

Reset-Free Reinforcement Learning via Multi-State Recovery and
Failure Prevention for Autonomous Robots

Xu Zhou, Benlian Xu*, Zhengqiang Jiang, Jun Li, and Brett Nener

Abstract: Reinforcement learning holds promise in enabling robotic tasks as it can learn optimal policies via trial

and error. However, the practical deployment of reinforcement learning usually requires human intervention to

provide episodic resets when a failure occurs. Since manual resets are generally unavailable in autonomous

robots, we propose a reset-free reinforcement learning algorithm based on multi-state recovery and failure

prevention to avoid failure-induced resets. The multi-state recovery provides robots with the capability of

recovering from failures by self-correcting its behavior in the problematic state and, more importantly, deciding

which previous state is the best to return to for efficient re-learning. The failure prevention reduces potential

failures by predicting and excluding possible unsafe actions in specific states. Both simulations and real-world

experiments are used to validate our algorithm with the results showing a significant reduction in the number of

resets and failures during the learning.

Key words: reinforcement learning; manual reset; multi-state recovery; failure prediction

1　Introduction

Autonomous robots are expected to safely operate in
unknown environments for extended lengths of time
without human intervention. Reinforcement learning
(RL) holds promise for robot autonomy because it can
adapt to various environments by trial and error

learning from the interactions between robots and
surrounding environments. However, many RL
algorithms require manually resetting the state of the
system between training episodes[1−3]. For example,
robots using episodic RL need human intervention to
be reset to the same initial state for a new learning
episode if they experience failures during the learning.
Since manual resets are not desired in robot autonomy,
it is practically important to design an autonomous
reset method for RL.

Manual resets are needed in many situations such as
experiencing failures or successfully finishing an
episode and transiting from the goal state of one
episode to the initial state of the next episode. Because
the failure is a main and common reason of the reset,
we mainly focus on the failure-induced resets in this
work. It is then intuitive to design the autonomous reset
method from two perspectives: (1) Provide reasonable
recovery plans for failures that have already occurred.
Instead of simply abandoning the failure episode that
results in resetting to the initial state, the recovery
plans can oppositely continue the learning to make the
failure episode complete and successful in achieving

 Xu Zhou is with School of Mechanical Engineering, Changshu

Institute of Technology, Changshu 215500, China. E-mail:
xuzhou@cslg.edu.cn.

 Xu Zhou and Jun Li are with School of Automation, Nanjing
University of Science and Technology, Nanjing 210094, China.
E-mail: lijun1008@163.com.

 Benlian Xu is with School of Electronic and Information
Engineering, Suzhou University of Science and Technology,
Suzhou 215009, China. E-mail: xu_benlian@usts.edu.cn.

 Zhengqiang Jiang is with Faculty of Medicine and Health, The
University of Sydney, Sydney 2006, Australia. E-mail:
zhengqiang.jiang@sydney.edu.au.

 Brett Nener is with Department of Electrical, Electronic and
Computer Engineering, The University of Western Australia,
Perth 6009, Australia. E-mail: brett.nener@uwa.edu.au.

* To whom correspondence should be addressed.
 Manuscript received: 2023-08-13; revised: 2023-10-02;

accepted: 2023-10-10

TSINGHUA SCIENCE AND TECHNOLOGY
ISSN 1007-0214 14/24 pp1481−1494
DOI: 10 .26599 /TST.2023 .9010117
Volume 29, Number 5, October 2024

© The author(s) 2024. The articles published in this open access journal are distributed under the terms of the

Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

the training goal. This not only substantially removes
the necessity of resets, but may also assist expediting
the learning process. (2) Prevent potential failures from
happening in the learning process. Complementary to
the recovery plans, this reduces the necessity of resets
in terms of the frequency. In other words, fewer
failures mean fewer resets.

Consider an example scenario in which an
autonomous robot uses RL to navigate in an unknown
maze. At a specific moment, the robot may face an
obstacle in front of it and RL tells the robot to go
forward. This situation seemingly presents a quandary:
RL is waiting for the robot to reach the state of the
obstacle to continue the remaining steps in current
episode, but the robot cannot because it keeps hitting
the obstacle and may be actually waiting for RL to
solve this problem such as giving another feasible
instruction.

RL can use external failure recovery methods[4−7] to
diagnose the failure and bypass it with alternative
plans. In other words, when a failure happens, RL stops
working and the external failure recovery method takes
over the robot control and recovers the robot back to a
safe state or the state that RL wants to go. When the
robot is safe, RL resumes working independently.
However, such an external failure recovery method can
only correct the mistake whenever it happens but
cannot analyze why it happens and hence RL can
continue making the same mistake. It is then ideal for
RL itself to have the capability of generating recovery
plans to get rid of the problematic state.

More importantly, the recovery plan should be able
to determine which state to go back to. It could be
neither necessary nor the best to recover back to the
initial states as most RL algorithms do. For instance, if
a robot reaches a dead end in a maze, it may be better
to recover back to the junction to other paths rather
than the starting position considering that the junction
may be closer to the goal position and the remaining
exploration is more efficient with taking less time. On
the other hand, it is obviously meaningless and
unreasonable to recover back to the position that is still
in the dead end.

Manual resets could be also avoided by predicting
failures that result in resets and preventing them from
happening. For RL, this means predicting unsafe
actions in advance and excluding them during the
exploration. The prediction can be achieved by using
prior knowledge for a known environment. However,

when the environment is unknown or dynamic, the
prediction should be based on the information or
knowledge learned online by the robot itself.

To this end, we propose a reset-free reinforcement
learning (RFRL) algorithm that can recover from
failures to multiple previous safe states and prevent
potential failures. More specifically, the multi-state
recovery (MSR) evaluates the safety of previous states
and then determines which state is the best for
recovery. The failure prevention (FP) predicts unsafe
actions that can result in failures and excludes them
during the exploration. The contributions are three-
fold. Firstly, a new reinforcement learning algorithm
based on multi-state recovery and failure prevention is
proposed to solve the manual reset problem in practical
deployment of RL on autonomous robots. The MSR
endows RL an important capability of dealing with the
failures that have already happened, which is of great
importance in practice but has not been investigated
yet. Secondly, the proposed failure prevention can be
regarded as a practical safe exploration method that can
work flexibly with or without prior knowledge. For an
unknown environment, the proposed FP uses a simple
method of recording and prohibiting unsafe actions that
cause failures. If the environment is known or partially
known, prior knowledge can be used in generating a
failure prediction model to provide a more accurate
prediction of unsafe actions. Lastly, both simulation
results and real-world experiment results are provided
to demonstrate that either multi-state recovery or
failure prevention can individually reduce resets while
their combination, RFRL, can further reduce resets in a
more efficient way.

2　Related Work

RL has achieved success in robot autonomy[8−12] in
recent years. In general, RL methods can be divided
into two categories: model-based methods[13] and
model-free methods[14]. Model-based methods are
known to be sample-efficient and model-free methods
are popular due to their simplicity and favorable
computational properties. However, the practical
deployment of both methods often assumes an episodic
setting, which requires manually resetting the state of
the system between episodes[2]. Since manual resets are
not desired in robot autonomy, our work aims to solve
this important problem by proposing an autonomous
reset method, including self-recovering from failures
and reducing potential failures.

 1482 Tsinghua Science and Technology, October 2024, 29(5): 1481−1494

Although current safe RL algorithms[15] do not
specifically focus on solving the reset problem, they
can indeed reduce the resets by reducing the failures in
RL. Some methods add safety concerns into the
original RL optimization criteria[16−19] to rule out
unsafe policies, and other methods restrict
explorations[20−23] by adding safety constraints on RL
action selections. Robust RL algorithms[24−26] can also
improve the safety of RL due to their robustness to
environment dynamics by identifying uncertain
components of the environment and randomizing the
parameters based on domain randomization. While
these methods can indirectly reduce the resets, the
safety concerns or constraints in them still require
designs by humans, which may not be always available
in practical applications. In addition, these methods do
not investigate the recovery from failures that have
occurred. When failures cannot be avoided, these
methods need manual resetting again.

While a few recent works[1−3] specifically target on
learning an automatic reset policy for RL, they also
lack the capability of dealing with failures that cannot
be avoided to happen. In addition, the reset policies
learned in previous works[1−3] generally reset to the
initial state, which may not always be necessary or
beneficial. Our work investigates which previous safe
state can be the best return state.

3　Methodology

As shown in Fig. 1, our reset-free reinforcement

learning consists of two key parts, multi-state recovery
and failure prevention. The multi-state recovery
evaluates the safety level of previous states and
determines which state is the best to reset to when a
failure is detected. Instead of simply abandoning the
failed episode with resetting to the initial state, the
multi-state recovery aims to finish the training goal in
each episode. The failure prevention uses failure
recording for an unknown environment or a few-shot
learning model for a known or partially known
environment to predict and exclude unsafe actions,
which prevents failures from occurring during the
learning process. For simplicity, we use a standard ε-
greedy Q-learning algorithm[27] as our basic RL
algorithm for illustration. However, our method is
actually designed for general RL methods because
multi-state recovery and failure prevention are both
based on general definitions of states and actions in
RL.

3.1　Multi-state recovery

When a robot experiences a failure in a problematic
state in practice, it is possible to recover back to a
previous, unproblematic state and make a new plan. To
make this recovery practically applicable, we assume
that there exists an available motion controller for the
robot to execute the recovery plan such as going to a
certain state.

An important question in the recovery is: Which state
is the best to recover back to? Intuitively, such a state

Fig. 1 Schematic diagram of reset-free reinforcement learning.

 Xu Zhou et al.: Reset-Free Reinforcement Learning via Multi-State Recovery and Failure Prevention for … 1483

should be as safe as possible and can assist the
subsequent learning as efficiently as possible. During a
specific episode, for example, the robot is in the grey
state and taking a problematic action “go south” as
shown in Fig. 2. Because the state that the robot wants
to enter is an obstacle, a failure will occur and be
detected. It may then be ideal for the robot to explore
other actions in the current position if it does not know
the results of these alternative actions. Not doing this
and directly going back to other states such as the
previous light blue state may sometimes miss an
optimal path if the block right to the grey state is not an
obstacle. However, if the robot has already known the
consequences of alternative actions as shown in Fig. 2,
then it is ideal to recover back to the junction state, i.e.,
the red state, because the states in the dead end are
meaningless in achieving the goal.

N S N =

{st−N+1, st−N+2, . . . , st−1, st}, N
{at−N+1, at−N+2, . . . , at−1, at}

N

N

N
N

θ (s)

s

Inspired by this, we record an N-step learning
process that includes previous states,

 and corresponding
actions, , where t is the time
index, st means the state at time t, and at means the
action at time t. The selection of should be related to
the complexity of the robot, task or environment and
different values of should affect the performance of
RL. One of our goals is to experimentally investigate
these relationships and also determine which state in
these states is ideal to recover back to when a failure
occurs. We assign for each of these states a recovery
priority value , which indicates the priority of each
state for the robot to reset to. When a state has more
safe actions that do not cause failures, it should have a
larger priority value. A safe action set in state , As(s),
can be defined as

As (s) ≜ {a ∈ A (s) |a < Ad (s)} (1)

Ad (s)
s

where A(s) means the action set containing all the
actions in state s, and means the dangerous
action set in state and it can be updated by failures
that have been detected and failures that can be
predicted. In this work, we assume the failure detection
as receiving a pre-defined large negative reward

Ad (s) ≜ {a|r (s,a) = r (failure)} (2)
r (s,a)

(s,a) r (failure)
where means the reward of a state-action pair

 and means the reward of a failure.
θ (s)Thus, the priority can be calculated by

θ (s) = |As (s)| (3)
| · |where computes the size (number of elements) of a

set.

S ∗r

If different states have the same greatest priority,
then the robot will reset to the nearest state because the
nearest state may be closer to the goal state. Then, the
best reset state determined by the recovery strategy
is

S ∗r = argmind
arg max

s∈SN

θ (s) , st

 (4)

d
arg max

s∈SN

θ (s), st

S N st arg max

s∈SN

θ (s)

where means the distance between

an arbitrary state with the largest priority in state space
 and state . Please note that can be

either one individual state or a set of multiple states.

3.2　Failure prevention

Although failure prevention cannot address the failures
that have occurred, it can be used as another way to
reduce resets from a complementary perspective of
reducing potential failures.

Ad (s)
Ad (s)

For an unknown environment, a simple and practical
method is to exactly prevent failures that have already
occurred by adding corresponding unsafe actions into

. As shown in Fig. 3, for example, the robot can
add the action of going east into when it collides
with the obstacle for the first time. When the robot is in
the grey state again next time, it will not select the
action of going east to avoid the same failure. Then, the
ε-greedy action selection strategy in traditional RL can
be modified to

π (s) =

a = rand(A(s)) |a < Ad(s), if ξ < ε ;
argmax

a∈A
Q (st+1,a) |a < Ad(s), otherwise (5)

ξ εwhere is a random number, is a parameter to decide

Fig. 2 Illustration of multi-state recovery.

 1484 Tsinghua Science and Technology, October 2024, 29(5): 1481−1494

As (s)
how often an action should be selected randomly from

, and Q(st+1,a) is the Q-value of the state-action
pair (st+1,a).

If prior knowledge can be provided, we can further
generate a few-shot learning model to recognize similar
obstacles in the environment. As long as an obstacle is
successfully recognized, the actions towards the
obstacle can be inferred as unsafe and hence should be
not allowed. For example, if the robot can recognize
the obstacle in the state of the second row and the
second column in Fig. 3, it can infer both the action of
going south in the yellow state and the action of going
west in the blue state as unsafe actions. Then, the
failure prediction problem can be transformed to a few-
shot-learning-based obstacle recognition problem.

Few-shot learning tends to have three datasets:
training set, support set, and query set. The training set
usually has thousands of different kinds of data with
labels, and it is used to train the model with the
capability of telling the difference between two
common categories. The support set and the query set
share the same labels, but the categories of data in them
never occur in the training set. The support set provides
some samples for the model to refer, while the query
set is the real testing set which the model needs to
classify. We call the target few-shot problem C-way K-
shot if the support set contains K labeled examples for
each of C unique classes. The size of K is typically 1 or
5, that is to say, one-shot or five-shot. Our recognition
is set as a 5-way 5-shot problem, and the samples in the
support set never occur in the training set.

We use relation network[28] as the specific few-shot
learning method in this work due to its good
performance and easy implementation. We do not
make any changes to the trained model and still use the
similar expression to describe our problem.

S = {(xi,yi)}mi=1(m = K ×C) xi yi

d0

Specifically, our training set is based on
miniImageNet[28]. The support set can be denoted as

, where and represent
the sample and its label. We first divide the area around
the obstacle into parts starting from east in a
clockwise direction. Then the query set can be denoted
as

Q′ =
{(

x j,s(Areadi),yi
)}n

j=1
,di = 1, 2, . . . ,d0 (6)

s (Areadi) Areadi

x j,s(Areadi)

s (Areadi) j

where Areadi represents the area of the di-th part,
 is the initial position in towards the

obstacle at a constant distance, means the
picture captured from of the -th obstacle, n
is the number of obstacles in the environment, and Q'
denotes the query set.

Therefore, the recognition problem can be defined as

ri, j,s(Areadi) = gϕ
(
C
(

fφ (xi) , fφ
(
x j,s(Areadi)

)))
,

i = 1,2,3,4,5, di = 1,2, . . . ,d0 (7)
ri, j,s(Areadi)

x j,s(Areadi)

xi gϕ(·)
fφ(·)

C(·)
fφ(xi) fφ(x j,s(Areadi))

where is the relation score for the relation
between one query input and training sample
set examples , is the relation module in the
relation network, is the embedding module in the
relation network, and is the concatenation of
feature maps and in depth.

Ad (s)
θ (s) π (s)

The relation network combines the feature map of
samples in the support set and query set, computes the
relation scores between different categories in the
support set, and then chooses the category of the
biggest score to complete the classification problem.
Once an obstacle is recognized, all the actions towards
it should be added into , which will also update

 and .

3.3　Algorithm summary

Our full algorithm is presented as Algorithm 1. Failure
prevention is always running to predict and avoid
failures and multi-state recovery is executed only when
a failure occurs to save resources. In general, multi-
state recovery is executed mostly in the early stage of
RL. As the episode increases, RL gains more accurate
knowledge about the environment and unsafe actions.
This results in fewer occurrences of failures and hence
fewer utilizations of the multi-state recovery.

Ad (s)
The algorithm firstly initializes all the variables. For

each episode, the algorithm updates with the
newly predicted unsafe actions and executes the
modified action selection described in Eq. (5). If a

Fig. 3 Illustration of failure prevention.

 Xu Zhou et al.: Reset-Free Reinforcement Learning via Multi-State Recovery and Failure Prevention for … 1485

Ad (s) Ad (s)
failure is detected (Line 5), it is recorded into the
dangerous action set (Line 6). Based on ,
the algorithm determines the ideal state to recover back
to (Line 9) and continues learning in the current
episode until the final training goal or the maximal step
number is achieved. If no failure occurs, the algorithm
determines the next state using the transition function
P(st+1|st,at), which indicates the probability of reaching
state st+1 after performing action at in state st, and then
updates Q-values as the standard Q-learning does.

4　Result and Discussion

4.1　Experiment setup

In this work, we use both a maze navigation simulation
and a real-world block stacking experiment to validate
our algorithm.

N

The simulation is about robot navigation in a maze
with obstacles. We set two maze environments with the
maze sizes to be 4×4 and 11×11. Firstly, it is
convenient for us to compare 4×4 maze results with a
closely related work[2] that learns a reset policy to
reduce manual resets. In addition, the 11×11 maze can
be used to investigate the performances of the multi-
state recovery in a more complex environment and the
influences of different selections of on the
performance of RL. As shown in Fig. 4, the state space
of the 4×4 maze consists of 16 grids and 4 of them are
obstacles. The 11×11 maze has 121 grids and 43 of
them are obstacles. The robot can take four actions: go
north, go south, go east, and go west. The robot starts

ε γ

α

each episode from the upper-left corner of the maze
and terminates if reaching the lower-right corner (goal)
with a reward of 1 or hitting an obstacle with a reward
of −5. For any other individual movements, the reward
is −0.02. Parameters , the discount factor (), and the
learning rate () are set to be 0.1, 0.9, and 0.5,
respectively.

ε γ α

The real-world block stacking experiment is about
using a lightweight Kinova® JACO® robot arm with
three fingers as shown in Fig. 5. We expect the robotic
arm to stack four blocks, Block A (purple), Block B
(green), Block C (orange), and Block D (blue), in the
target position from their original positions. Because
the grasping is not the focus of our work, we assume
the original position and the target position are fixed
and known so that we can guarantee a high grasping
accuracy. However, the stacking order is unknown to
the robot, and hence it needs reinforcement learning
itself to find out. The stacking rules include: (1) Block
A must be at the bottom of any other three blocks, (2)
Block D must be at the top of Block C, and (3) Block
D must be at the top of Block B, but not in direct
contact with Block B. Violating any of these rules, the
blocks will fall over, which is counted as a failure. The
state space is defined as the block order at the target
position. The robotic arm can take four actions: pick
and place Block A, Block B, Block C, and Block D.
The reward of reaching the goal (A-B-C-D) is 1 and
the reward of a failure is −1. For any other individual
action, the reward is 0. Parameters , , and are set
to be 0.1, 0.9, and 0.2, respectively.

Fig. 4 Simulation setup: 4×4 (left) and 11×11 (right) mazes.
The robot is supposed to find an optimal path with the
largest reward from the initial state (S) to the goal state (G).
The black grids mean obstacles and the robot is not allowed
to pass these obstacles. The robot can take four actions: go
north, go south, go east, and go west.

Algorithm 1 Reset-free reinforcement learning
1: Initialize all variables
2: for each episode do

Ad (s) ▷3: 　 Update failure prevention
a ← π (s) ▷4: 　 Eq. (5)

r (s,a) = r (failure)5: 　 if then
Ad (s)← Ad (s)∪{a}▷6:　　 record failures

As (s) ▷7: 　　 Update Eq. (1)
8: 　　 Update Q-value

s ← S ∗r ▷9: 　　 multi-state recovery
10:　 else

s← P (st+1| st,at)11: 　　
12: 　　 Update Q-value
13: 　end if
14: end for
15: Return the optimal policy

 1486 Tsinghua Science and Technology, October 2024, 29(5): 1481−1494

The calculation of the number of resets includes two
parts. The first one is adding one reset if the robot
cannot achieve the goal state within the limited steps in
an episode. We do not count the transition from the
goal state in an episode to the initial state in the next
episode as a reset because we focus on the failure-
induced resets in this work. The other part comes from
the occurrence of failures that are defined as collisions
between the robot and obstacles. If not using multi-
state recovery, a reset will be needed whenever a
failure happens. In order to provide reliable results, the
simulations and the real-world experiments in this
work have been conducted 50 and 20 times,
respectively, to compute the average.

For a comprehensive validation, we firstly assume
the maze environment is totally unknown, which
means failure prevention can only use the simple
failure recording method. In this setting, we will
compare our algorithm with related work and
investigate the parameters of multi-state recovery as
well as the influences of multi-state recovery and
failure prevention on RFRL. Then, we will assume the
maze environment is known to validate the more
complex failure prevention based on few-shot learning.
The dynamics is also changed from deterministic to

stochastic to validate whether RFRL still works. Lastly,
we evaluate the performance of RFRL on real-world
experiments to see if it is consistent with simulations.
For all validations, multi-state recovery and failure
prevention are also used as independent methods.
When multi-state recovery works independently, it uses
the ε-greedy action selection strategy as in traditional
RL. When failure prevention works independently, the
learning episode terminates and a reset must be needed
once a failure occurs.

4.2　Result

For a convenient expression and comparison, multi-
state recovery and failure prevention are abbreviated to
MSR and FP, respectively.

(1) Comparison with related reset policy

qmin

N

Table 1 shows that MSR, FP, and RFRL can all
reduce much more resets than the reset policy proposed
by Eysenbach et al.[2] We use the best result of their
reset policy with the early abort threshold = 0.4
for comparison. For our methods, is chosen to be 3
and the maximum step per episode is set as 200
because the 4×4 maze is relatively simple.

Although both Eysenbach’s reset policy and our FP
method reduce the resets by reducing potential failures,

Fig. 5 Capability of self-recovering back to any state. Human intervention is required in traditional reinforcement learning to
reset a failure state to the initial state. In contrast, our self-recoverable reset strategy can recover back to any states with
reversely executing the safe actions recorded in the experience buffer. With the multi-state recovery, our method could decide a
better state to recover back to. In the situation that our method determines to recover back to the initial state, it is equivalent to
the manual reset.

 Xu Zhou et al.: Reset-Free Reinforcement Learning via Multi-State Recovery and Failure Prevention for … 1487

our FP method is still better because we can exactly
avoid recorded failures that have occurred while
Eysenbach uses a threshold to partially abort some
dangerous actions. Because MSR gives RL the ability
to recover from failures, both MSR and RFRL can
completely avoid resets. In addition, our method
requires much fewer steps to finish the training, which
can be regarded as more efficient.

(2) MSR vs. FP in RFRL
As discussed before, either MSR or FP can

individually reduce the number of resets. In order to
investigate the effects in detail, we calculate the
number of resets, number of total steps to converge,
and number of episodes to converge in Table 2. For the
simple 4×4 maze and the complex 11×11 maze, both
MSR and FP can significantly reduce the number of
resets compared to standard Q-learning. While FP can
only reduce resets, MSR can guarantee no resets in the
simple maze and a mostly zero reset in the complex
maze. This is because MSR can substantially eliminate

resets through recovering from failures. In contrast, FP
only avoids resets by preventing failures, which can be
easily restricted with a necessity of accurate knowledge
about the environment. Combining MSR and FP to
RFRL, the performance improves to the best. Both FP
and MSR can find the optimal path with fewer episodes
and total steps than the standard Q-learning. However,
MSR is more efficient, especially in the complex maze.

(3) Will MSR cause more failures to recover from
a failure?

One important concern for MSR is whether more
failures can be caused during the recovery from a
specific failure to previous states.

Firstly, Table 3 shows that MSR does not really have
such a concern. Although the number of total failures
in MSR is close to that in the standard Q-learning, it is
still less than the standard Q-learning. This is because
MSR cannot change the essence of RL, i.e., trial and
error. MSR only changes the timing of exploring such
failures, which is exploring more failures than the
standard Q-learning in the early episodes. This
expedites the learning process with fewer episodes,
which can avoid the failures in the unnecessary
episodes. Because most failures have been encountered
in such episodes, Q-learning may also avoid them
based on the Q-values. However, the random
exploration strategy in the standard Q-learning can still
cause a few failures, which explains the small failure
difference between MSR and the standard Q-learning.

Secondly, FP has far fewer failures than MSR
because all the random explorations in FP are strictly
restricted to safe actions. In other words, the same

Table 1 Comparisons with previous results. Any of our
three methods outperforms the reset policy proposed by
Eysenbach et al.[2] in terms of both the number of resets and
the number of total steps.

Method Number of resets
(mean)

Number of total steps
(mean)

Reset policy[2] 55 6200
FP 9 1720

MSR 0 1738
RFRL 0 1694

Table 2 Full comparisons among the standard Q-learning,
Q-learning algorithm with FP, Q-learning with MSR, and
RFRL. Either FP or MSR can outperform the standard Q-
learning, although the combination of FP and MSR to RFRL
has the best performance in all the four methods. MSR can
almost guarantee a zero reset even in a complex 11×11 maze
because it avoids the resets from the perspective of fixing
failures rather than just avoiding failures.

Method
Number of

resets
(mean)

Number of
episodes
(mean)

Number of total
steps

(mean)
Standard-4×4 33.5 243.0 1796

FP-4×4 9.0 217.6 1720
MSR-4×4 0.0 211.8 1738
RFRL-4×4 0.0 207.8 1694

Standard-11×11 345.5 524.0 10 610
FP-11×11 95.1 327.6 10 658

MSR-11×11 0.9 234.2 9887
RFRL-11×11 0.7 235.0 9709

Table 3 Failure comparisons between the standard Q-
learning and our method. While MSR only reduces the
failures in a small amount, FP can significantly reduce the
failures because it can strictly restrict the random
explorations in the Q-learning to safe actions. However, the
failures in MSR do not result in resets while the failures in
the standard Q-learning and FP must require corresponding
resets.

Method Number of total failures (mean)
Standard-4×4 33.5

FP-4×4 9.0
MSR-4×4 32.1
RFRL-4×4 10.0

Standard-11×11 345.5
FP-11×11 95.1

MSR-11×11 333.2
RFRL-11×11 114.7

 1488 Tsinghua Science and Technology, October 2024, 29(5): 1481−1494

mistake is not allowed to be made again in FP.
Although the number of failures caused by normal
random explorations can be small, multiplication by
the number of episodes can be significant; this explains
the large failure difference between FP/RFRL and
standard Q-learning/MSR.

Thirdly, although MSR has a certain number of
failures, these failures do not result in resets because
they can be recovered by RL itself. For example, the
MSR explores an average of 32.1 failures without any
reset as indicated in Table 2. In contrast, the number of
failures is equal to the number of resets for the standard
Q-learning and FP because a reset is required whenever
a failure occurs in these two methods.

(4) N and maximum steps per episode in MSR
As discussed in the multi-state recovery strategy, the

selection of N and maximum steps per episode is
important in MSR. We empirically allow the variations
of N and maximum steps per episode to be 1 to 7 with
an increment of 1 and 100 to 1000 with an increment of
100, respectively.

Figure 6 shows the relationship between the number
of resets and the number of previous safe states N that
has been recorded. N can be also interpreted as
recovery limit, i.e., the maximum step the robot can go
back. When the environment is simple (the 4×4 maze),
MSR can guarantee no resets. However, when the
environment is more complex (the 11×11 maze), a
larger recovery limit N could be better especially when

allowing enough maximum steps in one episode. The
limited maximum step per episode such as 400 for the
11×11 maze could be too small for MSR to be fully
functional because recovering from failures needs to
cost steps. Thus, when the maximum step per episode
is small (400), a lower recovery limit (N = 1)
outperforms other N’s. As the maximum step per
episode increases to 600 or 800, however, N = 2 or N =
3 actually has the best performance. The differences
between various N’s should be much more significant
when the environment becomes highly complex.

Figure 7 shows the relationship between the number
of resets and maximum steps per episode. A general
conclusion is that the number of resets reduces as the
maximum step per episode increases, which provides
enough time for MSR to recover from failures. In
addition, Fig. 7 also proves that a larger N has better
performances when the maximum step per episode is
larger.

(5) Failure prevention with few-shot learning

d0

In order to use the few-shot learning for failure
prevention, we assume that some of obstacles are
known and some of them belong to the known category
but have not been seen before. The parameter in Eq.
(6) is set as 4, which means all the pictures are
captured from north, south, east, and west. As shown in
Fig. 8, our query set consists of 5 categories which
contain chairs, kettles, cartons, basins, and baskets, and
each category has 8 pictures. As 4 pictures describe an
obstacle, 40 pictures actually indicate 10 obstacles. For

Fig. 6 Relationship between the number of resets and
recovery limits N. When the environment is simple (a 4×4
maze), even only recovering back to the latest state can
guarantee no resets. However, when the environment is
more complex (a 11×11 maze), a larger recovery limit N
(e.g., 3) could be more effective, especially given enough
maximum steps per episode.

Fig. 7 Relationship between the number of resets and
maximum steps per episode. The number of resets reduces
as the maximum steps per episode increase. When maximum
steps per episode remain large, a larger N can be better in
reducing the number of resets.

 Xu Zhou et al.: Reset-Free Reinforcement Learning via Multi-State Recovery and Failure Prevention for … 1489

the 4×4 maze, we randomly choose 4 from the 10
obstacles. For the 11×11 maze, obstacles are allowed to
be repetitive, but the number of duplicates should be
less than 5 to guarantee the existence of each obstacle
in the maze.

Table 4 shows more results of failure prevention
based on few-shot learning. Because standard Q-
learning and MSR are not affected by FP, their results
remain the same in Table 2 and hence are not listed. As
shown in Table 4, failure prevention based on few-shot
learning can further reduce both the number of resets
and the number of failures compared with Table 2. Due
to prior knowledge, FP can accurately recognize all the
obstacles in the 4×4 maze and hence excludes all the
unsafe actions, resulting in a zero failure and a zero
reset. For the 11×11 maze, FP can reduce the number
of failures by 49%, and RFRL can guarantee a zero

reset. It should be also noted that the reduction of
episodes and total steps in 11×11 maze is more obvious
than that in 4×4 maze, which indicates the fusion of
external knowledge can be greatly useful in complex
environments.

(6) Stochastic dynamics
All of the previous simulations are based on

deterministic dynamics. However, the practical
dynamics can be stochastic, which means the result of
an action is not always as expected. For example, if the
robot executes the action of going north, it may
actually reach the state in the west or in the east instead
of the expected state in the north. In the maze
simulation, we assume the probability of reaching the
expected state is 0.8 and the probabilities of reaching
the states in the left or the right are both 0.1.

As shown in Table 5, RFRL still works in stochastic
dynamics because the number of resets has only a very
small increment, which is still close to zero. However,
the increments of failures, episodes, and total steps are
obvious because a safe action could also lead to a
failure in stochastic dynamics. In all the four methods,
RFRL still performs the best, which is consistent with
previous results. It is also interesting to see that the
increments of failures, episodes, and total steps in the
11×11 maze are larger than those in the 4×4 maze. For
instance, the number of failures using RFRL increases
by 8% in the 4×4 maze, but increases by 13% in the
11×11 maze. The possible reason is that only one path

Fig. 8 Query set and support set for the maze environment.

Table 4 Results of failure prevention based on few-shot learning. The use of prior knowledge can avoid more failures and
require fewer resets.

Method Number of resets (mean) Number of total failures (mean) Number of episodes (mean) Number of total steps (mean)
FP-4×4 0.0 0.0 208.5 1650

RFRL-4×4 0.0 0.0 200.7 1624
FP-11×11 48.5 48.5 207.3 5527

RFRL-11×11 0.0 56.9 150.7 5122

Table 5 Results of stochastic dynamics. The performance of each algorithm is worse compared with deterministic dynamics,
but our algorithm still works and performs better than standard Q-learning. RFRL still has the best performance.

Method Number of resets (mean) Number of total failures (mean) Number of episodes (mean) Number of total steps (mean)
Standard-4×4 38.8 38.8 284.6 2156

FP-4×4 10.0 10.0 261.2 2068
MSR-4×4 0.0 37.8 256.3 2059
RFRL-4×4 0.0 10.8 248.3 2030

Standard-11×11 413.7 413.7 620.9 12 584
FP-11×11 108.4 108.4 376.6 12 316

MSR-11×11 1.0 382.1 265.2 11 580
RFRL-11×11 0.9 129.6 265.5 11 017

 1490 Tsinghua Science and Technology, October 2024, 29(5): 1481−1494

exists with more obstacles in the 11×11 maze. As the
maze size further increases, the number of failures may
keep increasing too.

(7) Block stacking results
As shown in Table 6, the block stacking results are

consistent with the maze navigation simulation results.
RFRL still performs the best with the fewest number of
resets, the fewest number of episodes, and the fewest
number of total steps. The number of resets is zero if
MSR is used. FP can also reduce the number of resets,
but it still has 11.6 resets in average.

As shown in Fig. 5, our method firstly provides the
robot with a capability of self-recovering to any state in
its stored experience. This completely avoids human
intervention that is required in traditional
reinforcement learning. Even if the robot does not
know which state it should recover back to, it can at
least recover back to the initial state, which is
equivalent to the result of a manual reset. If the robot
has more information learned from failures or directly
from an external guidance, it can decide a better state
to recover back to.

In order to investigate the influence of N and the
maximum number of steps per episode on RFRL, we
empirically allow the variation of N to be 0 to 4 with
an increment of 1. N = 0 means no recovery at all,

while N = 4 means that four maximum steps can be
recovered but not all the four steps should be
recovered. In order to investigate the influence of the
maximum number of steps per episode on RFRL, we
also empirically allow the maximum number of steps
per episode to be 10, 20, 50, and 100, respectively.

Table 7 shows that the number of manual resets
increases as the recovery limit N increases. This is
because when the recovery limit is low, there could be
failures that cannot be recovered. For example, when
only one step (N = 1) is allowed to be recovered, the
failure (A-C-D) can be only recovered back to the state
(A-C), which can never succeed since another possible
stacking order (A-C-B-D) from this state is also a
failure and cannot be recovered either. When N
increases to 2, the failure (A-C-D) can be recovered but
the failure (A-C-B-D) still cannot be recovered.
Increasing N to 3 and 4 can recover any failures, but
N = 4 is actually worse than N = 3 due to more training
time. This means that a larger recovery limit could be
more than sufficient and hence result in unnecessary
recovery, which costs more training time. Because each
episode automatically terminates when it successfully
achieves the goal state, more maximum steps per
episode do not bring negative influences as a larger
recovery limit does. However, if the robot gets stuck in

Table 6 Full comparisons among the block stacking results using standard Q-learning, FP, MSR, and RFRL. Either FP or
MSR can individually outperform the standard Q-learning, although the combination of FP and MSR to RFRL has the best
performance in all the four methods. Both MSR and RFRL can guarantee a zero reset.

Method for
block stacking

Number of resets
(mean)

Number of failures
(mean)

Number of episodes
(mean)

Number of total steps
(mean)

Standard 41.2 41.2 157.0 3824
FP 11.6 11.6 133.2 2516

MSR (N = 3) 0.0 39.8 124.3 2681
RFRL 0.0 12.2 120.7 2294

Table 7 Number of manual resets and total training time with respect to different recovery limits and different maximum
steps per episode.

Parameter Number of manual resets (mean) Total training time (mean)

Different recovery limits N
(maximum steps per episode = 50)

0 41.2 5.5 h
1 22.5 4.8 h
2 10.8 4.4 h
3 0.0 3.6 h
4 0.0 3.9 h

Different maximum steps per episode
(recovery limits N = 3)

10 28.4 5.2 h
20 11.1 4.5 h
50 0.0 3.6 h
100 0.0 3.6 h

 Xu Zhou et al.: Reset-Free Reinforcement Learning via Multi-State Recovery and Failure Prevention for … 1491

a failure such as when the recovery limit is 1, more
maximum steps per episode could cause the robot to
keep making mistakes (e.g., keep stacking D in the
state A-C-B) until the maximum step is reached, which
costs a number of unnecessary training time.

4.3　Discussion

The general goal of our work is to assist RL-based
robots to be truly autonomous in practical applications
by solving an unavoidable problem: Robots require
manual resets whenever encountering failures during
the learning. While this can be solved by reducing
failures as done in previous work, we, more
importantly, propose a multi-state recovery strategy to
fix the failures. This is similar to the advice for many
complex systems: “We should not wonder if some
mishap may happen, but rather ask what one will do
about it when it occurs”[29]. We have also demonstrated
that the combination of multi-state recovery and failure
prevention can achieve better performances than either
individual method by guaranteeing no resets in simple
scenarios.

Within the self-recovery from failures, we
specifically propose a multi-state recovery strategy by
investigating which previous state is ideal to recover
back to when a failure occurs. This is actually inspired
by human’s self-recovery from failures. For example,
when humans experience a failure in a jigsaw puzzle,
they do not really go back to start from the first piece
or just revert the last piece, it is usual to take out
several recently inserted pieces and restart from such a
configuration. We achieve this by using memory to
record some past experiences such as a certain-length
sequence of state-action pairs in RL. This could cost
more resources in robots, but the increment of
resources is believed to be affordable in practical
systems because the amount of data is much smaller if
compared to the memory prepared for RL. The storage
of the matrix about unsafe state-action pairs can be
another cost of memory, but this cost can be greatly
reduced using compressed storage because the matrix
is usually highly sparse.

The failure discussed in this work is assumed to be
recoverable, which means it will not cause fatal
damages to the robot. For fatal failures, manual resets
are certainly needed. In addition, although we focus on
the failure-induced resets because the occurrence of
failures is a primary reason for manual resets in
practice, it cannot be denied that manual resets can also

be caused by other reasons. A representative example
is the transition from the goal state in one episode to
the initial state in the next episode. This could require
significant resets if RL requires massive learning
episodes, especially for highly complex tasks.
However, unlike the failure-induced resets, this kind of
resets does not necessarily need human intervention
because it can be the same for a specific task. Robots
may use pre-defined plans to autonomously go back to
the initial state.

In this work, we have only discussed the
performance of our method in a static environment. A
more challenging case can be a dynamic environment.
While our work may still work if the time-varying
change is small, it is better to design an advanced
algorithm to completely address dynamic changes.
Unlike the stochastic dynamics, it is more difficult for
multi-state recovery and RFRL to work in the dynamic
environment because the past experiences can be no
longer accurate and cannot be inferred or reconstructed
without any other assistance. One possible solution is
to estimate a dynamic environment model[30, 31] and
then predict the changes in the past experience using
model predictive control[32]. The estimation of the
state-transition probability of the environment can be
achieved by Bayes inference with forgetting effect[33].
We may also generate a map about the environment
through simultaneous localization and mapping
methods such as gmapping[34] and multi-robot
cooperative map fusion[35−37].

5　Conclusion

In this work, we propose a reset-free reinforcement
learning algorithm to avoid manual resets in the
practical deployment of RL on autonomous robots. It
includes multi-state recovery and failure prevention.
Instead of simply abandoning the failed episode
without further learning within it, the multi-state
recovery focuses on recovering from failures so that
RL can continue learning to succeed in finishing the
training goal in the failed episode. The failure
prevention predicts and avoids potential failures
according to previous experiences. Although these two
parts can individually reduce resets, the combination of
them is experimentally demonstrated to achieve fewer
resets with using fewer episodes.

Acknowledgment
This work was supported by the National Natural

 1492 Tsinghua Science and Technology, October 2024, 29(5): 1481−1494

Science Foundation of China (No. 61876024), partly
by the Higher Education Colleges in Jiangsu Province
(No. 21KJA510003) and the Suzhou Municipal
Science and Technology Plan Project (Nos.
SYG202351 and SYG202129).

References

 W. Han, S. Levine, and P. Abbeel, Learning compound
multi-step controllers under unknown dynamics, in Proc.
2015 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), Hamburg, Germany, 2015,
pp. 6435−6442.

[1]

 B. Eysenbach, S. Gu, J. Ibarz, and S. Levine, Leave no
Trace: Learning to reset for safe and autonomous
reinforcement learning, presented at 6th International
Conference on Learning Representations (ICLR),
Vancouver, Canada, 2017.

[2]

 A. Gupta, J. Yu, T. Zhao, V. Kumar, A. Rovinsky, K. Xu,
T. Devlin, and S. Levine, Reset-free reinforcement
learning via multi-task learning: Learning dexterous
manipulation behaviors without human intervention, in
Proc. 2021 International Conference on Robotics and
Automation (ICRA), Xi’an, China, 2021, pp. 6664−6671.

[3]

 V. Verma, G. Gordon, R. Simmons, and S. Thrun, Real-
time fault diagnosis [robot fault diagnosis], IEEE Robot.
Autom. Mag., vol. 11, no. 2, pp. 56–66, 2004.

[4]

 S. Lengagne, J. Vaillant, E. Yoshida, and A. Kheddar,
Generation of whole-body optimal dynamic multi-contact
motions, Int. J. Robot. Res., vol. 32, nos. 9&10, pp.
1104–1119, 2013.

[5]

 V. Vonásek, S. Neumann, D. Oertel, and H. Wörn, Online
motion planning for failure recovery of modular robotic
systems, in Proc. 2015 IEEE International Conference on
Robotics and Automation (ICRA), Seattle, WA, USA,
2015, pp. 1905−1910.

[6]

 K. Chatzilygeroudis, V. Vassiliades, and J. B. Mouret,
Reset-free trial-and-error learning for robot damage
recovery, Robot. Auton. Syst., vol. 100, pp. 236–250,
2018.

[7]

 J. Kober, J. A. Bagnell, and J. Peters, Reinforcement
learning in robotics: A survey, Int. J. Robot. Res., vol. 32,
no. 11, pp. 1238–1274, 2013.

[8]

 G. Kahn, A. Villaflor, B. Ding, P. Abbeel, and S. Levine,
Self-supervised deep reinforcement learning with
generalized computation graphs for robot navigation, in
Proc. 2018 IEEE International Conference on Robotics
and Automation (ICRA), Brisbane, Australia, 2018, pp.
5129−5136.

[9]

 K. Zhu and T. Zhang, Deep reinforcement learning based
mobile robot navigation: A review, Tsinghua Science and
Technology, vol. 26, no. 5, pp. 674–691, 2021.

[10]

 L. Wang, Z. Pan, and J. Wang, A review of reinforcement
learning based intelligent optimization for manufacturing
scheduling, Complex System Modeling and Simulation,
vol. 1, no. 4, pp. 257–270, 2021.

[11]

 X. Wang, L. Wang, C. Dong, H. Ren, and K. Xing,
Reinforcement Learning-Based Dynamic Order
Recommendation for On-Demand Food Delivery,
Tsinghua Science and Technology, vol. 29, no. 2, pp.
356–367, 2024.

[12]

 M. Deisenroth and C. E. Rasmussen, PILCO: A model-[13]

based and data-efficient approach to policy search, in
Proc. 28th International Conference on Machine Learning
(ICML), Bellevue, WA, USA, 2011, pp. 465−472.
 J. Peters and S. Schaal, Policy gradient methods for
robotics, in Proc. 2006 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS),
Beijing, China, 2006, pp. 2219−2225.

[14]

 J. Garcıa and F. Fernandez, A comprehensive survey on
safe reinforcement learning, J. Mach. Learn. Res., vol. 16,
no. 1, pp. 1437–1480, 2015.

[15]

 P. Geibel and F. Wysotzki, Risk-sensitive reinforcement
learning applied to control under constraints, J. Artif.
Intell. Res., vol. 24, pp. 81–108, 2005.

[16]

 Y. Kadota, M. Kurano, and M. Yasuda, Discounted
Markov decision processes with utility constraints,
Comput. Math. Appl., vol. 51, no. 2, pp. 279–284, 2006.

[17]

 T. Morimura, M. Sugiyama, H. Kashima, H. Hachiya, and
T. Tanaka, Nonparametric return distribution
approximation for reinforcement learning, presented at the
27th International Conference on Machine Learning
(ICML), Haifa, Israel, 2010.

[18]

 T. M. Moldovan and P. Abbeel, Safe exploration in
Markov decision processes, presented at the 29th
International Conference on International Conference on
Machine Learning (ICML), Edinburgh, UK, 2012.

[19]

 K. Driessens and S. Džeroski, Integrating guidance into
relational reinforcement learning, Mach. Learn., vol. 57,
no. 3, pp. 271–304, 2004.

[20]

 P. Abbeel, A. Coates, and A. Y. Ng, Autonomous
helicopter aerobatics through apprenticeship learning, Int.
J. Robot. Res., vol. 29, no. 13, pp. 1608–1639, 2010.

[21]

 J. Tang, A. Singh, N. Goehausen, and P. Abbeel,
Parameterized maneuver learning for autonomous
helicopter flight, in Proc. 2010 IEEE International
Conference on Robotics and Automation (ICRA),
Anchorage, AK, USA, 2010, pp. 1142–1148.

[22]

 C. Gehring and D. Precup, Smart exploration in
reinforcement learning using absolute temporal difference
errors, presented at the 12th International Conference on
Autonomous Agents and Multi-Agent Systems (AAMAS),
St. Paul, MN, USA, 2013.

[23]

 J. Morimoto and K. Doya, Robust reinforcement learning,
Neural Comput., vol. 17, no. 2, pp. 335–359, 2005.

[24]

 L. Pinto, J. Davidson, R. Sukthankar, and A. Gupta,
Robust adversarial reinforcement learning, in Proc. 34th
International Conference on Machine Learning (ICML),
Sydney, Australia, 2017, pp. 2817–2826.

[25]

 Y. Li, Y. Tian, E. Tong, W. Niu, Y. Xiang, T. Chen, Y.
Wu, and J. Liu, Curricular robust reinforcement learning
via GAN-based perturbation through continuously
scheduled task sequence, Tsinghua Science and
Technology, vol. 28, no. 1, pp. 27–38, 2023.

[26]

 R. S. Sutton and A. G. Barto, Reinforcement Learning: An
Introduction. Cambridge, MA: MIT press, 1998.

[27]

 F. Sung, Y. Yang, L. Zhang, T. Xiang, P. Torr, and T.
Hospedales, Learning to compare: Relation network for
few-shot learning, in Proc. 2018 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), Salt
Lake City, UT, USA, 2018, pp. 1199–1208.

[28]

 F. Corbato, On building systems that will fail, Commun.
ACM, vol. 34, no. 9, pp. 72–81, 1991.

[29]

 F. Cherni, M. Boujelben, L. Jaiem, Y. Boutereaa, C.
Rekik, and N. Derbel, Autonomous mobile robot
navigation based on an integrated environment

[30]

 Xu Zhou et al.: Reset-Free Reinforcement Learning via Multi-State Recovery and Failure Prevention for … 1493

representation designed in dynamic environments, Int. J.
Autom. Control, vol. 11, no. 1, pp. 35–53, 2017.
 C. Hu, R. Qiao, Z. Zhang, X. Yan, and M. Li, Dynamic
scheduling algorithm based on evolutionary reinforcement
learning for sudden contaminant events under uncertain
environment, Complex Systems Modeling and Simulation,
vol. 2, no. 3, pp. 213–223, 2022.

[31]

 J. Xin, Y. Qu, F. Zhang, and R. Negenborn, Distributed
model predictive contouring control for real-time multi-
robot motion planning, Complex System Modeling and
Simulation, vol. 2, no. 4, pp. 273–287, 2022.

[32]

 S. Ishii, W. Yoshida, and J. Yoshimoto, Control of
exploitation-exploration meta-parameter in reinforcement
learning, Neural Netw., vol. 15, nos. 4–6, pp. 665–687,
2002.

[33]

 K. Zhang and L. Ning, Hybrid navigation method for
multiple robots facing dynamic obstacles, Tsinghua
Science and Technology, vol. 27, no. 6, pp. 894–901,
2022.

[34]

 S. Sun and B. Xu. Online map fusion system based on
sparse point-cloud, Int. J. Autom. Control, vol. 15, nos.
4&5, pp. 585–610, 2021.

[35]

 Z. Li, B. Xu, D. Wu, K. Zhao, S. Chen, M. Lu, and J.
Cong, A YOLO-GGCNN based grasping framework for
mobile robots in unknown Environments, Expert Syst.
Appl., vol. 225, 2023.

[36]

 H. Lu, S. Yang, M. Zhao, and S. Cheng, Multi-robot
indoor environment map building based on multi-stage
optimization method, Complex System Modeling and
Simulation, vol. 1, no. 2, pp. 145–161, 2021.

[37]

Xu Zhou received the BEng degree in
automation from Nanjing University of
Information Science and Technology,
Nanjing, China, in 2011, the MEng degree
in control theory and control engineering
from Nanjing University of Science and
Technology, China, in 2014, and the PhD
degree in mechanical engineering from

Colorado School of Mines in Golden, USA, in 2019. He is
currently an assistant professor at School of Mechanical
Engineering, Changshu Institute of Technology, Changshu,
China. His current research interests include intelligent robot
control, reinforcement learning, and knowledge-based systems.

Benlian Xu received the PhD degree in
control science and engineering from
Nanjing University of Science and
Technology, Nanjing, China, in 2006. As a
visiting fellow, he was invited to join the
research project on biomedical image
analysis in The University of Melbourne,
The University of Western Australia, and

The Australian National University in 2009, 2012, and 2018,
respectively. He is currently a professor at School of Electronic
and Information Engineering, Suzhou University of Science and
Technology, Suzhou, China. His current research interests focus
on multi-object tracking, swarm intelligence, and simultaneous
localization and mapping.

Zhengqiang Jiang received the PhD
degree from The University of Western
Australia, Perth, Australia, in 2014. After
his PhD graduation, he worked at
University of Houston, Changshu Institute
of Technology, University of Technology
Sydney, and Macquarie University. He is
currently at Discipline of Medical Imaging,

Faculty of Medicine and Health, The University of Sydney,
Australia. His research interests include artificial intelligence,
object detection, object tracking, medical imaging, and image
perception, with papers published in IEEE Transactions on
Image Processing and Journal of the Optical Society of
America A.

Jun Li received the BEng degree in
automatic control from East China Institute
of Technology, Nanjing, China, in 1991,
the MEng degree in control theory and
control engineering from East China
Institute of Technology, Nanjing, China, in
1994, and the PhD degree in control
science and engineering from Nanjing

University of Science and Technology, Nanjing, China, in 1998.
He is currently a professor at School of Automation, Nanjing
University of Science and Technology, Nanjing, China. His
current research interests include intelligent control, robot
learning, and computer vision.

Brett Nener received the BEng and PhD
degrees from The University of Western
Australia, Australia, in 1977 and 1987,
respectively, and the MSc degree from The
University of Tokyo, Japan, in 1980. He
has been a visiting professor with the U.S.
Navy Space and Naval Warfare Center,
San Diego, CA, USA, University of

California, Santa Barbara, and Japanese National Institute of
Information and Communications Technology (NICT). He is
currently a professor at Department of Electrical, Electronic and
Computer Engineering, The University of Western Australia,
where he was the head of the department from 2008 to 2014.

 1494 Tsinghua Science and Technology, October 2024, 29(5): 1481−1494

