

Resilient TCP Variant Enabling Smooth Network Updates for
Software-Defined Data Center Networks

Abdul Basit Dogar, Sami Ullah, Yiran Zhang, Hisham Alasmary, Muhammad Waqas*, and Sheng Chen

Abstract: Network updates have become increasingly prevalent since the broad adoption of software-defined

networks (SDNs) in data centers. Modern TCP designs, including cutting-edge TCP variants DCTCP, CUBIC,

and BBR, however, are not resilient to network updates that provoke flow rerouting. In this paper, we first

demonstrate that popular TCP implementations perform inadequately in the presence of frequent and

inconsistent network updates, because inconsistent and frequent network updates result in out-of-order

packets and packet drops induced via transitory congestion and lead to serious performance deterioration. We

look into the causes and propose a network update-friendly TCP (NUFTCP), which is an extension of the

DCTCP variant, as a solution. Simulations are used to assess the proposed NUFTCP. Our findings reveal that

NUFTCP can more effectively manage the problems of out-of-order packets and packet drops triggered in

network updates, and it outperforms DCTCP considerably.

Key words: software defined data center networks; network updates; DCTCP; out-of-order packets; packet drop;

SDN

1　Introduction

Computer networks are dynamic, complex, and have
diverse critical infrastructures. In order to maintain the
availability, correctness, and performance of networks
in an efficient manner, network operators frequently
involve in various tasks of updating the routing
policies, changing the security policies, recovering
from link failures, migrating flows, etc. These tasks are

termed as network updates[1]. In a modern data center
network (DCN), network updates are becoming even
more frequent as some new scenarios of network
updates include: (1) virtual machines migration among
physical servers, (2) reconfiguration between a load
balancer and its backend servers, (3) examining the
functionality and compatibility of a new switch on-
boarding through moving traffic, (4) installation of a

 Abdul Basit Dogar is with Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China and also
with Department of Informatics and Systems, University of Management and Technology, Lahore 54660, Pakistan.
E-mail: abasitdogar@gmail.com.

 Sami Ullah is with Department of Computer Science, Shaheed Benazir Bhutto University, Sheringal, Upper Dir 18050, Pakistan.
E-mail: sami@sbbu.edu.pk.

 Yiran Zhang is with School of Computer Science, Beijing University of Posts and Telecommunications, Beijing 100876, China. E-mail:
yiranzhang@bupt.edu.cn.

 Hisham Alasmary is with Department of Computer Science, College of Computer Science, King Khalid University, Abha 61421, Saudi
Arabia. E-mail: alasmary@kku.edu.sa.

 Muhammad Waqas is with Department of Computer Engineering, Faculty of Information Technology, University of Bahrain, Sakheer
32038, Bahrain, and also with School of Engineering, Edith Cowan University, Perth WA 6027, Australia. E-mail:
engr.waqas2079@gmail.com.

 Sheng Chen is with School of Electronics and Computer Science, University of Southampton, Southampton, SO17 1BJ, UK. E-mail:
sqc@ecs.soton.ac.uk.

* To whom correspondence should be addressed.
 Manuscript received: 2023-09-15; revised: 2023-12-08; accepted: 2024-01-09

TSINGHUA SCIENCE AND TECHNOLOGY
ISSN 1007-0214 24/24 pp1615−1632
DOI: 10 .26599 /TST.2024 .9010010
Volume 29, Number 5, October 2024

© The author(s) 2024. The articles published in this open access journal are distributed under the terms of the

Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

new firmware version at the switch, and so on[2–4].
Network updates in software-defined DCN (SD-DCN)
may have various additional reasons and
circumstances, which inevitably lead to reroute the
traffic[5, 6].

Rapidly expanding companies have employed the
software-defined network (SDN), which provides
considerable advantages over traditional DCN in
managing data transfer. For example, Microsoft[7] and
Google[8] interconnect their data centers with SDN to
achieve high network performance. Google reports that
the link utilization can attain near about 100%, whereas
traditional networks can only achieve an average of
30% to 40%[8]. An SDN-enabled network often
requires frequent and fast network updates to manage
rapid flow rescheduling decisions and utilize a virtually
centralized controller to fulfill the different
requirements at the data plane. Specifically, the
procedures for updating the rules are performed over
non-synchronized machines, and implementing the
properties of consistency with rules dependencies
demands frequent and fast updates to avoid forwarding
anomalies and exacerbated network performance[9–13].

During the execution of successive network updates,
various processes are carried out in a non-blocking
manner, thereby ensuring the consistency properties is
crucial[14]. In SDN setups, frequent flow rescheduling,
if not carried out carefully, may cause major network
update issues referred to as network confusions[1], such
as link congestion, network policy violation,
forwarding blackhole, and forwarding looping.
These issues lead to inconsistencies in network
updates. As a result, problems such as out-of-order
packets and packet drops occur. In order to preserve
network consistency properties during updates, the
majority of previous research has focused on link
congestion[2, 7, 9, 11, 12, 15–18], forwarding blackhole and
forwarding looping[2, 7, 9, 11, 19–22], and policy
violations[10, 22].

In view of the aforementioned discussion on the
network update scenarios and consistency properties
maintenance, we notice the key observations as
follows.

(1) Almost every scenario involving network updates
requires rerouting of the flows or traffic, which may
lead to the issues of out-of-order packets and packet
drops.

(2) If the rescheduling of flows is not handled
carefully, it may cause inconsistent network updates,
resulting in transient congestion and rerouting.

Therefore, out-of-order packets and packet drops can
occur.

According to Ref. [23], observations show that
transmission control protocol (TCP) traffic accounts
for 99.91% of the traffic in data centers. However, the
rerouting violates TCP’s assumption and has a negative
repercussion on TCP traffic, resulting in severe
network performance degradation. When rerouting,
out-of-order packets and packet drop are serious issues.
The predicted difficulties of TCP can be classified as
follows when the network is updated:

(1) Certain disorders may result in the suppression of
window size and unusual retransmission. Many
researchers attempt to address the difficulties using
timer or DUPACK threshold estimate to solve the
problems.

(2) TCP invariably begins with a “slow start”. When
rerouting a flow, a network gives the new route with a
“quick start” that can result in out-of-order packets and
severe congestion, particularly if the updates are
frequent and inconsistent or if the flow scheduling is
imperfect.

Given these issues related to TCP, the performance
of TCP is inevitably poor whenever the network is
being updated. As pointed out previously, network
update occurs frequently. For example, Hedera[3]

updates the network every 5 s, and the authors of Ref.
[3] believe even sub-second and possibly sub- 100 ms
networking updates are achievable, as evidenced by the
work of Ref. [24], which updates the network using
1 ms, 5 ms, and 1000 ms. However, TCP performs
significantly worse when updates occur frequently.

There exist many TCP variants. However, to the
authors’ best knowledge, so far no one has studied how
TCP variants will react to the aforementioned problems
during the network updates or reroutes. To further
investigate the issues related to TCP variants, in this
paper, we first perform extensive experiments using
cutting-edge TCP variants including DCTCP[23],
CUBIC[25, 26], and BBR[27] to observe their behaviors
during network updates. Our results show that CUBIC,
BBR and DCTCP face the serious problems during
inconsistent and frequent network updates, thereby
confirming that the existing TCP variants are incapable
of dealing with frequent and inconsistent network
updates effectively.

1.1　Motivation

Motivated by this experimental investigation of TCP
variants, we propose a TCP modification based on

 1616 Tsinghua Science and Technology, October 2024, 29(5): 1615−1632

DCTCP, named network update friendly TCP
(NUFTCP), to overcome the aforementioned issues
when networks are updated in SD-DCN[26]. The key is
to understand how existing TCP designs, particularly
DCTCP, can be extended to handle network updates
more gracefully. The fundamental challenges of
smoothing network updates are handling packet
reordering and avoiding packet drops, which may
reduce the window size even though there is no actual
congestion. By limiting window size and delaying
duplicated acknowledgments (ACKs), NUFTCP can
perform better than DCTCP, especially when the
updates of networks are inconsistent and frequent. We
investigate how the proposed NUFTCP can cope with
frequent and inconsistent network updates in detail and
demonstrate through simulations that our model
accurately captures the essences of network updates.
Our NUFTCP remains resilient at frequent and
inconsistent network updates, and it outperforms
DCTCP. The main contributions of this paper are
summarized as follows.

(1) Extensive experiments are conducted and the
results are analyzed to better understand and pinpoint
“flaws” in the current TCP designs utilized in data
centers when networks are updated frequently and
inconsistently.

(2) We focus on the issues with out-of-order packets
and dropped packets caused by network updates, which
substantially impacts the real-time transmission of data.

(3) We propose a novel NUFTCP, a TCP extension
of DCTCP that gracefully handles network updates.

(4) Simulations are used to evaluate NUFTCP, and
the results obtained reveal that it achieves more
satisfactory performance in SD-DCN during
inconsistent and frequent network updates.

The remaining sections of the paper are organized as
follows. In Section 2, we present extensive experiments
and detailed analysis of existing TCP solutions with an
example to demonstrate why gracefully handling
network updates are crucial in SD-DCNs. Section 3 is
devoted to our proposed NUFTCP design. We use
simulation based evaluations to demonstrate that
NUFTCP works well in different scenarios in Section
4. In Section 5, the relevant literatures are reviewed,
and in Section 6, we conclude this paper.

2　Analysis of TCP Variants in Network
Updates

The performance of TCP is investigated in the context

of inconsistent and frequent network updates.
Specifically, we perform a series of tests to see how
different TCP variants perform. The experimental
results are analyzed and explained.

2.1　Experimental setup

The topology we employed in the experiments is
depicted in Fig. 1. The network comprises four Intel
Xeon X5650 servers with six cores running at
2.67 GHz that function as both senders (Server 1 and
Server 2) and receivers (Server 3 and Server 4). We
utilize the Linux kernel version 4.9. The senders and
receivers are connected to the two switches, H3C
S6800 (Switch 1) and H3C S6300 (Switch 2). Both the
switches implement OpenFlow 1.3 and have a 10 Gbps
link speed. They are connected by two ports. As a
result, there are two ways for a sender to reach a
receiver. A third port connects the SDN H3C VCF
Controller to the switch.

{ fn} → { fm}
→

{ fn}
→ ln
{ fm} lm

The actual path of each flow is controlled by the
controller. In the experiments, two groups of flows are
used, and they are : Server 1 Server 3 and :
Server 2 Server 4. Switch 1 receives these flows and
then forwards to Switch 2. The network is shown in its
starting condition in Fig. 1. The two groups of flows
are forwarded as follows in their normal state: :
Server 1 Server 3 through link (Switch 1 to
Switch 2); : Server 2 to Server 4 through link
(Switch 1 to Switch 2).

ln lm
{ fn}

lm { fm}
ln

ln
{ fn+ fm}

lm

During the network update, routes change frequently,
and the traffic on link shifts to link and vice versa.
Then, the network state is as follows: : Server 1 to
Server 3 via link (Switch 1 to Switch 2); :
Server 2 to Server 4 via link (Switch 1 to Switch 2).
Another scenario is when link failure happens, and
the network state is as follows: : Server 1 and
Server 2 to Server 3 and Server 4 via link (Switch 1

fn

fm

f n

fm

ln

lm
Switch 1 Switch 2

Server 1

Server 2

Server 3

Server 4

SDN
controller

Fig. 1 Network topology for network updates with TCP
variants.

 Abdul Basit Dogar et al.: Resilient TCP Variant Enabling Smooth Network Updates for Software-Defined Data... 1617

lmto Switch 2). The scenario of link failure is similar.

lm
ln

To investigate the behavior of TCP variants during
frequent network updates, we reroute the flow traffic
initiated by Server 1 towards link and the flow
traffic initiated by Server 2 towards link . These
rerouting occur each time the controller initiates a
network update. During the five-minute experiment,
the duration for each route change is at most one
second. The other system parameters for the
experiment are specified in Table 1. The experiment
settings emulate unpredictable and frequent network
update situations, which may result in link congestion,
dropped packets, and out-of-order packets. Due to
excessive retransmissions and reduced flow
throughput, there will be a significant reduction in
throughput.

2.2　Analysis for consistent network updates

We first investigate the performance of the TCP
variants in consistent network updates. The
requirement for consistency demands that the
transmission of flows is seamlessly toward new paths
of routing or rerouting, in order to enforce the
implementation rules with their interdependence in the
flow tables across multiple switches on a routing
path[28]. Therefore, the most important aspect of
maintaining consistency is the correct order of
updates[29], and the updates follow the right sequencing
are called consistent updates.

The impact of network update frequency on the
achievable network performance of the TCP variants is
investigated in Fig. 2. It can be seen that given the
network update frequencies of ten seconds, five
seconds, three seconds and one second, the
corresponding network performance degradations are
more than two percents, five percents, ten percents and
thirty percents, respectively. In practice, frequent DCN

updates often occur, initiated by operators, software or
in unusual cases of failure[2]. The controller and data
plane must quickly update in real-time because of the
recurring flow dynamics[30]. Since tens of thousands of
flows may occur in just a few milliseconds, high
efficiency in network updates is crucial[7].

Below we examine how the TCP variants behave
during consistent network updates, in terms of the total
number of packet drops, average throughput, variation
in congestion window size cwnd and average number
of retransmissions. In the experiment, by defining a
threshold, the SDN controller initiates a network
update with reference to rerouting every second. Using
the same topology with two scenarios of large buffer
size and small buffer size, we run the experiment.
(1)　Number of retransmissions
Figures 3 and 4 plot the cumulative distribution
functions (CDFs) of the numbers of average
retransmissions for the three TCP variants during
consistent network updates with large and small buffer
sizes, respectively. There are different reasons for
retransmissions, e.g., timeouts, damaged packet data,
out-of-order packets, etc. For the case of large buffer
and at the CDFs of 20%, 80%, and 100%, BBR
requires 100, 200, and 280 retransmissions, and
DCTCP requires 180, 400, and 600 retransmissions,
while CUBIC imposes 380, 580, and 800
retransmissions. For the case of small buffer and at the
CDFs of 20%, 80%, and 100%, BBR requires 130,
300, and 500 retransmissions, and DCTCP requires
200, 350, and 550 retransmissions, while CUBIC
imposes 180, 350, and 550 retransmissions. It is
evident that BBR in the both cases outperforms the
other two TCP variants. For BBR, larger buffer
improves the performance and reduces the number of

Table 1 Parameters of experimental system.
Parameter Value

Packet MTU size 1500 B
Queue type RED

Traffic flow pattern Pre-defined
Small buffer size 200 kB
Large buffer size 1.0 MB

Link capacity 10 Gbps
Measurement time 120 s − 300 s

ACK delay threshold 2 packets
ACK delay timeout 200 ms

Reroute time 1 s

Time
Fig. 2 Effect of network update frequency on performance
of TCP variants. Network updates are consistent.

 1618 Tsinghua Science and Technology, October 2024, 29(5): 1615−1632

retransmissions, also see Ref. [31]. BBR attempts to
find the optimal operating point during network
updates by estimating the bandwidth and round-trip
propagation delay to take care of bandwidth and round-
trip time. BBR also ignores packet loss as a congestion
signal[27, 32]. It can also be seen that with the small
buffer size, the retransmission performance of DCTCP
and CUBIC improve.
(2)　Throughput
Figures 5 and 6 depict the CDFs of the average
throughput for the three TCP variants during consistent
network updates with the large and small buffer sizes,
respectively. For the large buffer and at the CDFs of
20%, 80%, and 100%, CUBIC can reach around
3.5 Gbps, 4.8 Gbps, and 6 Gbps, and DCTCP achieves
around 2.8 Gbps, 4.7 Gbps, and 5 Gbps, while BBR
reaches around 3.3 Gbps, 4.5 Gbps, and 5 Gbps. It
appears that CUBIC has the edge in this case. For the

small buffer scenario, the three TCP variants have
similar performance. Specifically, at the CDFs of 20%
and 80%, the three schemes achieve around 3.3 Gbps
and 4.8 Gbps, while at the CDF of 100%, CUBIC and
BBR achieve about 5.2 Gbps, but DCTCP has a slight
edge reaching near 6 Gbps.
(3)　Variation in congestion window
Figures 7 and 8 characterize the variations in the
average congestion window size cwnd by the three
TCP variants with large and small buffer sizes,
respectively. For the large buffer and at the CDFs of
20%, 80%, and 100%, the cwnd sizes of BBR are 150
kB, 280 kB, and 350 kB, and DCTCP has the cwnd
sizes of 220 kB, 450 kB, and 650 kB, while CUBIC
has the cwnd sizes of 400 kB, 750 kB, and 820 kB. For
the small buffer and at the CDFs of 20%, 80%, and

Fig. 3 Numbers of average retransmissions during
consistent network updates for TCP variants with large
buffer size.

Fig. 4 Numbers of average retransmissions during
consistent network updates for TCP variants with small
buffer size.

Fig. 5 Average throughput during consistent network
updates for TCP variants with large buffer size.

Fig. 6 Average throughput during consistent network
updates for TCP variants with small buffer size.

 Abdul Basit Dogar et al.: Resilient TCP Variant Enabling Smooth Network Updates for Software-Defined Data... 1619

100%, BBR has the cwnd sizes of 140 kB, 280 kB, and
330 kB, and DCTCP has the cwnd sizes of 200 kB, 430
kB, and 550 kB, while CUBIC has the cwnd sizes of
230 kB, 450 kB, and 700 kB. It is seen that BBR has
the smallest cwnd and the buffer size has little impact
on its congestion window size. This is because BBR
controls the congestion window by setting cwnd to two
times the estimated bandwidth-delay product (BDP)[31].
DCTCP uses an effective multiplicative reduction
technique to adjust cwnd based on the level of network
congestion. Specifically, DCTCP uses the explicit
congestion notification (ECN) to estimate the predicted
proportion of the marked packets and appropriately
modifies its cwnd size[23]. CUBIC has the largest cwnd
because it has a tendency to fully fill a buffer.
(4)　Number of packet drops
DCTCP and CUBIC have no dropped packets in
consistent network updates with a large buffer.

Therefore, we perform an experiment with the small
buffer size, and the numbers of packet drops
experienced by the three TCP variants are shown in
Fig. 9. The results indicate that BBR has the worst
performance and DCTCP has the best performance.
More specifically, BBR drops 18 336 packets, CUBIC
drops 7865 packets, and DCTCP drops merely 3693
packets, respectively.

When packet loss is observed, BBR ignores it as a
congestion indication and does not perform back off.
Hence, it has no mechanism for congestion detection
and reaction to congestion[31]. Due to the fact that
CUBIC has an ACK-based congestion control
mechanism, it cannot deal with packet drop. DCTCP is
also unable to control packet loss if there are severe
and short-lived traffic bursts[23]. Therefore, traditional
TCP variants are unable to deal efficiently with the
packet drop problem in frequent consistent network
updates.

2.3　Analysis for inconsistent network updates

Inconsistencies arise when data plane state changes
violate policies or update rules due to varying delays in
coordination or no coordination across multiple
switches or between controller and switch[28]. Delayed
updates in the network may cause inconsistent network
updates. To evaluate TCP variants, we use switches
with an SDN controller to produce an update delay
inconsistency of 100 ms, with a large buffer size.
(1)　Number of retransmissions
As can be seen from Fig. 10, BBR exhibits the best
retransmission performance, while CUBIC has the
worst retransmission performance, which is similar to
Fig. 3. Specifically, at the CDFs of 20%, 80%, and

Average cwnd (kB)
Fig. 7 Variations in average congestion window size during
consistent network updates for TCP variants with large
buffer size.

Average cwnd (kB)
Fig. 8 Variations in average congestion window size during
consistent network updates for TCP variants with small
buffer size.

d
n

Fig. 9 Average numbers of packet drops during consistent
network updates for TCP variants with small buffer size.

 1620 Tsinghua Science and Technology, October 2024, 29(5): 1615−1632

100%, BBR requires 100, 200, and 320
retransmissions, and DCTCP requires 200, 450, and
650 retransmissions, while CUBIC imposes 250, 520,
and 800 retransmissions. The retransmission
performance of BBR and DCTCP are slightly worst
than the corresponding performance under consistent
network updates given in Fig. 3, but CUBIC has
slightly better performance.
(2)　Throughput
Figure 11 shows the throughput of the three TCP
variants during inconsistent network updates. All the
three TCP variants exhibit similar performance, which
is different from Fig. 5. In particular, for the CDF
above 40%, the throughput of all the three TCP
variants are very close.
(3)　Variation in congestion window
Figure 12 represents the average congestion window

size variations in inconsistent network updates with a
large buffer size, which are similar to Fig. 7. As
mentioned in Subsection 2.2, BBR controls the
congestion window by setting cwnd to two times the
BDP and it shows the least window size growth, while
CUBIC uses an ACK-based congestion control
mechanism to maximally grow the window size.
DCTCP is ECN-based and it squeezes the window size
based on ECN-marked packets.
(4)　Number of packet drops
According to Fig. 13, CUBIC shows the worst
performance with 623 packets dropped, and the BBR
shows the best performance with 11 packets dropped,
while DCTCP drops 187 packets. BBR with a large
buffer size has less packet loss and retransmissions
because the inflight cap limits the usage of the buffer at
around one BDP, which prevents packet loss most of

Fig. 10 Numbers of average retransmissions during
inconsistent network updates for TCP variants with large
buffer size.

Fig. 11 Average throughput during inconsistent network
updates for TCP variants with large buffer size.

Average cwnd (kB)
Fig. 12 Variations in average congestion window size
during inconsistent network updates for TCP variants with
large buffer size.

d
n

Fig. 13 Average numbers of packet drops during
inconsistent network updates for TCP variants with large
buffer size.

 Abdul Basit Dogar et al.: Resilient TCP Variant Enabling Smooth Network Updates for Software-Defined Data... 1621

the time[31]. It can easily be inferred that the situation
would worsen with a small buffer size during
inconsistent network updates. Recalling that DCTCP
and CUBIC have no dropped packets in consistent
network updates with a large buffer, it can be seen that
the problem of packet drops becomes much serious in
inconsistent network updates.

2.4　Conclusions of TCP variants analysis

α

In the scenario of consistent and frequent network
updates with large buffer size, DCTCP and CUBIC
have no dropped packets but they impose higher
average number of retransmissions and larger growth
in cwnd size than BBR. In the same scenario with
small buffer size, BBR has the largest number of
dropped packets and DCTCP has the smallest number
of dropped packets. This is because the sender in
DCTCP estimates the buffer size by maintaining an
estimate of fraction of packets that are experiencing
congestion. The estimated fraction of packets , can be
updated after one RTT (round-trip time) for every
window of data as follows.

α = (1−g)×α+g×F (1)
(1−g)×α
α g×F

α

g

α α

K

BDP

where the term represents the decay of
previous value of , while the term represents the
new information from the feedback or increase in
due to the current packet being marked as congested.
The gain factor controls the relative weight of these
two terms. Consequently, Eq. (1) is used to update the
value of based on the current value of and the
feedback received from ACKs and negative
acknowledgments (NAKs). Thus, upon reception of
every packet, the sender receives ECN-marks when the
queue length is higher than threshold value .
Moreover, the value of estimation close to 1 indicates
high congestion and close to 0 indicates low
congestion. While the performance of the three TCP
variants are closer in terms of retransmission. It can be
observed from the experimental results that BBR has
the smallest cwnd size. The reason is that BBR controls
the cwnd based on the bandwidth delay product, ,
as follows:

cwnd = 2×BDP (2)
BDPwhere can be calculated as

BDP = Br ×RTTmin (3)
Br

RTTmin

Here, is the smallest data rate (bottleneck data rate)
and is the minimal RTT. Conversely, the

cwndDCTCP calculates the as

cwnd = cwnd×
(
1− α

2

)
(4)

α

cwnd
cwnd

Hence, when is close to 0, indicating low
congestion, reducing the window slightly. As the
DCTCP senders reducing gently, therefore, its
average is larger than BBR.

The situation is similar in terms of retransmission
and cwnd size, when updating the network
inconsistently with large buffer size, but all the three
TCP variants suffer from the problem of dropped
packets. This indicates that the problem of out-of-order
packets is more serious when the network is updated
inconsistently and frequently. It may also be
reasonably inferred from the results that the
performance of TCP variants will deteriorate in the
case of small buffer size.

3　NUFTCP design

The previous simulation experiments have revealed
that the state-of-the-art TCP variants are ineffective,
particularly when the network is updated inconsistently
and frequently. This motivates us to design a better
solution that is capable of coping with network updates
smoothly. Specifically, we develop the NUFTCP
design, which aims to mitigate the problem of dropped
packets during network updation by restricting the
window size, managing the queue and handling out-of-
order packets in SD-DCN. More specifically, two
modifications are introduced. The first one restricts the
size of the transmit side window to mitigate dropped
packets in inconsistent network environments. This is
because the transmission window on the sending side
decides the amount of data that can be sent before the
receiver sends an acknowledgment, ensuring that it
does not exceed the receiver’s buffer. The second one
diminishes out-of-order packets by delaying duplicated
ACKs on the recipient side. The main symbols utilized
in the design are listed in Table 2.

3.1　Limit the window size and queue management

(1)　Why NUFTCP cares about packet drop not
congestion avoidance

NUFTCP does not focus on ordinary congestion
avoidance; instead, it avoids severe congestion, which
leads to packet drop. A TCP protocol keeps adding
packets to the queue until a packet is dropped. Then
TCP extends queues to accommodate transient traffic
bursts, and hence the average queue length is quite

 1622 Tsinghua Science and Technology, October 2024, 29(5): 1615−1632

long. Therefore, the rate of dropped packets is
incredibly low until a queue is full, thereafter it is
possible that all the incoming packets from all flows
are lost. Consequently, packet drop slows down all the
TCP flows. In the worst-case scenario, a packet drop
can result in significant data corruption or possibly the
loss of a link completely. For this reason, we are more
apprehensive about packet drops. NUFTCP utilizes the
inherent negative feedback to prevent the problem of
packet drops triggered by severe congestion.
(2)　Relationship among data size, flow

throughput, and RTT
Since TCP is not aware of the congestion of the
underlying network, it relies on a time limit, which
shows the duration a sender waits before retransmitting
a lost segment to estimate whether the forwarded
segment is dropped or not. Specifically, if an
acknowledgment is not received by the sender side
within the defined time limit, it is considered a segment
drop. In the context of standard TCP, the time limit is
referred to as the retransmission timeout (RTO). The
RTO is not a fixed value, but rather it is dynamically
adjusted based on the estimated RTT. The RTO is
maximum amount of time that TCP will wait for an
ACK for a segment before retransmitting it. The RTO
is typically set to a few times the estimated RTT, which
is the time it takes for a segment to travel from the
sender to the receiver and back. It is helpful to account
for factors such as network delays and processing

t r
s t s = r× t

times. Further, if TCP retransmits a segment too many
times without receiving an ACK, it assumes that the
connection is congested and will slow down its sending
rate. This is known as congestion control. The reason
TCP relies on time limits or timeouts to estimate
congestion is because it does not have direct access to
network information such as buffer occupancy and
queue lengths. Therefore, the RTO is one of the
common ways to determine the packet drop.
Accordingly, TCP keeps track of RTT for each
segment. A TCP connection receives an estimated
maximum data size that the receiver side can
accommodate. Let RTT be and flow throughput be .
Then data size transmitted in is given by . In
other words, the flow throughput is proportional to the
data size and inversely proportional to the RTT. When
a link begins to exhibit congestion, the queue length for
the link is increased, which induces the rise in the
queuing latency of the packets going through the link.
This implies that the RTT of the corresponding flow
will be longer and the throughput will be lower in order
to alleviate the congestion. Therefore, when we
transmit the data size in one RTT, the throughput is
controlled by negative feedback. There will be no
packet drop as long as the buffer size of the queue is
sufficiently large.
(3)　Queue management

s1 = r1× t1 s2 = r2× t2 s1 r1 t1
fn s2 r2 t2

fm r1 = r2 = c t1 = t2 = t̂

We will use the example of Fig. 14 to illustrate queue
management. Prior to the update, assume that we have

 and , where , , and are
related to flow , while , , and are related to
flow . In this case, and .

fn
fm

fn
fm

l
τ = l/c

s1 = r′1× t′1
s2 = r′2× t′2 t′1 = t′2 = t̂+τ r′1+ r′2 = c

l =
∑
i

si− c× t̂
∑
i

si ⩽ 2× c

l ⩽ c× t̂
lmax < l+

∑
i

si

l

Assume that when the network first commences
updating, it offers an inconsistent network state.
Subsequently, the network state of is updated and its
route is altered, while the network state of remains
unchanged. Specifically, flow is routed to the
intermediate node that is currently using. Both the
flows now utilize the same link, and the queue is
overburdened, resulting in packet loss. For the sake of
simplicity, suppose that the queue length (in bytes) in
the stable state is . Dividing the queue length by the
link capacity yields the queuing latency . After
the inconsistent network update, and

 with and . Hence, we
have . Because , we have

. Thus, the maximal queue length should be
 (if the queue length in the previous RTT

is more than , the queue length will not be increased).

Table 2 Main notations.
Symbol Meaning
{ fi} Set of flows
{si} Set of data size
{ti} Set of round-trip times (RTTs)
{ri} Set of flows’ throughput

t̂ RTT without queuing latency
c Link capacity
l Queue length

lmax Maximum queue length
τ Queue latency
w Window size

s Data size acknowledged
α Estimated marked packets
F Fraction of marked packets

BDP Bandwidth delay product
Br Smallest data rate

RTTmin Minimum RTT
cwnd Congestion window

 Abdul Basit Dogar et al.: Resilient TCP Variant Enabling Smooth Network Updates for Software-Defined Data... 1623

Therefore, we can draw the conclusion:

lmax < 3× c× t̂ (5)
c = 10 t̂ = 250 l < 937.5For example, if Gbps and μs,

kB. It implies that if the buffer size is 1 MB, no packets
should drop. Equation (5) ensures that packets are not
dropped and network stability is maintained throughout
network updates. The conclusion can be extended to
more general cases. Algorithm 1 describes the queue
management process of NUFTCP.
(4)　How NUFTCP limits window size

w

w
w ≈ s

Benefiting from negative feedback, NUFTCP aims to
limit the window size when a congestion occurs. As
aforementioned, congestion avoidance protocol grows
the window size constantly and linearly, which may
cause large number of packet drops in severe
congestion situation. NUFTCP limits the maximum
window size to avoid this issue. When there is a
congestion, the window size is nearly equal to one
TCP flow, i.e., . If the flow does not face

w s

s t̂
1.5× s

t̂

congestion, may be significantly greater than . TCP
uses an exponentially weighted moving average
(EWMA) to keep track of the fluctuations of RTT over
time, and it places approximately 20 percent of the
weight on the most recent RTT measurement.
Therefore, NUFTCP keeps track of the average actual
data size acknowledged in the past using EWMA.
The upper window size limit is then adjusted to
in the following , where the factor 1.5 is employed
because the window size must be able to grow gently.

Since NUFTCP is based on DCTCP, packets will not
be discarded due to random early detection (RED),
which is founded on statistical probabilities and is
more balanced than the tail drop. However, DCTCP
will decrease the slow start threshold when the transmit
side receives packets with an explicit congestion
expected (ECE) flag, which is part of an explicit
congestion notification (ECN) protocol. If NUFTCP
does not receive a packet with the ECE flag in 10
consecutive RTTs, it will reset the slow start threshold.
This is because to prevent the excessive window size
limit, avoiding congestion, and proactively addressing
potential packet loss in the network. Algorithm 2
presents the congestion control and window size
adjustment of NUFTCP.

3.2　Delay duplicated ACKs

T

T

NUFTCP can rectify the out-of-order issue by delaying
the delivery of duplicate ACKs during the network
update. The duplicated ACK will only be returned if it
is postponed for period and the accompanying data
packet has not yet been delivered. A duplicated ACK is
rejected in all the other cases. Here, is a
preconfigured time threshold that equals to the
maximal RTT difference on different paths, typically
smaller than 1 ms or 2 ms. Since the window size limit
avoids the packet drop, the impact of delaying the fast
recovery is tolerable.

To be able to correctly delay duplicate ACKs,
NUFTCP needs to first identify network update. The
cooperation of switches, like ECN, is necessary for
NUFTCP. A version number is assigned to each flow
table entry in the switches. Each time the controller
recalculates a flow table entry, the version number will
be raised by one. Each packet that matches the entry
will be marked with the current version number of the
entry (if the version number is greater than the one
carried in the packet). The first 4 bits in the TTL field
are used for version number tagging because it is

SDN
controller

Sender 1 Sender 2
Receiver 1

Receiver 2

fm
fm

fn
fn

Fig. 14 Topology of a software defined data center
network.

Algorithm 1　NUFTCP queue management algorithm
l c t̂

S i fi ti
fi τ

 1: Input: (queue length in bytes), (link capacity), (time
　 ween RTTs), (Data size for flow), (Transmission
　 time for flow), (Queuing latency)

lmax 2: Output: (maximum queue length)
lmax← 0 3: ▷ Initializing variable
l←∑

i si − c× t̂ 4: ▷ Update queue length
lmax← 3× c×τ 5: ▷ Calculating maximum queue length

lmax > l 6: if then
l← lmax 7: 　Set ▷Updating queue length

lmax 8: 　Drop packets until queue length is reduced to
 9: end if

si← si −
(
τ× si

lmax

)
10: ▷ Calculating data size for each flow (si):

si11: Transmit data for each flow ()
12: Repeat steps 5−11 until queue is empty

 1624 Tsinghua Science and Technology, October 2024, 29(5): 1615−1632

generally futile for intra-data center traffic whose
maximal hops are smaller than 15. By tracking TTL
modifications, NUFTCP has the capacity to explicitly
identify network updates and defer repeated ACKs.
Table 3 presents the performance comparison of
BBR[27], CUBIC[25], DCTCP[23], and the proposed
NUFTCP. Algorithm 3 describes the duplicate ACK
delay mechanism of NUFTCP.

4　Evaluation

The currently available network updating
methods[2, 3, 7, 9–11, 20, 29] take into account the violations

of consistency properties and network update
frequency. Hence the comparison between NUFTCP
and these methods is unsuitable, as NUFTCP is
concerned with how dropped packets and out-of-order
packets issues of network updates influence TCP
performance. For this reason, we compare NUFTCP
with the state-of-the-art TCP variant DCTCP, which
has been shown to outperform other TCP variants as
demonstrated in the experiments of Section 2.

4.1　Simulation network topology and parameters

t̂ ≈ 500 μs

We assess NUFTCP using NS3 based simulations
under two different conditions of large and small buffer
sizes. We use SD-DCN topology to compare NUFTCP
and DCTCP. As illustrated in Fig. 14, we utilize an
advanced conventional 2-tier Clos network topology in
DCN attached through an SDN controller. The network
makes use of equal-cost multipath routing (ECMP).
Each link has a 10 Gbps capacity with RTT
without queuing latency. The large and small buffers
have 1 MB and 0.5 MB in size, respectively. The
controller transmits the updated information towards
the edge switches every 25 ms, assuming one of the
aggregation layer switches is down (or upgrading).
Flows passing precisely via the down (or upgrading)
switches must modify their transmitting pathways
backward and forward in this format. NUFTCP
strategy utilizes four bits of the packet header’s TTL
field to indicate the version number, and hence in our
simulations, the utmost multitude of distinct versions is
sixteen.

fn
fm

Our network architecture states that flows are
transmitted from Sender 1 to Receiver 1 and flows
are transmitted from Sender 2 to Receiver 2
simultaneously. Because there is inconsistency across
switches during the update, we simulate update delay
of 0 − 1 ms in the switches. The variation in update
time is produced at random, similar to Ref. [24].

4.2　Results and discussion

(1)　Packet drops and out-of-order packets
A randomized delay is used to preserve inconsistency
throughout the network updates. In the scenario of
large buffer size, we execute several simulations and
find that the numbers of packet drops caused by
DCTCP are 1188, 1294, 1159, and so on. The average
number of dropped packets is 1213, which is displayed
in Fig. 15. By contrast, NUFTCP never drops a packet
as can be seen from Fig. 15. As shown in Fig. 16, the

Algorithm 2　Congestion control and window size adjustment
in NUFTCP

s
ECE_flag

 1: Variables: (Average actual data size acknowledged in the
　 past using EWMA), (Explicit congestion
　 expected flag)

w 2: Output: (Window size)
w← s ▷ w 3: Initialize congestion window
SST← s ▷ 4: Initialize slow start threshold
ECE_flag_counter = 0 ▷ 5: Initialize ECE flag counter

 6: while true do
 7: if 　congestion detected then

w← s ▷ 8: 　　 Update window size
 9: 　end if
10: 　if congestion is not detected then

w < SST11: 　　if then
w←min(w+1,SST) ▷12: 　　　 Gradually increase window

size
13: 　　else

w←min(w+1.5s,wmax) ▷ w
1.5

14: 　　　 Update using weight =
　　　　
15: 　　end if
16: 　end if

ECE_flag17: 　if an is received then
SST← s ▷18: 　　 Update slow start threshold
ECE_flag_counter← 0 ▷ ECE_flag_counter19: 　　 Reset

20: 　else
ECE_flag_counter++ ▷ ECE_flag_conter21: 　　 Increment

22: 　end if
ECE_flag_counter == 1023:　 if then
SST← s ▷24: 　　 Reset slow start threshold
ECE_flag_counter← 0 ▷ ECE_flag_counter25: 　　 Reset

26: 　end if
w←min(w,SST) ▷27: 　 Update window size

w28: 　Transmit data using window size
29: end while
30: Repeat steps 6−29 until congestion is resolved or slow start
threshold is reached

 Abdul Basit Dogar et al.: Resilient TCP Variant Enabling Smooth Network Updates for Software-Defined Data... 1625

Table 3 Performance comparison of different TCP variants.
Feature BBR[27] CUBIC[25] DCTCP[23] Proposed NUFTCP

Objective High bandwidth
utilization

Fairness and high
throughput

Data center congestion
control

Addresses packet drop problem
during frequent consistent

network updates in SD-DCN

Congestion control type Delay-based Window-based ECN-based ECN-based on inherent
negative feedback

Congestion signal RTT Packet loss ECN markings Inherent negative feedback

Response to congestion Proactive, aims to
prevent congestion

Reactive, reduces window
size upon congestion Proactive, utilizes ECN Proactive, utilizes inherent

negative feedback
Awareness of frequent

network updates Low Low Moderate High

Throughput behavior Aims for high
throughput Tends to oscillate Balances throughput

and low latency High throughput

Throughput optimization Yes Yes Yes Yes

Buffer utilization Efficient use of buffers May lead to buffer bloat Designed to avoid
buffer bloat Designed to avoid buffer bloat

Buffer bloat mitigation Yes No Yes Yes
Scalability Yes Yes Yes Yes
Use case Broadband connections General-purpose Data center environments SD-DCN environments

Algorithm 3　NUFTCP duplicate ACK delay mechanism
Ack T

packet_received
current_version

packet_version
t

 1: Input: (Acknowledgment packet), (Preconfigured
　 time threshold for delaying duplicate ACKs),
　 (Flag indicating whether the corresponding
　 data packet has been received), (Current
　 version number of the flow table entry),
　 (Version number carried in the ACK packet), (time since
　 ACK reception)

processed_ACK 2: Output: (Boolean flag indicating whether
　 the ACK was processed or not)

processed_ACK == False 3: while do

current_version > packet_version 4: 　if then
 5: 　　ACK indicates a network update
 6: 　end if
 7: 　if If an ACK is duplicate then

t > T packet_received 8: 　　if If and == False then

processed_ACK← True 9: 　　　

packet_received← True10: 　　　

11: 　　else

processed_ACK← False ▷12: 　　　 Discard the ACK
13: 　　end if
14: 　end if
15: 　if ACK is not a duplicate then

processed_ACK← True16: 　　

17: 　end if
18: end while

processed_ACK19: Return flag

d
n

Fig. 15 Comparison of packet drops for DCTCP and
NUFTCP during network updates with large and small
buffer sizes.

p

Fig. 16 Comparison of out-of-order packets for DCTCP
and NUFTCP during network updates with large and small
buffer sizes.

 1626 Tsinghua Science and Technology, October 2024, 29(5): 1615−1632

typical number of out-of-order packets for DCTCP is
3930, which is very high. NUFTCP on the other hand
performs much better than DCTCP with no out-of-
order packets.

In the scenario of small buffer size, after several
simulations, the numbers of packet drops caused by
DCTCP are found to be 1381, 1366, 1181, and etc. The
average number of packet drops by DCTCP is 1309 as
depicted in Fig. 15. Because a small buffer may lead to
early packet drops, DCTCP exhibits a higher number
of packet drops than in the large buffer scenario. Again
NUFTCP does not suffer from packet loss. In Fig. 16,
DCTCP exhibits a high number of out-of-order packets
(3451) but is less than in the large buffer case. It is rare
for NUFTCP to suffer from the problem of out-of-
order packets and in this case, it only has 96 out-of-
order packets.
(2)　Throughput
For the case of large buffer size, Figs. 17 and 18 depict
the throughput achieved by DCTCP and NUFTCP,
respectively, during the network update. Observe from
Fig. 17 that for DCTCP, because of packet drops in the
beginning, both its flows’ throughput are reduced to
almost zero. Then after some time, one of its flow
throughput is reduced to almost zero owning to packet
drops occurring again. Finally, there is a prolonged
converging time of its two flows’ throughput. As can
be seen from Fig. 18, NUFTCP by contrast offers more
consistent throughput since packets are not dropped
and out-of-order problem is dealt with effectively.

In the scenario of small buffer size, the throughput
achieved by DCTCP and NUFTCP during the network
update are depicted in Figs. 19 and 20, respectively. It
can be seen from Fig. 19 that DCTCP performs even

worst than in the large buffer case, and there exists a
long period of almost zero throughput for its two flows.
NUFTCP on the other hand exhibits more consistent
and stable throughput throughout the whole update

Fig. 17 DCTCP throughput during network updates with
large buffer size.

Fig. 18 NUFTCP throughput during network updates with
large buffer size.

Fig. 19 DCTCP throughput during network updates with
small buffer size.

Fig. 20 NUFTCP throughput during network updates with
small buffer size.

 Abdul Basit Dogar et al.: Resilient TCP Variant Enabling Smooth Network Updates for Software-Defined Data... 1627

period, just as in the case of large buffer. This clearly
demonstrates that NUFTCP can effectively maintain a
stable network throughput during network update.
(3)　Discussion
The aforementioned experimental results again confirm
that the state-of-the-art TCP variants, such as DCTCP
(Data Center TCP), suffer from the serious problem of
packet drops and out-of-order packets during frequent
and inconsistent network updates, which significant
degrades their achievable throughput, particularly
during the early period of update. The simulation
results also validate that our proposed NUFTCP
achieves its design goals. Specifically, NUFTCP can
effectively deal with the issues of packet drops and out-
of-order packets, and consequently it achieves better
and more consistent throughput during inconsistent and
frequent network updates. Based on this evaluation, we
may draw the conclusion that our NUFTCP design
offers an effective means for handling inconsistent and
frequent network updates in SD-DCN. However,
NUFTCP is unable to completely mitigate the issue of
TCP Incast congestion. Incast congestion refers to a
decrease in throughput when multiple senders
simultaneously communicate with a single receiver,
thereby exceeding the receiver’s buffer capacity.
Hence, our future work will seek to address this issue.

5　Related Work

5.1　TCP designs

All TCP designs offer some kinds of congestion
algorithms to avoid and resolve congestion problems
and to attempt to mitigating the issues of out-of-order
packets and packet drops. The relevant contemporary
TCP implementations are reviewed in this subsection.

Several delay based-TCP variants[33–35], have been
proposed, which rely on packet delay measurements as
a signal of congestion[36]. These schemes aim to reduce
queue lengths and congestion at routers. However,
queuing delays in data centers, are comparable to
sources of noise in the system, thus, unable to provide
a reliable congestion signal. Moreover, delay signals
are not accurate enough to compute appropriate
congestion window to reduce congestion at routers[37].
TCP Reno[38, 39] presents a fast recovery mechanism
using available bandwidth designated by the arrival of
DUPACK but it is intolerant to connections with long
delays. TCP NewReno[40, 41] is a loss-based congestion
algorithm that is an extension of TCP Reno with a

modified fast recovery algorithm. CUBIC[25]

introduces a cubic function of elapsed time for window
growth when the loss occurs, and hence it improves the
friendliness of binary increase congestion control
(BIC). DCTCP[23] alters ECN, so that switches mark
packets in accordance with the current queue length
and senders modify the size of their send window
according to the estimated fraction of marked packets.
Linux TCP now has a novel congestion control
technique called bottleneck bandwidth and RTT
(BBR)[27]. BBR finds a better operating point that takes
care of bandwidth and RTT by estimating the round-
trip propagation delay and bandwidth, and it sets cwnd
to a small multiple of the estimated BDP. TCP-PR[42]

and TCP-RR[43] were developed for persistent out-of-
order packets but they are not suitable for the DCN
update scenario. TCP-RR relies on DSACK, which is
not supported by all servers, and TCP-PR needs to
maintain tables in memory which imposes high
computation costs.

The aforementioned TCP variants are ineffective to
deal with the issues of out-of-order packets and packet
drops occurred in inconsistent and frequent updates of
SD-DCNs. By contrast, our proposed NUFTCP design
is capable of dealing with the problems of out-of-order
packets and packet drops effectively and, consequently,
ameliorates TCP performance when networks are
updated inconsistently and frequently.

5.2　Network updates

The literature of network updates provides state-of-the-
art solutions for mitigating the problems of forwarding
loops, forwarding blackhole, link congestion, and
policy violation, which cause inconsistent network
updates. Since inconsistent network updates may lead
to the issues of out-of-order packets and packet drops,
these solutions aim to maintain consistency.

A single switch can handle the difficulties of
forwarding loop and forwarding blackhole, as
mentioned in a method by Reitblatt et al.[20] To
distinguish the old and new packets, they are stamped
with version numbers to implement old and new rules.
zUpdate[2] provides a solution to the problems of
congestion, forwarding loop, and forwarding blackhole
in the data center, and it uses ECMP to split the traffic
equally using multiple redundant paths. Hedera[3]

handles frequent network updates in data centers by
allocating the paths for large flows based on the
estimated demand using an annealing based algorithm.

 1628 Tsinghua Science and Technology, October 2024, 29(5): 1615−1632

SWAN[7] achieves high network capacity utilization of
inter-DC links in SDN in the presence of traffic volume
variations, and it leaves a small amount of scratch
capacity on the link that can be used for updating.
TRUS[12] provided a timely route updating technique
that reduces network congestion while meeting the
bandwidth needs of delay-sensitive traffic. Dionysus[11]

supports fast and consistent network updates in SDN
using dynamic scheduling during updates at switches
individually. It can be applied to both SDN WAN and
DCN environments. FLIP[10] proposes an algorithm
that ensures forwarding correctness and forwarding
policies using a fast and lightweight algorithm.
Cupid[29] emphasizes on consistent flow tables and data
plane updating to maintain the throughput of flows, and
it outperforms Dionysus. ez-Segway[9] presents a
decentralized consistent update mechanism, which
completes network updates quickly by utilizing
sophisticated coordinating actions in the switches.

The authors of Ref. [21] proposed suffix causal
consistency (SCC) motivated by a consistency model
for shared-memory systems for rule updates. The
method ensures consistency properties to avoid
blackhole loops, bounded loops etc. The approach of
Ref. [22] is based on on temporal logic and model
checking for data flow correctness verification and
concurrent updates using Petri nets to make sure the
absence of loops. The authors in Ref. [15] devised
algorithms to mitigate transient congestion, reduce
update time, and minimize control overhead. Their
algorithms optimize the intermediate stages after
finding the optimal route at each middle stage to
minimize the temporary congestion efficiently. The
authors of Ref. [16] proposed customizable update
planner (CUP) which adopts the existing designs to
achieve the congestion avoidance and optimize the
update speed. CUP introduces generic linear
programming models to schedule network updates to
user-specified needs, and it offers a solution to the
transient congestion problem. Hermes[17] provided a
utility-aware network update system that maximizes
the total utility by a rate-limiting scheme before the
update. It ensures congestion-free property during
network updates. The authors in Refs. [18, 19] used
resource dependency graph to formulate network
update problems, approximation algorithms to utilize
bandwidth resources, spare-path-assisted algorithms for
consistent flow migration, and rate-limiting-flow to
resolve deadlocks. Their method ensures fast network

updates with consistency properties. In Ref. [44], the
authors emphasized that the real-time communication
should remain invariant by diverting the traffic to
uninvolved devices during network updates. The
authors of Ref. [14] introduced a framework based on
abstract algebra that enables controllers to combine the
fast composition of numerous network updates with
persistent and non-blocking modifications in the
network by efficiently modeling the data plane
operations.

Most of the aforementioned network updating
methods focus on avoiding the violations of
consistency properties in network updates. By contrast,
our NUFTCP design is developed to alleviate the
impact of inconsistent and frequent network updates on
TCP performance so that network updates can happen
smoothly.

6　Conclusion

The contribution of this paper has been twofold.
Firstly, we have conducted comprehensive experiments
to evaluate the performance of the state-of-the-art TCP
variants in the presence of frequent and inconsistent
network updates in SD-DCNs. Our findings have
confirmed that current TCP variants are incapable of
handling frequent and inconsistent network updates,
and they suffer from the problems of out-of-order
packets and packet drops, which leads to significant
performance degradation in terms of network
throughput. Secondly, we have proposed a network
update friendly TCP modification, called NUFTCP,
which is an extension to DCTCP. Our NUFTCP design
can tackle the issues of packet drops and out-of-order
packets throughout frequent and inconsistent network
updates in SD-DCNs, which have not been resolved by
the previous works. Our evaluation results have
validated that NUFTCP performs substantially better
than the state-of-the-art DCTCP, when the network is
updated frequently and inconsistently. Our NUFTCP
therefore offers a useful design to smoothly handle
network updates in SD-DCNs.

Acknowledgment

This work was supportted by the King Khalid University
through the Large Group Project (No. RGP.2/312/44).

References

 D. Li, S. Wang, K. Zhu, and S. Xia, A survey of network
update in SDN, Front. Comput. Sci. Sel. Publ. Chin. Univ.,

[1]

 Abdul Basit Dogar et al.: Resilient TCP Variant Enabling Smooth Network Updates for Software-Defined Data... 1629

vol. 11, no. 1, pp. 4–12, 2017.
 H. H. Liu, X. Wu, M. Zhang, L. Yuan, R. Wattenhofer,
and D. Maltz, Zupdate: Updating data center networks
with zero loss, in Proc. SIGCOMM 2013, Hong Kong,
China, 2013, pp. 411–422.

[2]

 M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang,
and A. Vahdat, Hedera: Dynamic flow scheduling for data
center networks, in Proc. NSDI 2010, San Jose, CA, USA,
2010, pp. 1–15.

[3]

 T. Benson, A. Anand, A. Akella, and M. Zhang, MicroTE:
Fine grained traffic engineering for data centers, in Proc.
CoNEXT 2011, Tokyo, Japan, 2011, pp. 1–12.

[4]

 K. T. Foerster, S. Schmid, and S. Vissicchio, Survey of
consistent software-defined network updates, IEEE
Commun. Surv. Tutorials, vol. 21, no. 2, pp. 1435–1461,
2019.

[5]

 U. Haider, M. Waqas, M. Hanif, H. Alasmary, and S. M.
Qaisar, Network load prediction and anomaly detection
using ensemble learning in 5G cellular networks, Comput.
Commun., vol. 197, pp. 141–150, 2023.

[6]

 C. Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill,
M. Nanduri, and R. Wattenhofer, Achieving high
utilization with software-driven WAN, SIGCOMM
Comput. Commun. Rev., vol. 43, no. 4, pp. 15–26, 2013.

[7]

 S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A.
Singh, S. Venkata, J. Wanderer, J. Zhou, M. Zhu, et al.,
SIGCOMM Comput. Commun. Rev., vol. 43, no. 4, pp.
3–14, 2013.

[8]

 T. D. Nguyen, M. Chiesa, and M. Canini, Decentralized
consistent updates in SDN, in Proc. SOSR 2017, Santa
Clara, CA, USA, 2017, pp. 21–33.

[9]

 S. Vissicchio and L. Cittadini, FLIP the (flow) table: Fast
lightweight policy-preserving SDN updates, in Proc.
INFOCOM 2016, San Francisco, CA, USA, 2016, pp. 1–9.

[10]

 X. Jin, H. H. Liu, R. Gandhi, S. Kandula, R. Mahajan, M.
Zhang, J. Rexford, and R. Wattenhofer, Dynamic
scheduling of network updates, SIGCOMM Comput.
Commun. Rev., vol. 44, no. 4, pp. 539–550, 2015.

[11]

 J. Zhu, J. Hua, M. Liu, Y. Li, and K. Cao, TRUS: Towards
the real-time route update scheduling in SDN for data
centers, IEEE Access, vol. 8, pp. 68682–68694, 2020.

[12]

 J. Zhang, B. Gong, M. Waqas, S. Tu, and Z. Han, A
hybrid many-objective optimization algorithm for task
offloading and resource allocation in multi-server mobile
edge computing networks, IEEE Transactions on Services
Computing, vol. 16, no. 5, pp. 3101–3114, 2023.

[13]

 G. Li, Y. R. Yang, F. Le, Y. S. Lim, and J. Wang, Update
algebra: Toward continuous, non-blocking composition of
network updates in SDN, in Proc. INFOCOM 2019, Paris,
France, 2019, pp. 1081–1089.

[14]

 J. Zheng, H. Xu, G. Chen, H. Dai, and J. Wu, Congestion-
minimizing network update in data centers, IEEE Trans.
Serv. Comput., vol. 12, no. 5, pp. 800–812, 2019.

[15]

 S. Luo, H. Yu, L. Luo, and L. Li, Customizable network
update planning in SDN, J. Netw. Comput. Appl., vol. 141,
pp. 104–115, 2019.

[16]

 J. Q. Zheng, Q. F. Ma, C. Tian, B. Li, H. P. Dai, H. Xu, G.
H. Chen, and Q. Ni, Hermes: Utility-aware network
update in software-defined WAN, in Proc. ICNP 2018,

[17]

Cambridge, UK, 2018, pp. 231–240.
 Y. Chen, H. Zheng, and J. Wu, Consistency, feasibility,
and optimality of network update in SDNs, IEEE Trans.
Netw. Sci. Eng., vol. 6, no. 4, pp. 824–835, 2019.

[18]

 M. Waqas, M. Zeng, Y. Li, D. Jin, and Z. Han, Mobility
assisted content transmission for device-to-device
communication underlaying cellular networks, IEEE
Trans. Veh. Technol., vol. 67, no. 7, pp. 6410–6423, 2018.

[19]

 M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, and D.
Walker, Abstractions for network update, SIGCOMM
Comput. Commun. Rev., vol. 42, no. 4, pp. 323–334, 2012.

[20]

 S. Liu, T. A. Benson, and M. K. Reiter, Efficient and safe
network updates with suffix causal consistency, in Proc.
Fourteenth EuroSys Conf. 2019, Dresden, Germany, 2019,
p. 1–15.

[21]

 B. Finkbeiner, M. Gieseking, J. Hecking-Harbusch, and E.
R. Olderog, Model checking data flows in concurrent
network updates. International Symposium on Automated
Technology for Verification and Analysis, Cham,
Switzerland: Springer, 2019, pp. 515–533.

[22]

 M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P.
Patel, B. Prabhakar, S. Sengupta, and M. Sridharan, Data
center TCP (DCTCP), SIGCOMM Comput. Commun.
Rev., vol. 40, no. 4, pp. 63–74, 2010.

[23]

 A. Basta, A. Blenk, S. Dudycz, A. Ludwig, and S. Schmid,
Efficient loop-free rerouting of multiple SDN flows,
IEEE/ACM Trans. Netw., vol. 26, no. 2, pp. 948–961,
2018.

[24]

 S. Ha, I. Rhee, and L. Xu, CUBIC, SIGOPS Oper. Syst.
Rev., vol. 42, no. 5, pp. 64–74, 2008.

[25]

 A. B. Dogar and Y. Zhang, NUFTCP: Towards smooth
network updates in software-defined datacenter networks,
in Proc. 2021 17th Int. Conf. Network and Service
Management (CNSM), Izmir, Turkey, 2021, pp. 365–369.

[26]

 N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, and
V. Jacobson, BBR, Commun. ACM, vol. 60, no. 2, pp.
58–66, 2017.

[27]

 R. Mahajan and R. Wattenhofer, On consistent updates in
software defined networks, in Proc. Twelfth ACM
Workshop on Hot Topics in Networks, College Park, MD,
USA, 2013, pp. 1–7.

[28]

 W. Wang, W. He, J. Su, and Y. Chen, Cupid: Congestion-
free consistent data plane update in software defined
networks, in Proc. IEEE INFOCOM 2016 - The 35th
Annual IEEE Int. Conf. Computer Communications, San
Francisco, CA, USA. IEEE, 2016, pp. 1–9.

[29]

 H. Xu, Z. Yu, X. Y. Li, C. Qian, L. Huang, and T. Jung,
Real-time update with joint optimization of route selection
and update scheduling for SDNs, in Proc. IEEE 24th Int.
Conf. Network Protocols (ICNP), Singapore, 2016, pp.
1–10.

[30]

 M. Hock, R. Bless, and M. Zitterbart, Experimental
evaluation of BBR congestion control, in Proc. IEEE 25th
Int. Conf. Network Protocols (ICNP), Toronto, Canada,
2017, pp. 1–10.

[31]

 N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, and
V. Jacobson, BBR: congestion-based congestion control,
Queue, vol. 14, no. 5, pp. 20–53, 2016.

[32]

 Verma, L. P. Sharma, V. K. Kumar, M. Kanellopoulos,[33]

 1630 Tsinghua Science and Technology, October 2024, 29(5): 1615−1632

and Dimitris, A novel delay-based adaptive congestion
control TCP variant, Computers and Electrical
Engineering, vol. 101, p. 108076, 2022.
 C. H. Chiang, Y. C. Chan, and P. L. Chen, Delay-based
TCP with pacing and ECN for solving incast problem in
data center networks, in Proc. IET Int. Conf. Engineering
Technologies and Applications (IET-ICETA), Changhua,
China, 2022.

[34]

 G. H. Kim and Y. Z. Cho, Delay-aware BBR congestion
control algorithm for RTT fairness improvement, IEEE
Access, vol. 8, pp. 4099–4109, 2020.

[35]

 N. Agarwal, M. Varvello, A. Aucinas, F. Bustamante, and
R. Netravali, Mind the delay: The adverse effects of delay-
based TCP on HTTP, in Proc. 16th Int. Conf. Emerging
Networking Experiments and Technologies, New York,
NY, USA, pp. 364–370, 2020.

[36]

 H. Ma and D. Xu, An INT-based TCP window modulator
for congestion control in data center networks, J. Netw.
Comput. Appl., vol. 217, p. 103688, 2023.

[37]

 M. Allman, V. Paxson, and E. Blanton, TCP congestion
control, https://doi.org/10.17487/ rfc5681, 2009.

[38]

 J. Mo, R. J. La, V. Anantharam, and J. Walrand, Analysis
and comparison of TCP Reno and Vegas, Proc. IEEE
INFOCOM, vol. 3, pp. 1556–1563, 1999.

[39]

 S. Floyd, A. Gurtov, and T. Henderson, The NewReno
modification to TCP’s fast recovery algorithm,
https://datatracker.ietf.org/doc/rfc3782/, 2004.

[40]

 T. Henderson, S. Floyd, A. Gurtov, and Y. Nishida, The
NewReno modification to TCP’s fast recovery algorithm,
https://dl.acm.org/doi/10.17487/RFC6582, 2012.

[41]

 S. Bohacek, J. P. Hespanha, J. Lee, C. Lim, and K.
Obraczka, TCP-PR: TCP for persistent packet reordering,
in Proc. 3rd Int. Conf. Distributed Computing Systems,
Providence, RI, USA, 2003, pp. 222–231.

[42]

 M. Zhang, B. Karp, S. Floyd, and L. Peterson, RR-TCP: A
reordering-robust TCP with DSACK, in Proc. 11th IEEE
Int. Conf. Network Protocols, Atlanta, GA, USA, 2003,
pp. 95–106.

[43]

 S. U. N. Prottoy, D. Saucez, and W. Dabbous, NUTS:
Network updates in real time systems, in Proc. SOSR
2019, San Jose, CA, USA, 2019, pp. 160–161.

[44]

Abdul Basit Dogar is a PhD candidate at
Department of Computer Science and
Technology, Tsinghua University, Beijing,
China. Prior to this, he worked at the
Network Architecture Research Division
Lab, Tsinghua University. Currently, he
serves as a lecturer at Department of
Informatics and Systems, University of

Management and Technology (UMT), Lahore, Pakistan. From
2007 to 2015, he also worked as a lecturer and program
coordinator at Department of Computer Science, Virtual
University of Pakistan, where he mentored graduate research
students. He later served as a researcher at IRIL, Al-Khawarizmi
Institute of Computer Science (KICS), University of
Engineering and Technology (UET), Lahore. He is a recipient of
the gold medal and the Roll of Honor when persuing the BS
degree in computer science, 2005. He received the MS degree in
computer science in 2007 from COMSATS University, Pakistan,
where he also worked as a research assistant at the
Communication Networks Research Centre from 2005 to 2007.
His current research interests include SDN, DCN, IoT, TCP
variants, IPv4, and IPv6. He has published research papers in
journals and conferences.

Sami Ullah received the BS degree in
computer science from University of
Malakand in 2007 and the MS degree in
computer science from University of
Agriculture, Peshawar, Pakistan, in 2012.
He received the PhD degree in computer
Science from Ghulam Ishaq Khan (GIK)
Institute of Engineering Sciences and

Technology, Pakistan in 2022. From 2007 to 2009, he served as
a lecturer with University of Malakand, Pakistan. Since 2009, he
has been with Shaheed Benazir Bhutto University, Pakistan, as a
lecturer. His research interest includes vehicular ad hoc
networks, network security, cognitive radio networks, Internet of
Things, and Internet of Bodies.

Yiran Zhang received the PhD degree
from Tsinghua University in 2022. She is
currently an assistant professor at
Computer Science Department, Beijing
University of Posts and
Telecommunications. Her research
interests include traffic management and
control, and datacenter networks.

Hisham Alasmary is an assistant
professor at King Khalid University. He
obtained the PhD degree from Department
of Computer Science at University of
Central Florida in 2020, and the MSc
degree in computer science from The
George Washington University, USA, in
2016. His research interests include

software security, IoT security and privacy, ML/DL applications
in information security, and adversarial machine learning.

 Abdul Basit Dogar et al.: Resilient TCP Variant Enabling Smooth Network Updates for Software-Defined Data... 1631

Muhammad Waqas received the BSc and
MSc degrees in electrical engineering
(major in wireless communications) with
Department of Electrical Engineering,
University of Engineering and
Technology, Peshawar, Pakistan in 2005
and 2009, respectively. He pursued the
PhD degree with Department of Electronic

Engineering at Tsinghua University, Beijing, China since 2019.
From 2019 to 2022, he was a research associate at Faculty of
Information Technology, Beijing University of Technology,
Beijing, China and also affiliated with GIK Institute of
Engineering Sciences and Technology, Pakistan. From 2022, he
has been an assistant professor at Computer Engineering
Department, College of Information Technology, University of
Bahrain, Bahrain. In UK, he is currently a senior lecturer at
School of Computing and Mathematical Sciences,University of
Greenwich, London, UK. He has also been an adjunct senior
lecturer at School of Engineering, Edith Cowan University,
Australia, since 2021. He has more than 100 research
publications in reputed journals and conferences with more than
2400 citations, an h-index of 25 and an i10 index of 63. He is an
associate editor of International Journal of Computing and
Digital Systems. He is also a guest editor of Applied Sciences.
 His current research interests are in the areas of wireless
communication, vehicular networks, cybersecurity, and machine
learning.

Sheng Chen received the BEng degree
from East China Petroleum Institute,
Dongying, China, in 1982, and the PhD
degree from City University of London, in
1986, both in control engineering. In 2005,
he was awarded the higher doctoral degree,
Doctor of Sciences (DSc), from University
of Southampton, Southampton, UK. From

1986 to 1999, he held research and academic appointments at
Universities of Sheffield, Edinburgh and Portsmouth, all in UK.
Since 1999, he has been with School of Electronics and
Computer Science, University of Southampton, UK, where he
holds the post of professor in intelligent systems and signal
processing. His research interests include adaptive signal
processing, wireless communications, modeling and
identification of nonlinear systems, neural network and machine
learning, evolutionary computation methods, and optimization.

 1632 Tsinghua Science and Technology, October 2024, 29(5): 1615−1632

