
 

Reset-Free Reinforcement Learning via Multi-State Recovery and
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Abstract: Reinforcement learning holds promise in enabling robotic tasks as it can learn optimal policies via trial

and error. However, the practical deployment of reinforcement learning usually requires human intervention to

provide episodic  resets  when a failure occurs.  Since manual  resets  are generally  unavailable  in  autonomous

robots,  we  propose  a  reset-free  reinforcement  learning  algorithm  based  on  multi-state  recovery  and  failure

prevention  to  avoid  failure-induced  resets.  The  multi-state  recovery  provides  robots  with  the  capability  of

recovering from failures by self-correcting its behavior in the problematic state and, more importantly, deciding

which  previous  state  is  the  best  to  return  to  for  efficient  re-learning.  The failure  prevention  reduces  potential

failures by predicting and excluding possible unsafe actions in specific states. Both simulations and real-world

experiments are used to validate our algorithm with the results showing a significant reduction in the number of

resets and failures during the learning.
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1　Introduction

Autonomous  robots  are  expected  to  safely  operate  in
unknown  environments  for  extended  lengths  of  time
without  human  intervention.  Reinforcement  learning
(RL) holds promise for robot autonomy because it can
adapt  to  various  environments  by  trial  and  error

learning  from  the  interactions  between  robots  and
surrounding  environments.  However,  many  RL
algorithms  require  manually  resetting  the  state  of  the
system  between  training  episodes[1−3].  For  example,
robots  using  episodic  RL  need  human  intervention  to
be  reset  to  the  same  initial  state  for  a  new  learning
episode if they experience failures during the learning.
Since manual resets are not desired in robot autonomy,
it  is  practically  important  to  design  an  autonomous
reset method for RL.

Manual resets are needed in many situations such as
experiencing  failures  or  successfully  finishing  an
episode  and  transiting  from  the  goal  state  of  one
episode to the initial state of the next episode. Because
the  failure  is  a  main  and  common reason  of  the  reset,
we  mainly  focus  on  the  failure-induced  resets  in  this
work. It is then intuitive to design the autonomous reset
method from two perspectives:  (1)  Provide reasonable
recovery plans  for  failures  that  have already occurred.
Instead  of  simply  abandoning  the  failure  episode  that
results  in  resetting  to  the  initial  state,  the  recovery
plans can oppositely continue the learning to make the
failure  episode  complete  and  successful  in  achieving
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the  training  goal.  This  not  only  substantially  removes
the  necessity  of  resets,  but  may  also  assist  expediting
the learning process. (2) Prevent potential failures from
happening  in  the  learning  process.  Complementary  to
the recovery plans,  this  reduces the necessity of  resets
in  terms  of  the  frequency.  In  other  words,  fewer
failures mean fewer resets.

Consider  an  example  scenario  in  which  an
autonomous robot uses RL to navigate in an unknown
maze.  At  a  specific  moment,  the  robot  may  face  an
obstacle  in  front  of  it  and  RL  tells  the  robot  to  go
forward. This situation seemingly presents a quandary:
RL  is  waiting  for  the  robot  to  reach  the  state  of  the
obstacle  to  continue  the  remaining  steps  in  current
episode,  but  the  robot  cannot  because  it  keeps  hitting
the  obstacle  and  may  be  actually  waiting  for  RL  to
solve  this  problem  such  as  giving  another  feasible
instruction.

RL can use external  failure recovery methods[4−7] to
diagnose  the  failure  and  bypass  it  with  alternative
plans. In other words, when a failure happens, RL stops
working and the external failure recovery method takes
over the robot control and recovers the robot back to a
safe  state  or  the  state  that  RL  wants  to  go.  When  the
robot  is  safe,  RL  resumes  working  independently.
However, such an external failure recovery method can
only  correct  the  mistake  whenever  it  happens  but
cannot  analyze  why  it  happens  and  hence  RL  can
continue making the same mistake.  It  is  then ideal  for
RL itself to have the capability of generating recovery
plans to get rid of the problematic state.

More  importantly,  the  recovery  plan  should  be  able
to  determine  which  state  to  go  back  to.  It  could  be
neither  necessary  nor  the  best  to  recover  back  to  the
initial states as most RL algorithms do. For instance, if
a robot reaches a dead end in a maze, it may be better
to  recover  back  to  the  junction  to  other  paths  rather
than the  starting  position  considering  that  the  junction
may  be  closer  to  the  goal  position  and  the  remaining
exploration is more efficient with taking less time. On
the  other  hand,  it  is  obviously  meaningless  and
unreasonable to recover back to the position that is still
in the dead end.

Manual  resets  could  be  also  avoided  by  predicting
failures  that  result  in  resets  and  preventing  them from
happening.  For  RL,  this  means  predicting  unsafe
actions  in  advance  and  excluding  them  during  the
exploration.  The  prediction  can  be  achieved  by  using
prior  knowledge  for  a  known  environment.  However,

when  the  environment  is  unknown  or  dynamic,  the
prediction  should  be  based  on  the  information  or
knowledge learned online by the robot itself.

To  this  end,  we  propose  a  reset-free  reinforcement
learning  (RFRL)  algorithm  that  can  recover  from
failures  to  multiple  previous  safe  states  and  prevent
potential  failures.  More  specifically,  the  multi-state
recovery (MSR) evaluates the safety of previous states
and  then  determines  which  state  is  the  best  for
recovery.  The  failure  prevention  (FP)  predicts  unsafe
actions  that  can  result  in  failures  and  excludes  them
during  the  exploration.  The  contributions  are  three-
fold.  Firstly,  a  new  reinforcement  learning  algorithm
based on multi-state recovery and failure prevention is
proposed to solve the manual reset problem in practical
deployment  of  RL  on  autonomous  robots.  The  MSR
endows RL an important capability of dealing with the
failures  that  have  already  happened,  which  is  of  great
importance  in  practice  but  has  not  been  investigated
yet.  Secondly,  the  proposed  failure  prevention  can  be
regarded as a practical safe exploration method that can
work flexibly with or without prior knowledge. For an
unknown environment,  the  proposed FP uses  a  simple
method of recording and prohibiting unsafe actions that
cause failures. If the environment is known or partially
known,  prior  knowledge  can  be  used  in  generating  a
failure  prediction  model  to  provide  a  more  accurate
prediction  of  unsafe  actions.  Lastly,  both  simulation
results  and  real-world  experiment  results  are  provided
to  demonstrate  that  either  multi-state  recovery  or
failure prevention can individually reduce resets while
their combination, RFRL, can further reduce resets in a
more efficient way.

2　Related Work

RL  has  achieved  success  in  robot  autonomy[8−12] in
recent  years.  In  general,  RL  methods  can  be  divided
into  two  categories:  model-based  methods[13] and
model-free  methods[14].  Model-based  methods  are
known to  be  sample-efficient  and  model-free  methods
are  popular  due  to  their  simplicity  and  favorable
computational  properties.  However,  the  practical
deployment of both methods often assumes an episodic
setting,  which  requires  manually  resetting  the  state  of
the system between episodes[2]. Since manual resets are
not desired in robot autonomy, our work aims to solve
this  important  problem  by  proposing  an  autonomous
reset  method,  including  self-recovering  from  failures
and reducing potential failures.
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Although  current  safe  RL  algorithms[15] do  not
specifically  focus  on  solving  the  reset  problem,  they
can indeed reduce the resets by reducing the failures in
RL.  Some  methods  add  safety  concerns  into  the
original  RL  optimization  criteria[16−19] to  rule  out
unsafe  policies,  and  other  methods  restrict
explorations[20−23] by  adding  safety  constraints  on  RL
action selections.  Robust RL algorithms[24−26] can also
improve  the  safety  of  RL  due  to  their  robustness  to
environment  dynamics  by  identifying  uncertain
components  of  the  environment  and  randomizing  the
parameters  based  on  domain  randomization.  While
these  methods  can  indirectly  reduce  the  resets,  the
safety  concerns  or  constraints  in  them  still  require
designs by humans, which may not be always available
in practical applications. In addition, these methods do
not  investigate  the  recovery  from  failures  that  have
occurred.  When  failures  cannot  be  avoided,  these
methods need manual resetting again.

While  a  few  recent  works[1−3] specifically  target  on
learning  an  automatic  reset  policy  for  RL,  they  also
lack the capability  of  dealing with failures that  cannot
be  avoided  to  happen.  In  addition,  the  reset  policies
learned  in  previous  works[1−3] generally  reset  to  the
initial  state,  which  may  not  always  be  necessary  or
beneficial.  Our  work  investigates  which  previous  safe
state can be the best return state.

3　Methodology

As  shown  in Fig.  1,  our  reset-free  reinforcement

learning consists of two key parts, multi-state recovery
and  failure  prevention.  The  multi-state  recovery
evaluates  the  safety  level  of  previous  states  and
determines  which  state  is  the  best  to  reset  to  when  a
failure  is  detected.  Instead  of  simply  abandoning  the
failed  episode  with  resetting  to  the  initial  state,  the
multi-state  recovery aims to finish the training goal  in
each  episode.  The  failure  prevention  uses  failure
recording  for  an  unknown  environment  or  a  few-shot
learning  model  for  a  known  or  partially  known
environment  to  predict  and  exclude  unsafe  actions,
which  prevents  failures  from  occurring  during  the
learning  process.  For  simplicity,  we  use  a  standard ε-
greedy Q-learning  algorithm[27] as  our  basic  RL
algorithm  for  illustration.  However,  our  method  is
actually  designed  for  general  RL  methods  because
multi-state  recovery  and  failure  prevention  are  both
based  on  general  definitions  of  states  and  actions  in
RL.

3.1　Multi-state recovery

When  a  robot  experiences  a  failure  in  a  problematic
state  in  practice,  it  is  possible  to  recover  back  to  a
previous, unproblematic state and make a new plan. To
make  this  recovery  practically  applicable,  we  assume
that  there  exists  an  available  motion  controller  for  the
robot  to  execute  the  recovery  plan  such  as  going  to  a
certain state.

An important question in the recovery is: Which state
is the best  to recover back to? Intuitively,  such a state

 

 
Fig. 1    Schematic diagram of reset-free reinforcement learning.
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should  be  as  safe  as  possible  and  can  assist  the
subsequent learning as efficiently as possible. During a
specific  episode,  for  example,  the  robot  is  in  the  grey
state  and  taking  a  problematic  action “go  south” as
shown in Fig. 2. Because the state that the robot wants
to  enter  is  an  obstacle,  a  failure  will  occur  and  be
detected.  It  may then be ideal  for  the  robot  to  explore
other actions in the current position if it does not know
the  results  of  these  alternative  actions.  Not  doing  this
and  directly  going  back  to  other  states  such  as  the
previous  light  blue  state  may  sometimes  miss  an
optimal path if the block right to the grey state is not an
obstacle.  However,  if  the robot has already known the
consequences of alternative actions as shown in Fig. 2,
then it is ideal to recover back to the junction state, i.e.,
the  red  state,  because  the  states  in  the  dead  end  are
meaningless in achieving the goal.

N S N =

{st−N+1, st−N+2, . . . , st−1, st}, N
{at−N+1, at−N+2, . . . , at−1, at}

N

N

N
N

θ (s)

s

Inspired  by  this,  we  record  an N-step  learning
process  that  includes  previous  states, 

 and  corresponding 
actions, , where t is the time
index, st means  the  state  at  time t,  and at means  the
action at time t. The selection of  should be related to
the  complexity  of  the  robot,  task  or  environment  and
different values of  should affect the performance of
RL.  One  of  our  goals  is  to  experimentally  investigate
these  relationships  and  also  determine  which  state  in
these  states is ideal to recover back to when a failure
occurs. We assign for each of these  states a recovery
priority value , which indicates the priority of each
state  for  the  robot  to  reset  to.  When  a  state  has  more
safe actions that do not cause failures, it should have a
larger priority value. A safe action set in state , As(s),
can be defined as
 

As (s) ≜ {a ∈ A (s) |a < Ad (s)} (1)

Ad (s)
s

where A(s)  means  the  action  set  containing  all  the
actions  in  state s,  and  means  the  dangerous
action  set  in  state  and  it  can  be  updated  by  failures
that  have  been  detected  and  failures  that  can  be
predicted. In this work, we assume the failure detection
as receiving a pre-defined large negative reward
 

Ad (s) ≜ {a|r (s,a) = r (failure)} (2)
r (s,a)

(s,a) r (failure)
where  means  the  reward  of  a  state-action  pair

 and  means the reward of a failure.
θ (s)Thus, the priority  can be calculated by

 

θ (s) = |As (s)| (3)
| · |where  computes the size (number of elements) of a

set.

S ∗r

If  different  states  have  the  same  greatest  priority,
then the robot will reset to the nearest state because the
nearest state may be closer to the goal state. Then, the
best reset state  determined by the recovery strategy
is
 

S ∗r = argmind
arg max

s∈SN

θ (s) , st

 (4)

d
arg max

s∈SN

θ (s), st


S N st arg max

s∈SN

θ (s)

where  means  the  distance  between

an arbitrary state with the largest priority in state space
 and  state .  Please  note  that  can  be

either one individual state or a set of multiple states.

3.2　Failure prevention

Although failure prevention cannot address the failures
that  have  occurred,  it  can  be  used  as  another  way  to
reduce  resets  from  a  complementary  perspective  of
reducing potential failures.

Ad (s)
Ad (s)

For an unknown environment, a simple and practical
method is to exactly prevent failures that have already
occurred  by  adding  corresponding  unsafe  actions  into

.  As shown in Fig.  3,  for  example,  the robot  can
add the action of going east into  when it collides
with the obstacle for the first time. When the robot is in
the  grey  state  again  next  time,  it  will  not  select  the
action of going east to avoid the same failure. Then, the
ε-greedy action selection strategy in traditional RL can
be modified to
 

π (s) =


a = rand(A( s )) |a < Ad(s), if ξ < ε ;
argmax

a∈A
Q (st+1,a) |a < Ad(s), otherwise (5)

ξ εwhere  is a random number,  is a parameter to decide

 

 
Fig. 2    Illustration of multi-state recovery.
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As (s)
how often an action should be selected randomly from

,  and Q(st+1,a)  is  the Q-value  of  the  state-action
pair (st+1,a).

If  prior  knowledge  can  be  provided,  we  can  further
generate a few-shot learning model to recognize similar
obstacles in the environment. As long as an obstacle is
successfully  recognized,  the  actions  towards  the
obstacle can be inferred as unsafe and hence should be
not  allowed.  For  example,  if  the  robot  can  recognize
the  obstacle  in  the  state  of  the  second  row  and  the
second column in Fig. 3, it can infer both the action of
going south in the yellow state and the action of going
west  in  the  blue  state  as  unsafe  actions.  Then,  the
failure prediction problem can be transformed to a few-
shot-learning-based obstacle recognition problem.

Few-shot  learning  tends  to  have  three  datasets:
training set, support set, and query set. The training set
usually  has  thousands  of  different  kinds  of  data  with
labels,  and  it  is  used  to  train  the  model  with  the
capability  of  telling  the  difference  between  two
common categories.  The support  set  and the query set
share the same labels, but the categories of data in them
never occur in the training set. The support set provides
some  samples  for  the  model  to  refer,  while  the  query
set  is  the  real  testing  set  which  the  model  needs  to
classify. We call the target few-shot problem C-way K-
shot if the support set contains K labeled examples for
each of C unique classes. The size of K is typically 1 or
5, that is to say, one-shot or five-shot. Our recognition
is set as a 5-way 5-shot problem, and the samples in the
support set never occur in the training set.

We  use  relation  network[28] as  the  specific  few-shot
learning  method  in  this  work  due  to  its  good
performance  and  easy  implementation.  We  do  not
make any changes to the trained model and still use the
similar  expression  to  describe  our  problem.

S = {(xi,yi)}mi=1(m = K ×C) xi yi

d0

Specifically,  our  training  set  is  based  on
miniImageNet[28].  The  support  set  can  be  denoted  as

,  where  and  represent
the sample and its label. We first divide the area around
the  obstacle  into  parts  starting  from  east  in  a
clockwise direction. Then the query set can be denoted
as
 

Q′ =
{(

x j,s(Areadi),yi
)}n

j=1
,di = 1, 2, . . . ,d0 (6)

s (Areadi) Areadi

x j,s(Areadi)

s (Areadi) j

where  Areadi represents  the  area  of  the  di-th  part,
 is  the  initial  position  in  towards  the

obstacle  at  a  constant  distance,  means  the
picture captured from  of  the -th obstacle, n
is  the  number  of  obstacles  in  the  environment,  and Q'
denotes the query set.

Therefore, the recognition problem can be defined as
 

ri, j,s(Areadi) = gϕ
(
C
(

fφ (xi) , fφ
(
x j,s(Areadi)

)))
,

 

i = 1,2,3,4,5, di = 1,2, . . . ,d0 (7)
ri, j,s(Areadi)

x j,s(Areadi)

xi gϕ(·)
fφ(·)

C(·)
fφ(xi) fφ(x j,s(Areadi))

where  is  the  relation  score  for  the  relation
between one query input  and training sample
set  examples ,  is  the  relation  module  in  the
relation network,  is the embedding module in the
relation  network,  and  is  the  concatenation  of
feature maps  and  in depth.

Ad (s)
θ (s) π (s)

The  relation  network  combines  the  feature  map  of
samples in the support set and query set, computes the
relation  scores  between  different  categories  in  the
support  set,  and  then  chooses  the  category  of  the
biggest  score  to  complete  the  classification  problem.
Once an obstacle is recognized, all the actions towards
it  should  be  added  into ,  which  will  also  update

 and .

3.3　Algorithm summary

Our full algorithm is presented as Algorithm 1. Failure
prevention  is  always  running  to  predict  and  avoid
failures and multi-state recovery is executed only when
a  failure  occurs  to  save  resources.  In  general,  multi-
state  recovery is  executed mostly  in  the  early  stage of
RL. As the episode increases,  RL gains more accurate
knowledge  about  the  environment  and  unsafe  actions.
This results in fewer occurrences of failures and hence
fewer utilizations of the multi-state recovery.

Ad (s)
The algorithm firstly initializes all the variables. For

each  episode,  the  algorithm  updates  with  the
newly  predicted  unsafe  actions  and  executes  the
modified  action  selection  described  in  Eq.  (5).  If  a

 

 
Fig. 3    Illustration of failure prevention.
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Ad (s) Ad (s)
failure  is  detected  (Line  5),  it  is  recorded  into  the
dangerous  action  set  (Line  6).  Based  on ,
the algorithm determines the ideal state to recover back
to  (Line  9)  and  continues  learning  in  the  current
episode until the final training goal or the maximal step
number is achieved. If no failure occurs, the algorithm
determines  the  next  state  using  the  transition  function
P(st+1|st,at), which indicates the probability of reaching
state st+1 after performing action at in state st, and then
updates Q-values as the standard Q-learning does.

4　Result and Discussion

4.1　Experiment setup

In this work, we use both a maze navigation simulation
and a real-world block stacking experiment to validate
our algorithm.

N

The  simulation  is  about  robot  navigation  in  a  maze
with obstacles. We set two maze environments with the
maze  sizes  to  be  4×4  and  11×11.  Firstly,  it  is
convenient  for  us  to  compare 4×4 maze results  with  a
closely  related  work[2] that  learns  a  reset  policy  to
reduce manual resets. In addition, the 11×11 maze can
be  used  to  investigate  the  performances  of  the  multi-
state recovery in a more complex environment and the
influences  of  different  selections  of  on  the
performance of RL. As shown in Fig. 4, the state space
of the 4×4 maze consists of 16 grids and 4 of them are
obstacles.  The  11×11  maze  has  121  grids  and  43  of
them are obstacles. The robot can take four actions: go
north,  go south,  go east,  and go west.  The robot starts

ε γ

α

each  episode  from  the  upper-left  corner  of  the  maze
and terminates if reaching the lower-right corner (goal)
with a reward of 1 or hitting an obstacle with a reward
of −5. For any other individual movements, the reward
is −0.02. Parameters , the discount factor ( ), and the
learning  rate  ( )  are  set  to  be  0.1,  0.9,  and  0.5,
respectively.

ε γ α

The  real-world  block  stacking  experiment  is  about
using  a  lightweight  Kinova® JACO® robot  arm  with
three fingers as shown in Fig. 5. We expect the robotic
arm  to  stack  four  blocks,  Block  A  (purple),  Block  B
(green),  Block  C  (orange),  and  Block  D (blue),  in  the
target  position  from  their  original  positions.  Because
the  grasping  is  not  the  focus  of  our  work,  we  assume
the  original  position  and  the  target  position  are  fixed
and  known  so  that  we  can  guarantee  a  high  grasping
accuracy.  However,  the  stacking  order  is  unknown  to
the  robot,  and  hence  it  needs  reinforcement  learning
itself to find out. The stacking rules include: (1) Block
A must be at the bottom of any other three blocks, (2)
Block D must be at the top of Block C, and (3) Block
D  must  be  at  the  top  of  Block  B,  but  not  in  direct
contact with Block B. Violating any of these rules, the
blocks will fall over, which is counted as a failure. The
state  space  is  defined  as  the  block  order  at  the  target
position.  The  robotic  arm  can  take  four  actions:  pick
and  place  Block  A,  Block  B,  Block  C,  and  Block  D.
The  reward  of  reaching  the  goal  (A-B-C-D)  is  1  and
the reward of  a  failure  is −1.  For  any other  individual
action, the reward is 0. Parameters , ,  and  are set
to be 0.1, 0.9, and 0.2, respectively.

 

 
Fig. 4    Simulation setup: 4×4 (left) and 11×11 (right) mazes.
The  robot  is  supposed  to  find  an  optimal  path  with  the
largest reward from the initial state (S) to the goal state (G).
The black grids mean obstacles and the robot is not allowed
to  pass  these  obstacles.  The  robot  can  take  four  actions:  go
north, go south, go east, and go west.

 

Algorithm 1    Reset-free reinforcement learning
1:  Initialize all variables
2:  for each episode do

Ad (s) ▷3: 　 Update   failure prevention
a ← π (s) ▷4: 　      Eq. (5)

r (s,a) = r (failure)5: 　 if  then
Ad (s)← Ad (s)∪{a}▷6:　　      record failures

As (s) ▷7: 　　   Update   Eq. (1)
8: 　　   Update Q-value

s ← S ∗r ▷9: 　　        multi-state recovery
10:　 else

s← P (st+1| st,at)11: 　　 
12: 　　 Update Q-value
13: 　end if
14: end for
15: Return the optimal policy
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The calculation of the number of resets includes two
parts.  The  first  one  is  adding  one  reset  if  the  robot
cannot achieve the goal state within the limited steps in
an  episode.  We  do  not  count  the  transition  from  the
goal  state  in  an  episode  to  the  initial  state  in  the  next
episode  as  a  reset  because  we  focus  on  the  failure-
induced resets in this work. The other part comes from
the occurrence of failures that are defined as collisions
between  the  robot  and  obstacles.  If  not  using  multi-
state  recovery,  a  reset  will  be  needed  whenever  a
failure happens. In order to provide reliable results, the
simulations  and  the  real-world  experiments  in  this
work  have  been  conducted  50  and  20  times,
respectively, to compute the average.

For  a  comprehensive  validation,  we  firstly  assume
the  maze  environment  is  totally  unknown,  which
means  failure  prevention  can  only  use  the  simple
failure  recording  method.  In  this  setting,  we  will
compare  our  algorithm  with  related  work  and
investigate  the  parameters  of  multi-state  recovery  as
well  as  the  influences  of  multi-state  recovery  and
failure prevention on RFRL. Then, we will assume the
maze  environment  is  known  to  validate  the  more
complex failure prevention based on few-shot learning.
The  dynamics  is  also  changed  from  deterministic  to

stochastic to validate whether RFRL still works. Lastly,
we  evaluate  the  performance  of  RFRL  on  real-world
experiments  to  see  if  it  is  consistent  with  simulations.
For  all  validations,  multi-state  recovery  and  failure
prevention  are  also  used  as  independent  methods.
When multi-state recovery works independently, it uses
the ε-greedy  action  selection  strategy  as  in  traditional
RL. When failure prevention works independently, the
learning episode terminates and a reset must be needed
once a failure occurs.

4.2　Result

For  a  convenient  expression  and  comparison,  multi-
state recovery and failure prevention are abbreviated to
MSR and FP, respectively.

(1) Comparison with related reset policy

qmin

N

Table  1 shows  that  MSR,  FP,  and  RFRL  can  all
reduce much more resets than the reset policy proposed
by  Eysenbach  et  al.[2] We  use  the  best  result  of  their
reset  policy  with  the  early  abort  threshold  =  0.4
for comparison. For our methods,  is  chosen to be 3
and  the  maximum  step  per  episode  is  set  as  200
because the 4×4 maze is relatively simple.

Although  both  Eysenbach’s  reset  policy  and  our  FP
method reduce the resets by reducing potential failures,

 

 
Fig. 5    Capability of self-recovering back to any state. Human intervention is required in traditional reinforcement learning to
reset  a  failure  state  to  the  initial  state.  In  contrast,  our  self-recoverable  reset  strategy  can  recover  back  to  any  states  with
reversely executing the safe actions recorded in the experience buffer. With the multi-state recovery, our method could decide a
better state to recover back to. In the situation that our method determines to recover back to the initial state, it is equivalent to
the manual reset.
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our  FP  method  is  still  better  because  we  can  exactly
avoid  recorded  failures  that  have  occurred  while
Eysenbach  uses  a  threshold  to  partially  abort  some
dangerous  actions.  Because  MSR gives  RL the  ability
to  recover  from  failures,  both  MSR  and  RFRL  can
completely  avoid  resets.  In  addition,  our  method
requires much fewer steps to finish the training, which
can be regarded as more efficient.

(2) MSR vs. FP in RFRL
As  discussed  before,  either  MSR  or  FP  can

individually  reduce  the  number  of  resets.  In  order  to
investigate  the  effects  in  detail,  we  calculate  the
number  of  resets,  number  of  total  steps  to  converge,
and number of episodes to converge in Table 2. For the
simple  4×4  maze  and  the  complex  11×11  maze,  both
MSR  and  FP  can  significantly  reduce  the  number  of
resets  compared to standard Q-learning.  While FP can
only reduce resets, MSR can guarantee no resets in the
simple  maze  and  a  mostly  zero  reset  in  the  complex
maze. This is because MSR can substantially eliminate

resets through recovering from failures. In contrast, FP
only avoids resets by preventing failures, which can be
easily restricted with a necessity of accurate knowledge
about  the  environment.  Combining  MSR  and  FP  to
RFRL, the performance improves to the best.  Both FP
and MSR can find the optimal path with fewer episodes
and total steps than the standard Q-learning. However,
MSR is more efficient, especially in the complex maze.

(3) Will MSR cause more failures to recover from
a failure?

One  important  concern  for  MSR  is  whether  more
failures  can  be  caused  during  the  recovery  from  a
specific failure to previous states.

Firstly, Table 3 shows that MSR does not really have
such  a  concern.  Although  the  number  of  total  failures
in MSR is close to that in the standard Q-learning, it is
still  less  than the standard Q-learning.  This  is  because
MSR  cannot  change  the  essence  of  RL,  i.e.,  trial  and
error.  MSR only changes the timing of exploring such
failures,  which  is  exploring  more  failures  than  the
standard Q-learning  in  the  early  episodes.  This
expedites  the  learning  process  with  fewer  episodes,
which  can  avoid  the  failures  in  the  unnecessary
episodes. Because most failures have been encountered
in  such  episodes, Q-learning  may  also  avoid  them
based  on  the Q-values.  However,  the  random
exploration strategy in the standard Q-learning can still
cause  a  few  failures,  which  explains  the  small  failure
difference between MSR and the standard Q-learning.

Secondly,  FP  has  far  fewer  failures  than  MSR
because  all  the  random  explorations  in  FP  are  strictly
restricted  to  safe  actions.  In  other  words,  the  same

 

Table 1    Comparisons  with  previous  results.  Any  of  our
three  methods  outperforms  the  reset  policy  proposed  by
Eysenbach et al.[2] in terms of both the number of resets and
the number of total steps.

Method Number of resets
(mean)

Number of total steps
(mean)

Reset policy[2] 55 6200
FP 9 1720

MSR 0 1738
RFRL 0 1694

 

Table 2    Full  comparisons among the standard Q-learning,
Q-learning  algorithm  with  FP, Q-learning  with  MSR,  and
RFRL.  Either  FP or  MSR can outperform the  standard Q-
learning, although the combination of FP and MSR to RFRL
has the best performance in all  the four methods.  MSR can
almost guarantee a zero reset even in a complex 11×11 maze
because  it  avoids  the  resets  from  the  perspective  of  fixing
failures rather than just avoiding failures.

Method
Number of

resets
(mean)

Number of
episodes
(mean)

Number of total
steps

(mean)
Standard-4×4 33.5 243.0 1796

FP-4×4 9.0 217.6 1720
MSR-4×4 0.0 211.8 1738
RFRL-4×4 0.0 207.8 1694

Standard-11×11 345.5 524.0 10 610
FP-11×11 95.1 327.6 10 658

MSR-11×11 0.9 234.2 9887
RFRL-11×11 0.7 235.0 9709

 

Table 3    Failure  comparisons  between  the  standard Q-
learning  and  our  method.  While  MSR  only  reduces  the
failures  in  a  small  amount,  FP  can  significantly  reduce  the
failures  because  it  can  strictly  restrict  the  random
explorations in the Q-learning to safe actions.  However,  the
failures  in  MSR do not  result  in  resets  while  the  failures  in
the standard Q-learning and FP must require corresponding
resets.

Method Number of total failures (mean)
Standard-4×4 33.5

FP-4×4 9.0
MSR-4×4 32.1
RFRL-4×4 10.0

Standard-11×11 345.5
FP-11×11 95.1

MSR-11×11 333.2
RFRL-11×11 114.7
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mistake  is  not  allowed  to  be  made  again  in  FP.
Although  the  number  of  failures  caused  by  normal
random  explorations  can  be  small,  multiplication  by
the number of episodes can be significant; this explains
the  large  failure  difference  between  FP/RFRL  and
standard Q-learning/MSR.

Thirdly,  although  MSR  has  a  certain  number  of
failures,  these  failures  do  not  result  in  resets  because
they  can  be  recovered  by  RL  itself.  For  example,  the
MSR explores an average of 32.1 failures without any
reset as indicated in Table 2. In contrast, the number of
failures is equal to the number of resets for the standard
Q-learning and FP because a reset is required whenever
a failure occurs in these two methods.

(4) N and maximum steps per episode in MSR
As discussed in the multi-state recovery strategy, the

selection  of N and  maximum  steps  per  episode  is
important in MSR. We empirically allow the variations
of N and maximum steps per episode to be 1 to 7 with
an increment of 1 and 100 to 1000 with an increment of
100, respectively.

Figure 6 shows the relationship between the number
of resets and the number of previous safe states N that
has  been  recorded. N can  be  also  interpreted  as
recovery limit, i.e., the maximum step the robot can go
back. When the environment is simple (the 4×4 maze),
MSR  can  guarantee  no  resets.  However,  when  the
environment  is  more  complex  (the  11×11  maze),  a
larger recovery limit N could be better especially when

allowing  enough  maximum  steps  in  one  episode.  The
limited maximum step per episode such as 400 for the
11×11  maze  could  be  too  small  for  MSR  to  be  fully
functional  because  recovering  from  failures  needs  to
cost  steps.  Thus,  when the  maximum step per  episode
is  small  (400),  a  lower  recovery  limit  (N =  1)
outperforms  other N’s.  As  the  maximum  step  per
episode increases to 600 or 800, however, N = 2 or N =
3  actually  has  the  best  performance.  The  differences
between  various N’s  should  be  much  more  significant
when the environment becomes highly complex.

Figure 7 shows the relationship between the number
of  resets  and  maximum  steps  per  episode.  A  general
conclusion  is  that  the  number  of  resets  reduces  as  the
maximum  step  per  episode  increases,  which  provides
enough  time  for  MSR  to  recover  from  failures.  In
addition, Fig.  7 also  proves  that  a  larger N has  better
performances  when  the  maximum  step  per  episode  is
larger.

(5) Failure prevention with few-shot learning

d0

In  order  to  use  the  few-shot  learning  for  failure
prevention,  we  assume  that  some  of  obstacles  are
known and some of them belong to the known category
but have not been seen before. The parameter  in Eq.
(6)  is  set  as  4,  which  means  all  the  pictures  are
captured from north, south, east, and west. As shown in
Fig.  8,  our  query  set  consists  of  5  categories  which
contain chairs, kettles, cartons, basins, and baskets, and
each category has 8 pictures. As 4 pictures describe an
obstacle, 40 pictures actually indicate 10 obstacles. For 

 
Fig. 6    Relationship  between  the  number  of  resets  and
recovery  limits N.  When  the  environment  is  simple  (a  4×4
maze),  even  only  recovering  back  to  the  latest  state  can
guarantee  no  resets.  However,  when  the  environment  is
more  complex  (a  11×11  maze),  a  larger  recovery  limit N
(e.g.,  3)  could  be  more  effective,  especially  given  enough
maximum steps per episode.

 

 
Fig. 7    Relationship  between  the  number  of  resets  and
maximum  steps  per  episode.  The  number  of  resets  reduces
as the maximum steps per episode increase. When maximum
steps  per  episode  remain  large,  a  larger N can  be  better  in
reducing the number of resets.
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the  4×4  maze,  we  randomly  choose  4  from  the  10
obstacles. For the 11×11 maze, obstacles are allowed to
be  repetitive,  but  the  number  of  duplicates  should  be
less than 5 to guarantee the existence of each obstacle
in the maze.

Table  4 shows  more  results  of  failure  prevention
based  on  few-shot  learning.  Because  standard Q-
learning and MSR are not affected by FP, their results
remain the same in Table 2 and hence are not listed. As
shown in Table 4, failure prevention based on few-shot
learning  can  further  reduce  both  the  number  of  resets
and the number of failures compared with Table 2. Due
to prior knowledge, FP can accurately recognize all the
obstacles  in  the  4×4  maze  and  hence  excludes  all  the
unsafe  actions,  resulting  in  a  zero  failure  and  a  zero
reset.  For  the  11×11 maze,  FP can reduce  the  number
of  failures  by  49%,  and  RFRL  can  guarantee  a  zero

reset.  It  should  be  also  noted  that  the  reduction  of
episodes and total steps in 11×11 maze is more obvious
than  that  in  4×4  maze,  which  indicates  the  fusion  of
external  knowledge  can  be  greatly  useful  in  complex
environments.

(6) Stochastic dynamics
All  of  the  previous  simulations  are  based  on

deterministic  dynamics.  However,  the  practical
dynamics can be stochastic,  which means the result  of
an action is not always as expected. For example, if the
robot  executes  the  action  of  going  north,  it  may
actually reach the state in the west or in the east instead
of  the  expected  state  in  the  north.  In  the  maze
simulation,  we  assume  the  probability  of  reaching  the
expected  state  is  0.8  and  the  probabilities  of  reaching
the states in the left or the right are both 0.1.

As shown in Table 5, RFRL still works in stochastic
dynamics because the number of resets has only a very
small increment, which is still close to zero. However,
the increments of failures, episodes, and total steps are
obvious  because  a  safe  action  could  also  lead  to  a
failure in stochastic dynamics. In all the four methods,
RFRL still  performs the best,  which is  consistent  with
previous  results.  It  is  also  interesting  to  see  that  the
increments  of  failures,  episodes,  and  total  steps  in  the
11×11 maze are larger than those in the 4×4 maze. For
instance, the number of failures using RFRL increases
by  8% in  the  4×4  maze,  but  increases  by  13% in  the
11×11 maze. The possible reason is that only one path

 

 
Fig. 8    Query set and support set for the maze environment.

 

Table 4    Results  of  failure  prevention  based  on  few-shot  learning.  The  use  of  prior  knowledge  can  avoid  more  failures  and
require fewer resets.

Method Number of resets (mean) Number of total failures (mean) Number of episodes (mean) Number of total steps (mean)
FP-4×4 0.0 0.0 208.5 1650

RFRL-4×4 0.0 0.0 200.7 1624
FP-11×11 48.5 48.5 207.3 5527

RFRL-11×11 0.0 56.9 150.7 5122

 

Table 5    Results of stochastic dynamics. The performance of each algorithm is worse compared with deterministic dynamics,
but our algorithm still works and performs better than standard Q-learning. RFRL still has the best performance.

Method Number of resets (mean) Number of total failures (mean) Number of episodes (mean) Number of total steps (mean)
Standard-4×4 38.8 38.8 284.6 2156

FP-4×4 10.0 10.0 261.2 2068
MSR-4×4 0.0 37.8 256.3 2059
RFRL-4×4 0.0 10.8 248.3 2030

Standard-11×11 413.7 413.7 620.9 12 584
FP-11×11 108.4 108.4 376.6 12 316

MSR-11×11 1.0 382.1 265.2 11 580
RFRL-11×11 0.9 129.6 265.5 11 017
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exists  with  more  obstacles  in  the  11×11  maze.  As  the
maze size further increases, the number of failures may
keep increasing too.

(7) Block stacking results
As  shown  in Table  6,  the  block  stacking  results  are

consistent with the maze navigation simulation results.
RFRL still performs the best with the fewest number of
resets,  the  fewest  number  of  episodes,  and  the  fewest
number  of  total  steps.  The  number  of  resets  is  zero  if
MSR is used. FP can also reduce the number of resets,
but it still has 11.6 resets in average.

As  shown in Fig.  5,  our  method  firstly  provides  the
robot with a capability of self-recovering to any state in
its  stored  experience.  This  completely  avoids  human
intervention  that  is  required  in  traditional
reinforcement  learning.  Even  if  the  robot  does  not
know  which  state  it  should  recover  back  to,  it  can  at
least  recover  back  to  the  initial  state,  which  is
equivalent  to  the  result  of  a  manual  reset.  If  the  robot
has more information learned from failures  or  directly
from an  external  guidance,  it  can  decide  a  better  state
to recover back to.

In  order  to  investigate  the  influence  of N and  the
maximum  number  of  steps  per  episode  on  RFRL,  we
empirically  allow the  variation  of N to  be  0  to  4  with
an  increment  of  1. N =  0  means  no  recovery  at  all,

while N =  4  means  that  four  maximum  steps  can  be
recovered  but  not  all  the  four  steps  should  be
recovered.  In  order  to  investigate  the  influence  of  the
maximum  number  of  steps  per  episode  on  RFRL,  we
also  empirically  allow  the  maximum  number  of  steps
per episode to be 10, 20, 50, and 100, respectively.

Table  7 shows  that  the  number  of  manual  resets
increases  as  the  recovery  limit N increases.  This  is
because when the recovery limit is low, there could be
failures  that  cannot  be  recovered.  For  example,  when
only  one  step  (N =  1)  is  allowed  to  be  recovered,  the
failure (A-C-D) can be only recovered back to the state
(A-C), which can never succeed since another possible
stacking  order  (A-C-B-D)  from  this  state  is  also  a
failure  and  cannot  be  recovered  either.  When N
increases to 2, the failure (A-C-D) can be recovered but
the  failure  (A-C-B-D)  still  cannot  be  recovered.
Increasing N to  3  and  4  can  recover  any  failures,  but
N = 4 is actually worse than N = 3 due to more training
time.  This  means that  a  larger  recovery limit  could be
more  than  sufficient  and  hence  result  in  unnecessary
recovery, which costs more training time. Because each
episode  automatically  terminates  when  it  successfully
achieves  the  goal  state,  more  maximum  steps  per
episode  do  not  bring  negative  influences  as  a  larger
recovery limit does. However, if the robot gets stuck in

 

Table 6    Full  comparisons among the block stacking results  using standard Q-learning,  FP,  MSR, and RFRL. Either FP or
MSR can individually outperform the standard Q-learning, although the combination of FP and MSR to RFRL has the best
performance in all the four methods. Both MSR and RFRL can guarantee a zero reset.

Method for
block stacking

Number of resets
(mean)

Number of failures
(mean)

Number of episodes
(mean)

Number of total steps
(mean)

Standard 41.2 41.2 157.0 3824
FP 11.6 11.6 133.2 2516

MSR (N = 3) 0.0 39.8 124.3 2681
RFRL 0.0 12.2 120.7 2294

 

Table 7    Number  of  manual  resets  and  total  training  time  with  respect  to  different  recovery  limits  and  different  maximum
steps per episode.

Parameter Number of manual resets (mean) Total training time (mean)

Different recovery limits N
(maximum steps per episode = 50)

0 41.2 5.5 h
1 22.5 4.8 h
2 10.8 4.4 h
3 0.0 3.6 h
4 0.0 3.9 h

Different maximum steps per episode
(recovery limits N = 3)

10 28.4 5.2 h
20 11.1 4.5 h
50 0.0 3.6 h
100 0.0 3.6 h
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a  failure  such  as  when  the  recovery  limit  is  1,  more
maximum  steps  per  episode  could  cause  the  robot  to
keep  making  mistakes  (e.g.,  keep  stacking  D  in  the
state A-C-B) until the maximum step is reached, which
costs a number of unnecessary training time.

4.3　Discussion

The  general  goal  of  our  work  is  to  assist  RL-based
robots to be truly autonomous in practical applications
by  solving  an  unavoidable  problem:  Robots  require
manual  resets  whenever  encountering  failures  during
the  learning.  While  this  can  be  solved  by  reducing
failures  as  done  in  previous  work,  we,  more
importantly,  propose a multi-state  recovery strategy to
fix  the  failures.  This  is  similar  to  the  advice  for  many
complex  systems: “We  should  not  wonder  if  some
mishap  may  happen,  but  rather  ask  what  one  will  do
about it when it occurs”[29]. We have also demonstrated
that the combination of multi-state recovery and failure
prevention can achieve better performances than either
individual method by guaranteeing no resets in simple
scenarios.

Within  the  self-recovery  from  failures,  we
specifically  propose  a  multi-state  recovery  strategy  by
investigating  which  previous  state  is  ideal  to  recover
back to when a failure occurs. This is actually inspired
by  human’s  self-recovery  from  failures.  For  example,
when  humans  experience  a  failure  in  a  jigsaw puzzle,
they do not really go back to start  from the first  piece
or  just  revert  the  last  piece,  it  is  usual  to  take  out
several recently inserted pieces and restart from such a
configuration.  We  achieve  this  by  using  memory  to
record  some  past  experiences  such  as  a  certain-length
sequence  of  state-action  pairs  in  RL.  This  could  cost
more  resources  in  robots,  but  the  increment  of
resources  is  believed  to  be  affordable  in  practical
systems because the amount of data is much smaller if
compared to the memory prepared for RL. The storage
of  the  matrix  about  unsafe  state-action  pairs  can  be
another  cost  of  memory,  but  this  cost  can  be  greatly
reduced  using  compressed  storage  because  the  matrix
is usually highly sparse.

The  failure  discussed  in  this  work  is  assumed  to  be
recoverable,  which  means  it  will  not  cause  fatal
damages  to  the  robot.  For  fatal  failures,  manual  resets
are certainly needed. In addition, although we focus on
the  failure-induced  resets  because  the  occurrence  of
failures  is  a  primary  reason  for  manual  resets  in
practice, it cannot be denied that manual resets can also

be  caused  by  other  reasons.  A  representative  example
is  the  transition  from  the  goal  state  in  one  episode  to
the initial  state in the next episode.  This could require
significant  resets  if  RL  requires  massive  learning
episodes,  especially  for  highly  complex  tasks.
However, unlike the failure-induced resets, this kind of
resets  does  not  necessarily  need  human  intervention
because  it  can  be  the  same for  a  specific  task.  Robots
may use pre-defined plans to autonomously go back to
the initial state.

In  this  work,  we  have  only  discussed  the
performance of our method in a static environment.  A
more challenging case can be a dynamic environment.
While  our  work  may  still  work  if  the  time-varying
change  is  small,  it  is  better  to  design  an  advanced
algorithm  to  completely  address  dynamic  changes.
Unlike the stochastic dynamics, it  is more difficult  for
multi-state recovery and RFRL to work in the dynamic
environment  because  the  past  experiences  can  be  no
longer accurate and cannot be inferred or reconstructed
without  any  other  assistance.  One  possible  solution  is
to  estimate  a  dynamic  environment  model[30, 31] and
then  predict  the  changes  in  the  past  experience  using
model  predictive  control[32].  The  estimation  of  the
state-transition  probability  of  the  environment  can  be
achieved  by  Bayes  inference  with  forgetting  effect[33].
We  may  also  generate  a  map  about  the  environment
through  simultaneous  localization  and  mapping
methods  such  as  gmapping[34] and  multi-robot
cooperative map fusion[35−37].

5　Conclusion

In  this  work,  we  propose  a  reset-free  reinforcement
learning  algorithm  to  avoid  manual  resets  in  the
practical  deployment  of  RL  on  autonomous  robots.  It
includes  multi-state  recovery  and  failure  prevention.
Instead  of  simply  abandoning  the  failed  episode
without  further  learning  within  it,  the  multi-state
recovery  focuses  on  recovering  from  failures  so  that
RL  can  continue  learning  to  succeed  in  finishing  the
training  goal  in  the  failed  episode.  The  failure
prevention  predicts  and  avoids  potential  failures
according to previous experiences. Although these two
parts can individually reduce resets, the combination of
them is  experimentally  demonstrated  to  achieve  fewer
resets with using fewer episodes.
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