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Abstract: With  continuous  expansion  of  satellite  applications,  the  requirements  for  satellite  communication

services,  such  as  communication  delay,  transmission  bandwidth,  transmission  power  consumption,  and

communication  coverage,  are  becoming  higher.  This  paper  first  presents  an  overview  of  the  current

development status of Low Earth Orbit (LEO) satellite constellations, and then conducts a demand analysis for

multi-satellite  data  transmission  based  on  LEO  satellite  constellations.  The  problem  is  described,  and  the

challenges  and  difficulties  of  the  problem  are  analyzed  accordingly.  On  this  basis,  a  multi-satellite  data-

transmission mathematical model is then constructed. Combining classical heuristic allocating strategies on the

features of the proposed model, with the reinforcement learning algorithm Deep Q-Network (DQN), a two-stage

optimization framework based on heuristic and DQN is proposed. Finally, by taking into account the spatial and

temporal  distribution  characteristics  of  satellite  and  facility  resources,  a  multi-satellite  scheduling  instance

dataset  is  generated.  Experimental  results  validate  the  rationality  and  correctness  of  the  DQN  algorithm  in

solving the collaborative scheduling problem of multi-satellite data transmission.
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1　Introduction

The  development  of  Low  Earth  Orbit  (LEO)  satellite
constellations  has  a  significant  historical  background.
Notable  projects  in  this  field  include  the “Iridium”
project[1] by  Motorola  in  the  United  States,  SpaceX’s

“Starlink” project,  Amazon’s “Project  Kuiper”[2],
Telesat’s “Lightspeed” project[3] in Canada, the LeoSat
constellation  project  by  Luxembourg-based  LeoSat
company,  as  well  as  LEO  satellite  constellations
proposed  by  space  internet  company  OneWeb  and
rocket  manufacturer  Astra.  These  initiatives
collectively  aim  to  offer  users  worldwide  access  to
high-speed  and  high-quality  internet  connectivity  and
data  communication  services.  China  has  also  devised
plans  for  LEO  satellite  networking,  namely  the
“Hongyan  Constellation” consisting  of  300  LEO
satellites  and  a  global  data  processing  center,  and  the
“Hongyun Project”[4] comprising 156 LEO satellites.

With  the  increasing  number  of  satellites  being
launched  into  orbit,  there  is  an  inevitable  rise  in  the
need for  control,  operation,  and maintenance  tasks  for
these  satellites.  Effectively  managing  tasks,  such  as
satellite  networking,  command  uploading,  data
transmission,  and  task  distribution  among  the
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numerous  satellite,  present  a  significant  challenge  in
the  field  of  satellite  applications.  This  challenge
includes addressing large-scale satellite scheduling and
combinatorial optimization problems.

Precise  algorithms,  including  branch  and  bound  and
dynamic  programming,  are  commonly  employed  to
address  scheduling  problems.  Furthermore,  heuristic-
based  approximate  algorithms,  such  as  Simulated
Annealing (SA), Genetic Algorithms (GA), Differential
Evolution  (DE)  algorithms,  Particle  Swarm
Optimization  (PSO)  algorithms,  and  recently,
Reinforcement  Learning  (RL)  algorithms  based  on
artificial  intelligence  techniques,  have  emerged  as
effective  approaches.  These  methods  aim  to  obtain
optimal  or  near-optimal  solutions  for  scheduling
problems,  leading  to  enhanced  task  completion
efficiency,  reduced  task  costs,  and  improved  resource
utilization optimization.

In  various  fields  of  scheduling  problems,  the
scheduling  optimization  algorithms  have  been  widely
applied. For example, Zhang et al.[5] proposed a hybrid
algorithm  that  integrates  PSO,  GA,  and  heuristic  task
interleaving  algorithm  to  solve  the  task  processing
problem  in  digital  array  radar  systems.  Fu  et  al.[6]

provided  a  literature  review  on  distributed  scheduling
problems in intelligent manufacturing systems. Hu and
Li[7] proposed  an  improved  heuristic  job  scheduling
method. Jiang et al.[8] addressed a mixed-integer linear
programming  model  that  has  been  proposed  to  solve
the  workshop  scheduling  problem.  Yan  et  al.[9]

proposed  a  short-term  task  scheduling  strategy  based
on  multi-provider  Deep  Q-Network  (DQN)  for
frequent  task  scheduling  problems  in  cloud  network
integrated  environments.  Chen  et  al.[10] addressed
resource allocation and scheduling problems in mixed-
service  systems  in  5G/B5G  communication  systems,
creatively handling non-convex optimization problems
with the innovative use of dueling DQN.

In  the  field  of  satellite  scheduling  and  planning,
many  experts  and  scholars  have  made  significant
contributions. For the agile imaging satellite scheduling
problem, Wang et al.[11] designed two sets of heuristics
to solve the multi-satellite dynamic scheduling problem
by  targeting  the  dynamic  characteristics  such  as  task
attribute changes, and also considered the task priority,
as  well  as  time  window  blocking  and  task  overlap.
Chen  et  al.[12] constructed  a  mixed-integer  linear
programming  model  and  proposed  a  two-stage
heuristic  algorithm[13].  For  the  relay  satellite  data

transmission  scheduling  problem,  Huang  et  al.[14]

proposed  a  satellite  data  transmission  scheduling
algorithm based on an improved ant colony system, to
maximize the weighted success rate of scheduled tasks.
Yan[15] proposed  a  hybrid  particle  swarm  scheduling
algorithm  based  on  the  rolling  window  to  achieve
dynamic scheduling of the relay satellite system based
on  pre-planning.  Xiang  et  al.[16] proposed  a  parallel
genetic  algorithm  with  dual-threshold  control  to
achieve  global  optimization  of  satellite  data
transmission.  Fan[17] proposed  an  improved  particle
swarm  algorithm  combined  with  heuristic  rules  to
address  the  integrated  scheduling  problem  of  satellite
data  transmission  tasks  and  measurement  and  control
tasks. Dong[18] conducted in-depth research on satellite
network data transmission and satellite task scheduling,
and  proposed  solutions  to  these  problems.  Du[19]

researched  satellite  task  scheduling  engines,  focusing
on  the  generalization  of  satellite  task  scheduling
modeling  and  solution  methods.  He  proposed  a
generalized  modeling  method  for  satellite  task
scheduling,  an  adaptive  parallel  modal  evolution
algorithm  for  routine  satellite  task  scheduling,  and  a
distributed  dynamic  rolling  optimization  algorithm for
emergency satellite task scheduling.

Reinforcement  learning,  as  a  popular  machine
learning  method,  has  been  introduced  into  various
scheduling problem domains  in  recent  years.  Wang[20]

addressed the online scheduling problem of satellites in
a centralized structure and established a satellite online
scheduling model based on Markov Decision Processes
(MDP).  He  proposed  a  reinforcement-learning-based
satellite  online  scheduling  algorithm.  Inspired  by
Recurrent  Neural  Networks  (RNN)  and  attention
mechanisms,  Chen  et  al.[21] proposed  an  end-to-end
framework  based  on  Deep  Reinforcement  Learning
(DRL).  This  model  treats  neural  networks  as  complex
heuristic  methods  and  constructs  them  by  observing
reward signals and following feasible rules. Bao et al.[22]

studied  the  online  scheduling  problem  of  satellite
missions.  They first  established a  model  of  MDP,  and
then  applied  the  reinforcement-learning-based
Asynchronous  Advantage  Actor-Critic  (A3C)
algorithm to assign arriving tasks to different satellites.
Liu et al.[23] studied satellite scheduling problems using
competitive  learning  strategies.  They  proposed  a
Q-network-based  solution  to  solve  the  single  satellite
scheduling  problem,  and  introduced  a  profit-based
competition strategy to address the inherent scheduling
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conflicts of multi-satellite tasks. Ren et al.[24] proposed
a Q-learning-based reinforcement learning algorithm to
achieve  fast  response  in  emergency  task  scheduling,
enabling  real-time  scheduling  of  tasks  while
maximizing  scheduling  stability.  He  et  al.[25] verified
the advantage of Q-network in fitting long-term returns
in  the  scheduling  problem  of  imaging  satellites,  and
combined  heuristic  algorithms  and  an  improved  DQN
for solving it.

The remainder of this article is organized as follows.
Section  2  examines  the  task  requirements  for  data
transmission  in  future  satellite  application  scenarios,
specifically  focusing  on  LEO  satellite  constellations.
The  key  difficulties  and  challenges  in  scheduling
planning  for  such  tasks  are  also  analyzed.  A
mathematical  model  for  the  multi-satellite  data
transmission problem is presented in Section 3. On this
basis, Section 4 introduces a two-stage framework He-
DQN  algorithm,  which  combines  GA,  heuristic
strategies, and DQN algorithms to address and resolve
the  task  scheduling  problem  at  hand.  Additionally,
Section  5  outlines  the  construction  of  specific
simulation  scenarios  and  provides  corresponding
experiment  examples.  The  experimental  results  are
analyzed to  evaluate  the  effectiveness  of  the  proposed
algorithm  and  examine  the  factors  that  influence
problem-solving  for  different  examples.  Finally,
Section 6 concludes this article.

2　Problem Description and Analysis

Satellite  services  have  become  integral  to  various
aspects  of  everyday  life,  encompassing  earth
observation,  communication,  navigation  and
positioning,  internet  access,  scientific  research,  and
military  security,  among  many  other  domains[26].  In
numerous  application  scenarios,  such  as
communication[27],  navigation[28],  and  remote
sensing[29], the exchange of data between satellites and
ground  stations  plays  a  vital  role.  This  necessitates
research  on  collaborative  multi-satellite  data
transmission  mission  planning.  By  appropriately
sequencing  task  execution,  considering  the  temporal
and  spatial  dependencies  among  tasks,  and  effectively
allocating  resources  like  energy,  storage,  and
communication bandwidth, potential resource conflicts
and  wastage  can  be  circumvented.  Moreover,  such
planning  can  augment  the  overall  completion  rate  of
the entire data transmission process.

In  our  study  on  data-driven  collaborative  multi-

satellite  data  transmission,  we  initially  present  an
abstract description of the physical process involved in
transmitting data between satellites and ground stations
within this specific application scenario. Subsequently,
we  analyze  the  task  requirements  to  identify  the
primary difficulties and challenges associated with this
scheduling problem.

The data transmission scenario can be explained with
simplicity as follows. During a specified time window
when  the  antenna  payloads  of  a  ground  station  and  a
satellite  are  within  communication  range,  data  can  be
either  downlinked  from  the  satellite  to  the  ground  or
uploaded from the ground to the satellite. For instance,
satellite  imaging  data  can  be  transmitted  to  a  ground
station, or control instructions can be uploaded from a
ground  station  to  a  specific  satellite,  as  illustrated  in
Fig.  1a.  However,  practical  scenarios  often  involve
more complex transmission situations. On one hand, in
many  application  scenarios,  there  may  be  no  direct
communication  time  window  between  the  ground
station and the satellite.  For example,  achieving 100%
coverage  of  an  LEO spacecraft  at  a  height  of  300  km
would  require  deploying  over  100  stations  on  earth’s
surface,  which  is  practically  infeasible[30].  In  such
cases, the use of relay satellites becomes necessary for
achieving  the  transmission  goal,  as  shown  in Fig.  1b.
On  the  other  hand,  in  a  given  application  scenario,
multiple  ground  stations  and  satellites  may  participate
in  the  data  transmission  process,  requiring
considerations  of  task  conflicts  and  time  window
resource conflicts among different ground stations and
satellites.

In  traditional  data  transmission  scenarios,  relay
services  utilizing  high-orbit  relay  satellites  are
commonly  employed.  These  high-orbit  relay  satellites
are  typically  positioned  in  geostationary  orbits
approximately 36 000 km  above  the  earth’s  surface.
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(a) Direct transmission (b) Relay transmission 
Fig. 1    Data transmission.
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They  have  the  capability  to  oversee  and  track
spacecraft  operating  in  medium-to-low  orbits,
facilitating  real-time transmission  of  the  acquired  data
back to ground stations[30].

Currently,  high-orbit  geostationary  satellites  are  the
predominant  technology  for  data  relay  in  space.
However,  in  future  applications,  the  drawbacks  of
high-orbit  data  relay  satellites,  such  as  high  latency,
signal  attenuation,  complexity,  and  power
consumption,  may  become  more  significant.  On  the
contrary,  with  the  rapid  deployment  and  progress  of
LEO  satellite  constellations,  LEO  satellites  offer
several  advantages,  including  low  latency,  minimal
signal attenuation, high flexibility, high reliability, and
lower  per-satellite  costs.  These  advantages  make LEO
satellites  highly  promising  for  specific  data
transmission scenarios.

Using  two  future  complex  application  scenarios  as
examples:  LEO  satellite  navigation  information
augmentation[31] and high-intensity surveillance remote
sensing  data  transmission  in  hot  spot  areas,  we  can
anticipate  the  value  demonstrated  by  LEO  satellite
constellations in the field of satellite data transmission
services.

LEO  satellite  constellations  have  the  advantages  of
high  ground  receiver  signal  strength  and  rapid
geometric  variation.  They can complement medium to
high-earth Global Navigation Satellite System (GNSS)
constellations,  providing  significant  advantages  in
enhancing  the  accuracy,  integrity,  continuity,  and
availability  of  GNSS  systems[32].  Taking  China’s
“Hongyan” LEO  satellite  constellation  as  an  example
(as  shown  in Fig.  2),  it  enables  precise  orbit
determination and clock bias determination through the
joint collaboration of medium to high-earth navigation
satellites  and  low-earth  communication  satellites.  This
in turn enables dynamic sub-decimeter-level and static
centimeter-level  global  precise  single-point
positioning[33].

In  the  future,  the  ability  to  achieve  large-scale,
continuous,  and  low-latency  global  monitoring  is  an
important  aspect  of  competition  in  the  space  domain
(as  shown  in Fig.  3).  The  United  States,  through  the
deployment  of  a  large  number  of  low-cost,  scalable,
and  small  satellites  in  LEO,  is  establishing  the  next-
generation space architecture regulatory layer to enable
time-sensitive  target  monitoring  missions,  enhance
space  reconnaissance  tactical  support  capabilities,  and
increase space resilience[34]. By utilizing LEO satellites

for  high-intensity  remote  sensing  surveillance  of  hot
spot areas, the demand for continuous monitoring with
low  latency  can  be  effectively  met.  In  this  process,  a
large-scale LEO satellite constellation can ensure high-
frequency  satellite  imaging  observations  of  hot  spot
areas.  Subsequently,  by  allocating  ground  station  and
relay  satellite  resources  properly,  the  satellite-to-
ground  and  inter-satellite  connection  relationships  and
time  intervals  can  be  determined,  and  satellite-ground
and  inter-satellite  links  can  be  used  to  receive
surveillance data.

Through  the  above  two  complex  application
scenarios, it is evident that data relay transmission will
become  an  important  component  of  future  LEO
satellite  applications.  Therefore,  research  on  data
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Fig. 2    “HongYan” constellation service[33].

 

 
Fig. 3    Global  surveillance  (simulated  by  China  Satellite
Tool Kit (CSTK)).
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transmission  tasks  oriented  towards  LEO  satellite
constellations  is  highly  necessary.  For  future  large-
scale  LEO  satellite  constellations,  efficient  utilization
of  these  relay  resources  will  inevitably  involve  the
combinatorial  optimization  problem  of  large-scale
satellite scheduling in such a context.

As mentioned earlier, when multiple ground stations
and  satellites  are  involved  in  the  data  transmission
process  within  an  application  scenario,  it  becomes
crucial  to  consider  the  conflicts  between  tasks  of
different ground stations and different satellites, as well
as  conflicts  regarding  the  utilization  of  time  window
resources.  The  following  summarizes  some  key
challenges  and  difficulties  to  consider  in  this  problem
context.

(1) Direct  or  relay  transmission.  Priority  is  given  to
direct  transmission between target  ground stations and
target satellites. If there is no direct time window, and
it  is  necessary  to  relay  through  a  relay  satellite,
generally only one relay is considered.

(2) Conflict  avoidance  in  resource  selection.  When
selecting  time  window  resources  for  a  task,  it  is
important to consider whether it will have an impact on
other  tasks  in  the  same  time  period  and  potentially
cause resource conflicts.

(3) Uniqueness  in  antenna  data  transmission.  A
single antenna can only perform one transmission task
at a time.

(4) Constraints  on  data  transmission  volume  within
the  time  window.  Consider  excluding  time  window
resources  that  cannot  achieve  the  required  data
transmission volume, such as those with short duration
or slow transmission rates.

(5) For  each  individual  data  transmission  activity,
there is a variety of options when it comes to selecting
the objective function for scheduling and planning.

(6) Similarly,  for  an  overall  data  transmission
scenario,  there  are  also  multiple  choices  for  the
objective function.

3　Multi-Satellite  Data-Transmission
Scheduling Model

Based  on  potential  mission  requirements  in  future
scenarios, this paper models and formally describes the
problem  of  task  scheduling  for  data  transmission  in
LEO satellite constellations.

3.1　Definition of terms

• Data  transmission  scenario. In  this  context,  it  is

assumed that there exists a data transmission scenario,
where  multiple  satellites  and  ground  stations  need  to
perform data transmission activities during the mission
period.  This  includes  data  uploading  activities  from
several  ground  stations  to  the  satellites  and  data
downloading  activities  from  several  satellites  to  the
ground stations.
• Data  transmission  meta-task. The  data

transmission activities conducted between each pair of
satellites and ground stations are defined as meta-tasks
in  the  data  transmission  mission.  A  data  transmission
mission scenario consists of multiple meta-tasks, where
each  meta-task  specifies  the  target  satellite  and  target
ground  station  for  a  data  transmission  activity,  along
with  the  corresponding  data  transmission  volume
requirement and activity priority level.
• Time  window  resource. Data  transmission

activities  between  satellites  and  ground  stations,  as
well  as  between  satellites,  must  be  conducted  within
the  time  windows  when  their  respective  antenna
payloads  can  communicate.  In  the  proposed  model  of
this paper,  it  is assumed that each satellite and ground
station  is  equipped  with  only  one  antenna  for  data
transmission.  The  time  window  resources  in  the  data
transmission  mission  are  divided  into  three  parts:  the
inter-satellite  communication  time  window  resources
between all  relay satellites  and all  target  satellites,  the
satellite-to-ground  communication  time  window
resources  between  all  relay  satellites  and  all  target
ground  stations,  and  the  direct  communication  time
window  resources  between  all  target  satellites  and  all
target ground stations.

3.2　Notations

(1)
[
S beg, S end

]
 Data  transmission  mission  period .  All

data  transmission  activities  are  completed  within  the
data transmission mission period.

(2) Mi Data  transmission  meta-task .  It  can  be
represented by a 6-tuple as follows:
 

Mi = {mIDi, wi, tsi, gi, diri, szi} ,
where the meanings of these symbols are as follows:

● mIDi: meta-task ID;
● wi: meta-task weight;
● tsi: target satellite identification;
● gi: target ground station identification;
● diri: transmission direction;
● szi: transmission data size.
(3) M = {M1, . . . , Mi, . . . , MNm } Meta-task  set .  In  a
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Mi

Nm

data  transmission  scenario,  there  is  multiple  data
transmission  activities  involving  different  ground
stations  and  satellites.  Each  transmission  activity  is
described  as  a  meta-task ,  and  the  total  number  of
meta-tasks is . The set of meta-tasks constitutes the
entire data transmission mission requirement.

(4) TS =
{
ts1, . . . , tsi, . . . , tsNt

}
tsi

Nt

 Target  satellite  set .  It
contains  all  target  satellites  that  are  required  for  data
transmission.  identifies  a  particular  target  satellite
and the total number of target satellites is .

(5) G =
{
g1, . . . , gi, . . . , gNg

}
gi

Ng

 Target ground station set .
It  contains  all  target  ground  stations  that  are  required
for  data  transmission.  identifies  a  particular  target
ground  station  and  the  total  number  of  target  ground
stations is .

(6) RS =
{
rs1, . . . , rsi, . . . , rsNr

}
rsi

Nr

 Relay  satellite  set .  It
contains  all  satellites  that  are  used  as  relay  resources
for  data  transmission.  identifies  a  particular  relay
satellite and the total number of relay satellites is .

(7) TR = TR1, 1∪ · · ·∪
TRi, j∪ · · ·∪TRNt, Nr i ∈ {1, 2, . . . , Nt} , j ∈ {1,
2, . . . , Nr} TRi, j =

{
tr1

i, j, . . . , trk
i, j . . . , tr

trNi, j
i, j

}
i j

trNi, j

trk
i, j

 Inter-satellite  link  resources. 
,  where 

,  and  the 
indicates  the  set  of  communication  time  windows
between  target  satellite  and  relay  satellite ,  where

 represents  the  total  number  of  communication
time  windows  between  them.  can  be  represented
by a 6-tuple as follows:
 

trk
i, j =

{
rIDk

i, j, tsi, rs j, twBegk
i, j, twEndk

i, j, trRatek
i, j

}
,

where the meanings of these symbols are as follows:
rIDk

i, j● : resource ID;
● tsi: target satellite identification;
● rsj: relay satellite identification;

twBegk
i, j● : transmittable start time;

twEndk
i, j● : transmittable end time;

trRatek
i, j● : inter-satellite link transmission rate.

(8) Satellite-ground station link resources.
 

SG = RSG∪TSG,
RSG = RSG1, 1∪ · · ·∪RSGi, j∪ · · ·∪RSGNr, Ng ,

TSG = TSG1, 1∪ · · ·∪TSGi, j∪ · · ·∪TSGNt, Ng .

i ∈ {1,2, . . . ,Nt} , j ∈
{
1,2, . . . ,Ng

}
where .
 

RSGi, j =

{
rsg1

i, j, . . . , rsgk
i, j, . . . , rsg

rsgNi, j
i, j

}

i
j

indicates  the  set  of  communication  time  windows
between  the  relay  satellite  and  the  target  ground
station .

 

TSGi, j =

{
tsg1

i, j, . . . , tsgk
i, j, . . . , tsg

tsgNi, j
i, j

}

i
j rsgNi, j tsgNi, j

indicates  the  set  of  communication  time  windows
between  the  target  satellite  and  the  target  ground
station .  and  indicate the total number
of  communication  time  windows  between  each  other,
respectively.

rsgk
i, j tsgk

i, j and  can be represented by the following
esimilar 6-tuples, respectively:
 

rsgk
i, j =

{
rIDk

i, j, rsi, g j, twBegk
i, j, twEndk

i, j, rsgRatek
i, j

}
,

 

tsgk
i, j =

{
rIDk

i, j, tsi, g j, twBegk
i, j, twEndk

i, j, tsgRatek
i, j

}
,

rsgRatek
i, j

tsgRatek
i, j

where denotes  relay-satellite  to  ground  link
rate and denotes target-satellite to ground link
rate.

(9)
Scheme = {sc1, . . . , sci, . . . , scm} sci

Mi

 The  whole  scheduling  scheme  for  this  problem
can be described as , 
indicates the scheduling scheme of meta-task , and it
can be described as
 

sci =


∅, Case (1);

tsgk
tsi, gi
, Case (2);

trp
tsi, rsi

+ rsgq
rsi, gi , Case (3).

p q kwhere , ,  and  refer  to  a  particular  time  window
number  between  the  corresponding  two  antennas,
respectively.  Case  (1)  means  that  the  meta-task  is  not
scheduled for execution, Case (2) means that the meta-
task  is  scheduled  to  be  executed  via  direct
transmission, and Case (3) means that the meta-task is
scheduled to be executed via a relay satellite.

3.3　Variables

In a data transmission scenario, there are multiple data
transmission  activities  between  multiple  ground
stations and satellites. There are time window selection
conflicts  between  different  meta-tasks.  Therefore,  the
optimization  variables  in  this  problem  model  are  the
selection  states  of  time  window  resources  for  each
meta-task.

(1)

Mi tsi

gi

TSGtsi, gi

 There  are  two  ways  to  complete  a  meta-task:
direct  transmission  and  relay  transmission.  The  meta-
task  specifies  a  target  satellite  and  a  target
ground  station .  When  there  exists  available  direct
communication  time  window  between  them,
it  is  advisable  to  arrange  as  many  meta-tasks  as
possible to be completed through this way, in order to
save  relay  satellite  resources  and  improve  task
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Mi tsgk
tsi, gi←→x k

tsi, gi
←→x k

tsi, gi
= 1 tsgk

tsi, gi

completion  rate.  In  this  case,  the  execution  status  of
meta-task  on  is  denoted  as  a  boolean
variable , and  represents that 
will be the scheduling scheme for this meta-task.

(2) Mi tsi

gi

 The  meta-task  specifies  a  target  satellite 
and  target  ground  station ,  if  there  are  no  available
direct  communication  time  windows  or  all  available
direct  communication  time  windows  are  deprecated
due to conflicts, it is necessary to arrange relay satellite
resources  to  assist  in  completing  the  transmission
activities. In this case, the problem can be described as
a multi-phase and multi-decision problem. As shown in
Fig. 4a, in the first phase, it is necessary to first select a
relay satellite to execute relay transmission; then, based
on the intersection and union characteristics of the time
windows, a suitable time window resource needs to be
chosen  from  all  time  windows  between  the  target
ground  station  and  the  selected  relay  satellite;  finally,
in the selection of  time windows between the selected
relay satellite and the target satellite,  it  is necessary to
track  the  state  of  the  preceding  link’s  selection.  After
the completion of the previous stage, the time window
selection  for  the  third  stage  is  conducted  to  complete
the relay transmission (as shown in Fig. 4b).

Mi

trp
tsi, rsi

−→x p
tsi, rsi

rsgq
rsi, gi

x−→
q
rsi, gi

In this case, the execution status of meta-task  on
 is denoted as a boolean variable , and the

execution  status  on  is  denoted  as  a  boolean
variable .

p

q
−→x p

tsi, rsi
= 1 ∧ x−→

q
rsi, gi = 1(

trp
tsi, rsi
, rsgq

rsi, gi

)
Based  on  the  definition  above,  if  there  exists  and

,  such  that ,  it  represents  that
 will be the scheduling scheme for this

meta-task.

3.4　Objectives

Mi
←→
Ei

−→
Ei−→

The direct  transmission  scheduling  status  of  the  meta-
task  is  denoted  as  a  boolean  variable ,  and  the
relay  transmission  scheduling  status  is  denoted  as  a
boolean variable ,
 

←→
Ei =

1, ∃←→x k
tsi, gi
= 1;

0, ∀←→x k
tsi, gi
= 0

(1)

 

−→
Ei−→
=


1, ∃

(
−→x p

tsi, rsi
= 1 ∧ x−→

q
rsi, gi = 1

)
;

0, ¬
(
∃
(
−→x p

tsi, rsi
= 1 ∧ x−→

q
rsi, gi = 1

)) (2)

EiFrom these,  we can obtain the schedulable status 
of the meta-task,

 

Ei =


1,
←→
Ei = 1 ∨ −→Ei−→

= 1;

0,
←→
Ei = 0 ∧ −→Ei−→

= 0
(3)

EiBased  on  the  status  of ,  we  have  optimization
objectives as follows:

(1) Maximize  the  total  number  of  completed  meta-
tasks,
 

max
∑

Mi∈M

Ei.

(2) Maximize  the  total  weights  of  executing  meta-
tasks,
 

max
∑

Mi∈M

wi ·Ei.

3.5　Constraints

(1) Satellite-to-ground  communication  constraint.

 

(a) Relay transmission Phase I

(b) Relay transmission Phases II&III

Time window Phase II
Time window Phase III

s

s

s

s

s

s s

Sbeg Send

Time window conflict

f s s

 
Fig. 4    Relay transmission workflows.
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Within the constraints of ground station properties, set
the  minimum  antenna  communication  elevation  angle
to  30  degrees,  to  impose  restrictions  on  the  time
windows for satellite-to-ground communication.

(2) Data  transmission  task  integrity  constraint.  The
transmission data volume of each meta-task needs to be
transmitted  all  at  once  within  a  time  window,  without
considering multiple transmissions in batches.

(3) Time  window  resource  selection  constraint.  To
avoid  data  transmission  interruptions  that  may  occur
when  two  or  more  tasks  are  executed  consecutively
within a communication time window, the optimization
problem  is  modeled  as  a  0/1  integer  programming
model.  This  means  that  the  time  window  resources
selected  for  meta-tasks  are  indivisible,  and  within  the
duration  of  a  time  window,  they  cannot  be  used  to
execute other meta-tasks.

(4) Exclusivity  and  availability  constraints  of
bilateral  devices  during  data  transmission.  In  the
planning  process,  a  relay  satellite  may  serve  multiple
meta-tasks, but when data transmission occurs between
satellite  and ground or  between satellites,  one antenna
can only execute one transmission activity at a time. As
shown  in Fig.  5,  in  this  case,  conflicting  tasks  should
be deprecated and re-scheduled for them.

(5) Antenna switching time constraint.  For the same
ground station or the same satellite, when switching the
data  transmission  equipment,  the  antenna  angle  needs
to  be  adjusted.  Therefore,  there  exists  an  antenna
switching  duration  constraint  when  switching  data
transmission  equipment  between  different  meta-tasks
(as shown in Fig. 5).

(6) Data  volume  constraint  for  each  time  window
transmission.
 

Ratek
i, j×
(
twEndk

i, j− twBegk
i, j

)
⩾ szi (4)

(7) Relay  satellite  storage  capacity  constraint.  After
receiving the transmission data of a meta-task, the relay

transmission  of  the  second  stage  must  be  performed
before executing the next meta-task.

4　He-DQN:  A  Two-Stage  Optimization
Framework Based on Heuristic and DQN

Based  on  the  multi-stage  and  multi-decision
characteristics  of  the  data  transmission  task,  we  will
solve  the  problem  through  a  two-stage  scheduling
process. In the first stage, we need to schedule and plan
the meta-tasks that  can be directly transmitted.  Due to
the problem’s 0/1 integer programming nature and the
relatively  small  decision  space  of  the  direct
transmission  process,  we  directly  utilize  a  genetic
algorithm to plan the meta-tasks that can be completed
through direct  transmission.  The remaining meta-tasks
are considered as tasks that require relay transmission.

In  the  second  stage,  to  schedule  the  meta-tasks  that
require  relay  transmission,  we  divide  the  scheduling
process into two phases. In the first phase, we propose
a  heuristic  strategy  that  considers  the  number  of  relay
satellite  time windows,  total  communication time,  and
load  balancing.  This  strategy  is  used  to  assign  relay
satellites  for  conducting  relay  transmission  for  each
meta-task and determines the communication links for
relay  transmission.  In  the  second  phase,  based  on  the
determined  communication  links  from  the  first  phase
and  all  feasible  time  windows,  we  use  the  DQN
algorithm to  arrange  the  specific  time  window for  the
communication links.

4.1　Direct transmission meta-tasks

Mi = {mIDi, wi, tsi, gi, diri, szi} M j = {mID j, w j, ts j,

g j, dir j, sz j} tsi = ts j gi = g j

Based  on  the  analysis  of  the  problem  model,  it  is
known that there exists a time window set between the
target  objects  specified  by  each  meta-task.  However,
due  to  the  presence  of  transmission  conflicts  among
different  meta-tasks,  for  example,  between  meta-task

 and 
,  if  or ,  then  the  time

 

Time window Phase I
Time window Phase II

Antenna switching time
Resource conflict time endbeg

Priority

Meta-task 1

Meta-task 2

Meta-task 3

Deprecate

 
Fig. 5    Conflict and switching time constraints.
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[
twBegp

tsi, gi
, twEndp

tsi, gi

] [
twBegq

ts j, g j
,

twEndq
ts j, g j

]windows  and 

 in  respective  communication  resources
scheduled for them cannot have intersections.

To  achieve  the  objective  of “maximizing  the  total
numbers of completed tasks” or “maximizing the total
weights  of  task  execution”,  while  satisfying  this
constraint and other relevant constraints, the scheduling
process  for  this  stage  can  be  achieved  using  a  genetic
algorithm[35].

TSGi, j ={
tsg1

i, j, . . . , tsgk
i, j, . . . , tsg

tsgNi, j
i, j

}
i j

tsgNi, j

The  direct  communication  resource  set 
 between  the  target

satellite  and  the  target  ground  station  specified  in
each data transmission meta-task can be obtained from
the resource set.  Additionally, the number of available
resources  for  each  meta-task,  is  also  known.
Therefore,  each  gene  position  in  an  individual  can  be
encoded  as  a  selection  index  of  the  communication
resource between the target  satellite  and target  ground
station for a specific meta-task.  Each individual  in the
population  corresponds  to  a  feasible  scheduling
solution.

The  main  steps  to  solve  this  problem  using  genetic
algorithm are described as follows:

(1)  Initialization. First,  by  iterating  through  all  the
resources  in  the  resource  set,  we  obtain  the  direct
communication resources for each meta-task. Based on
this,  randomly  select  communication  resources  for
gene encoding and generating individuals, and form the
initial population.

(2)  Conflict  elimination. Due  to  the  existence  of
constraints,  when  encoding  individuals  in  the
population,  there  may  be  conflicts  (time  window
overlaps)  in  the  communication  resources  planned  for
each  gene  position  of  the  individual.  Therefore,  in
computing the fitness of  individuals  in the population,
conflict elimination operations are required. Depending
on  different  objective  functions,  different  elimination
strategies  are  used  to  eliminate  conflicting  meta-tasks
one  by  one  until  the  individual  satisfies  all  the
constraints and becomes a feasible solution.

(3)  Mutation  operator. The  mutation  operation
increases the diversity of the population. With a certain
probability  defined  as  the  mutation  probability,  the
mutation operator alters the resource selection index of
a  gene  position  in  an  individual,  which  helps  to
improve  the  local  search  ability  and  obtain  better
feasible solutions.

(4)  Crossover  operator. The  crossover  operation

increases the diversity of the population by exchanging
a certain segment of genes between two individuals in
the  population.  Similarly,  with  a  certain  probability
defined  as  the  crossover  probability,  the  crossover
operator  selects  individuals  and  gene  positions  to
perform the exchange operation, thereby enhancing the
global search ability of the problem.

(5) Fitness function. The fitness function is  used to
evaluate  the  fitness  value  of  individuals  in  the
population,  and  higher  fitness  values  are  retained
during  subsequent  selection.  Based  on  conflict
elimination,  feasible  scheduling  solutions  for  the
problem  can  be  obtained,  and  accordingly,  the  fitness
value  of  each  individual  can  be  calculated  based  on
different objective functions.

(6)  Selection  operator. After  generating  new
individuals through crossover and mutation operations,
in  order  to  maintain  a  stable  population  size  in  each
iteration, we need to select and eliminate individuals in
the  population.  A  roulette  wheel  selection  strategy  is
used,  where  individuals  are  selected  to  form  the  new
population  based  on  their  fitness  values  and  the
cumulative probability of the total fitness.

According  to  above-mentioned  steps,  we  repeat  a
series of evolutionary iterations. After each population
iteration,  we  record  the  individual  with  the  highest
fitness  value.  Finally,  when  the  specified  number  of
evolutionary  generations  is  reached,  the  optimal
feasible solution is obtained. With the optimal feasible
solution,  the  direct  transmission  scheduling  status  of
each  meta-task  can  be  obtained.  For  meta-tasks  that
cannot  be  completed  through  direct  transmission,  a
heuristic strategy combined with the DQN algorithm is
proposed for relay transmission scheduling process.

4.2　Relay transmission meta-tasks

Through the first stage of the genetic algorithm, we can
obtain  the  scheduling  results  of  meta-tasks  for  direct
transmission and the set of meta-tasks waiting for relay
transmission.  The  relay  transmission  scheduling
problem  is  a  complex  optimization  problem  with
multiple stages and decisions.

Nr

i j
trNi, l

i l rsgNl, j

l j

In  a  data  transmission  scenario  with  relay
satellites,  for  each  meta-task  (assuming  the  target
satellite is  and the target ground station is ), there are

 communication  time  windows  between  target
satellite  and  a  particular  relay  satellite ,  and 
communication  time  windows  between  the  particular
relay  satellite  and  target  ground  station ,  thus  the
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∑Nr
k=1 trNi, l×

rsgNl, j

search  space  for  a  meta-task  comes  to 
,  that  requires  relay  transmission  is  enormous

and complex.
In  this  regard,  we propose  using a  heuristic  strategy

in  the  first  phase  to  select  a  relay  satellite  for  each
meta-task. Based on the selection of relay satellites, we
can  construct “target  satellite − target  relay  satellite −
target  ground  station” relay  transmission  link  and
obtain  all  Feasible  Time  Window  Arrangements
(FTWAs)  for  this  link.  In  the  second  phase,  based  on
the  first  phase  results,  we  need  to  determine  the
specific  time  window  arrangements  for  each
communication link. In this phase, the DQN algorithm
is used to train and learn the decision planning, guiding
the agent  to  select  the  optimal  decision action given a
certain  state,  thus  achieving  scheduling  for  the
continuous state space.
4.2.1　Heuristic strategy

i
j

l

For a certain meta-task, when the target satellite  and
target ground station  are clear, the impact of selecting
different  relay  satellites  to  complete  the  task  can  be
considered from the following two aspects:
• trNi, l

i
l TRi, l

 The  number  of  time  windows  and  total
communication  duration  in  target  satellite  and  relay
satellite  communication resources .
• rsgNl, j

l
j RSGl, j

 The  number  of  time  windows  and  total
communication  duration  in  relay  satellite  to  target
ground station  communication resources .

i j
l

Clearly, for a meta-task, if a certain relay satellite has
more communication time windows for both the target
satellite  and  the  target  ground  station ,  then  this
relay satellite  should be given priority for selection. If
multiple  relay  satellites  have  the  same  number  of
communication  time windows for  the  same meta-task,
then  the  one  with  a  shortest  total  communication
duration should be selected for relay transmission. This
helps reduce the occupation of relay satellite resources,
release  satellite  resources,  and  minimize  satellite
energy  consumption.  It  also  allows  the  selected  relay
satellite  to  have  more  available  time  to  execute  other
meta-tasks.

On  the  other  hand,  if  we  aim  to  complete  as  many
meta-tasks as possible, we need to utilize the available
relay  satellite  resources  to  the  maximum  extent.
However,  the  aforementioned  heuristic  strategy  may
result  in  one  relay  satellite  servicing  multiple  meta-
tasks  (as  shown in Fig.  6).  This  can  lead  to  excessive
conflicts  between  transmission  task  links,  exceeding
the  service  capacity  limit  of  the  relay  satellite,  and

affecting  the  completion  of  meta-tasks  in  the  entire
data  transmission  scenario.  Therefore,  achieving  a
balanced  distribution  of  relay  satellite  resources  and
ensuring  a  certain  load  balance  when  executing  meta-
tasks  for  each  relay  satellite  is  also  an  important
consideration.

Based  on  the  comprehensive  considerations
mentioned  above,  in  the  first  phase  of  relay
transmission  scheduling,  we  propose  a  heuristic
strategy  that  takes  into  account  the  number  of  time
windows,  total  communication  duration,  and  load
balance  for  selecting  relay  satellites  for  each  relay
transmission  meta-task.  The  strategy  is  described  as
follows.

p
q

p×q

p×q

Firstly, we calculate the number of FTWAs for each
relay  satellites  in  each  meta-task.  For  the  relay
transmission  link “target  satellite − relay  satellite −
target  ground  station”,  just  assume  there  are  time
windows in the first  phase and  time windows in the
second  phase.  Theoretically,  there  are  possible
combinations  of  time  windows.  However,  considering
constraints,  such as time window availability and time
window sequencing, we need to obtain all FTWAs that
satisfy these constraints from the  combinations of
time windows for each link. By performing this process
for all relay transmission meta-tasks, we can determine
the  number  of  FTWAs  in  the  communication  links
through each relay satellite for each meta-task.

Based  on  the  number  of  FTWAs,  we  prioritize

 

S

S S
 

Fig. 6    Relay satellite service.
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assigning the relay satellite with the maximum number
to  each  meta-task.  In  cases  where  multiple  meta-tasks
are  assigned  to  the  same  relay  satellite,  if  there  are
other  relay  satellites  that  have  not  been  assigned  any
meta-task,  we  should  consider  load  balancing  for  the
satellite. This can be done by resolving conflicts based
on  the  total  communication  duration,  with  the  relay
satellite  given priority  to  execute  the  meta-task with  a
smaller total communication duration.

For the remaining meta-tasks that generate conflicts,
the  relay  satellite  with  the  fewer  FTWAs  should  be
selected  for  execution.  The  process  of  relay  satellite
selection  and  conflict  elimination  is  repeated  until  all
meta-tasks are scheduled to be executed by a particular
relay satellite.

Through this heuristic strategy, we can maximize the
utilization  of  relay  satellite  resources  and  allocate  a
relay  satellite  with  the  highest  redundancy  in  feasible
link  selections  to  execute  each  meta-task.  This
effectively  reduces  contention  conflicts  among  meta-
tasks  for  relay  satellite  resources,  thereby  improving
the  success  rate  of  subsequent  phase  of  meta-task
scheduling.

Additionally,  with  the  determination  of  relay
satellites,  we  can  obtain  the  clear  FTWAs  for  each
communication  link.  These  FTWAs  serve  as  the
foundation for subsequent scheduling processes.
4.2.2　DQN
DQN is a deep reinforcement learning algorithm based
on Q-learning. It leverages the powerful approximation
and generalization capabilities of deep neural networks
to  effectively  handle  continuous  state  spaces.  During
the training process, the algorithm continuously adjusts
the  weights  of  the  neural  network  to  improve  the
accuracy of  value function estimation.  This guides the
agent  to  learn  to  choose  the  optimal  actions  given
specific states, enabling it to make decisions and plans
for tasks in continuous state spaces.

Through  the  scheduling  arrangement  in  the  first
stage,  we  not  only  determine  the  selection  of  relay
satellites for each meta-task, but also obtain all FTWAs
for  the  communication  links.  This  provides  the
foundational  conditions  for  the  subsequent  time
window planning stage.

To  plan  the  communication  time  window  selection
for each meta-task, we utilize a multi-layer feedforward
neural network based DQN architecture. The design of
this network architecture aims to extract useful features
from the input states through successive layers of non-

linear  transformations  and  parameter  learning.  It
generates  corresponding  outputs,  which  represent  the
time window scheduling strategies for each meta-task’s
respective transmission link.

In  the  second  stage,  we  abstract  the  task  planning
problem into an MDP. The MDP decision process can
be described using the following formula:
 

Vπ (S i, a) =R (S i, ai)+

γ
∑
si∈S

(
P (S i, a, S i+1)×max Vπ (S i+1, ai+1)

)
(5)

Vπ(S i, ai)

ai π

S i

R (S i, ai)
ai S i

S i S i+1

P (S i, ai, S i+1)
S i S i+1

ai+1 max Vπ (S i+1, ai+1)
γ

where  describes the overall expected reward
in a reinforcement learning environment when an agent
chooses an action  according to the policy  in state

.  The  expected  reward  consists  of  two  parts:  (1)
function  denotes  the  immediate  reward
directly obtained when performing action  in state .
(2) the rest part accounts for the future rewards, which
is  achieved  by  calculating  the  weighted  average
expected reward for transferring from the current state

 to  all  possible  next  states .  In  which,  the
function  represents  the  probability
transitioning  from  state  to  state .  For  each
possible next state, we calculate the value of taking the
optimal  action  and  have  the .
The  parameter  is  a  discount  factor,  introduced  to
prevent the occurrence of state loops and to account for
the  uncertainty  in  future  predictions.  It  discounts  the
consideration of future rewards,  with a value closer to
1 indicating a longer-term perspective.

S 0

A0 S 0

R1

A0

S 1 Ai

S i

At the beginning, the system is in the initial state .
The  agent  takes  action  based  on ,  and  interacts
with  the  environment,  thus  receiving  a  reward  for
executing action  and transitioning to  the  next  state

. The agent continuously outputs actions  based on
state  until reaching a terminal state. Each interaction
between the agent and the environment is referred to as
a time step.

S
S = {S 0, S 1, . . . , S i, . . .}

● State. The  state  space  is  a  collection  of  states,
denoted  as ,  where  each  state
consists  of  attributes  related  to  tasks  and  resources,
describing the situation at a particular time step during
time window selection. The details of the states are as
follows:
 

S i =

{
xt

i =

(
dt, j

i , nt
i, szt

i, wt
i, twBegt, j

i , twEnd
t, j
i , gt

i

)
,

t = 0, 1, . . . , N
}

(6)
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For a meta-task  at  the specified resource  at  time
step ,  the  variables  are  as  follows:  is  the  set  of
remaining  communication  time  windows;  is  the
number of remaining time windows in the set;  is the
transmission  data  volume;  is  the  execution  reward;

 and  are the starting and ending times
of the feasible time window, respectively; and  is the
label  indicating whether  meta-task  has  been selected
before time step .

dt, j
i = ∅,∀t ∈ {1, 2, . . . , n}

In  addition,  if  there  are  no remaining time windows
for  all  meta-tasks,  then ,  it  is
defined as the terminal state.

t i

Ai = {a0,

a1, . . . , as}

i S i

● Action. Actions  refer  to  the  decisions  made  for
meta-task  at time step . Since in the aforementioned
first  phase,  we  have  already  assigned  a  resource  for
each  task,  the  model’s  actions  can  be  defined  as
combinations  of  all  feasible  time  windows 

.  In  each  step,  the  agent  chooses  an  action
through “exploration” or “exploitation”.  If  it  is
“exploration”,  the agent  randomly selects  an action.  If
it is “exploitation”, the agent uses the current time step
’s  state  as  input  to  the  neural  network  and  selects

the action with the highest Q-value.

reward = {R1, R2, . . . ,

Ri, . . . |Ri = f (xi)− f (xi−1)} f (xi)

● Reward. In  the  scheduling process,  it  is  essential
to  arrange  data  task  transmissions  that  satisfy  the
constraint conditions in order to maximize the benefits.
Therefore,  based  on  the  optimization  variables  we
designed  earlier,  to  achieve  the  maximum  profit,  the
reward function is designed to be the incremental total
profit  after  taking  the  action, 

,  in  which  represents
the total reward at time step i.

Q∗ (s, a) = reward+
γ×Q (s, a)

● Value functions. Based on the definitions of state,
action, and reward mentioned above, we can introduce
the  value  function.  The  value  function  measures  the
desirability  of  each  state,  helping  the  agent  choose
actions  with  the  highest  value  to  optimize  the  task
planning  process.  According  to  Bellman  equation,  the
value  function  is  defined  as 

.

S i

During  the  training  phase,  two  separate  neural
networks  are  used:  the  current  network,  which
calculates  the  Q-values  for  the  current  state,  and  the
target network, which calculates the target Q-values. In
the training process, the state  is used as the input to
the  neural  network,  and  the  network  computes  the  Q-
values  for  each  action.  These  Q-values  represent  the
expected returns for choosing each action in the current

Ai

S i+1

state.  Based  on  the  computed  Q-values,  the  agent
selects an action  according to a certain strategy and
interacts with the environment, receiving a reward and
obtaining information about the next state .

loss = TDerror2Next,  is  used  to  update  the
parameters  of  the  current  network.  The  goal  is  to
minimize  the  loss,  allowing  the  current  network  to
approximate the estimated values of the target network.
This process enables the current network to make more
accurate  predictions  of  action-value  functions  and
enhance the decision-making ability of the agent.

In conclusion, by constructing and training the neural
network,  we  can  optimize  the  network’s  parameters
and  minimize  the  error  between  the  network’s  output
and  the  expected  output.  This  enables  the  intelligent
agent  to  gradually  learn  and  optimize  task  scheduling
strategies, allowing it to generate accurate and efficient
scheduling  decisions  in  the  problem  of  selecting
feasible time window arrangements for communication
links.

5　Instance and Experiment

5.1　Generate instance

In  order  to  analyze  the  solving  capability  and
effectiveness  of  the  proposed  algorithm  in  this
problem,  we  generate  corresponding  test  instances
based  on  the  richness  of  resources  and  the  level  of
conflicts among meta-tasks. Each test instance includes
a  set  of  data  transmission  meta-tasks  and  various  sets
of  satellite-to-ground  and  inter-satellite  time  window
resources.

Firstly, we set up a data transmission scenario with a
period  of  one  day.  Taking  into  account  the
characteristics of ground station selection, we designate
ten  target  ground  (Grd)  stations  located  uniformly
within China for data transmission, as shown in Table 1.

As  the  Target  Satellite  (TS)  constellation  for  data
transmission,  we  construct  a  Walker  constellation
consisting of 4 orbital planes, with each plane having 5
satellites.  The  phase  factor  is  set  to  1,  resulting  in  a
total  of  20  satellites.  The  attributes  of  these  target
satellites are shown in Table 2.

As  the  Relay  Satellite  (RS)  constellation  for  data
transmission,  we  construct  a  Walker  constellation
consisting of 10 orbital planes, with each plane having
10 satellites. The phase factor is set to 1, resulting in a
total  of  100  satellites.  The  attributes  of  these  relay
satellites are shown in Table 2.
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[10,100]

[2000, 3000]

[10, 20]

Through  all  combinations  of  the  10  target  ground
stations and the 20 target satellites, a maximum of 200
data transmission meta-tasks can be set in this scenario.
We assume that all data transmission tasks involve data
downlink from the target satellites to the target ground
stations. The execution weight of the meta-tasks are set
as random integers ranging from , and the data
transmission  demanding  data  sizes  are  set  as  random
integers  ranging  from ,  with  units  in  Mb
(megabits).  All  the  inter-satellite  and  satellite-to-
ground communication time windows can be obtained
through calculations. In each communication resource,
the communication transmission rate is set as a random
integer  ranging  from ,  with  units  in  Mbps
(megabits per second).

|TS| |Grd| |RS|

M = {M1, . . . ,

Mi, . . . , Mm}
TSGi, j =

{
tsg1

i, j, . . . ,

tsgk
i, j, . . . , tsg

tsgNi, j
i, j

}

To  demonstrate  the  influence  of  meta-task  quantity
and resource abundance on problem-solving, we create
6 instances with different meta-task scales and resource
richness  using  the  aforementioned  data  transmission
scenario. The statistical information for all scenarios is
presented in Table 3. In which , , and  are
respectively  denoted  as  the  number  of  the  target
satellite,  the  number  of  the  target  ground  station,  and
the number of the relay satellite. To better compare and
analyze  the  impact  of  resource  abundance in  the  relay
satellite  constellation,  for  two scenarios with the same
meta-task  quantity,  their  meta-task  sets 

 and the Target Satellite-to-Ground station
communication  resources 

 are  entirely  identical,  with  only

variations in the number of relay satellites.

5.2　Results and discussion

5.2.1　Stage-1: Direct transmission scheduling
During the first stage of direct transmission meta-tasks
scheduling  using  genetic  algorithm,  our  objective
function  is  set  to  maximize  the  total  weights  of  direct
transmission  meta-tasks.  We  use  a  population  size  of
50 to perform 100 generations of iterations, and set the
crossover rate to 0.6 and the mutation rate to 0.4. After
the first-stage scheduling process in each instance,  the
obtained optimal results are listed in Table 4.

Mexe

|Mexe| Mexe

Mrmn |Mrmn|
Mrmn

|M|

From  the  results,  we  can  observe  that  through  the
scheduling  process,  a  considerable  portion  of  meta-
tasks  in  each  test  instance  can  be  completed  through
the direct communication time windows between target
satellites and ground stations (labeled as set ,  and

 refers to the number of set ), the other meta-
tasks  (labeled  as  set ,  and  refers  to  the
number of set ) will remain there to be dealt with.
Additionally,  it  is  evident  that  as  the number of  meta-
tasks  increases,  i.e.,  when  the  same  number  of  target
ground  stations  need  to  receive  data  from more  target
satellites,  the  proportion  of  meta-tasks  that  can  be
directly  transmitted  decreases.  This  is  because  for  a
given  target  ground  station,  the  more  target  satellites
are  involved  in  data  transmission,  the  higher  the
likelihood  of  time  window  conflicts  in  the  meta-task
scheduling  results.  In  which  is  denoted  as  the
number of meta-tasks.
5.2.2　Stage-2: Relay transmission scheduling

Mexe

Mrmn

∑
wexe

i Mrmn

Through Stage-1 processing, we have differentiated the
transmission  states  of  all  meta-tasks  in  the  scenarios,
dividing them into sets of meta-tasks ( ) that can be
directly transmitted and those ( ) that require relay
transmission.  For  the  meta-tasks  that  can  be  directly
transmitted, we obtained the scheduling results directly
( ).  For  the  remaining  meta-tasks  ( )  that
need  relay  transmission,  we  first  used  the  proposed
heuristic strategy to select relay satellites. The resulting
relay satellite scheduling is shown in Fig. 7, where the
x-axis represents the number of meta-tasks that a single
relay satellite needs to serve, and the y-axis represents
the number of relay satellites in corresponding states.

 

Table 1    Ground stations information.
Ground station tag Longitude & Latitude

GS-BJ (116.412 53°, 39.909 60°)
GS-KM (102.846 42°, 24.890 17°)
GS-KS (75.994 55°, 39.497 53°)
GS-SY (109.518 10°, 18.254 54°)
GS-CD (104.081 06°, 30.578 24°)

GS-HEB (126.549 33°, 45.812 15°)
GS-LS (91.123 16°, 29.656 04°)
GS-LZ (103.846 02°, 36.065 30°)
GS-SH (121.483 21°, 31.239 24°)
GS-WH (114.311 31°, 30.598 06°)

 

Table 2    Satellite properties.
Type Orbital category Number of recursive laps Orbital period (s) Inclination (deg) Orbital height (km)

Target satellite Sun-synchronous 14 6164.46 98.9873 888.322
Relay satellite Recursive 15 5684.23 60.0000 505.852
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From Fig. 7, we can observe that, under the condition
of  the  same number  of  meta-tasks,  the  more  abundant
the  relay  satellite  resources,  the  fewer  meta-tasks  a
single satellite needs to serve, with more relay satellites
serving  only  1  and  2  meta-tasks.  However,  when  the
relay satellite resources decrease, more and more relay
satellites  need  to  serve  3  and  4  meta-tasks.  On  one
hand,  this  increases  the  communication  burden  on  the
satellites, and on the other hand, it adds difficulty to the
subsequent feasible time window scheduling.

With  the  determination  of  relay  satellites  for  each
meta-task,  we  can  establish  the  satellite-ground  relay
transmission links as “target satellite − relay satellite −
target ground station” and obtain all  FTWAs for these
links  by  satisfying  the  constraints.  The  number  of
FTWAs obtained for each meta-task in 6 test instances
is shown in Fig. 8.

From  the  results,  it  can  be  observed  that  after
determining  the  transmission  links,  each  link  has
multiple  FTWAs.  As  the  number  of  relay  satellite
resources  increases,  each  meta-task  can  obtain  relay
satellites  with higher  scheduling redundancy,  resulting
in  an  increase  in  the  number  of  FTWAs  for  the
corresponding transmission links. [5800, 6200]

The  next  step  is  to  apply  DQN  for  the  subsequent
FWTA scheduling. In order to demonstrate the impact
of  different  resource  abundances  on  the  overall
scheduling  revenue,  we  conducted  separate  training
using  Instance  5:  M200-R60  and  Instance  6:  M200-
R100.  From  the  157  meta-tasks  that  require  relay
transmission  in  each  instance,  we  randomly  select  the
same  100  meta-tasks  to  form  1000  test  samples  for
training.  Each  test  sample  has  a  total  weights  ranging
from . The results are shown in Fig. 9.

From Fig. 8, we can observe that the total weight of
scheduling  meta-tasks  sharply  increases  at  the
beginning  of  the  training,  then  fluctuates  around  a
certain  value,  continuously  exploring  and  trying
different  actions  until  it  stabilizes  and  converges
towards  the  end  of  the  training.  The  variation  of  the
samples during training does not significantly affect the
convergence of the total weight. This indicates that the
trained  Q-network  has  good  generalization  capability
and can be effectively applied to unknown scenarios.

 

Table 3    Instances overview.
Number Instance tag |TS| |Grd| |RS| ∑

wi

1 M50-R10 5 10 10 3105
2 M50-R20 5 10 20 3105
3 M100-R30 10 10 30 5967
4 M100-R50 10 10 50 5967
5 M200-R60 20 10 60 12 120
6 M200-R100 20 10 100 12 120

 

Table 4    Stage-1 optimal results.
Number |M| ∑

wi |Mexe|
∑

wexe
i |Mrmn|

1&2 50 3105 19 1520 31
3&4 100 5967 29 2304 71
5&6 200 12 120 43 3446 157
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Fig. 7    Relay satellite loading status.

 

(a) M50-R10 and M50-R20
Number of meta-tasks

Number of meta-tasks

Number of meta-tasks

(b) M100-R30 and M100-R50

(c) M200-R60 and M200-R100
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Fig. 8    Quantities of FTWAs in each meta-task.

    1476 Tsinghua Science and Technology, October 2024, 29(5): 1463−1480

 



The  6  instances,  M50-R10,  M50-R20,  M100-R30,
M100-R50,  M200-R60,  and  M200-R100,  have
undergone  preliminary  scheduling  and  obtained
abbreviated  instances.  We  apply  the  trained  model  to
each  of  these  prepped  instances,  and  the  scheduling
results are shown in Table 5.∑

wrmn
i

Mexe′∑
wexe′

i

In Table  5,  refers  to  the  total  weight  of  the
remaining  meta-tasks Mrmn,  the  meta-task  set  that  can
be scheduled is labeled as , the total weight result
is  labeled  as ,  and “Rate” indicates  the  rate  of
achievement of the total weights.
5.2.3　Discussions
Combining the scheduling results in Stage-1 and Stage-
2,  we can summarize the overview for all  instances in
Table  6,  which  showcases  the  completion  status  of
meta-tasks at different stages and the achievement rates
of profit after two stages.

At  the  same  time,  the  achievement  rates  of
scheduling results in terms of weight for each instance
is shown in Fig. 10.

Combining Tables  5 and 6 along  with Fig.  10,  we
can  easily  observe  that  as  the  number  of  meta-tasks
increases,  it  implies  that  the  same  number  of  target
ground  stations  needs  to  handle  more  meta-tasks
through relayed data transmission from multiple target
satellites. For each ground station, the conflicts arising
from  completing  meta-tasks  will  inevitably  increase,
leading to a decrease in the revenue attainment rate for
completing tasks. On the other hand, by increasing the
number  of  relay  satellite  resources,  the  revenue

attainment  rates  of  meta-tasks  can  be  significantly
improved.

In terms of the execution efficiency of the algorithm,
the genetic algorithm Stage-1 needs to spend a minute
level of time for obtaining the preprocessed results due
to the large number of iterative searches; in Stage-2 of
the  DQN  solution,  due  to  a  large  number  of  data
training  to  obtain  the  solution  model,  the  scheduling
results  can  be  generated  in  the  second  level  of  time,
which can achieve a higher efficiency of the solution.

6　Conclusion

In  this  paper,  a  data-driven  cooperative  scheduling
model is proposed for multi-satellite data transmission,
focusing  on  the  potential  large-scale  challenges  faced
by LEO satellite data transmission in future application
scenarios. To facilitate the study, a set of problem test
instances  is  generated  by  methodical  design,  taking

 

High resourcefulness
Low resourcefulness

Number of episodes 
Fig. 9    Total weight of per episode in samples.

 

Table 5    Relay transmission FTWA scheduling results.

Intance |Mrmn|
∑

wrmn
i

∣∣∣Mexe′
∣∣∣ ∑wexe

′

i
Rate (%)

M50-R10 31 1585 23 1356 85.5
M50-R20 31 1585 29 1505 95.0
M100-R30 71 3663 55 2972 81.1
M100-R50 71 3663 64 3245 88.6
M200-R60 157 8674 118 6573 75.8
M200-R100 157 8674 132 6956 80.2

 

Table 6    Overall scheduling results.

Number
∑

wi |Mexe|
∑

wexe
i

∣∣∣Mexe′
∣∣∣ ∑wexe

′

i
Rate (%)

1 3105 19 1520 23 1356 92.6
2 3105 19 1520 29 1505 97.4
3 5967 29 2304 55 2972 88.4
4 5967 29 2304 64 3245 93.0
5 12 120 43 3446 118 6573 82.7
6 12 120 43 3446 132 6956 85.8
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Fig. 10    Achievement rates of scheduling results.
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into  account  the  problem  attributes  and  scale  of  the
solutions. A two-stage optimization framework, named
He-DQN,  is  introduced  to  address  test  instances  of
various  task  sizes  and  resource  quantities,  combining
the classical genetic algorithm, heuristic strategies, and
the  advanced  DQN  algorithm.  Initially,  the  genetic
algorithm  is  applied  to  determine  the  direct-
transmission  data  meta-tasks  set.  Subsequently,  a
greedy  strategy  is  utilized  to  assign  relay  satellites  to
meta-tasks  requiring  relay  transmission,  allowing  for
the  identification  of  feasible  time  window
arrangements  for  relay  transmission  links.  Finally,  the
DQN  algorithm  is  employed  to  schedule  precise  time
window  resource  allocation  for  each  meta-task.
Experimental results demonstrate the effectiveness and
accuracy  of  the  He-DQN  algorithm  in  solving  the
multi-satellite  data  transmission  scheduling  problem.
The  algorithm  achieves  a  high  solution  quality,  with
over  80% mission  gain  attainment  rate  in  all  six
instances,  and  it  excels  in  scenarios  involving  intense
resource contention conflicts.

In future research,  we can carry out further research
in  terms  of  problem  model  and  solution  algorithm:
(1)  In  the  construction  of  the  model,  we  can  consider
the  segmented  execution  of  the  transmission  task  and
the slicing of  the time window, thus utilizing the time
window  more  efficiently.  (2)  In  terms  of  algorithmic
solution,  we  can  consider  the  reduction  of  the
algorithmic execution steps in future research, which is
conducive  to  the  search  for  the  globally  optimal
solution.

Acknowledgment

This work was supported by the National Natural Science
Foundation  of  China  (Nos.  42271391,  62006214,  and
42101439),  the  Joint  Funds  of  Equipment  Pre-Research
and Ministry of Education of China (No. 8091B022148),
the  14th  Five-Year  Pre-Research  Project  of  Civil
Aerospace  of  China,  the  Hubei  Excellent  Young  and
Middle-Aged  Science  and  Technology  Innovation  Team
Plan  Project  (No.  T2021031),  and  the  Open  Research
Project  of  Hubei  Key  Laboratory  of  Intelligent  Geo-
Information Processing (No. KLIGIP-2022-B09).

References 

 Be  prepared,  stay  connected, https://www.iridium.com/,
2020.

[1]

 X. Lin, S. Cioni, G. Charbit, N. Chuberre, S. Hellsten, and
J.  F.  Boutillon, On  the  path  to  6G: Embracing  the  next

[2]

wave  of  low  earth  orbit  satellite  access, IEEE  Commun.
Mag., vol. 59, no. 12, pp. 36–42, 2021.
 F. S. Prol, R. M. Ferre, Z. Saleem, P. Välisuo, C. Pinell, E.
S.  Lohan,  M.  Elsanhoury,  M.  Elmusrati,  S.  Islam,  K.
Çelikbilek,  et  al, Position,  navigation,  and  timing (PNT)
through  low  earth  orbit (LEO) satellites: A  survey  on
current status, challenges, and opportunities, IEEE Access,
vol. 10, pp. 83971–84002, 2022.

[3]

 S.  Chen, Analysis  of  LEO  satellite  communication  and
suggestions  for  its  development  strategy  in  China, (in
Chinese), Telecommun.  Sci.,  vol. 36,  no. 6,  pp. 1–13,
2020.

[4]

 H.  Zhang,  J.  Xie,  J.  Ge,  J.  Shi,  and  Z.  Zhang, Hybrid
particle  swarm  optimization  algorithm  based  on  entropy
theory  for  solving  DAR  scheduling  problem, Tsinghua
Science  and  Technology,  vol. 24,  no. 3,  pp. 282–290,
2019.

[5]

 Y.  Fu,  Y.  Hou,  Z.  Wang,  X.  Wu,  K.  Gao,  and  L.  Wang,
Distributed  scheduling  problems  in  intelligent
manufacturing  systems, Tsinghua  Science  and
Technology, vol. 26, no. 5, pp. 625–645, 2021.

[6]

 Z.  Hu  and  D.  Li, Improved  heuristic  job  scheduling
method  to  enhance  throughput  for  big  data  analytics,
Tsinghua  Science  and  Technology,  vol. 27,  no. 2,  pp.
344–357, 2022.

[7]

 E.  Jiang,  L.  Wang,  and  J.  Wang, Decomposition-based
multi-objective  optimization  for  energy-aware  distributed
hybrid  flow  shop  scheduling  with  multiprocessor  tasks,
Tsinghua  Science  and  Technology,  vol. 26,  no. 5,  pp.
646–663, 2021.

[8]

 Y. Yan, K. Du, L. Wang, H. Niu, and X. Wen, MP-DQN
based  task  scheduling  for  RAN  QoS  fluctuation
minimizing  in  public  clouds,  in Proc.  2022  IEEE  Int.
Conf.  Communications  Workshops (ICC  Workshops),
Seoul, Republic of Korea, 2022, pp. 878–884.

[9]

 G. Chen, R. Shao, F. Shen, and Q. Zeng, Slicing resource
allocation based on dueling DQN for eMBB and URLLC
hybrid  services  in  heterogeneous  integrated  networks,
Sensors, vol. 23, no. 5, p. 2518, 2023.

[10]

 M.  Wang,  G.  Dai,  and  M.  Vasile, Heuristic  scheduling
algorithm  oriented  dynamic  tasks  for  imaging  satellites,
Math. Probl. Eng., vol. 2014, p. 234928, 2014.

[11]

 X. Chen, G. Reinelt, G. Dai, and M. Wang, Priority-based
and  conflict-avoidance  heuristics  for  multi-satellite
scheduling, Appl.  Soft  Comput.,  vol. 69,  pp. 177–191,
2018.

[12]

 X. Chen, G. Reinelt, G. Dai, and A. Spitz, A mixed integer
linear  programming  model  for  multi-satellite  scheduling,
Eur. J. Oper. Res., vol. 275, no. 2, pp. 694–707, 2019.

[13]

 S.  Huang,  D.  Ma,  D.  Fang,  and  T.  Cui, Satellite  data
transmission  scheduling  based  on  improved  ant  colony
system, (in Chinese), Radio Eng., vol. 45, no. 7, pp. 27–30
&58, 2015.

[14]

 J. Yan, Research on dynamic scheduling approach of relay
satellites, (in  Chinese),  Master  dissertation,  Xidian
University, Xi’an, China, 2017.

[15]

 Y.  Xiang,  W.  Zhang,  and  M.  Tian, Satellite  data
transmission  integrated  scheduling  and  optimization, (in

[16]

    1478 Tsinghua Science and Technology, October 2024, 29(5): 1463−1480

 



Chinese), Syst.  Eng.  Electron.,  vol. 40,  no. 6,  pp.
1288–1293, 2018.
 H. Fan, Research on resource scheduling of ground station
based  on  satellite  data  transmission  and  telemetry  tracing
and  control  tasks, (in  Chinese),  Master  dissertation,
Aerospace  Information  Research  Institute,  Chinese
Academy of Sciences, Beijing, China, 2021.

[17]

 G. Dong,  Research on satellite  network data  transmission
and  task  scheduling, (in  Chinese),  Master  dissertation,
Guilin  University  of  Electronic  Technology,  Guilin,
China, 2022.

[18]

 Y. Du, Research on the general-purpose scheduling engine
for  satellite  task  scheduling  problems, (in  Chinese),  PhD
dissertation,  National  University  of  Defense  Technology,
Changsha, China, 2021.

[19]

 H.  Wang,  Massive  scheduling  method  under  online
situation for satellites based on reinforcement learning, (in
Chinese),  PhD  dissertation,  University  of  Chinese
Academy of Sciences, Beijing, China, 2018.

[20]

 M.  Chen,  Y.  Chen,  Y.  Chen,  and  W.  Qi,  Deep
reinforcement  learning  for  agile  satellite  scheduling
problem,  in Proc. 2019 IEEE  Symp.  Series  on
Computational Intelligence (SSCI),  Xiamen, China,  2019,
pp. 126–132.

[21]

 X. Bao, S. Zhang, and X. Zhang, An effective method for
satellite  mission  scheduling  based  on  reinforcement
learning,  in Proc. 2020  Chinese  Automation  Congress
(CAC), Shanghai, China, 2020, pp. 4037–4042.

[22]

 Y. Liu, Q. Chen, C. Li, and F. Wang, Mission planning for
earth  observation  satellite  with  competitive  learning
strategy, Aerosp. Sci. Technol., vol. 118, p. 107047, 2021.

[23]

 L.  Ren,  X.  Ning,  and  J.  Li, Hierarchical  reinforcement-
learning  for  real-time  scheduling  of  agile  satellites, IEEE
Access, vol. 8, pp. 220523–220532, 2020.

[24]

 Y.  He,  L.  Xing,  Y.  Chen,  W.  Pedrycz,  L.  Wang,  and  G.
Wu, A  generic  Markov  decision  process  model  and
reinforcement  learning  method  for  scheduling  agile  earth
observation  satellites, IEEE  Trans.  Syst.  Man  Cybern.

[25]

Syst., vol. 52, no. 3, pp. 1463–1474, 2022.
 M.  Zuo,  G.  Dai,  L.  Peng,  and  M.  Wang, An  envelope
curve-based  theory  for  the  satellite  coverage  problems,
Aerosp. Sci. Technol., vol. 100, p. 105750, 2020.

[26]

 X. Chen, Z. Xu, and L. Shang, Satellite internet of things:
Challenges, solutions, and development trends, Front. Inf.
Technol. Electron. Eng., vol. 24, no. 7, pp. 935–945, 2023.

[27]

 Z. Zhang, Y. Bai, and C. Li, Overview of developments in
global  navigation  satellite  systems, (in  Chinese), Sci.
Technol. Innovation, no. 9, pp. 150–152, 2023.

[28]

 W.  Sun,  G.  Yang,  C.  Chen,  M.  Chang,  K.  Huang,  X.
Meng,  and  L.  Liu, Development  status  and  literature
analysis  of  China’s  earth  observation  remote  sensing
satellites, (in  Chinese), Natl.  Remote  Sens.  Bull.,  vol. 24,
no. 5, pp. 479–510, 2020.

[29]

 C. Fan, X. Chen, A. Liu, and J. Luo, Read the “sky chain”:
A  text  to  understand  China’s “data  relay  satellite  corps”,
(in Chinese), Space Int., no. 8, pp. 7–10, 2022.

[30]

 Z.  Zhang,  D.  Wang,  X.  Man,  and  Y.  Zhang, Application
prospect  and  challenge  of  low  orbit  internet  system  in
navigation enhancement  service, (in  Chinese), World Sci-
Tech R&D, vol. 45, no. 3, pp. 266–275, 2023.

[31]

 X. Zhang and F. Ma, Review of the development of LEO
navigation-augmented  GNSS, (in  Chinese), Acta  Geod.
Cartogr. Sin., vol. 48, no. 9, pp. 1073–1087, 2019.

[32]

 Y. Meng, L. Bian, Y. Wang, T. Yan, W. Lei, M. He, and
X.  Li, Global  navigation  augmentation  system  based  on
Hongyan  satellite  constellation, (in  Chinese), Space  Int.,
no. 10, pp. 20–27, 2018.

[33]

 X. Wu, D. Qin, Y. Zhang, and Y. Li, Supporting capability
for custody layer of the next-generation space architecture,
(in  Chinese), J.  Inf.  Eng.  Univ.,  vol. 24,  no. 3,  pp.
379–384, 2023.

[34]

 P.  Zhao  and  Z.  Chen, An  adapted  genetic  algorithm
applied  to  satellite  autonomous  task  scheduling, (in
Chinese), Chin.  Space  Sci.  Technol.,  vol. 36,  no. 6,  pp.
47–54, 2016.

[35]

Xiaoyu Chen received the BEng degree in
information  security,  the  MEng  degree  in
computer  technology,  and  the  PhD degree
in geoinformation engineering from China
University  of  Geosciences,  Wuhan,  China
in  2012,  2014,  and  2018,  respectively.  He
is  currently  an  associate  professor  at
School  of  Computer  Science,  China

University of Geosciences, Wuhan, China. His research interests
include combinatorial optimization and satellite scheduling.

Weichao  Gu received  the  BEng  degree
from  China  University  of  Geosciences,
Wuhan,  China  in  2021.  He  is  currently  a
master  student  in  computer  technology  at
School  of  Computer  Science,  China
University of Geosciences, Wuhan, China.
His  research  interests  are  satellite
scheduling and machine learning.

Guangming  Dai received  the  BEng  and
MEng degrees in applied geophysics from
China  University  of  Geosciences,  Wuhan,
China in 1985 and 1996, respectively, and
the  PhD  degree  in  computer  science  and
technology  from  Huazhong  University  of
Science and Technology, Wuhan, China in
2004. He is currently a professor at School

of Computer Science, China University of Geosciences, Wuhan,
China. His research interests include space information network
and military artificial intelligence applications.

  Xiaoyu Chen et al.:  Data-Driven Collaborative Scheduling Method for Multi-Satellite Data-Transmission 1479

 



Lining  Xing received  the  double  BEng
degrees  from  Xi’an  Jiaotong  University,
China  in  2002,  and  the  PhD  degree  in
management  science  from  National
University  of  Defense  Technology,  China
in  2009.  He  is  currently  a  professor  at
School  of  Electronic  Engineering,  Xidian
University,  China.  His  research  interests

include evolutionary algorithm and combinatorial optimization.

Tian Tian received the BEng degree from
Southwest  University  of  Science  and
Technology,  China  in  2022.  She  is
currently  a  master  student  in  electronic
information  at  School  of  Computer
Science, China University of Geosciences,
Wuhan,  China.  Her  research  interests  are
scheduling  problem  and  deep

reinforcement learning.

Weilai  Luo received  the  BEng  degree
from  China  University  of  Geosciences,
Wuhan,  China  in  2022.  He  is  currently  a
master student in electronic information at
School  of  Computer  Science,  China
University of Geosciences, Wuhan, China.
His  research  interests  are  intelligent
optimization problems and algorithms.

Shi  Cheng received  the  BEng  degree  in
mechanical and electrical engineering from
Xiamen  University,  Xiamen,  China  in
2005,  the  MEng  degree  in  software
engineering  from  Beihang  University,
Beijing,  China  in  2008,  and  the  PhD
degree  in  electrical  engineering  and
electronics  from  University  of  Liverpool,

Liverpool, UK in 2013. He is currently an associate professor at
Shaanxi Normal University, Xi’an, China. His research interests
include  swarm  intelligence,  multiobjective  optimization,  and
data mining techniques.

Mengyun Zhou received the BEng degree
in  geosciences  from  Yangtze  University,
Jingzhou,  China  in  2010,  and  the  PhD
degree  in  photogrammetry  and  remote
sensing  from  Wuhan  University,  Wuhan,
China  in  2016.  She  is  currently  an
associate professor at  School of  Computer
Science, China University of Geosciences,

Wuhan, China. Her research interests include space information
network and spatio-temporal big data analysis.

    1480 Tsinghua Science and Technology, October 2024, 29(5): 1463−1480

 


