throughput

Throughput optimization Yes Yes Yes Yes

Buffer utilization Efficient use of buffers May lead to buffer bloat Designed to avoid
buffer bloat Designed to avoid buffer bloat

Buffer bloat mitigation Yes No Yes Yes
Scalability Yes Yes Yes Yes
Use case Broadband connections General-purpose Data center environments SD-DCN environments

 

Algorithm 3　NUFTCP duplicate ACK delay mechanism
Ack T

packet_received
current_version

packet_version
t

  1: Input:  (Acknowledgment packet),  (Preconfigured
　  time threshold for delaying duplicate ACKs),
　   (Flag indicating whether the corresponding
　  data packet has been received),  (Current
　  version number of the flow table entry), 
　  (Version number carried in the ACK packet),  (time since
　  ACK reception)

processed_ACK  2: Output:  (Boolean flag indicating whether
　  the ACK was processed or not)

processed_ACK == False  3: while  do

current_version > packet_version  4: 　if  then
  5: 　　ACK indicates a network update
  6: 　end if
  7: 　if If an ACK is duplicate then

t > T packet_received  8: 　　if If  and  == False then

processed_ACK← True  9: 　　　

packet_received← True10: 　　　

11: 　　else

processed_ACK← False ▷12: 　　　   Discard the ACK
13: 　　end if
14: 　end if
15: 　if ACK is not a duplicate then

processed_ACK← True16: 　　

17: 　end if
18: end while

processed_ACK19: Return  flag

 

d
n

 
Fig. 15    Comparison  of  packet  drops  for  DCTCP  and
NUFTCP  during  network  updates  with  large  and  small
buffer sizes.

 

p

 
Fig. 16    Comparison  of  out-of-order  packets  for  DCTCP
and NUFTCP during network updates with large and small
buffer sizes.
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typical  number  of  out-of-order  packets  for  DCTCP  is
3930,  which is  very high.  NUFTCP on the other  hand
performs  much  better  than  DCTCP  with  no  out-of-
order packets.

In  the  scenario  of  small  buffer  size,  after  several
simulations,  the  numbers  of  packet  drops  caused  by
DCTCP are found to be 1381, 1366, 1181, and etc. The
average number of packet drops by DCTCP is 1309 as
depicted in Fig. 15. Because a small buffer may lead to
early  packet  drops,  DCTCP  exhibits  a  higher  number
of packet drops than in the large buffer scenario. Again
NUFTCP does not suffer from packet loss.  In Fig. 16,
DCTCP exhibits a high number of out-of-order packets
(3451) but is less than in the large buffer case. It is rare
for  NUFTCP  to  suffer  from  the  problem  of  out-of-
order  packets  and  in  this  case,  it  only  has  96  out-of-
order packets.
(2)　Throughput
For the case of large buffer size, Figs. 17 and 18 depict
the  throughput  achieved  by  DCTCP  and  NUFTCP,
respectively, during the network update. Observe from
Fig. 17 that for DCTCP, because of packet drops in the
beginning,  both  its  flows’ throughput  are  reduced  to
almost  zero.  Then  after  some  time,  one  of  its  flow
throughput is reduced to almost zero owning to packet
drops  occurring  again.  Finally,  there  is  a  prolonged
converging  time  of  its  two  flows’ throughput.  As  can
be seen from Fig. 18, NUFTCP by contrast offers more
consistent  throughput  since  packets  are  not  dropped
and out-of-order problem is dealt with effectively.

In  the  scenario  of  small  buffer  size,  the  throughput
achieved by DCTCP and NUFTCP during the network
update are depicted in Figs. 19 and 20, respectively. It
can  be  seen  from Fig.  19 that  DCTCP  performs  even

worst  than  in  the  large  buffer  case,  and  there  exists  a
long period of almost zero throughput for its two flows.
NUFTCP  on  the  other  hand  exhibits  more  consistent
and  stable  throughput  throughout  the  whole  update

 

 
Fig. 17    DCTCP  throughput  during  network  updates  with
large buffer size.

 

 
Fig. 18    NUFTCP throughput during network updates with
large buffer size.

 

 
Fig. 19    DCTCP  throughput  during  network  updates  with
small buffer size.

 

 
Fig. 20    NUFTCP throughput during network updates with
small buffer size.
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period,  just  as  in  the case of  large buffer.  This  clearly
demonstrates  that  NUFTCP can effectively maintain  a
stable network throughput during network update.
(3)　Discussion
The aforementioned experimental results again confirm
that  the  state-of-the-art  TCP variants,  such  as  DCTCP
(Data Center TCP), suffer from the serious problem of
packet  drops  and  out-of-order  packets  during  frequent
and  inconsistent  network  updates,  which  significant
degrades  their  achievable  throughput,  particularly
during  the  early  period  of  update.  The  simulation
results  also  validate  that  our  proposed  NUFTCP
achieves  its  design  goals.  Specifically,  NUFTCP  can
effectively deal with the issues of packet drops and out-
of-order  packets,  and  consequently  it  achieves  better
and more consistent throughput during inconsistent and
frequent network updates. Based on this evaluation, we
may  draw  the  conclusion  that  our  NUFTCP  design
offers an effective means for handling inconsistent and
frequent  network  updates  in  SD-DCN.  However,
NUFTCP is unable to completely mitigate the issue of
TCP  Incast  congestion.  Incast  congestion  refers  to  a
decrease  in  throughput  when  multiple  senders
simultaneously  communicate  with  a  single  receiver,
thereby  exceeding  the  receiver’s  buffer  capacity.
Hence, our future work will seek to address this issue.

5　Related Work

5.1　TCP designs

All  TCP  designs  offer  some  kinds  of  congestion
algorithms  to  avoid  and  resolve  congestion  problems
and to  attempt  to  mitigating  the  issues  of  out-of-order
packets  and  packet  drops.  The  relevant  contemporary
TCP implementations are reviewed in this subsection.

Several  delay  based-TCP  variants[33–35],  have  been
proposed, which rely on packet delay measurements as
a signal of congestion[36]. These schemes aim to reduce
queue  lengths  and  congestion  at  routers.  However,
queuing  delays  in  data  centers,  are  comparable  to
sources of noise in the system, thus, unable to provide
a  reliable  congestion  signal.  Moreover,  delay  signals
are  not  accurate  enough  to  compute  appropriate
congestion window to reduce congestion at  routers[37].
TCP  Reno[38, 39] presents  a  fast  recovery  mechanism
using available bandwidth designated by the arrival  of
DUPACK but  it  is  intolerant  to connections with long
delays. TCP NewReno[40, 41] is a loss-based congestion
algorithm  that  is  an  extension  of  TCP  Reno  with  a

modified  fast  recovery  algorithm.  CUBIC[25]

introduces a cubic function of elapsed time for window
growth when the loss occurs, and hence it improves the
friendliness  of  binary  increase  congestion  control
(BIC).  DCTCP[23] alters  ECN,  so  that  switches  mark
packets  in  accordance  with  the  current  queue  length
and  senders  modify  the  size  of  their  send  window
according to the estimated fraction of marked packets.
Linux  TCP  now  has  a  novel  congestion  control
technique  called  bottleneck  bandwidth  and  RTT
(BBR)[27]. BBR finds a better operating point that takes
care  of  bandwidth  and  RTT  by  estimating  the  round-
trip propagation delay and bandwidth, and it sets cwnd
to  a  small  multiple  of  the  estimated  BDP.  TCP-PR[42]

and  TCP-RR[43] were  developed  for  persistent  out-of-
order  packets  but  they  are  not  suitable  for  the  DCN
update  scenario.  TCP-RR  relies  on  DSACK,  which  is
not  supported  by  all  servers,  and  TCP-PR  needs  to
maintain  tables  in  memory  which  imposes  high
computation costs.

The  aforementioned  TCP  variants  are  ineffective  to
deal with the issues of out-of-order packets and packet
drops occurred in inconsistent and frequent updates of
SD-DCNs. By contrast, our proposed NUFTCP design
is capable of dealing with the problems of out-of-order
packets and packet drops effectively and, consequently,
ameliorates  TCP  performance  when  networks  are
updated inconsistently and frequently.

5.2　Network updates

The literature of network updates provides state-of-the-
art solutions for mitigating the problems of forwarding
loops,  forwarding  blackhole,  link  congestion,  and
policy  violation,  which  cause  inconsistent  network
updates.  Since  inconsistent  network  updates  may  lead
to the issues of out-of-order packets and packet drops,
these solutions aim to maintain consistency.

A  single  switch  can  handle  the  difficulties  of
forwarding  loop  and  forwarding  blackhole,  as
mentioned  in  a  method  by  Reitblatt  et  al.[20] To
distinguish the old and new packets,  they are  stamped
with version numbers to implement old and new rules.
zUpdate[2] provides  a  solution  to  the  problems  of
congestion, forwarding loop, and forwarding blackhole
in the data center, and it uses ECMP to split the traffic
equally  using  multiple  redundant  paths.  Hedera[3]

handles  frequent  network  updates  in  data  centers  by
allocating  the  paths  for  large  flows  based  on  the
estimated demand using an annealing based algorithm.
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SWAN[7] achieves high network capacity utilization of
inter-DC links in SDN in the presence of traffic volume
variations,  and  it  leaves  a  small  amount  of  scratch
capacity  on  the  link  that  can  be  used  for  updating.
TRUS[12] provided  a  timely  route  updating  technique
that  reduces  network  congestion  while  meeting  the
bandwidth needs of delay-sensitive traffic. Dionysus[11]

supports  fast  and  consistent  network  updates  in  SDN
using  dynamic  scheduling  during  updates  at  switches
individually. It can be applied to both SDN WAN and
DCN  environments.  FLIP[10] proposes  an  algorithm
that  ensures  forwarding  correctness  and  forwarding
policies  using  a  fast  and  lightweight  algorithm.
Cupid[29] emphasizes on consistent flow tables and data
plane updating to maintain the throughput of flows, and
it  outperforms  Dionysus.  ez-Segway[9] presents  a
decentralized  consistent  update  mechanism,  which
completes  network  updates  quickly  by  utilizing
sophisticated coordinating actions in the switches.

The  authors  of  Ref.  [21]  proposed  suffix  causal
consistency  (SCC)  motivated  by  a  consistency  model
for  shared-memory  systems  for  rule  updates.  The
method  ensures  consistency  properties  to  avoid
blackhole  loops,  bounded  loops  etc.  The  approach  of
Ref.  [22]  is  based  on  on  temporal  logic  and  model
checking  for  data  flow  correctness  verification  and
concurrent  updates  using  Petri  nets  to  make  sure  the
absence  of  loops.  The  authors  in  Ref.  [15]  devised
algorithms  to  mitigate  transient  congestion,  reduce
update  time,  and  minimize  control  overhead.  Their
algorithms  optimize  the  intermediate  stages  after
finding  the  optimal  route  at  each  middle  stage  to
minimize  the  temporary  congestion  efficiently.  The
authors  of  Ref.  [16]  proposed  customizable  update
planner  (CUP)  which  adopts  the  existing  designs  to
achieve  the  congestion  avoidance  and  optimize  the
update  speed.  CUP  introduces  generic  linear
programming  models  to  schedule  network  updates  to
user-specified  needs,  and  it  offers  a  solution  to  the
transient  congestion  problem.  Hermes[17] provided  a
utility-aware  network  update  system  that  maximizes
the  total  utility  by  a  rate-limiting  scheme  before  the
update.  It  ensures  congestion-free  property  during
network  updates.  The  authors  in  Refs.  [18, 19]  used
resource  dependency  graph  to  formulate  network
update  problems,  approximation  algorithms  to  utilize
bandwidth resources, spare-path-assisted algorithms for
consistent  flow  migration,  and  rate-limiting-flow  to
resolve  deadlocks.  Their  method  ensures  fast  network

updates  with  consistency  properties.  In  Ref.  [44],  the
authors  emphasized  that  the  real-time  communication
should  remain  invariant  by  diverting  the  traffic  to
uninvolved  devices  during  network  updates.  The
authors  of  Ref.  [14]  introduced a  framework based on
abstract algebra that enables controllers to combine the
fast  composition  of  numerous  network  updates  with
persistent  and  non-blocking  modifications  in  the
network  by  efficiently  modeling  the  data  plane
operations.

Most  of  the  aforementioned  network  updating
methods  focus  on  avoiding  the  violations  of
consistency properties in network updates. By contrast,
our  NUFTCP  design  is  developed  to  alleviate  the
impact of inconsistent and frequent network updates on
TCP performance so that  network updates  can happen
smoothly.

6　Conclusion

The  contribution  of  this  paper  has  been  twofold.
Firstly, we have conducted comprehensive experiments
to evaluate the performance of the state-of-the-art TCP
variants  in  the  presence  of  frequent  and  inconsistent
network  updates  in  SD-DCNs.  Our  findings  have
confirmed  that  current  TCP  variants  are  incapable  of
handling  frequent  and  inconsistent  network  updates,
and  they  suffer  from  the  problems  of  out-of-order
packets  and  packet  drops,  which  leads  to  significant
performance  degradation  in  terms  of  network
throughput.  Secondly,  we  have  proposed  a  network
update  friendly  TCP  modification,  called  NUFTCP,
which is an extension to DCTCP. Our NUFTCP design
can  tackle  the  issues  of  packet  drops  and  out-of-order
packets  throughout  frequent  and  inconsistent  network
updates in SD-DCNs, which have not been resolved by
the  previous  works.  Our  evaluation  results  have
validated  that  NUFTCP  performs  substantially  better
than  the  state-of-the-art  DCTCP,  when  the  network  is
updated  frequently  and  inconsistently.  Our  NUFTCP
therefore  offers  a  useful  design  to  smoothly  handle
network updates in SD-DCNs.
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