
 

Cooperative-Guided Ant Colony Optimization with Knowledge
Learning for Job Shop Scheduling Problem
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Abstract: With  the  advancement  of  the  manufacturing  industry,  the  investigation  of  the  shop  floor  scheduling

problem  has  gained  increasing  importance.  The  Job  shop  Scheduling  Problem  (JSP),  as  a  fundamental

scheduling  problem,  holds  considerable  theoretical  research  value.  However,  finding  a  satisfactory  solution

within  a  given  time  is  difficult  due  to  the  NP-hard  nature  of  the  JSP.  A  co-operative-guided  ant  colony

optimization  algorithm with  knowledge learning  (namely  KLCACO) is  proposed to  address  this  difficulty.  This

algorithm integrates  a  data-based  swarm intelligence  optimization  algorithm with  model-based  JSP schedule

knowledge. A solution construction scheme based on scheduling knowledge learning is proposed for KLCACO.

The  problem  model  and  algorithm  data  are  fused  by  merging  scheduling  and  planning  knowledge  with

individual  scheme  construction  to  enhance  the  quality  of  the  generated  individual  solutions.  A  pheromone

guidance  mechanism,  which  is  based  on  a  collaborative  machine  strategy,  is  used  to  simplify  information

learning  and  the  problem  space  by  collaborating  with  different  machine  processing  orders.  Additionally,  the

KLCACO algorithm utilizes the classical neighborhood structure to optimize the solution, expanding the search

space of the algorithm and accelerating its convergence. The KLCACO algorithm is compared with other high-

performance intelligent  optimization algorithms on four public  benchmark datasets,  comprising 48 benchmark

test cases in total. The effectiveness of the proposed algorithm in addressing JSPs is validated, demonstrating

the feasibility  of  the KLCACO algorithm for  knowledge and data fusion in complex combinatorial  optimization

problems.
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1　Introduction

The research level of a fundamental dispatching theory

n m
(n!)m

considerably  influences  the  effectiveness  of  industrial
manufacturing  applications.  A  proficient  task
scheduling  scheme  can  optimize  the  utilization  of
existing  production  resources,  thereby  enhancing  the
enterprise  production  efficiency.  Job  shop  Scheduling
Problem  (JSP)  is  a  conventional  scheduling  problem
that  has  been  established  as  a  strongly  NP-hard
problem[1].  Generating an optimal solution using exact
algorithms  within  the  polynomial  time  is  difficult,  as
proven  by  previous  research[2].  The  number  of
solutions  for  a  JSP  with  jobs  and  machines  is

.  The  vast  solution  space  of  JSP  severely  affects
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the  determination  of  the  optimal  solution  for  the
problem.

JSP  has  several  variants  that  are  influenced  by  the
characteristics  of  enterprises  due  to  the  nature  of
industries.  These  variants  include  distributed  JSP  that
requires  multiple  cooperation[3],  flexible  JSP  that
considers the same type of processing machines[4], flow
shop scheduling problem that involves mass production
of  the  same  type[5],  and  fuzzy  JSP  that  deals  with
dynamic  environments[6].  Numerous  real-world
application  scenarios  have  contributed  to  the
advancement  and  development  of  JSPs,  leading  to  the
development  of  several  effective  scheduling
optimization techniques.

The objective of the JSP is to find a well-considered
scheduling  plan  for  a  given  number  of  jobs  to  be
executed  on  a  set  of  machines  within  a  limited  time.
The  current  research  approach  primarily  focuses  on
two  directions:  model-based  improvement  and  data-
driven  evolution,  with  the  aim  of  achieving  optimal
scheduling.  Following  the  completion  of  problem
modeling,  researchers  enhance  and  adapt  the  model
based  on  practical  requirements  and  subsequently
employ  intelligent  and  efficient  algorithms  to  address
the respective submodels. Yan et al.[7] strengthened the
JSP  model  by  establishing  a  connection  between
integer and binary variables in the job shop scheduling
model.  Yao  et  al.[8] refined  and  simplified  the
mathematical  model  for  JSP by drawing insights  from
practical robot application scenarios, thereby obtaining
superior  problem  solutions.  The  advancement  of  the
JSP  model  has  increased  the  potential  for  finding  the
optimal  solution  for  the  algorithms.  However,
researching  enhanced  models  by  employing  exact
algorithms  remains  impossible  within  the  given
temporal constraints.

In  contrast  to  model-based  optimization  techniques,
data-driven  evolutionary  optimization  algorithms offer
a  dynamic  approach  to  enhancing  the  quality  of
scheduling  solutions.  These  algorithms  continuously
refine  the  scheduling  outcomes  by  meticulously
evaluating  the  advantages  and  disadvantages  of
generated solutions based on predetermined inheritance
rules. Sahman et al.[9] used the emerging artificial algae
algorithm to  solve  JSP  and  achieved  excellent  results.
Mahmud  et  al.[10] utilized  the  differential  evolution
algorithm  based  on  multi-operator  communication  to
find the optimal  solution for  most  JSP benchmark test

cases.  Xie  et  al.[11] employed  the  genetic  algorithm
combined with tabu search to complete and update the
optimal  scheduling  scheme  for  some  classic  JSP
benchmark test cases. For JSP with machine flexibility,
Xing  et  al.[12] introduced  a  knowledge-based  Ant
Colony  Optimization  (ACO)  algorithm  to  effectively
integrate population information with problem-specific
knowledge,  enabling  a  highly  efficient  spatial  search
for  problem-solving  compared  to  traditional
algorithms. The particle swarm optimization, chemical
reaction  optimization,  iterative  greedy,  and  migrating
birds  optimization  algorithms  have  exhibited  good
results  for  JSP  and  its  variants[13–16].  Additionally,  a
combination of the reinforcement learning method and
evolutionary  algorithm  has  yielded  exceptional
outcomes.  Wang  et  al.[17] demonstrated  that
reinforcement  learning  has  advantages  over  other
algorithms  in  dynamic  scheduling  scenarios.  The
reinforcement  learning  algorithm  could  improve  the
production  of  subsequent  scheduling  schemes  by
continuously learning and updating previously acquired
information.  Xi  and  Lei[18] combined  the  Q-learning
and  metaheuristic  algorithms  to  solve  the  distributed
hybrid  flow  shop  problem.  Zhao  et  al.[19] proposed  a
reinforcement  learning  based  collaborative
metaheuristic  algorithm  to  address  the  energy-saving
distributed flow shop scheduling problem. Wu et al.[20]

indicated  that  the  real-time  scheduling  method  in  JSP
outperforms  other  single  scheduling  rules  when
optimizing  most  objectives.  Compared  with  other
intelligent optimization algorithms, the ACO algorithm
uses a job-by-job approach to determine the processing
order  for  constructing  the  scheduling  plan,  increasing
its  suitability  for  real-time  scheduling.  Furthermore,
utilizing  the  pheromone  mechanism  in  the  ACO
algorithm  provides  it  with  excellent  information
collection  and  knowledge  utilization  capabilities.
Therefore, this paper adopts the ACO algorithm as the
fundamental algorithmic framework.

The algorithm considers using scheduling rules as the
primary criteria for selecting the order of operations to
optimize  the  scheduling  scheme  effectively.  J.  Wang
and  L.  Wang[21] used  the  heuristic  scheduling
knowledge and historical information generated during
the  search  process  to  jointly  guide  the  evolutionary
search  of  the  algorithm and  find  the  efficient  solution
to  the  distributed  flow  shop  scheduling  problem.  Pan
et  al.[22] combined  various  heuristic  rules  with  a
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bipopulation  evolutionary  algorithm  to  obtain  an
efficient solution for energy-saving fuzzy flexible JSP.
Chen  et  al.[23] integrated  scheduling  rules  with  deep
reinforcement  learning  to  structure  the  job  processing
sequence  and  achieve  optimal  solutions  for  flexible
JSP.  The  utilization  of  scheduling  rules  ensures  the
quality  of  the  algorithm  solution.  The  scheduling
information,  which  changes  in  real  time  during  the
solution  construction  process,  is  considered  domain
knowledge  in  JSP  and  plays  a  role  in  the  node
migration of the ACO algorithm.

Recent  studies  have  confirmed  that  employing
solution-based deep neighborhood search methods can
effectively reduce the computational burden of solving
problems using an exact algorithm. Zhang et al.[24] and
Xie  et  al.[11] successively  proposed  neighborhood
structures  based  on  critical  blocks  for  JSP  critical
paths.  Their  findings  indicate  that  optimizing  the
neighborhood  structure  based  on  critical  blocks  can
considerably  improve  the  quality  of  heuristic
algorithms  for  solving  JSPs.  The  difference  in  the
neighborhood  structure  determines  the  direction  and
quantity  of  search  branches,  affecting  the  search
efficiency  and  quality.  Using  a  neighborhood-based
local search without considering the time consumption
of the algorithm can often yield the optimal solution to
the problem.

A  co-operative-guided  ACO  algorithm  with
knowledge learning (namely KLCACO) is proposed in
this  paper  to  solve  JSP  to  minimize  makespan.
KLCACO  comprises  the  following  three  parts:  a
framework  for  individual  construction  based  on
knowledge,  an  adaptive  pheromone  control
mechanism, and a neighborhood-based solution quality
improvement strategy. Herein, the knowledge used for
individual  construction  is  the  dynamic  heuristic
information based on jobs, which is used for generating
scheduling  schemes.  In  the  construction  process,
domain  knowledge  and  pheromones  change  nodes  in
different states. The existing pheromone mechanism is
improved  to  increase  the  suitability  of  the  ACO
algorithm  for  solving  JSPs.  In  addition,  the  N7
neighborhood  is  applied  to  the  local  optimization
strategy to further improve the quality of the algorithm
solution.  The  main  contributions  of  the  paper  are
summarized as follows:

(1)  A  solution  construction  scheme  based  on
scheduled  knowledge  learning  is  proposed.  Multiple
operation  priorities  are  used  as  heuristic  factors  for

constructing  the  solution  for  learning  real-time
scheduling information.

(2)  A  pheromone  guidance  mechanism  based  on  a
collaboration  strategy  is  introduced.  The  machine-
based operation sequence is stored in the pheromone as
population  learning  information  for  storage  and
utilization of this sequence.

(3) A classical neighborhood structure is employed to
optimize  the  local  solution.  Potential  neighborhood
optimization  solutions  are  generated  by  adjusting  the
order of operations within critical blocks.

(4)  The  experiments  show  that  the  KLCACO
algorithm  is  more  efficient  than  other  intelligent
optimization algorithms. Therefore, this paper presents
a  high-quality  swarm  intelligence  optimization
algorithm  for  JSP  by  combining  data- and  model-
driven approaches.

The remainder of this paper is organized as follows:
Section  2  introduces  the  basic  theory  of  the  ACO
algorithm  and  JSP.  Section  3  comprehensively
describes  the  KLCACO  algorithm  proposed  in  this
paper.  Section  4  shows  the  experimental  results  and
their analyses. Section 5 concludes the paper.

2　Related Work

2.1　ACO

k
i

k

Probk
i, j i j

The  ACO  algorithm,  originally  introduced  by  Dorigo
in 1991, is a swarm intelligence optimization algorithm
that  draws  inspiration  from  the  foraging  behavior  of
ants  in  natural  settings[25].  The  fundamental  principles
of  ACO  include  the  construction  mechanism  of  the
solution and the subsequent pheromone update process
conducted  by  ants.  An  illustrative  instance  of  the  Ant
System (AS)  algorithm is  presented  below,  serving  as
the  most  fundamental  representation  of  the  ACO
algorithm[26].  In  the  AS  algorithm,  when  ant  is
located  at  node ,  the  permissible  set  of  potential
succeeding  nodes  is  denoted  as  allowSet.  Ant  uses
the  following  equation  to  calculate  the  probability

 of its transfer from node  to node :
 

Probk
i, j =


ταi, j×η

β
i, j∑

k ∈ allowSet
ταi, k ×η

β
i, k

, j ∈ allowSet;

0, other

(1)

τi, j ηi, j

i j α β

where  and  denote  the  concentration  of
pheromones  and  heuristics,  respectively,  between
nodes  and .  and  are  the  weights  of  the
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pheromone  and  heuristics,  respectively,  in  path
construction.  Ants  construct  individual  solutions using
Eq.  (1)  and  then  release  the  pheromone  according  to
the  quality  of  each  solution.  The  corresponding
pheromone release equation for the AS algorithm is as
follows:
 

τ
update
i, j =


τold

i, j +
Q

fitk
, ⟨i, j⟩ ∈ solk;

τold
i, j , other

(2)

τ
update
i, j τold

i, j

⟨i, j⟩ Q
k

fitk

⟨i, j⟩
τnew

i, j

where  and  are  the  concentrations  of
pheromone before and after the increase in pheromone
on  edge ,  respectively.  is  a  constant  of  fixed
size, and the fitness function value for ant  is denoted
as .  When  all  individuals  of  the  ant  colony  have
completed  the  release  of  pheromones,  pheromone
evaporation  is  conducted.  Correspondingly  the
pheromone  concentration  on  edge  decreases  to

,
 

τnew
i, j = (1−ρ)τold

i, j (3)

ρwhere the evaporation rate is represented by .
Scholars  have  made  extensive  contributions  to

ongoing  research  on  the  ACO  algorithm  due  to  its
remarkable  efficacy  in  addressing  combinatorial
optimization  problems.  Therefore,  the  Ant  Colony
System  (ACS)[27] algorithm  and  MAX-MIN  AS
(MMAS)[28] algorithm  are  proposed  as  notable
advancements. In comparison to the AS algorithm, the
ACS and  MMAS algorithms  increase  the  influence  of
elite  individuals  on  the  population  search  direction  by
intensifying  the  rate  of  pheromone  release  from  these
exceptional  individuals.  Notably,  the  ACS  algorithm
realizes the aforementioned phenomenon by enhancing
the  local  pheromone  update  while  reducing  the  global
update  of  pheromones  by  regular  individuals.
Conversely, the MMAS algorithm achieves a balanced
exploration  capability  by  incorporating  a  smaller
evaporation  factor.  The  global  pheromone  update
equations  for  the  ACS  and  MMAS  algorithms  are
shown  in  Eq.  (4),  and  Eq.  (6)  represents  the  local
pheromone update for the ACS algorithm,
 

τnew
i, j =

(1−ρ)τold
i, j +ρ×∆τbest, ⟨i, j⟩ ∈ solbest;

(1−ρ)τold
i, j , other

(4)

 

∆τbest =
1.0

fitbest
(5)

 

τlocNew
i, j = (1−ϑ)τold

i, j +ϑ×τ0 (6)

ρ ϑ

τbest

τ0

where  and  are  global  and  local  pheromone
evaporation  factors,  respectively.  solbest is  the  optimal
scheduling scheme obtained by the ant colony. fitbest is
the  corresponding  fitness  value,  and  it  is  utilized  to
calculate  the  increase  in  pheromone  (Δ )  for  this
round.  is a constant employed to control pheromone
concentration.

q q ∈ [0, 1] q0

The  ACS  algorithm  uses  the  pseudorandom  state
transition  rule  to  improve  the  possibility  of  selecting
nodes  with  high  probability.  When  the  generated
random  number  ( )  is  less  than  (a
constant),  the  ant  jumps  directly  to  the  node  with  the
maximum  probability  of  transfer;  otherwise,  the  state
transition is performed according to Eq. (1),
 

j =

max {Probant
i, k, k ∈ allowSet}, q ⩽ q0;

Equation (1), other
(7)

τmax τmin

The  MMAS  algorithm  not  only  improves  the
pheromone  release  strategy  of  the  AS  algorithm,  but
also  sets  the  upper  and  lower  thresholds  for
pheromone.  In  addition,  the  MMAS  algorithm  will
achieve  a  local  optimal  jump  through  pheromone  re-
initialization when the algorithm reaches stagnation.

2.2　JSP

⟨n, m, J, B⟩ n m

J B

The standard model for the JSP can be represented as a
quaternion .  and  are  the  numbers  of
jobs and machines involved in processing, respectively,

 represents the JSP for scheduling problems, and  is
the performance indicator for the scheduling scheme to
be solved. The following provides a description of the
JSP  in  terms  of  its  mathematical  and  graph  network
models.
2.2.1　Based model

i
ci Ji =

{
Oi, 1, Oi, 2, . . . , Oi, ci

}
Oi, k Mt

Ti, k, t Oi, k

S i, k Oi, k, t

Oi, k Mt

The  mathematical  model  of  JSP  is  introduced,
considering  the  various  components  involved.  Job 
comprises  operations: . The
processing  time  of  operation  on  machine  is

, and the start processing time of operation  is
.  The binary variable  takes  the  value  of  1  if

operation  can  be  processed  on  machine ;
otherwise,  it  is  0.  All  jobs  have equal  priority,  and no
sequential  constraints  exist  among  them.  The  job
processing  procedure  adheres  to  the  following  set  of
constraints:
 

S i, k ⩾ 0, Ti, k, t ⩾ 0 (8)
 

m∑
c=1

Oi, k, c = 1 (9)
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S i, k ⩾ S i, k−1+Ti, k−1 (10)
 

S i, k ⩾ S q, l+Tq, l, t,

Oi, k, m = Oq, l, m = 1,
S i, k ⩾ S q, l (11)

Oi, k

Oq, l

Oq, l Oi, k

Oi, k

Oq, l

Equation  (8)  indicates  that  the  start  processing  time
and  processing  time  of  each  operation  for  all  jobs  are
positive  numbers.  Equation  (9)  indicates  that  each
operation has a unique optional processing machine in
the  JSP.  Formula  (10)  points  to  successive  constraints
on  different  operations  of  the  same  job.  Furthermore,
Formula  (11)  implies  that  when  operation  is
processed  on  the  same  machine  as  operation ,
operation  precedes  operation ;  therefore,
operation  must  wait  for  the  completion  of
operation  to  start  processing,  suggesting  that  a
machine  can  complete  only  up  to  one  operation  at  a
time.

The  JSP  objective  function  with  the  minimum-
maximum  completion  time  as  the  scheduling
performance indicator is established as follows:
 

Cmax =min
{
S i, ci +Ti, ci, t

}
, i = 1, 2, . . . , n (12)

2.2.2　Based graph

G = {N, C, D} N

S E C
D

C

D

Each JSP can be represented using a disjunctive graph:
.  Let  denote  the  set  of  nodes,

encompassing  operation  nodes,  zero-time  start  node
( ),  and  end-time  node  ( ).  is  the  set  of  directed
arcs, while  represents a set of disjunctive undirected
arcs.  refers  to  the  sequential  priority  relationship
between  operations  associated  with  a  particular  job,
where processes within the same job are interconnected
in  the  order  of  execution.  provides  a  sequential,
undirected  edge  representation  of  operations
conforming  to  machine  requirements.  Additionally,
operations  executed  on  the  same  machine  are
bidirectionally connected in pairs.

N
C

Figure 1 shows a sample JSP for three jobs and three
machines.  All  circular  nodes  in  the  diagram  form  a
node  set ,  black  directed  edges  form  a  sequence-
dependent  set ,  and  dashed  lines  of  different  colors
represent  the  sequence-dependent  relationships  of  the
operations  to  be  processed  on  different  machines.
Green, orange, and blue connected nodes represent the
completion  of  processing  on  Machines  1,  2,  and  3,
respectively.  The  numbers  near  the  nodes  indicate  the
time consumed by each process.

CmaxThe  completion  time  of  JSP, ,  is  equal  to  the

S E
time  corresponding  to  the  longest  acyclic  sequence
from node  to  node .  This  sequence  is  also  known
as the critical  path.  The operations on the critical  path
are  called  critical  operations.  On  the  critical  path,
operations  that  belong  to  the  same  machine  and  are
adjacent to each other form the critical blocks[11].
2.2.3　Representation of JSP solution
At  present,  most  intelligent  optimization  algorithms
choose a serial operation sequence to represent the JSP
solution[29, 30], resulting in numerous identical solutions
with  different  representations.  For  example,  in Fig.  2,
the  blue  text  below  each  node  is  the  start  processing
time  of  the  operation,  and  a  dark  node  represents  a
critical operation.

This  scheme  comprises  eight  critical  operations,
three  critical  blocks,  and  one  critical  path.  The
following  two  serial  processing  sequences  correspond
to the scheduling scheme in Table 1.

Falkenauer  and  Bouffouix[31] provided  solutions  to
the JSP by recording the processing orders on different
machines.  The  corresponding  scheduling  scheme  is
derived  when  the  processing  orders  of  operations  on
different  machines  in Fig.  2 are  determined. Table  2

 

 
Fig. 1    Sample JSP based on graph.

 

 
Fig. 2    Sample JSP scheduling scheme based on graph.

 

Table 1    Different  serial  representations  of  the  scheduling
scheme.

Permutation Permutation of process nodes
1 S-1-4-2-3-5-6-7-8-9-E
2 S-4-1-5-2-6-7-3-8-9-E

  Wei Li et al.:  Cooperative-Guided Ant Colony Optimization with Knowledge Learning for Job Shop Scheduling... 1287

 



shows  the  sequence  of  processing  operations  on  each
machine.  Combined  with  the  work  constraints  of
different  operations,  the  JSP  disjunctive  map  can  be
double-mapped  with  the  solution  based  on  the
processing  orders  on  different  machines.  Thus,  the
corresponding  scheduling  scheme  and  its  critical  path
can  be  obtained  by  determining  the  processing  order
between the operations on the same machine.
2.2.4　Scheduling scheme for JSP solution
Sequential[32],  active,  semi-active,  and  no-delay
scheduling  can  be  used  for  a  given  machine  process
schedule.  Pinedo  proved  that  active  scheduling  is  the
optimal scheduling method for the scheduling problem,
with the maximum completion time as the performance
indicator[33].

2.3　Motivation of this work

As one of the most standard combinatorial optimization
problems, JSP exhibits NP-hard characteristics. Among
the  existing  intelligent  optimization  algorithms,  the
ACO  algorithm  is  the  most  suitable  for  solving
combinatorial  optimization  problems  and  has  been
successfully  applied  in  numerous  instances[34–36].
Furthermore,  the  real-time  scheduling  method
outperforms  other  single  scheduling  rules  for
optimizing  most  of  the  objectives.  The  node-by-node
construction  mechanism  of  the  ACO  algorithm
enhances  its  potential  to  find  the  optimal  solution  for
the  objectives.  Therefore,  the  ACO  algorithm  is
selected as the fundamental algorithmic framework.

Heuristic  information  that  changes  in  real  time
during the scheduling process is  employed as problem
domain  knowledge  to  ensure  the  quality  of  the
algorithm solutions,  and  heuristic  information  actively
participates in the node selection of ants. The dynamic
change  in  JSP  knowledge  can  offer  improved
environmental  information  for  the  algorithm.  In  this
paper,  the  pheromone  mechanism  of  the  ACO
algorithm  was  adaptively  updated.  The  traditional
single  pheromone  matrix  cannot  simultaneously
balance  the  difference  in  pheromone  concentration  on
different  machines  during  processing  operations.
Therefore,  a  machine-based  compound  pheromone

mechanism  is  proposed  to  reduce  the  significant
information difference between various machines.  The
pheromone  interference  is  helpful  for  improving  the
algorithm  solution  quality.  In  addition,  a  classic
neighborhood  structure  is  employed  to  enhance  the
quality of local solutions generated with the algorithm.
The  selection  of  the  N7  neighborhood  considers  the
solution performance and number of neighborhoods to
ensure optimal algorithm performance.

3　Proposed Approach

The ACO algorithm generates  solutions  by combining
prior  search  information  with  existing  knowledge  and
selects  the  ant  search  path  based  on  pheromone
adjustments.  In  this  paper,  the  ACO  algorithm  is
integrated  with  the  JSP  structure,  leading  to  an
improved  solution  construction  mechanism.
Additionally,  the  mode  of  pheromone  modification  is
adjusted,  and  a  suitable  optimization  strategy  is
employed  for  the  neighborhood  structure  to  optimally
extract the local information. The algorithm ultimately
finds an efficient solution for JSP.

3.1　Algorithm framework

The complete pseudocode of the algorithm is presented
in  Algorithm  1.  The  KLCACO  algorithm  comprises
three  main  stages:  initialization  of  population
information, construction of feasible solutions based on
knowledge,  and  updation  of  the  population  and
knowledge through pheromone adjustment.

τlimit

In the first  stage,  the KLCACO algorithm initializes
the  parameters  (Line  1).  Subsequently,  the  greedy
construction  method  is  used  to  generate  greedy
solutions (Line 2), and the initial pheromone thresholds

 are obtained from the greedy solution (Line 3).
During  the  construction  phase  of  feasible  solutions,

each ant generates individual solutions using a solution
construction  mechanism  based  on  scheduling
knowledge  learning  (Lines  5  and  6).  The  pheromone
threshold  is  adjusted  in  real  time  according  to  the
global optimal solution when the local optimal solution
for  the  current  round  is  recorded  (Lines  8−10  and
15−17).  If  all  ants  in  this  round  complete  their
individual  solution  construction,  then  the  local  update
strategy  based  on  neighborhood  structure  is  used  to
generate neighborhood optimal solutions, which further
improves  the  quality  of  all  optimal  solutions  (Lines
13−17).

When  the  quality  of  the  updated  local  optimal

 

Table 2    Parallel expression of the scheduling scheme.
Machine Permutation of operation Permutation of job

1 1-5-9 1-2-3
2 4-3-8 2-1-3
3 2-6-7 1-2-3
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solution  is  lower  than  that  of  all  the  other  optimal
solutions,  the  individual  similarity  between  the  local

and  global  optimal  solutions  is  calculated  (Line  19),
and the stagnation time (local  exploration time) of  the
algorithm is increased when the similarity threshold is
met  (Lines  20−22).  The  pheromone  is  subsequently
updated using the optimal solution (Line 24). When the
number of stops reaches the predetermined upper limit,
the  KLCACO  algorithm  uses  the  globally  optimal
individual  to  re-initialize  the  pheromone  to  avoid  the
stoppage state (Lines 25−27). The above operations are
completed  in  the  information  update  and  pheromone
adjustment stages.

3.2　Knowledge-based construction mechanism

In  the  context  of  machine-based  operation  selection,
the ACO algorithm utilizes heuristics and pheromones
to  determine  the  subsequent  scheduling.  The  selection
of  heuristic  factors  influences  the  dependence  of  the
algorithm’s  solution  generation  on  the  available
information  categories.  A  construction  mechanism
founded  on  knowledge  learning  is  introduced  in  this
study,  which  combines  local  scheduling  rules  and  the
pheromone  guidance  mechanism.  The  dynamically
changing  operation  information  in  the  JSP  scheduling
process  participates  in  the  construction  of  the  ant’s
solution as knowledge.

This  study  establishes  a  heuristic  factor  selection
scheme based on compound priority scheduling rules to
counteract  the  defects  introduced  by  single-priority
scheduling rules.  The heuristic  strategy groups are  the
Earliest  Starting  Time  (EST),  the  Earliest  Finishing
Time  (EFT),  the  Longest  Wait  Time  (LWT),  and  the
Longest  Residual  Time  (LRT).  The  scheduling
knowledge is disturbed by random selection to enhance
the diversity  of  the  algorithm.  The calculation method
and selection motivation are shown in Table 3.

During  the  solution  construction  process  of  an
individual,  the  initial  operation  of  each  job  is
categorized  based  on  the  corresponding  processing
machine.  A  roulette  selection  scheme  is  employed  to

 

 

 

Table 3    Calculation methods and selection motivations for different scheduling rules.
Heuristic strategy Calculation method Motivation

EST Calculate start time of each operation An early start processing time can improve equipment
utilization efficiency.

EFT Calculate end time of each operation A fast completion time can quickly reduce the number of
waiting processing operations.

LWT Calculate waiting time of each operation Avoid falling into a hungry state due to an operation, which
significantly increases the system’s time consumption.

LRT Calculate remaining time of each operation Increase the processing priority of tasks with longer
durations to avoid potential long waiting times.
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assign  heuristics  to  machines  for  hosting  processing
operations,
 

ψ =


EST, 0 ⩽ p ⩽ p1;
EFT, p1 < p ⩽ p2;
LWT, p2 < p ⩽ p3;
LRT, p3 < p ⩽ 1

(13)

p

[τmin, τmax]

The scheduling  knowledge  is  determined by  finding
the  position  of  the  generated  random  number .  The
obtained  heuristic  is  then  normalized  within  the  range

 to  eliminate  inherent  disparities  between
the heuristic and pheromone.

Equation  (14)  is  employed  to  compute  the  selection
probability of each operation,
 

Prob j = τ
α
i, j×η

β
j , j ∈ actSet (m) (14)

 

j =
max {Probk, k ∈ actSet}, q ⩽ q0;

Equation (14), other
(15)

i
j actSet (m)

m

where  refers  to  the  node  of  the  previous  operation
with  process  on  the  machine,  and 
represents  the  set  of  optional  processing  operations
available  on  machine  at  the  current  time. Figure  3
shows  the  basic  flow  of  the  KLCACO  algorithm  to
construct a solution.

After  operation  selection,  the  resultant  selection
scheme is stored within the machine’s processing order
queue. When all the executable machines in this round
have  finished  the  process  assignment,  the  subsequent
operations  that  complete  the  process  are  added  to  the
candidate  processing  sequence  of  the  corresponding
machine.  The  above  process  is  followed  until  all  the
operations  for  all  the  jobs  are  completed,  and  the

scheduling  plan  is  then  stored  in  the  complete
processing queue of the machine.

actSeti
FinSeti

actSet

actSetm
m

actSetm

finSet

actSet

Before starting the scheduling process, the KLCACO
algorithm  (Algorithm  2)  initializes  the  set  of  optional
operations  based  on  the  machines, ,  and  the
queue  of  completed  operations, ,  as  empty.
Lines  1−3  of  the  pseudocode  show  that  initial
operations  for  each  job  are  stored  in  the 
corresponding  to  the  respective  machine.  The
algorithm begins job processing from Line 4, with each
machine  simultaneously  processing  available
operations  to  address  (Lines  4−15).  If  the  is
empty,  then  the  processing  for  that  machine  is
skipped in the current round until operations are stored
in  its  (Lines  6−8).  The  KLCACO  algorithm
first  utilizes  Eq.  (13)  to  determine  the  scheduling
knowledge as  a  heuristic  factor  for  this  iteration (Line
9)  and selects  the  next  operation to  be  processed on a
machine.  The  heuristic  factors  for  each  operation  are
subsequently  calculated  based  on Table  3 (Lines
10−12).  These  heuristic  factors  are  normalized  to
eliminate  dimensional  differences  and  combined  with
the  relevant  pheromone  concentration  on  the  edges  to
obtain  the  selection  probability  for  each  operation  in
the  current  round  (Line  13).  The  final  operation
selection for  this  processing step is  created using Eqs.
(14)  and  (15)  via  a  pseudorandom  roulette  wheel
selection  mechanism  (Line  14).  After  determining  the
processing  operations,  they  are  stored  in  the  of
the corresponding machine and adjacent operations are
added  to  the  based  on  the  job  sequence

 

 
Fig. 3    Solution construction scheme based on knowledge learning.
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constraints until all operations are completed (Line 16).
During  the  solution  construction,  different  heuristic

information that changes in real  time is integrated and
used as scheduling knowledge to facilitate participation
in  the  path  generation  process.  Diverse  knowledge  is
selected  through  Equation  (13),  and  knowledge-based
node  transfer  is  completed  with  Eqs.  (14)  and  (15),
thereby  realizing  the  comprehensive  utilization  of
scheduling  knowledge  in  the  ant  solution  construction
process.  In  addition,  this  method  can  maintain  the
relevant queue in real time with the construction of ants
without  increasing  the  time  complexity  in  the
deconstruction process and exhibits good adaptability.

3.3　Adaptive pheromone control

3.3.1　Pheromone representation

m

Within  the  context  of  the  ACO  algorithm,  the
pheromone  mechanism  serves  as  a  repository  for  all
information acquired during the algorithm’s search for
a  given  problem.  This  mechanism  preserves  the
obtained  information,  allowing  subsequent  ants  to
access  the  pheromone  matrix  and  effectively  leverage
preceding  knowledge.  A  machine  selection  based
pheromone  representation  scheme,  comprising 

uniform-sized pheromone matrices,  is proposed in this
study.  Important  information  is  encoded  as  the
sequential  data  pertaining  to  distinct  operations
executed  on  the  same  machine.  Additionally,  a  global
pheromone  threshold  is  established  to  govern  the
system.

(n+1)× (n+1)
n

As depicted in Fig. 4, an exclusive pheromone matrix
is  assigned  to  each  machine,  with  its  dimensions
determined  by  the  number  of  jobs  allocated  to  that
specific  machine.  This  study  uses  an 
matrix  as  a  demonstration  (where  signifies  the  total
number  of  jobs)  to  account  for  the  unique
characteristics of the JSP.
3.3.2　Pheromone threshold control
Upon completion of a round solution by the ant colony,
the  pheromone  update  process  is  conducted  by
employing  either  the  global  or  local  optimal  solution,
as dictated by
 

τnew
i, j =

(1−ρ)τold
i, j +∆τbest, ⟨i, j⟩ ∈ Schebest;

(1−ρ)τold
i, j , other

(16)

where  Schbest represents  the  selected  optimal
scheduling scheme.

Jia et al.[37] and Sttzle and Hoos[38] used an approach
based  on  pheromone  threshold  control  using  the
optimal  solution  to  achieve  a  balance  between
exploration  and  exploitation  capabilities  within  the
algorithm.  This  study  employs  the  information
obtained  from  the  global  optimal  solution  to  facilitate
the adaptive control of the pheromone threshold,
 

τmax =
1

(1−ρ)×fitgb
(17)

 

τmin = τmax×

(
1−pr

1
nps

)
(nps/2−1)×pr

1
nps

(18)

nps prwhere  represents  the  population  size  and  is  a
constant, which is set to 0.05. Updates are made to the
 

 
Fig. 4    Pheromone representation example.
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by
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global optimal solution; thus, the pheromone threshold
promptly  triggers  adjustments  to  the  upper  and  lower
limits  of  pheromones  on  each  side.  Consequently,  the
variation  in  pheromone  levels  between  different  paths
undergoes  alteration,  accelerating  the  convergence  of
the algorithm.
3.3.3　Stagnation  detection  based  on  individual

similarity
A  similarity  measure  based  on  the  solution  scheme  is
proposed  to  effectively  evaluate  the  evolution  state  of
the  algorithm.  The algorithm can determine whether  a
solution  is  stagnant  or  not  by  calculating  the  optimal
solution  similarity  under  different  iteration  rounds.
When  the  algorithm  is  stagnant,  the  KLCACO
algorithm  will  re-initialize  the  pheromone  with  the
global  optimal  solution  to  jump  out  of  the  stagnation
state.

Job1

Machine-based solutions are then matrixed according
to  the  machine,  and  the  preference  relationship
between  different  processes  is  represented  by  the
values 0−1. As shown in the first line of Solution 1 in
Fig.  5,  the  corresponding  operations  of  are
executed on the machine before those of other jobs.

The  two  solutions  corresponding  to  the  matrix  are
summarized, and the number of elements is calculated
as  2  in  the  cumulative  matrix.  The  similarity  measure
equation is as follows:
 

s =
count2

m×n× (n−1)/2
(19)

count2
n× (n−1)/2

where  is  the  total  number  of  occurrences  of
element 2 in the cumulative matrix, and  is
the  number  of  elements  of  a  solution  for  a  single
machine.

simi

simi s

The algorithm sets  the parameter  to control  the
determination of the exploration status. If the similarity
of  the  local  optimal  solution  to  the  global  optimal
solution  is  larger  than ,  then  the  number  of

stagnateTimealgorithm  stops, ,  is  incremented  by  one.
The  KLCACO  algorithm  will  then  initialize  the
pheromones  through the  global  optimal  solution  when
the number of algorithm stops reaches the threshold.

3.4　Local optimization method

JSPs  have  a  large  solution  space.  Therefore,  using
neighborhood-based  local  solution  optimization  is
necessary.  This  paper  utilizes  the  N7  neighborhood
structure  proposed  by  Zhang  et  al.[24] to  improve  the
local  solution  quality. Figure  6 illustrates  the  N7
neighborhood diagram.

The  KLCACO  algorithm  performs  N7-based
neighborhood  searches  for  the  local  optimal  solution
generated  by  each  iteration  of  the  ant  colony.  This
algorithm then uses the resulting optimal neighborhood
solution to replace the local optimal solution generated
by the KLCACO algorithm.

3.5　Analysis of the computational complexity

N M
Pop

In  the  KLCACO  algorithm,  the  main  calculation
processes  include  ant  solution  construction,  fitness
value  evaluation  of  the  solution,  pheromone  update,
neighborhood-based  local  optimization,  and  adaptive
pheromone  threshold  adjustment.  Assuming  that  the
JSP size is  jobs and  machines and ant colony size
is set to , the time complexity of the above process
is shown in Table 4.

Pop×O (N2M2)
O (N2)

O (N2M)+O (1)

O (Pop×N2×M2)

The  time  complexity  required  for  all  ants  in  the  ant
colony  to  complete  the  solution  construction  and
fitness  value  calculation  is .  Further,
the  best  individiual  takes  time  to  complete  the
neighborhood-based local update. The time complexity
corresponding  to  the  pheromone  update  and  control
process  is .  Overall,  the  time
complexity  of  the  KLCACO  algorithm  is

.

 

 
Fig. 5    Similarity calculation between two individuals.
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4　Experiment and Analysis

A  series  of  experiments  is  conducted  as  follows  to
evaluate  the  efficacy  of  the  proposed  KLCACO
algorithm.  First,  the  Taguchi  experimental  design
method  is  employed  to  ascertain  the  optimal
combination of parameters related to key aspects of the
algorithm.  Subsequently,  an  analysis  is  performed  to
evaluate  the  effectiveness  of  the  three  strategies
employed  by  the  KLCACO  algorithm.  Finally,  a
comparison  is  conducted  between  the  KLCACO  and
state-of-the-art algorithms to validate its efficiency and
performance.  The  algorithms  are  tested  on  various
benchmarks,  including the ABZ[39],  FT[40],  LA[41],  and
ORB[42] datasets. Table  5 shows  the  main  test  sample
data used.

All  the algorithms were carefully re-implemented in
the  C++  programming  language  to  ensure  a  fair
comparison.  They were executed on an Intel  (R)  Core
(TM) i5-12400F CPU @ 2.50 GHz with 16 GB RAM
within  the  Windows  11  Operating  System  and  Visual
Studio 2019.

4.1　Optimal parameter combination

β q0

ρ

simi
PSR p1 p2 p3

pop
maxStag

pop maxStag

The experimental design method of Taguchi[43] is used
in  this  paper  to  achieve  the  optimal  control  of
parameters. The parameters of the KLCACO algorithm
are  categorized  based  on  their  relevance  to  the
algorithm  to  facilitate  their  efficient  configuration.
These  parameters  are  divided  into  two  groups:  key
parameters  that  control  the  performance  of  strategies
and  general  parameters  that  control  the  overall
algorithm  process.  The  key  parameters  include  the
heuristic factor weight , pseudorandom probability ,
pheromone  evaporation  factor ,  similarity  threshold

 and  the  parameter  group  of  Priority  Scheduling
Rules  ( : - - )  in  a  compound  heuristic
scheme. Meanwhile, the general parameters include the
population  size  and  pheromone  re-initialization
threshold .  These  parameters  influence  the
evolutionary process of the algorithm. Considering the
limited  evaluation  times,  a  parameter  configuration  of

 = 50 and  = 50 is chosen.
Taguchi’s  experimental  design  method  was

employed to match different parameter groups, and the
experimental  process  is  presented  in Tables  6−9 and
Fig. 7. The effectiveness of the solution was evaluated
using  the  average  solution  quality  (Efficacy)  obtained
from running the algorithm 10 times. Table  6 outlines
key parameter variations,  specifically identifying three
levels (T1−T3) to differentiate PSR parameters. Results
of the Taguchi experiment are summarized in Table 7,
with Table 8 providing an in-depth analysis. Assessing
the  impact  of  different  parameters  on  algorithm
performance  yields  their  respective  rank. Figure  7
visually  represents  the  influence  of  key  parameters  on
experimental outcomes. The parameter selection for the
KLCACO algorithm proposed in this paper is  detailed
in Table 9.

4.2　Strategy effectiveness analysis

This  section  discusses  the  effectiveness  of  the  three
strategies  employed  in  the  KLCACO  algorithm.  The
algorithms  included  in  this  experimental  comparison
comprise  the  traditional  MMAS,  the  KLCACO
algorithm,  and  three  variant  algorithms.  Specifically,

 

 
Fig. 6    N7 neighborhood structure.

 

Table 4    Analysis of algorithm time complexity.
Calculation process Time complexity

Ant construction solution and
evaluation of the fitness O (N2M2)

Pheromone update O (N2M)
Neighborhood-based local optimization O (N2)

Adaptive pheromone threshold O (1)

 

Table 5    Sample  information  for  job  shop  scheduling
problem.

Best sample n×mSize ( ) Best sample n×mSize ( )
ft06 ×6  6 la06-10 ×15  5
ft10 ×10  10 la11-15 ×20  5
ft20 ×20  5 la16-20 ×10  10

abz5-6 ×10  10 la21-25 ×15  10
abz7-9 ×20  15 la26-30 ×20  10
la01-05 ×10  5 orb01-10 ×10  10

 

Table 6    Experimental factors and levels of KLCACO.
Level β q0 ρ simi PSR

1 0.5 0.5 0.05 0.2 0.25-0.5-0.75 T1
2 1.0 0.6 0.10 0.3 0.3-0.6-0.8 T2
3 2.0 0.7 0.20 0.4 0.2-0.4-0.7 T3
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the  first  variant,  which  is  denoted  as  MMAS+KL,
enhances  the  MMAS  algorithm  by  adopting  a
knowledge-based construction mechanism. The second
variant,  which  is  referred  to  as  MMAS+N7,  is  a
modification  of  the  MMAS algorithm wherein  the  N7
local  search  component  is  added.  The  third  variant,
which  is  designated  as  MMAS+Phe,  improves  the
solution  construction  mechanism  based  on  scheduling
knowledge  learning  from  the  MMAS  algorithm.
Table 10 shows the results of the strategy effectiveness
experiment.

Tested on benchmarks of different sizes from the LA
dataset,  each  algorithm  is  executed  independently  for
10  iterations.  The  parameters  of  the  algorithm  are
configured  using  the  values  obtained  in  the  previous
section (Table 9). The best solution (Best), the average
solution quality (Efficacy), and the Relative Percentage
Deviation (RPD) of the algorithms are calculated. The
RPD is computed as follows:
 

RPD =
Efficacy−LB

LB
×100 (20)

LBwhere  is  the  lowest  lower  bound for  this  instance.
The  minimum  relative  percentage  deviations  obtained
by the algorithms in Table 10 are highlighted in bold.

The  strategies  proposed  in  this  paper  have  led  to
significant improvements in the solving performance of
the  algorithm  compared  to  MMAS.  Among  these
strategies,  the  MMAS+KL  algorithm  has  exhibited
remarkable success. This achievement can be primarily
attributed  to  the  efficient  utilization  of  information
within  the  dynamic  scheduling  process  facilitated  by
the knowledge-based construction mechanism. The use
of  roulette  wheel  gambling  for  knowledge  selection
ensures  algorithmic  diversity,  effectively  preventing

 

Table 7    Taguchi’s experimental design results.
Index β q0 ρ simi PSR Efficacy

1 0.5 0.5 0.05 0.2 T1 1044.3
2 0.5 0.5 0.05 0.2 T2 1038.0
3 0.5 0.5 0.05 0.2 T3 1043.3
4 0.5 0.6 0.10 0.3 T1 1039.8
5 0.5 0.6 0.10 0.3 T2 1034.6
6 0.5 0.6 0.10 0.3 T3 1042.5
7 0.5 0.7 0.20 0.4 T1 1036.9
8 0.5 0.7 0.20 0.4 T2 1022.2
9 0.5 0.7 0.20 0.4 T3 1031.1
10 1.0 0.5 0.10 0.4 T1 1044.6
11 1.0 0.5 0.10 0.4 T2 1042.2
12 1.0 0.5 0.10 0.4 T3 1047.5
13 1.0 0.6 0.20 0.2 T1 1041.4
14 1.0 0.6 0.20 0.2 T2 1039.1
15 1.0 0.6 0.20 0.2 T3 1042.8
16 1.0 0.7 0.05 0.3 T1 1032.8
17 1.0 0.7 0.05 0.3 T2 1028.9
18 1.0 0.7 0.05 0.3 T3 1030.5
19 2.0 0.5 0.20 0.3 T1 1038.6
20 2.0 0.5 0.20 0.3 T2 1039.1
21 2.0 0.5 0.20 0.3 T3 1043.6
22 2.0 0.6 0.05 0.4 T1 1030.0
23 2.0 0.6 0.05 0.4 T2 1034.9
24 2.0 0.6 0.05 0.4 T3 1039.6
25 2.0 0.7 0.10 0.2 T1 1033.2
26 2.0 0.7 0.10 0.2 T2 1024.3
27 2.0 0.7 0.10 0.2 T3 1039.0

 

Table 8    Analysis of KLCACO test results.
Level β q0 ρ simi PSR

1 1037 1042 1036 1038 1038
2 1039 1038 1039 1037 1034
3 1036 1031 1037 1037 1040

Rank 3 1 4 5 2
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Fig. 7    Main effect diagram of parameters.

 

Table 9    KLCACO parameters setting.
Parameter Value

α 1.0
β 2.0
q0 0.7
ρ 0.05

simi 0.4
p1 0.3
p2 0.6
p3 0.8

pop 50
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the  convergence  of  the  algorithm  to  local  optima.
Additionally,  the  incorporation  of  the  pheromone
mechanism  and  optimization  of  the  neighborhood
structure  have  further  enhanced  the  capabilities  of  the
MMAS  algorithm.  The  enhanced  pheromone
mechanism is particularly conducive to the centralized
processing  of  pheromones  scattered  by  ants  between
different  operations  on  the  same machine,  resulting  in
further  improvements  in  the  efficiency  of  the
algorithm.

Table  10 shows  that  the  KLCACO  algorithm
outperforms other improved algorithms in optimal and
average solution quality. Therefore, the three strategies
proposed in this  paper effectively enhance algorithmic
performance,  and  their  integration  yields  superior
outcomes in solving JSPs.

4.3　Comparison  with  other  evolutionary
algorithms

The KLCACO algorithm is compared with three state-
of-the-art  algorithms  to  verify  its  effectiveness,  which
are MCDE/TS[10], HA[11], and AAA[9], these have been
the  top  competitors  for  solving  JSP  in  recent  years.
These  algorithms  adopt  the  optimal  parameter
combinations proposed by their authors to ensure their
optimal  performance.  The  standard  deviation  (Mean
error)  is  used  as  an  additional  evaluation  indicator  to
evaluate the stability of the above algorithms. Table 11
presents the parameters of these algorithms.

All  algorithms  utilize  a  consistent  maximum  of
10  000  fitness  evaluation  iterations  as  the  termination
criterion.  Each  algorithm  undergoes  10  independent
runs.  The  results  of  the  experiments  are  presented  in
Table  12.  The  comparative  result  for  a  problem  is
given as “+/ = /−” in parentheses, which indicates that
the  RPD  of  the  compared  algorithm  is  better  than,
equal to, or poorer than KLCACO. The best RPD value
for each group is shown in boldface.

Table 12 illustrates that the KLCACO algorithm has

demonstrated superior outcomes for the majority of test
cases when compared to the AAA and HA algorithms.
Comparison  results  with  the  MCDE/TS  algorithm
revealed  that  the  performances  of  the  two  algorithms
are  nearly  equivalent.  On  approximately  two-thirds  of
the  data  instances,  the  results  obtained  by  the
KLCACO algorithm are better than or equivalent to the
MCDE/TS algorithm. The MCDE/TS algorithm, which
utilizes  tabu  search,  explores  a  highly  extensive
neighborhood  space,  accounting  for  the  inferior
performance  of  the  KLCACO  algorithm  on  the
remaining  test  instances.  Overall,  the  experimental
results  reveal  that  the  KLCACO  algorithm  exhibits  a
notable ability for solving JSP.

The  mean  standard  deviations  of  the  compared
algorithms over all samples are shown in Fig. 8. Based
on  the  experimental  data,  the  KLCACO  algorithm
exhibits  substantially  greater  stability  in  problem-
solving compared to other algorithms, demonstrating a
mean  standard  deviation  of  7.58  across  all  test  cases.
The  utilization  of  the  knowledge-based  solution
construction  mechanism  significantly  reduces
uncertainty  due  to  random  number  selection  during
algorithm execution. Simultaneously, the neighborhood
search  based  on  individual  solutions  provides  further
assurance for the stability of solutions of the algorithm.
The  consistent  and  stable  results  suggest  that  the
KLCACO  algorithm  performs  reliably  across  various
scenarios of JSP samples.

Regarding  solving  effectiveness,  the  experimental
group  did  not  calculate  the  lower  bound  solution  for
most  data  samples  due  to  the  limitation  of  the

 

Table 10    Experimental results of algorithm strategy effectiveness.

Instance LB Size
MMAS MMAS+KL MMAS+N7 MMAS+Phe KLCACO

Best Efficacy RPD Best Efficacy RPD Best Efficacy RPD Best Efficacy RPD Best Efficacy RPD
la01 666 ×10 5 678 686.7 3.11 666 666.0 0.00 666 670.0 0.60 666 672.4 0.96 666 666.0 0.00
la07 890 ×15 5 906 917.8 3.12 890 892.4 0.27 890 903.1 1.47 890 896.0 0.67 890 890.0 0.00
la13 1150 ×20 5 1156 1160.4 0.90 1150 1150.0 0.00 1150 1150.5 0.04 1150 1156.2 0.54 1150 1150.0 0.00
la18 848 ×10 10 940 961.2 13.35 886 897.4 5.83 922 937.5 10.55 885 901.7 6.33 861 884.1 4.26
la21 1046 ×15 10 1237 1259.8 20.44 1160 1181.1 12.92 1214 1242.3 18.77 1180 1195.6 14.30 1134 1164 11.28
la26 1218 ×20 10 1439 1481.0 21.59 1339 1370.7 12.54 1440 1447.3 18.83 1399 1416.3 16.28 1325 1352.5 11.04

 

Table 11    Parameter settings for comparison algorithms.
Algorithm pop Parameter value

AAA[9] 40 K Le Ap=2, =0.3, =0.5
HA[11] 30 pc pm α sd β max{sd/10, 2}=0.9, =0.1, = /5, =

MCDE/TS[10] 50 Cr F p=0.9, =0.9, =30
KLCACO 50 α β q0 ρ simi=1, =2, =0.7, =0.05, =0.4
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Table 12    Experimental results for algorithm comparison.

Instance Size
AAA HA MCDE/TS KLCACO

Best Efficacy Mean
error RPD Best Efficacy Mean

error RPD Best Efficacy Mean
error RPD Best Efficacy Mean

error RPD

abz5 1234 1329 1367.2 18.24 10.79 1305 1389.5 68.05 12.60 1265 1283.8 10.22 4.04 1261 1273.5 7.27 3.20
abz6 943 996 1035.5 20.02 9.81 1004 1075.9 36.59 14.09 947 969.1 11.41 2.77 951 956.3 3.66 1.41
abz7 656 843 855.1 6.61 30.35 802 851.3 43.03 29.77 753 780.5 15.92 18.98 754 764.5 5.37 16.54
abz8 648 865 880.1 9.92 35.82 828 899.6 38.26 38.83 752 786.2 15.89 21.33 782 790.6 3.69 22.01
abz9 678 893 907.1 10.07 33.79 856 902.3 22.13 33.08 783 826.7 22.90 21.93 803 809.7 3.52 19.42
ft06 55 55 56.5 1.02 2.73 55 59.3 3.49 7.82 55 55.1 0.30 0.18 55 55.0 0.00 0.00
ft10 930 1088 1112.8 15.15 19.66 1032 1173.5 73.26 26.18 1000 1033.5 19.76 11.13 1009 1035.6 15.72 11.35
ft20 1165 1343 1366.1 19.55 17.26 1467 1540.9 35.74 32.27 1251 1297.9 43.75 11.41 1271 1293.6 11.89 11.04
la01 666 666 670.5 3.58 0.68 666 684.4 21.22 2.76 666 666.0 0.00 0.00 666 666.0 0.00 0.00
la02 655 686 713.0 12.95 8.85 693 748.4 28.00 14.26 668 686.6 8.43 4.82 660 687.1 11.82 4.90
la03 597 623 636.0 8.99 6.53 627 696.2 38.79 16.62 613 631.5 13.70 5.78 619 624.2 3.57 4.56
la04 590 590 621.0 12.79 5.25 632 696.4 33.47 18.03 590 600.1 7.22 1.71 616 620.1 4.23 5.10
la05 593 593 593.0 0.00 0.00 593 593.0 0.00 0.00 593 593.0 0.00 0.00 593 593.0 0.00 0.00
la06 926 926 926.0 0.00 0.00 926 929.0 5.69 0.32 926 926.0 0.00 0.00 926 926.0 0.00 0.00
la07 890 897 912.8 8.54 2.56 918 956.9 41.53 7.52 890 911.8 19.10 2.45 890 890.4 0.92 0.04
la08 863 864 873.1 5.66 1.17 863 880.8 21.78 2.06 863 863.0 0.00 0.00 863 865.8 4.33 0.32
la09 951 951 951.0 0.00 0.00 951 954.3 7.21 0.35 951 951.3 0.90 0.03 951 951.0 0.00 0.00
la10 958 958 958.0 0.00 0.00 958 959.1 3.30 0.11 958 958.0 0.00 0.00 958 958.0 0.00 0.00
la11 1222 1222 1222.0 0.00 0.00 1222 1225.0 5.02 0.25 1222 1222.0 0.00 0.00 1222 1222.0 0.00 0.00
la12 1039 1039 1039.0 0.00 0.00 1039 1080.6 45.81 4.00 1039 1039.0 0.00 0.00 1039 1039.0 0.00 0.00
la13 1150 1150 1150.0 0.00 0.00 1150 1168.5 32.16 1.61 1150 1150.9 2.70 0.08 1150 1150.0 0.00 0.00
la14 1292 1292 1292.0 0.00 0.00 1292 1292.0 0.00 0.00 1292 1292.0 0.00 0.00 1292 1292.0 0.00 0.00
la15 1207 1260 1285.8 12.21 6.53 1268 1394.1 91.42 15.50 1207 1238.4 23.75 2.60 1246 1256.8 10.26 4.13
la16 945 1011 1045.7 22.33 10.66 999 1079.0 47.85 14.18 946 1004.9 33.47 6.34 989 1002.5 7.39 6.08
la17 784 852 872.2 9.00 11.25 819 873.2 53.09 11.38 796 816.0 21.16 4.08 802 817.7 6.36 4.30
la18 848 911 944.1 17.16 11.33 901 963.5 41.72 13.62 861 890.6 19.28 5.02 861 883.8 10.48 4.22
la19 842 930 957.5 14.07 13.72 936 970.6 35.89 15.27 863 893.9 15.55 6.16 877 886.1 4.70 5.24
la20 902 968 994.1 12.47 10.21 973 1018.0 33.11 12.86 907 927.8 22.91 2.86 902 935.1 12.33 3.67
la21 1046 1223 1256.2 19.05 20.10 1178 1306.9 114.33 24.94 1122 1151.9 18.58 10.12 1153 1181.0 15.92 12.91
la22 927 1091 1134.2 20.45 22.35 1053 1186.1 124.60 27.95 989 1032.5 25.33 11.38 1008 1028.0 8.65 10.90
la23 1032 1141 1185.5 20.63 14.87 1093 1167.3 58.25 13.11 1035 1085.7 30.06 5.20 1069 1082.1 7.26 4.85
la24 935 1104 1138.4 16.32 21.75 1053 1166.7 83.63 24.78 1009 1036.5 15.88 10.86 991 1028.8 14.32 10.03
la25 977 1148 1183.8 15.45 21.17 1101 1206.4 85.01 23.48 1052 1108.3 31.43 13.44 1084 1102.0 9.89 12.79
la26 1218 1440 1459.5 13.49 19.83 1393 1468.6 70.70 20.57 1298 1346.9 25.67 10.58 1330 1366.2 16.73 12.17
la27 1235 1461 1511.8 21.91 22.41 1387 1480.7 69.30 19.89 1336 1368.9 19.98 10.84 1415 1428.0 7.17 15.63
la28 1216 1443 1474.3 19.04 21.24 1388 1446.7 67.34 18.97 1284 1362.0 42.11 12.01 1372 1388.2 8.53 14.16
la29 1152 1432 1460.0 13.39 26.74 1415 1478.6 52.67 28.35 1330 1371.1 34.09 19.02 1353 1367.1 12.57 18.67
la30 1355 1517 1567.8 29.13 15.70 1512 1625.1 77.96 19.93 1437 1489.9 33.14 9.96 1443 1467.6 14.35 8.31

orb01 1059 1229 1267.6 22.18 19.70 1183 1304.2 50.10 23.15 1142 1183.5 23.17 11.76 1147 1157.9 10.45 9.34
orb02 888 999 1021.9 17.25 15.08 1018 1086.3 56.61 22.33 932 948.1 15.44 6.77 954 966.7 10.41 8.86
orb03 1005 1223 1253.7 16.12 24.75 1286 1367.5 65.42 36.07 1064 1144.0 41.62 13.83 1108 1132.6 13.65 12.70
orb04 1005 1111 1157.6 23.69 15.18 1062 1172.6 57.89 16.68 1023 1104.6 48.08 9.91 1058 1093.7 16.95 8.83
orb05 887 1023 1064.8 21.43 20.05 1014 1112.6 56.04 25.43 914 953.6 25.03 7.51 915 937.0 11.78 5.64
orb06 1010 1216 1231.3 8.60 21.91 1271 1316.8 49.03 30.38 1063 1130.7 41.10 11.95 1106 1125.0 14.16 11.39
orb07 397 455 464.9 6.82 17.10 435 476.1 25.94 19.92 412 423.8 7.95 6.75 411 425.7 6.94 7.23
orb08 899 1059 1091.2 17.09 21.38 1120 1176.6 36.46 30.88 956 998.8 30.46 11.10 993 1022.1 11.68 13.69
orb09 934 1052 1076.6 18.27 15.27 1030 1152.5 70.89 23.39 1001 1042.5 48.46 11.62 993 1017.8 11.57 8.97
orb10 944 1103 1136.5 20.71 20.39 1053 1209.2 115.39 28.09 966 1031.3 34.18 9.25 1023 1038.9 13.22 10.05
+/ = /− 0/8/40 0/2/46 16/7/25 −
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maximum evaluation time of the algorithm. Therefore,
a hierarchical comparison of the RPD is conducted, and
the  proportion  of  the  solving  effectiveness  of  the
algorithm is calculated based on the criteria “RPD = 0,
RPD < 10,  RPD < 20” to  generate Fig.  9.  This  figure
shows that  the  KLCACO algorithm outperforms  other
algorithms at the “RPD = 0” level and almost all results
obtained using the KLCACO algorithm fall  within the
“RPD < 20” range. Additionally, the algorithm proposed
in this  paper  displays superior  results  compared to the
AAA  and  HA  algorithms.  Therefore,  the  KLCACO
algorithm  can  provide  competitive  performance  for
solving JSPs.

Under the constraint of limited evaluation iterations,
the  KLCACO  algorithm  demonstrated  excellent
performance  on  most  of  the  datasets.  This  finding
effectively  validates  the  efficiency  of  the  KLCACO
algorithm  in  solving  JSP.  Furthermore,  in  terms  of
algorithm  stability  and  robustness,  the  KLCACO
algorithm  displayed  commendable  results.  These
results  indicate  that  although  optimal  solutions  have
not  been  attained  for  all  test  cases,  the  proposed
algorithm  maintains  a  high  level  of  competitiveness
due to its robustness and stability.

5　Conclusion

This  paper  introduces  a  co-operative-guided  ACO
algorithm  with  knowledge  learning  for  efficiently
addressing JSP. The primary improvements introduced
in the algorithm are as follows:

For  the  characteristics  of  the  JSP,  the  KLCACO
algorithm  uses  cooperative  construction  to  achieve
multimachine  synchronous  processing  operation

selection  and  proposes  an  individual  solution
construction  scheme  based  on  schedule  knowledge
learning.  The  pheromone  structure  optimization  is
completed  by  incorporating  the  parallel  processing
structure  of  the  machine,  and  the  JSP  solution
information  is  used  for  adjusting  the  pheromone
threshold and estimating the population evolution state
to  complete  the  dynamic  adaptive  control  of  the
pheromone. Additionally, the N7 neighborhood is used
in the local  information optimization of  the KLCACO
algorithm,  further  improving  the  local  mining
capability  and  enhancing  the  efficiency  of
neighborhood  search.  Numerous  experiments  were
conducted  to  verify  the  performance  of  the  KLCACO
algorithm,  and  the  results  were  comprehensively
analyzed.  The  results  show  that  the  KLCACO
algorithm  has  good  stability  and  high  solution
accuracy. Compared with other high-quality intelligent
optimization  algorithms,  the  KLCACO  algorithm
exhibits excellent performance.

Moreover, the KLCACO algorithm occasionally fails
to achieve the optimal solution within the limited time,
indicating  potential  avenues  for  enhancing  existing
knowledge  model  mechanisms.  Subsequent  endeavors
in  future  research  will  focus  on  refining  this  issue  to
facilitate  optimal  information  learning  and  achieve
improved performance.
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Fig. 8    Mean  standard  deviation  comparison  of  the
algorithms.

 

 
Fig. 9    Relative percentage error distribution of algorithms.
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