
 

Machine Learning for Selecting Important Clinical Markers of
Imaging Subgroups of Cerebral Small Vessel Disease

Based on a Common Data Model
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Abstract: Differences  in  the  imaging  subgroups  of  cerebral  small  vessel  disease  (CSVD)  need  to  be  further

explored.  First,  we  use  propensity  score  matching  to  obtain  balanced  datasets.  Then  random  forest  (RF)  is

adopted to classify the subgroups compared with support vector machine (SVM) and extreme gradient boosting

(XGBoost),  and  to  select  the  features.  The  top  10  important  features  are  included  in  the  stepwise  logistic

regression,  and  the  odds  ratio  (OR)  and  95% confidence  interval  (CI)  are  obtained.  There  are  41  290  adult

inpatient records diagnosed with CSVD. Accuracy and area under curve (AUC) of RF are close to 0.7, which

performs best in classification compared to SVM and XGBoost. OR and 95% CI of hematocrit for white matter

lesions  (WMLs),  lacunes,  microbleeds,  atrophy,  and  enlarged  perivascular  space  (EPVS)  are  0.9875

(0.9857−0.9893),  0.9728  (0.9705−0.9752),  0.9782  (0.9740−0.9824),  1.0093  (1.0081−1.0106),  and  0.9716

(0.9597−0.9832).  OR  and  95% CI  of  red  cell  distribution  width  for  WMLs,  lacunes,  atrophy,  and  EPVS  are

0.9600 (0.9538−0.9662),  0.9630 (0.9559−0.9702),  1.0751 (1.0686−1.0817),  and 0.9304 (0.8864−0.9755).  OR

and  95% CI  of  platelet  distribution  width  for  WMLs,  lacunes,  and  microbleeds  are  1.1796  (1.1636−1.1958),

1.1663  (1.1476−1.1853),  and  1.0416  (1.0152−1.0687).  This  study  proposes  a  new  analytical  framework  to

select important clinical markers for CSVD with machine learning based on a common data model, which has

low cost, fast speed, large sample size, and continuous data sources.
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1　Introduction

The clinical symptoms of cerebral small vessel disease

(CSVD)  are  insidious  and  the  course  of  the  disease  is
slow.  It  is  often  called “little  stroke” and  involves  the
catastrophic  damage  of  small  blood  vessels  in  the 
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whole  brain.  The  decline  of  cognitive  function  is  the
most  common  and  important  clinical  manifestation  of
CSVD. About half of vascular cognitive impairment is
caused by CSVD. At present, the diagnosis of CSVD is
mainly  based  on  magnetic  resonance  imaging  (MRI),
including  several  types  of  imaging  features:  white
matter lesions (WMLs), lacunes, microbleeds, atrophy,
enlarged  perivascular  space  (EPVS),  etc.  The
pathogenesis of CSVD has been studied[1−5].

Ryu  et  al.[6] concluded  that  alkaline  phosphatase
(ALP)  was  associated  with  white  matter
hyperintensities  (WMHs)  and  cerebral  infarction,  but
not with cerebral microbleeds by using quantitative and
logistic  regression  (LR)  with  1082  neurologically
healthy  subjects.  Lee  et  al.[7] found  that  ALP  was
related to CSVD by using LR and generalized additive
model  with  1011  neurologically  healthy  participants.
Piao et al.[8] found that ALP was related to lacunes and
WMHs by using LR with 568 participants. Wada et al.[9]

found  that  the  association  between  C-reactive  protein
and  small  vessel  disease  related  brain  lesions  was  not
significant by using LR with 689 individuals. Mitaki et
al.[10] found  that  the  high  sensitive  C-reactive  protein
was  related  to  lacunes  by  using  LR  with  519
neurologically  normal  subjects.  Hassan  et  al.[11] found
that  hyperhomocysteinaemia  was  a  risk  factor  for
CSVD by using LR with 172 patients and 172 controls.
Nam  et  al.[12] obtained  a  dose-dependent  relationship
between  total  homocysteine  and  CSVD  by  using
difference  tests  with  1578  participants.  Cao  et  al.[13]

obtained  total  homocysteine  and  lacunes  correlations
by  using  generalized  linear  model  and  LR  with  1023
participants.  Wada  et  al.[14] obtained  the  correlation
between uric albumin and CSVD by using LR with 651
individuals.  Chung  et  al.[15] obtained  that  25
hydroxyvitamin  D  and  lacunes,  WMHs,  and  cerebral
microbleeds  were  both  related  by  using  linear
regression with 838 patients. Park et al.[16] obtained the
effect  of  hemoglobin  on  atrophy  by  using  LR  with
2040 participants. Vilar-Bergua et al.[17] found that the
urinary albumin to creativity ratio was related to CSVD
by  using  LR  with  1037  subjects.  Kim  et  al.[18] found
that  total  bilirubin  was  not  related  to  CSVD  by  using
LR  with  1128  subjects.  Yin  et  al.[19] obtained  high
density  lipoprotein  cholesterol  and  apolipoprotein  A-1
that  were  associated  with  WMLs  in  women  by  using
LR  with  848  subjects.  Nam  et  al.[20] found  that
triglyceride  glucose  was  related  to  CSVD  by  using

linear  regression  with  2615  neurologically  healthy
participants.  Kang  et  al.[21] found  that  insulin  like
growth factor-1 was associated with cognitive function
in CSVD patients by using a partial correlation analysis
with 216 patients. Chu et al.[22] obtained the correlation
between  subclinical  hydropyroidism  and  CSVD  by
using  LR  with  354  individuals.  Oberheiden  et  al.[23]

used  difference  tests  with  24  patients  to  evaluate  the
role  of  platelets  and  cellular  coagulation  activation  in
CSVD. Jiang et  al.[4] found that  the  neutral  count  was
related to the enlarged perivascular spaces and lacunes
by using LR and generalized linear model. Karel et al.[24]

used  LR  and  random  forest  (RF)  with  80  CSVD
patients  and  38  health  individuals  to  evaluate  the
relationship  between  biomarkers  from  blood  samples
and CSVD.

Due  to  the  high  cost  of  MRI,  the  sample  size  of
studies  on  laboratory  markers  and  CSVD ranges  from
hundreds  to  thousands.  Most  of  them  select  specific
laboratory  markers  first,  and then use  LR to  study the
relationship  between  laboratory  markers  and  CSVD.
These  studies  have  reported  the  differences  between
the  characteristics  of  patients  with  CSVD  and  those
without  CSVD,  but  the  differences  in  the  imaging
subgroups of patients diagnosed with CSVD need to be
further explored.

In  order  to  select  important  clinical  markers  of
imaging  subgroups,  this  study  first  extracts  a  large
number  of  data  through  information  system  of  a
hospital to build a special database of CSVD according
to  the  observational  medical  outcomes  partnership,
common  data  model  (OMOP-CDM)  standard[25],
which  ensures  a  large  sample  size,  low  cost,  and
continuous  data  sources.  Then,  by  using  machine
learning  method  after  propensity  score  matching
(PSM),  important  laboratory  markers  for  imaging
subgroups  of  CSVD  are  selected  based  on  the  data.
Finally, the important markers are put into stepwise LR
to obtain odds ratio (OR) and 95% confidence interval
(CI).  This  study  provides  a  new  analytical  framework
for  identifying  important  laboratory  markers  for  each
imaging subgroups of  CSVD, which are  important  for
subsequent clinical validation.

2　Method

2.1　Data source

Data  comes  from  several  information  systems  of
Beijing  Tiantan  Hospital,  Capital  Medical  University
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from  January  1,  2012  to  February  8,  2021,  including
hospital  information  system  (HIS),  electronic  medical
record  (EMR),  laboratory  information  management
system  (LIS),  and  picture  archiving  and
communication system (PACS).

2.2　Study patients

For the purpose of including adult inpatients diagnosed
as CSVD, we consider two aspects of inclusion criteria
of  study  patients:  diagnosis  and  head  MRI  imaging
report.  (1)  Retrieving  from  diagnostic  name  using
CSVD, small vascular disease, and hereditary CSVD or
retrieving  from  the  diagnosis  code  (ICD-10)  using
I63.801, E85.400x027, E85.414, I65.800x008, I72.003,
I67.800x005,  I67.800x012,  E75.205,  and
G71.300x001.  (2)  Retrieving  from head  MRI  imaging
report  using  white  matter  hyperintensity  (WMH),
leukoencephalopathy,  leukoaraiosis,  ischemic
leukoaraiosis,  patchy  white  matter,  lacunes,
microbleeds,  Fazekas,  atrophy  and  senile  brain
changes,  EPVS,  CSVD,  and  small  vascular  disease.
The  adult  inpatients  who  meet  one  of  the  above
retrieval  conditions  are  included  in  this  study.  Non
angiogenic  WMLs  such  as  multiple  sclerosis,  white
matter  dysplasia,  and  metabolic  encephalopathy
retrieved  from  diagnosis  name  or  head  MRI  imaging
report are excluded from this study. The imaging report
is  processed  on  the  basis  of  the  regular  expression.
Then,  according  to  the  construction  standard  of
OMOP-CDM[25], we build the OMOP-CSVD database.

2.3　Outcomes

Considering  the  availability  of  data,  five  imaging
subgroups of CSVD are used as outcomes of this study
including  WMLs,  lacunes,  microbleeds,  atrophy,  and
EPVS.  If  any  words  such  as  leukoencephalopathy,
white  matter  disease,  leukoaraiosis,  ischemic
leukoaraiosis,  patchy  white  matter,  and  Fazekas  are
retrieved from head MRI imaging report, the patient is
marked  with  WML.  If  any  lacunas  other  than  new
lacunar  infarction  are  retrieved  from  head  MRI
imaging  report  or  lacunar  cerebral  infarction  retrieved
from disease  history,  the  patient  is  marked as  lacunar.
If microbleed appears in head MRI imaging report, the
patient  is  marked with  cerebral  microbleed.  If  atrophy
or  senile  brain  changes  appear  in  head  MRI  imaging
report,  the  patient  is  marked  with  brain  atrophy.  If
EPVS appears in head MRI imaging report, the patient
is marked with EPVS.

In  the  patients’ head  MRI  reports,  the  physicians

describe the symptom characteristics in standard, short
Chinese words. Then, we divide the whole patients into
5  symptom  subgroups  by  using  regular  expression.
Next we evaluate the results of subgroups. 10% of the
patients  in  each  group  are  randomly  selected.
Experienced physicians review record of every patient
in the sample. If the accuracy rate is greater than 90%,
the subgroups are considered acceptable,  otherwise all
patients  in  the  subgroups  would  be  checked  one  by
one, and then the sampling would continue. At last, the
accuracy of 5 subgroups are all more than 90%, and we
consider our subgrouping acceptable.

2.4　Features

Laboratory  markers  with  high  test  frequency  such  as
blood  routine  test,  urine  routine  test,  and  biochemical
test are included in this study. The values of laboratory
markers measured for the first time after admission are
adopted.  Demographic  characteristics  (age  and  sex),
risk factors (smoking and drinking), and disease history
(hypertension,  diabetes,  hyperlipidemia,  heart  disease,
and stroke) are also included in this study.

2.5　Data preprocessing

Markers  with  a  certain  missing  rate  may  have
systematic  data  missing  issues,  which  may  have  a
significant  impact  on  model  training  and
classification[26, 27].  Therefore,  we  first  delete
laboratory  markers  with  a  missing  rate  greater  than
30%.  Then,  we  use  the  winsorizing  method[28] to
process outliers.  In this  study,  we consider  that  values
less  than  1% or  more  than  99% of  quantiles  are
outliers. Outliers less than 1% are replaced by random
numbers between 1% and 5% of quantiles, and outliers
more  than  99% are  replaced  by  random  numbers
between  95% and  99% of  quantiles.  After  that,
multiple  imputation is  used to  fill  in  the  missing data.
Multiple  imputation[29] is  a  method  of  processing
missing  values  based  on  repeated  simulation.  It
generates  a  complete  set  of  data  from  a  dataset
containing  missing  values.  The  missing  data  in  each
dataset is filled with Monte Carlo method.

2.6　Feature selection

PSM[30] is  used  to  obtain  a  balanced  positive  and
negative  samples  (Fig.  1a).  First,  age  and  gender  are
identified as confounding variables that affect imaging
subgroups of CSVD. Second, the propensity scores are
estimated. Third, matched samples using the propensity
scores  are  created.  After  matching,  we  use  Gini  index
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of  RF  to  rank  features  importance[31, 32].  Gini  index
evaluates  that  how  much  each  feature  contributes  to
each tree in RF, and then takes an average value. Then,
the  top  10  of  65  features  are  input  to  stepwise  LR.
After  stepwise  regression,  the  features  retained  in  the
model  are  both  important  and  not  seriously
multicollinearity.

2.7　Statistical analysis

2.7.1　Classification model
RF[33] made up of a collection of decision trees is used
to  classify  the  five  outcomes  (binary  variable).  By
inputting  features  into  the  RF  model,  outcomes  are
identified.  We  also  use  two  other  machine  learning
models,  support  vector  machine  (SVM)[34],  and
extreme  gradient  boosting  (XGBoost)[35],  to  classify
image  subgroups  and  compare  their  performance  with
RF.
2.7.2　Experimental setup
This  study  use  randomForest,  e1071,  and  XGBoost
packages in R (Version 4.2.1) to implement RF, SVM,
and  XGBoost,  respectively.  Hyperparameter  is  not
adjustable  in  the  traditional  sense,  but  should  be  set
high enough[36]. So we set the number of decision trees
to  1000  (default  is  500  in  R).  Bernard  et  al.[37]

suggested  that  for  classification  tasks,  the  number  of
variables used for binary tree in the node  should be set
as  the  square  root  of  the  total  number  of  variables  to
obtain  best  performance.  Therefore,  we  set  the

parameter  as  the  quadratic  root  of  the  number  of
variables  in  the  dataset  (default  in  R).  A decision  tree
with  a  minimum  number  of  nodes  (node  size)  of  1
(default in R) can provide good results[36, 38]. So we set
the  node  size  to  1.  We  use  the  default  parameter
settings in R when training SVM and XGBoost.

Since the parameters have been determined, the data
is divided into training set and test set according to the
ratio of 7∶3, and repeated the modeling for 30 times.
The  average  performance  of  test  set  is  taken,  and  the
classification  evaluation  matrix  (accuracy,  precision,
recall,  F1  score,  and  area  under  curve  (AUC)).  The
importance  of  features  to  outcomes  is  output  through
the  best  classification  model.  Histograms  are  used  to
analyze the distribution of important markers.
2.7.3　Statistical model
In order to explain important features, we use LR[39] to
model  the  top  10  important  features,  and  output  OR
and 95% CI (Fig. 1b). All analysis are performed using
R.

3　Result

3.1　Patients characteristics

There  are 37  558 adult  inpatients  and 41  290 adult
inpatient  records  diagnosed  with  CSVD  included  in
this  study  before  matching.  The  situation  of
hospitalization  records  (N=41 290)  is  analyzed.  The
average age of these patients is 67.19±12.45 years and
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Fig. 1    Framework of this study.
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62.03% are  males.  The  numbers  of  patients  for  risk
factors,  history  of  disease,  and  imaging  subgroups  of
CSVD are shown in Table 1.

3.2　Classification  performance  of  imaging
subgroups using machine learning

After  matching,  the  number  of  positive  and  negative
imaging subgroups is the same. The balanced dataset is
then  used  for  classification. Table  2 shows  that  the
accuracy,  precision  and  AUC  of  SVM,  and  XGBoost
are lower than those of RF. The classification accuracy
of  WMLs,  lacunes,  and microbleeds  is  almost  0.7000,
atrophy’s  accuracy  is  over  0.6000,  and  accuracy  of
EPVS is close to 0.6000 with RF.

We  further  analyze  the  distribution  characteristics
and  differences  of  top  3  important  markers  between
correctly  classified  and  incorrectly  classified  patients.
Figure  2 shows  that  patients  with  high  platelet
distribution  width  (PDW)  are  more  likely  to  be
correctly classified for WMLs. Figure 3 shows that for
lacunes classification, patients with low hematocrit are
more  likely  to  be  correctly  classified. Figure  4 shows
that patients with low hematocrit are more likely to be
correctly  classified  for  microbleeds. Figure  5 shows
that the distribution of the top three important markers
in  the  two  groups  of  patients  is  similar  for  atrophy.
Figure  6 shows  that  patients  with  low  hematocrit  are
more likely to be correctly classified for EPVS.

 

Table 1     Demographic characteristics, habits, and diseases of patients.
Characteristic Characteristic N Percentage (%)

Demographic characteristic Gender, male 25 614 62.03

Risk factor
Smoking 15 641 37.88
Drinking 12 454 30.16

History of disease

Hypertension 22 665 54.89
Diabetes 9679 23.44

Hyperlipidemia 5016 12.15
Heart disease 888 2.15

Stroke 6637 16.07

Imaging subgroup

WMLs 23 650 57.28
Lacunes 12 932 31.32

Microbleeds 3378 8.18
Atrophy 19 615 47.51
EPVS 302 0.73

 

Table 2    Classification performance of imaging subgroups using machine learning models.
Machine learning model Imaging subgroup Accuracy Precision Recall F1 AUC

RF

WMLs 0.6872 0.7136 0.6265 0.6672 0.6873
Lacunes 0.6898 0.7480 0.5738 0.6494 0.6900

Microbleeds 0.6992 0.7461 0.6094 0.6706 0.6998
Atrophy 0.6399 0.6427 0.6272 0.6348 0.6399
EPVS 0.5843 0.5930 0.5854 0.5861 0.5865

SVM

WMLs 0.6777 0.7056 0.6109 0.6547 0.6777
Lacunes 0.6797 0.7339 0.5641 0.6376 0.6797

Microbleeds 0.6873 0.7212 0.6133 0.6623 0.6875
Atrophy 0.6353 0.6377 0.6262 0.6318 0.6354
EPVS 0.5732 0.5839 0.5844 0.5687 0.5765

XGBoost

WMLs 0.6739 0.6798 0.6589 0.6691 0.6739
Lacunes 0.6798 0.7053 0.6173 0.6584 0.6798

Microbleeds 0.6777 0.6838 0.6595 0.6712 0.6778
Atrophy 0.6280 0.6281 0.6278 0.6279 0.6280
EPVS 0.5483 0.5422 0.5491 0.5430 0.5502
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3.3　Top  10  important  markers  of  imaging
subgroups

Table  3 shows  that  the  top  10  important  markers
obtained from RF are all laboratory markers. There are
differences  and  similarities  in  important  markers  of
each  imaging  subgroups  of  CSVD.  Hematocrit  is  the
top 10 markers for the five imaging subgroups. PDW is

the  top  10  markers  for  WMLs,  lacunes,  microbleeds,
and  EPVS.  The  red  cell  distribution  width  (RDW)  is
the  top  10  markers  for  WMLs,  lacunes,  atrophy,  and
EPVS. Urobilinogen is the top 10 markers for WMLs,
lacunes,  and  microbleeds.  Creatinine,  cholinesterase,
and  platelets  are  the  top  10  markers  for  WMLs  and
atrophy.  Platelet  large  cell  ratio  (P-LCR)  and  platelet
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Fig. 2    Histograms  of  the  top  three  important  markers  in  the  population  with  correct  and  incorrect  classification  for  white
matter lesions (left: correct classification; right: incorrect classification).
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Fig. 3    Histograms of the top three important markers in the population with correct and incorrect classification for lacunes
(left: correct classification; right: incorrect classification).
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mean volume (PMV) are the top 10 markers for WMLs
and lacunes. Alanine aminotransfer (ALT) is the top 10
markers for lacunes and atrophy. Glucose is the top 10
markers for lacunes and microbleeds. Phosphorus is the

top  10  markers  for  lacunes  and  EPVS.  Bilirubin  and
potassium are  the  top 10 markers  for  microbleeds  and
EPVS. Each imaging subgroup also has its own unique
top 10 important markers.
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Fig. 4    Histograms  of  the  top  three  important  markers  in  the  population  with  correct  and  incorrect  classification  for
microbleeds (left: correct classification; right: incorrect classification).
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Fig. 5    Histograms of the top three important markers in the population with correct and incorrect classification for atrophy
(left: correct classification; right: incorrect classification; RDW: red cell distribution width).

  Lan Lan et al.:  Machine Learning for Selecting Important Clinical Markers of Imaging Subgroups of Cerebral Small... 1501

 



3.4　Explanation for markers

The  top  10  important  markers  are  then  input  to
stepwise LR to get OR and 95% CI. For WMLs, the 10
markers  are  retained  in  the  model  and  have  statistical
significance.  The  OR  of  PDW,  cholinesterase,
platelets,  CO2,  and PMV is  greater  than 1.  The OR of
hematocrit, creatinine, RDW, and P-LCR is less than 1.
With  negative  as  reference,  the  OR of  urobilinogen  is
less than 1 (Table 4).

For  lacunes,  9  of  the  10  markers  are  retained  in  the
model  and  have  statistical  significance.  Markers  with
OR  greater  than  1  are  PDW,  PMV,  and  glucose.  The

OR of the remaining 6 markers is less than 1 (Table 5).
For  microbleeds,  the  10  markers  are  retained  in  the

model,  but  one  factor  is  not  statistically  significant.
The  OR  of  PDW,  indirect  bilirubin,  eosinophils/100
leukocytes,  and alkaline phosphatase is  greater than 1.
The OR of the remaining markers is less than 1 (Table 6).

For  atrophy,  the  10  markers  are  retained  in  the
model,  but  one  factor  is  not  statistically  significant.
Markers  with  OR  greater  than  or  less  than  1  account
for half of the total (Table 7).

For  EPVS,  5  of  the  10  markers  are  retained  in  the
model and have statistical significance. Except that the
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Fig. 6    Histograms of the top three important markers in the population with correct and incorrect classification for enlarged
perivascular space (left: correct classification; right: incorrect classification).

 

Table 3    Top 10 important markers of five imaging subgroups from RF.
Number WMLs Lacunes Microbleeds Atrophy EPVS

1 PDW Hematocrit Hematocrit RDW Hematocrit
2 Hematocrit PDW PDW Creatinine RDW
3 Urobilinogen Urobilinogen Urobilinogen Cholinesterase Phosphorus
4 Creatinine P-LCR Indirect bilirubin ALT Total bilirubin
5 RDW RDW Total bilirubin Platelets Direct bilirubin
6 Cholinesterase Total cholesterol Specific gravity of Urine WBC PDW
7 P-LCR ALT Glucose Urate LDH
8 Platelets PMV Eosinophils/100 leukocytes BUN Potassium
9 CO2 Glucose Potassium Neutrophils MCH
10 PMV Phosphorus ALP Hematocrit Indirect bilirubin

Note: P-LCR: platelet large cell ratio; PMV: platelet mean volume; ALT: alanine aminotransferase; ALP: alkaline phosphatase; WBC:
white blood cell; BUN: urea nitrogen; LDH: lactate dehydrogenase; MCH: mean corpuscular hemoglobin.
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OR of total bilirubin is greater than 1, the OR of other
markers is less than 1 (Table 8).

4　Discussion

Based on a common data model with large sample size,
low  cost,  and  continuous  data  sources,  this  study
selects the markers that are important to the phenotype
of  CSVD  imaging  from  a  large  number  of  laboratory
markers  through  machine  learning  models.  This  study
adopts  data  driven  feature  selection,  and  uses  LR  (a
typical model used in medicine) to explain the selected
important features, providing an important preliminary

basis for further in-depth research of CSVD.
Our  results  show that  platelet  indices  and  red  blood

cell  indices  are  potentially  related  to  the  imaging
phenotypes  of  CSVD  including  WMLs,  lacunes,
microbleeds,  atrophy,  and  EPVS.  The  high  PDW
indicates  that  the  destruction  of  platelets  may  exceed
the  normal  range,  leading  to  peripheral  blood
thrombocytopenia,  thrombotic  diseases,  etc.  The  low
P-LCR refers to the low proportion of large platelets in
the  total  number  of  platelets.  The  common  causes  are
thrombocytosis and macrothrombocytopenia. The most
common  pathological  factor  of  high  platelets  is

 

Table 4    Regression results for WMLs.

Marker OR
95% CI

Lower limit Upper limit
PDW*** 1.1796 1.1636 1.1958

Hematocrit*** 0.9875 0.9857 0.9893
Urobilinogen — — —

+-*** 0.5994 0.5653 0.6356
1+* 0.7137 0.5484 0.9280
2+ 1.1108 0.6227 2.0207
3+ 0.9362 0.4893 1.8540

Creatinine*** 0.9909 0.9897 0.9921
RDW*** 0.9600 0.9538 0.9662

Cholinesterase*** 1.0001 1.0000 1.0001
P-LCR*** 0.9687 0.9635 0.9739
Platelet*** 1.0017 1.0013 1.0020

CO2*** 1.0172 1.0099 1.0245
PMV** 1.0381 1.0094 1.0678

Note: ***P<0.001, **P<0.01, and *P<0.05.
 

Table 5    Regression results for lacunes.

Marker OR
95% CI

Lower limit Upper limit
Hematocrit*** 0.9728 0.9705 0.9752

PDW*** 1.1663 1.1476 1.1853
Urobilinogen — — —

+-*** 0.6028 0.5604 0.6484
1+* 0.7285 0.5419 0.9795
2+ 0.9845 0.5176 1.9256
3+ 1.5418 0.6514 4.2723

P-LCR*** 0.9623 0.9561 0.9684
RDW*** 0.9630 0.9559 0.9702

Total cholesterol*** 0.9189 0.8953 0.9431
PMV** 1.0540 1.0196 1.0899

Glucose** 1.0181 1.0056 1.0307
Phosphorus*** 0.4971 0.4371 0.5652

Note: ***P<0.001, **P<0.01, and *P<0.05.
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infection,  and  more  platelets  will  increase  the  risk  of
vascular  embolism.  The  high  PMV  indicates  that  the
patient  may  have  a  disease  of  the  blood  system[40−42].
Hematocrit is an important indicator to reflect the state
of  red  blood  cells.  Low  hematocrit  indicates  possible

anemia.  The  low  RDW  indicates  that  the  volume  and
size  of  red  blood  cells  are  relatively  uniform.  Red
blood cells related indicators need to be combined with
other  indicators  for  comprehensive  clinical
judgment[43].

There  are  other  meaningful  markers.  For  example,
Ryu  et  al[6].  reported  higher  levels  of  ALP  are
independently  associated  with  WMH  and  cerebral
infarct, but not with cerebral microbleeds. Liu et al[44].
indicated  that  high  ALP  levels  in  relation  to
microbleeds  in  acute  ischemic  stroke  patients.  The
reasons  for  the  differences  between  our  results  and
those  of  these  studies  mainly  include  two  aspects:
different study patients and different analysis methods.
In this study, ALP does not enter the top 10 important

 

Table 6    Regression results for microbleeds.

Marker OR
95% CI

Lower limit Upper limit
Hematocrit*** 0.9782 0.9740 0.9824

PDW** 1.0416 1.0152 1.0687
Urobilinogen — — —

+-*** 0.3904 0.3359 0.4534
1+ 0.6275 0.3384 1.1754
2+ 0.7573 0.2477 2.5698
3+ 0.3552 0.0581 2.1502

Indirect bilirubin*** 1.1078 1.0573 1.1609
Total bilirubin 0.9762 0.9454 1.0081

Specific gravity of urine*** 0.0000 0.0000 0.0000
Glucose*** 0.9302 0.9073 0.9535

Eosinophils/100 leukocytes*** 1.1192 1.0872 1.1524
Potassium*** 0.7789 0.6898 0.8790

ALP*** 1.0050 1.0027 1.0074
Note: ***P<0.001 and **P<0.01.

 

Table 7    Regression results for atrophy.

Marker OR
95% CI

Lower limit Upper limit
RDW*** 1.0751 1.0686 1.0817

Creatinine*** 1.0066 1.0052 1.0080
Cholinesterase*** 0.9999 0.9999 0.9999

ALT*** 0.9934 0.9923 0.9944
Platelets*** 0.9986 0.9983 0.9990

WBC 0.9793 0.9567 1.0025
Urate*** 1.0007 1.0004 1.0009
BUN*** 1.0482 1.0357 1.0609

Neutrophils*** 0.9518 0.9295 0.9745
Hematocrit*** 1.0093 1.0081 1.0106

Note: ***P<0.001.

 

Table 8    Regression results for EPVS.

Marker OR
95% CI

Lower limit Upper limit
Hematocrit*** 0.9716 0.9597 0.9832

RDW** 0.9304 0.8864 0.9755
Phosphorus** 0.2674 0.1111 0.6294

Total bilirubin*** 1.0573 1.0240 1.0929
LDH* 0.9967 0.9935 0.9998

Note: ***P<0.001, **P<0.01, and *P<0.05.
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markers  for  WMLs  and  lacunes.  Therefore,  if  ALP  is
included  in  LR  of  WMLs  and  lacunes,  it  may  be
statistically significant.

To  the  best  of  our  knowledge,  we  are  the  first  to
apply machine learning models based on OMOP-CDM
to study imaging subgroups of CSVD. RF is a classifier
that  uses  multiple  trees  to  train  and  predict  samples,
which  can  process  data  with  very  high  dimensions
(many  features),  and  does  not  need  to  reduce
dimensions. It can judge the importance of features and
the  interaction  between different  features,  but  it  is  not
easy to explain. The accuracy of RF in Karel et al[24].’s
study  ranges  from  0.6520  to  0.7830,  which  is
comparable  to  the  results  of  this  study.  But  their
research  outcomes  and  included  features  are
completely different from those of this study. The most
important  thing  is  that  RF  performs  the  best  in
classification compared with SVM and XGBoost. This
is  the  reason  for  choosing  RF  in  this  study.  LR  is
simple,  easy  to  understand,  and  very  interpretable.
From the weight of features, we can see the impact of
different  features  on  the  final  results.  However,  we
cannot  use  LR  to  solve  nonlinear  problems.  LR  itself
cannot select features. Based on the low cost data, this
study uses machine leaning models to select important
markers for phenotypic subgroups of CSVD imaging.

This  study  also  has  limitations.  It  is  a  retrospective
observational  study,  which  is  likely  to  be  affected  by
unmeasured  and  unnoticed  bias  and  confounding
factors.  However,  some  hypotheses  can  be  quickly
obtained from this study, which provides an important
preliminary  basis  for  clinical  randomized  controlled
trials.

5　Conclusion

This  study  proposes  a  new  analytical  framework  to
select  important  clinical  markers  for  CSVD  with
machine  learning  based  on  a  common  data  model,
which has low cost,  fast  speed,  large sample size,  and
continuous data sources. First, we use PSM to obtain a
balanced  dataset,  use  RF  to  classify  imaging
subgroups,  and select  features.  Then,  we input  the top
10  important  markers  into  stepwise  LR  to  obtain  OR
and 95% CI. Our results find that there are differences
and  similarities  in  the  important  markers  of  each
imaging  subgroups  of  CSVD,  with  hematocrit  being
the top 10 markers for all 5 imaging subgroups. There
is  a  need  for  multi-center  data  to  continue  exploring
and  verifying  the  effectiveness  of  selected  clinical

markers in guiding clinical practice.
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