
 

Domain Knowledge Used in Meta-Heuristic Algorithms for the
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Abstract: Meta-heuristic algorithms search the problem solution space to obtain a satisfactory solution within a

reasonable  timeframe.  By  combining  domain  knowledge  of  the  specific  optimization  problem,  the  search

efficiency and quality of meta-heuristic algorithms can be significantly improved, making it crucial to identify and

summarize domain knowledge within the problem. In this paper, we summarize and analyze domain knowledge

that  can be applied to meta-heuristic  algorithms in the job-shop scheduling problem (JSP).  Firstly,  this  paper

delves into the importance of domain knowledge in optimization algorithm design. After that, the development

of different methods for the JSP are reviewed, and the domain knowledge in it for meta-heuristic algorithms is

summarized and classified. Applications of this domain knowledge are analyzed, showing it is indispensable in

ensuring the optimization performance of meta-heuristic algorithms. Finally, this paper analyzes the relationship

among  domain  knowledge,  optimization  problems,  and  optimization  algorithms,  and  points  out  the

shortcomings  of  the  existing  research  and  puts  forward  research  prospects.  This  paper  comprehensively

summarizes  the  domain  knowledge  in  the  JSP,  and  discusses  the  relationship  between  the  optimization

problems,  optimization  algorithms  and  domain  knowledge,  which  provides  a  research  direction  for  the  meta-

heuristic algorithm design for solving the JSP in the future.
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1　Introduction

Optimization  problems  can  be  regarded  as  finding  the
optimal  solution  from  a  finite  or  infinite  set  of
solutions.  Intuitively,  the  optimal  solution  can  always
be found if we enumerate all the solutions and compare
them. However, even for a problem with finite solutions,

it is usually unacceptable because of the cost by simple
enumeration.  Therefore,  an  optimization  algorithm
needs  to  be  designed that  combines  the  characteristics
of  the  specific  problem  (such  as  the  structure  of  the
solution space) so as to achieve the purpose of implicit
enumeration;  that  is,  only  part  of  solutions  are
compared for the optimal solution. Here, we regard the
characteristics  of  the  optimization  problem  as  domain
knowledge,  a  kind  of  prior  knowledge  of  the  specific
problem.  The “No  Free  Lunch” theorems[1] also  state
that  combining  domain  knowledge  of  a  specific
problem can improve the performance of the algorithm.
Although domain knowledge means different things in
different problems, this paper refers to the properties of
an  individual  solution  or  the  relationships  between
solutions,  which  can  be  used  in  the  algorithm  to
improve its effectiveness and efficiency.
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This  paper  focuses  on  the  job-shop  scheduling
problem  (JSP),  which  widely  exists  in  the  field  of
manufacturing[2, 3].  JSP  is  a  classic  combinatorial
optimization  problem.  To  solve  this  problem,  many
different  types  of  optimization  algorithms  have  been
proposed, such as heuristic rules[4, 5], exact algorithms[6],
approximate algorithms[7], meta-heuristic algorithms[8],
expert  systems[9],  neural  networks[10] and  different
kinds  of  artificial  intelligence  method[11−13].  Among
them, the meta-heuristic algorithm is the most effective
one, because it  has the ability to jump out of the local
optimum during its search[14].

In  the  past  decades,  most  of  the  researchers  have
preferred  to  use  domain  knowledge  when  designing
meta-heuristic algorithms. However,  to the best  of our
knowledge,  it  is  still  a  fuzzy  concept  in  the  existing
research, which usually be obtained and used according
to  the  intuition  and  experience  of  researchers[15].
Therefore, the main task of this paper is to summarize,
classify and analyze the domain knowledge used in the
design  of  meta-heuristic  algorithms  for  the  JSP.  This
paper  firstly  surveys  the  development  of  methods  for
solving  the  JSP.  After  that,  the  domain  knowledge
which can be used in the meta-heuristic algorithms for
the  JSP  is  summarized  and  classified,  and  their
applications  and  effectiveness  are  analyzed.  Finally,
the  shortcomings  of  the  existing  research  are  pointed
out  and  promising  research  directions  are  proposed.
Obviously,  this  review  article  is  not  only  suitable  for
researchers  of  shop  scheduling  problems,  but  also  has
reference  value  for  researchers  of  other  optimization
problems and optimization methods.

The  main  contents  of  this  paper  are  as  follows:  In
Section 2, the development of methods is summarized.
Section 3  illustrates  the  domain knowledge in  the  JSP
and  classifies  it  into  four  types.  Section  4  mainly
reviews  the  applications  and  effectiveness  of  domain
knowledge  in  meta-heuristic  algorithms  for  the  JSP.
Section 5 proposes some promising research directions.
Section 6 concludes this paper.

2　Development  of  Methods  for  Solving  the
Job-Shop Scheduling Problem

To the  best  of  our  knowledge,  Akers  Jr  and Friedman
studied  a  JSP  with  two  jobs  and  four  machines  in
1955[16],  and  the  term “job  shop” was  first  formally
proposed  in  the  research  literature  by  Sisson  in
1959[17].  In  nearly  70  years  of  development,  the  JSP
has  been  greatly  extended  by  considering  the

transportation  time[18],  distributed[19],  setup  time[20, 21],
machine  flexibility[22, 23],  dynamic  events[24],  fuzzy
processing  time[25, 26],  multi-objective[27−29] and  other
characteristics[30, 31] to  meet  the  needs  of  actual
production.  So  far,  there  have  been  many  literature
reviews related to the JSPs,  including the study of  the
models[32],  the  solving  methods[33],  and  the  JSP  with
other  constraints[34],  etc.  Different  from other  reviews,
the focus of this paper is not to review the development
of  the  problem  or  the  solution  methods,  but  to
summarize  and  analyze  the  domain  knowledge  in  the
problem  that  can  be  applied  to  algorithm  design.  It  is
hoped  that  this  review  can  provide  a  basis  for  the
problem  solving,  and  also  hope  to  guide  the  research
ideas  of  meta-heuristic  algorithm  design.  In  this
section,  we  give  a  brief  review of  the  development  of
methods  for  the  JSP  to  emphasize  the  importance  of
meta-heuristic  algorithms,  and  show  that  the  domain
knowledge used in different types of algorithms is not
the same.

JSP  can  be  easily  described  as  follows:  there  are n
jobs, and each job needs to be processed on m different
machines with predetermined sequences. Each job can
only  be  processed  on  one  machine  at  one  time,  and
each  machine  can  only  process  one  job  at  one  time.
Preemption is not permitted when one job is processing
on a machine[32].  The essential research in this field is
the  emergence  of  computational  complexity  theory  in
the 1970s. It makes researchers realize that most of the
JSPs are NP-hard, which is almost impossible to design
an  algorithm  to  obtain  the  optimal  solution  within  an
acceptable  time.  After  that,  scholars  preferred  to  find
the  near-optimal  solution  through  some  approximate
methods.  Parker  named the  period  before  the  study of
computational  complexity  theory  as  B.C.  (Before
Complexity), and the period after it as A.D. (Advanced
Difficulty)[35],  as  shown  in Fig.  1.  The  following  will
introduce the primary methods for the JSP in these two
periods.

In the early stage, scholars put forward many heuristic
rules,  which  became  the  basis  of  classical  scheduling
theory,  for  solving  the  scheduling  problems  in  actual
production. Heuristic rules for the JSP include Jackson’s
rule[36],  shortest  processing  time  (STP)  rule,  and  the
sum  of  weighted  completion  times  (SWPT)[37],  etc.
And  then,  different  priority  dispatch  rules  are  also
proposed[38−41].  Although  these  heuristic  rules  can
solve  the  JSP  quickly,  the  results  obtained  by  using
these  heuristic  rules  are  not  satisfactory  as  the  size  of
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problems  increases.  Subsequently,  many  scholars
studied  how  to  use  the  enumeration  method,  such  as
the  branch-and-bound  technology,  to  solve  the  shop
scheduling  problem  for  the  optimal  solution.  For  the
JSP,  researchers  designed  active  schedule  generation
branching  or  used  the  disjunctive  graph  to  construct  a
search  tree  to  realize  implicit  enumeration  of  all
feasible  solutions[6, 42].  Although  branch-and-bound
technology  can  obtain  the  optimal  solution  to  the
problem,  due  to  the  long  calculation  time  required  by
this  method,  it  can  only  be  applied  to  the  scheduling
problem that the number of operations is less than 250,
so  it  is  difficult  to  apply  to  the  actual  production
problem.

As  mentioned  before,  the  1970s,  the  time  of  the
emergence of complexity theory research, was the most
critical  period for the development of shop scheduling
problems,  which  directly  brought  a  significant  turn  in
scholars’ research  direction.  In  1979,  Garey  and
Johnson summarized 320 NP problems, including shop
scheduling  problems[43].  Later,  it  was  also  proved that
only a few JSP with special conditions could be solved
in polynomial time, and the other general problems are
NP  problems[44].  After  that,  people  shift  the  research
focus  back  to  the  approximation  methods,  which
mainly  includes  approximation  algorithms,  constraint
programming  algorithms,  neural  networks,  heuristic
algorithms,  and  so  on.  The  approximation  algorithm
gives  the  multiple  of  the  optimal  solution  obtained  by
the algorithm in the worst case by the worst-case analysis
or probabilistic analysis. Approximation algorithms are
usually  designed  for  parallel  machine  scheduling
problems  and  flow-shop  scheduling  problems  but
are  relatively  rare  for  the  JSP.  There  is  only  some
research for special JSP with only two machines or two
jobs[45, 46, 47].  The constraint programming algorithm is
to  reduce  the  search  space  through  constraint
propagation  and  finally  obtain  a  feasible  solution[48].
However,  since  the  ultimate  goal  of  the  constraint

programming algorithm is to obtain a feasible solution,
the results obtained by constraint programming are not
ideal.  In  addition,  the  expert  system  and  the  neural
network  have  been  used  to  solve  the  JSP  in  the
1990s[49−51],  but  they have yet  to be further  developed
due to the poor effect.

The most effective approximate methods for the JSP
are  meta-heuristic  algorithms.  The  local  search  is  an
essential  meta-heuristic  algorithm, and the first  time it
proposed  for  a  shop  scheduling  problem  was  by
Nicholson[52].  However,  due  to  the  limitations  of  the
computing  power  of  computers  and  the  fact  that  it
seemed  too  simple  to  be  worth  studying,  this  method
did  not  receive  enough  attention  until  the  simulated
annealing  algorithm  was  proposed  by  Kirkpatrick
et  al.[53] and  the  tabu  search  algorithm  proposed  by
Glover[54, 55]. The booming development of this method
originated in 1988 when a heuristic algorithm proposed
by  Adams  et  al.  succeeded  in  finding  the  optimal
solution  of  a  classical  instance  (FT  10)  of  the
JSP[56].  So  far,  many  scholars  have  proposed  or
improved  local  search  algorithms  which  can  solve  the
JSP  well[57−61].  In  addition  to  the  local  search
algorithms,  there  are  many  meta-heuristic  algorithms,
such  as  the  population-based  evolutionary  algorithm,
which  can  also  solve  the  JSP  very  well.  Fisher  and
Rinnooy  Kan[62] emphasized  the  important  principles
for  generating  good  heuristic  techniques:  design,
analysis and implementation. The common population-
based meta-heuristic algorithms for the JSP are genetic
algorithms[63, 64],  ant  colony  optimization
algorithms[65],  particle  swarm  optimization
algorithms[66, 67],  various  hybrid  algorithms[68, 69],  and
so  on.  These  algorithms  guide  the  evolution  of
individuals  by  simulating  the  behavior  of  populations
of  different  organisms  in  nature.  Of  course,  some
scholars  analyzed  the  fitness  landscape  of  the
JSP[70−72] and  designed  individual  evolutionary
strategies  in  the  algorithm  according  to  the
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characteristics of the fitness landscape[61, 73]. Due to its
superior  performance  in  solving  the  JSP,  more  and
more different types of meta-heuristic algorithms have
been  designed,  such  as  the  chemical-reaction
optimization[74],  the  intelligent  water  drops
algorithm[75], hybrid fruit fly optimisation algorithm[76],
the hybrid election campaign optimization algorithm[77]

and the imperialist competition algorithm[78]. However,
some  scholars  point  out  that  most  of  these  meta-
heuristic  algorithms  have  the  same  optimization
framework  but  just  analogy  these  algorithms  to
different  biological  or  human  social  behaviors,  which
is not innovative enough[79].

In  recent  years,  with  the  development  of  machine
learning  technology,  more  and  more  scholars  have
begun  to  study  how  to  solve  the  shop  scheduling
problem  directly  or  indirectly  by  machine
learning[80−83].  This  method  has  great  advantages  for
solving  dynamic  shop  scheduling  problems  because  it
can  achieve  offline  learning  and  online  optimization,
making  it  respond  to  the  demand  of  dynamic  shop
scheduling problems quickly. However, except for this,
the  meta-heuristic  algorithm  is  still  the  most
advantageous method.

We  searched  articles  with  the  keyword “job  shop
scheduling” in the title and the literature type “Article”
in  Scopus,  among  which  there  were  1731  relevant
articles  from  2001  to  2022.  We  classify  the  literature
that  uses  algorithms  to  solve  problems  into  two
categories: the literature using meta-heuristic algorithms
and  the  literature  using  other  methods.  The  changing
trend of the publication of these two types of literature

in  the  past  22  years  is  shown  in Fig.  2.  Although  the
results  retrieved  in  this  paper  are  not  necessarily
accurate,  they  can  reflect  the  development  trend  of
solving methods for the JSP; that is, the meta-heuristic
algorithm has been the mainstream method for the last
20 years.

The  meta-heuristic  algorithm  is  the  most  popular
method to solve the JSP. One of the important reasons
is that a large amount of related domain knowledge can
guarantee  the  optimization  performance  of  the
algorithm.  It  can  also  be  seen  that  domain  knowledge
contained  in  the  problem is  not  universal  for  all  types
of  algorithms  because  of  the  essentially  different
optimizations  of  different  algorithm  types.  For
example,  heuristic  rules  construct  a  solution  through
several  choices,  so  the  domain  knowledge  should  be
related  to  make  each  choice  as  best  as  possible.  The
branch and bound algorithm obtains the optimal solution
of a problem by means of implicit enumeration, so the
domain  knowledge  should  be  related  to  reducing  the
number  of  solutions  to  improve  the  optimization
efficiency. In this paper, we focus on the meta-heuristic
algorithm,  which  is  an  algorithm  that  searches  in  the
solution  space  of  the  problem,  so  the  domain
knowledge should be related to solutions.

3　Domain  Knowledge  for  Designing  Meta-
Heuristic Algorithms for the JSP

The “No  Free  Lunch” theorem  states  that  no  one
algorithm is better than another one on all optimization
problems,  which  indicates  that  it  is  important  to
incorporate domain knowledge into the algorithm for a

 

 
Fig. 2    Trend of the methods for the JSP in the last 20 years.
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specific  problem[1].  In  fact,  domain  knowledge  can  be
regarded as a kind of prior knowledge of the problem,
and the performance of the optimization algorithm can
be  improved  by  using  this  knowledge.  This  section
summarizes the domain knowledge in the JSP used for
designing  meta-heuristic  algorithms  and  classifies  this
domain  knowledge  according  to  the  optimization
process  of  this  algorithm.  Generally,  when  it  uses  the
meta-heuristic algorithm to solve the JSP, the problem
needs to be mapped to the coding space first, and then
the  algorithm  searches  in  the  space  through  some
neighborhood  structures  or  search  strategies.  Finally,
the  final  optimization  result  is  obtained  by  decoding
the  searched  solution.  Therefore,  the  domain
knowledge applied to the meta-heuristic algorithm can
be  divided  into  four  types  according  to  the  execution
process of the algorithm: 1) Problem representation; 2)
Global  characteristics  of  the  solution  space;  3)  Local
characteristics  of  the  solution  space;  4)Types  of
solutions. The relationship between domain knowledge
and meta-heuristic algorithms can be shown in Fig. 3.

3.1　Problem representation

In  fact,  problem  representation  can  be  understood  as
the  process  of  modeling  or  coding,  and  the  search
space  of  the  algorithm  is  determined  by  choice  of
problem  representation.  The  most  common  problem
representation  is  a  mathematical  programming  model,
which can represent any optimization problem in terms
of  decision  variables,  constraints,  and  objective
functions.  However,  this  representation  can  only  be
solved  by  mathematical  programming  methods.  In  the
meta-heuristic algorithms, the commonly used problem
representations for the JSP are the Gantt  chart  and the
disjunctive graph. Of course, other representations, like
the permutation-disjunctive graph, have been proposed
by  some  scholars,  but  these  are  also  essentially

combinations  of  representations  of  Gantt  and  the
disjunctive graph. In this part, we use simple examples
to  show the  Gantt  chart  and  the  disjunctive  graph and
briefly  introduce  the  history  of  these  two
representations.
3.1.1　Gantt chart

O1,1 O1,2 O1,3 O2,1 O2,2 O2,3

O3,1 O3,2 O3,3 O j,i

i j
m j,i p j,i

O j,i

Gantt chart is a kind of bar chart to show the start and
end  time  of  each  task,  and  it  can  intuitively  represent
the time relationship between all tasks so that resources
can be correctly allocated. Gantt chart has been widely
used  in  various  task  arrangement  activities,  including
the  JSP.  A  simple  example  is  given  for  it.  Suppose
there are three jobs ( , , ), ( , , ),
( , , ),  where  the  notation  means  the
-th  operation  of  the -th  job.  These  operations  are

processed on three machines, and [ , ] represents
the  machine  and  time  of  the  operation .  The
processing  information  of  these  operations  are  ([1,  3],
[2, 3], [3, 2]), ([1, 3], [3, 2], [2, 2]), and ([1, 3], [3, 2],
[2,  3]).  The  JSP  needs  to  decide  the  processing
sequence of the jobs on each machine to minimize the
makespan  of  the  whole  scheduling  scheme.  With  the
information given above, we can draw a Gantt chart by
determining  the  processing  sequence  of  the  jobs  on
each machine, as shown in Fig. 4.

The  Gantt  chart  has  a  long  history  of  development.
As  early  as  the  mid-1890s,  Polish  engineer  Karel
Adamiecki  proposed  a  Harmonogram  to  represent  the
workflow network diagram, which could show the start
and end time of  the  execution of  different  tasks[83].  In
1912,  Swiss  engineer  Herman  Schurch  introduced  a
graphical and quantitative chart called “bauprogramm”
for  management  projects.  He  used  a  histogram  to
represent  the workload of  different  jobs and a shadow
effect to represent different types of jobs. In 1913, Henry
Laurence  Gantt  published  the  book Work, Wages,
and  Profits[84],  which  summarized  his  management

 

 
Fig. 3    Relationship between domain knowledge and meta-heuristic algorithms.
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experience from the production practice,  including the
use  of  the  Gantt  chart.  In  later  work,  Gantt  used  this
chart  to  discuss  scheduling  problems.  It  is  worth
mentioning  that  Henry  Laurence  Gantt  did  not  name
this  kind of  graph as  a  Gantt  chart  in  the  book.  Three
years after Mr. Gantt’s death, Clark published the book
The Gantt  chart:  A working tool  of  management[85] to
commemorate Mr. Gantt’s contribution to management
science  and  officially  named  this  kind  of  chart  the
Gantt  chart.  Later,  the  Gantt  chart  was widely used in
the shop scheduling problem to express the processing
time and production sequence of jobs.

With  the  Gantt  chart,  it  is  easy  to  know  about  the
start  and  end  time  of  each  operation,  and  people  can
also  use  this  Gantt  chart  to  improve  the  schedule  by
different  methods.  In  the  very  beginning,  it  is  a
common  way  to  look  at  the  Gantt  chart  to  see  if  the
scheduling  scheme  can  be  improved  by  changing  the
order  of  operations  on  certain  machines.  With  the
increase  in  the  number  of  machines  and  jobs,  the
method  of  manual  observation  has  become  no  longer
effective.  It  is  necessary  to  give  the  processing
sequence  of  each  machine  through  an  appropriate
algorithm. In the meta-heuristic algorithm, a scheduling
scheme  can  be  expressed  by  a  permutation  for  each
machine, which corresponds to the processing sequence
of each machine in the Gantt chart.
3.1.2　Disjunctive graph
The  disjunctive  graph  is  a  kind  of  network  graph  that
uses  vertices  to  represent  the  operations  in  jobs,

connecting  arcs  to  represent  the  relationships  between
operations  in  the  same  jobs,  and  disjunctive  arcs  to
represent  the  relationships  between  operations  that
should be processed on the same machine. By deciding
the  direction  of  each  disjunctive  arc  (that  is,  deciding
the processing sequence of two operations on the same
machine),  the  final  processing  sequence  on  each
machine can be determined, and finally, the scheduling
scheme  can  be  obtained.  A  disjunctive  graph  can  be
represented  by  a  triple G=(V, A, E),  where V denotes
the set of vertices in G, A denotes the set of connecting
arcs  in G,  and E denotes  the  set  of  disjunctive  arcs  in
G.  For  the  convenience  of  representation,  two  virtual
vertices, s and e,  which  are  used  to  represent  the
starting  point  and  the  ending  point  of  all  the  jobs,
respectively,  are  generally  added  to  the  disjunctive
graph, as shown in Fig. 5a.

O2,1 O1,1

In the disjunctive graph,  the length of  the arc or  the
weight of the vertex can be expressed as the processing
time  of  the  corresponding  operation.  For  ease  of
understanding,  the  weight  of  the  vertex  is  set  to  the
processing time of the operation in this  paper,  and the
weight of the virtual vertex (s and e) and the length of
all  arcs  are  0.  By  determining  the  direction  of  the
disjunctive  arc  and  calculating  the  longest  path  from
the  starting  vertex  to  the  end  vertex,  the  maximum
completion  time  of  the  scheduling  scheme  can  be
obtained,  as  shown  in Fig.  5b.  For  a  more  concise
picture,  some  redundant  disjunctive  arcs  have  been
removed,  such  as  the  arc  from  to .  Deletions
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Fig. 4    Gantt chart of a solution for the JSP.
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Fig. 5    Disjunctive graph of the JSP.
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like this will also be adopted in later disjunctive graphs
and will not be elaborated on in the following. In fact,
each  disjunctive  arc  in  the  disjunctive  graph  can  be
regarded  as  a  (0,1)  variable,  and  the  direction  of  the
disjunctive  arc  is  determined  by  the  value  of  each
variable. However, if it  is not properly decided, it will
make  the  disjunctive  graph  form  cycles,  as  shown  in
Fig.  6a.  It  is  obvious  that  the  solution  represented  by
the disjunctive graph with a cycle is infeasible because
it is impossible to determine which operation starts first
among  these  several  operations  in  the  cycle.  In  fact,
infeasible  solutions  will  also  appear  if  the  processing
sequence  of  the  jobs  is  not  properly  changed  in  the
Gantt  chart.  However,  they cannot  be displayed in the
Gantt  chart,  so  the  infeasible  solutions  in  the  JSP  are
generally discussed in the disjunctive graph.

Roy  and  Sussman[86] first  proposed  the  use  of  a
disjunctive  graph  to  represent  the  JSP.  Balas[6]

designed  an  exact  algorithm  based  on  the  disjunctive
graph, and then more and more scholars used it to solve
the JSP. White and Rogers[87] described the extensions
and  limitations  of  the  disjunctive  graph.  They
successfully  extended  the  disjunctive  graph  model  to
represent  the  JSP  with  assembly  and  disassembly
operations,  due  dates,  scheduled  maintenance,  setup
time,  priority  tasks,  and  so  on.  But  they  also  pointed
out  that  it  may  be  difficult  to  apply  the  model  to
industrial  situations  because  parallel  machines  cannot
be  modeled  directly.  Gui  et  al.[88] used  a  disjunctive
graph  to  represent  the  hybrid  flow-shop  scheduling
problem,  which  means  the  parallel  machines  can  also
be  represented  by  the  disjunctive  graph.  Bazewicz  et
al.[89] pointed  out  that  the  disjunctive  graph  was  more
popular  than  the  Gantt  graph  to  represent  the  JSP.
Since  the  development  of  the  network  graph  is  more
mature  than  the  scheduling  problem,  using  the
disjunctive  graph  to  represent  the  JSP  can  make  full
use  of  the  existing  knowledge  in  the  network  graph,
such  as  the  critical  path.  At  the  same  time,  the
disjunctive  graph  can  be  more  conducive  to  the

analysis  of  the  problem,  such  as  the  feasibility  of  a
solution.  However,  there  will  be  a  large  number  of
infeasible solutions when using the disjunctive graph to
make  a  decision  on  the  problem.  These  infeasible
solutions stem not only from the fact that operations on
different  machines  in  the  disjunctive  graph  jointly
produce  cycles,  but  also  from  the  fact  that  operations
on  the  same  machine  produce  cycles,  as  shown  in
Fig.  6b.  This  makes  it  impossible  to  represent  the
processing  sequence  of  operations  on  the  same
machine  by  a  permutation.  To  this  end,  Nowicki  and
Smutnicki  proposed  the  permutation-graph  model[90],
which essentially combines the advantages of the Gantt
graph  and  disjunctive  graph  to  express  the  job  shop
scheduling  problem,  and  now  it  has  become  the  most
commonly used expression form.

3.2　Global characteristics of the solution space

Global characteristics of the solution space refers to the
indexes or properties used to describe the overall trend
of  optimization  space,  such  as  linearity/non-linearity
and convexity/non-convexity in continuous optimization
problems. With the appropriate global characteristics, it
can  effectively  guide  the  iteration  direction  of  the
algorithm  to  find  the  optimal  solution.  For  example,
suppose a continuous optimization problem is  convex.
In  that  case,  the  optimal  solution of  the  problem must
be at the point that the derivative is 0 or the edge of the
solution  space,  and  the  optimal  solution  can  be  found
along  the  direction  of  the  derivative  descent,  which
provides great  convenience for the optimal solution of
convex optimization problems.

For combinatorial optimization problems such as the
JSP,  we  usually  use  the  fitness  landscape  to  describe
the global characteristics of a problem. The concept of
fitness landscape was proposed by Wright for the field
of  biological  evolution[91],  and  then  this  concept  was
gradually adopted in the field of optimization to represent
the  solution  space  of  a  problem.  In  the  existing
research,  there is  not  too much research on the fitness
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Fig. 6    Infeasible solutions for the JSP.
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landscape  analysis  of  the  JSP.  On  the  one  hand,  the
definition of  some parameters  required to  describe the
fitness landscape of the problem is not uniform, such as
the definition of distance between two solutions, which
may  lead  to  different  conclusions  for  the  same
problem.  On  the  other  hand,  the  fitness  landscape  of
this  problem is  very  complex,  so  it  is  difficult  to  find
out  the  rule  directly  to  guide  the  search.  Mattfeld
et  al.[70] analyzed the fitness  landscape of  the JSP and
showed that the inherent characteristics of the problem
had an impact on the heuristic algorithm based on local
search.  Bierwirth  et  al.[71] showed  that  the  fitness
landscape of the JSP is irregular. Streeter and Smith[72]

showed that the fitness landscape of the JSP is related
to  the  problem scale,  and  it  was  verified  that  JSP  has
“big  valley” terrain  in  different  instances.  The
description  of  the  fitness  landscape  for  this  problem
can  provide  some  guidance  for  the  design  of  the
algorithm,  such  as  the  path  relinking  used  in  the
algorithm for “big valley” .

3.3　Local characteristics of the solution space

Local  characteristics  of  the  solution  space  can  be
considered  as  the  neighborhood  characteristics,  which
indicates  the  relationship  between  the  neighborhood
solutions  obtained  from  the  current  solution  by  small
perturbation.  In  the  JSP,  the  usage  of  the  local
characteristics  can  be  divided  into  three  categories:  1)
How  to  obtain  a  neighborhood  solution  that  is  better
than  the  current  solution;  2)  How  to  obtain  feasible
neighborhood  solutions;  3)  How  to  use  the
characteristics  of  the  current  solution  to  obtain  the
objective function value of  the neighborhood solution.
These  can  be  summarized  as  the  quality  of
neighborhood solutions, the feasibility of neighborhood
solutions,  and  the  evaluation  of  neighborhood
solutions.  By  entirely  using  these  three  kinds  of  local
characteristics,  the  quality  and  efficiency  of  the
algorithm can be significantly improved. In this paper,
we  mainly  introduce  some  properties  in  local
characteristics  of  the  JSP,  and  detailed  proof  can  be
obtained from the corresponding literature. In the JSP,
the  local  disturbances  are  usually  generated  by
selecting one operation and inserting it  before  or  after
the other operations,  which are processed on the same
machine. Of course, some disturbances choose multiple
operations  and  change  their  processing  sequences
simultaneously, but these disturbances can be obtained
by  the  former  through  multiple  steps,  so  the  relevant

information  on  neighborhood  solutions  of  multiple
disturbances  is  not  involved  in  this  paper.  Next,  this
paper will elaborate on the specific local characteristics
in the JSP.
3.3.1　Quality of neighborhood solutions
It  is  known  that  most  of  the  neighborhood  solutions
generated  by  perturbation  are  worse  than  the  current
ones.  These neighborhood solutions  not  only make no
sense for the iteration of the algorithm but also incur a
huge  computational  cost.  Therefore,  how  to  avoid
generating  solutions  that  do  not  improve  the  current
solution is the key to effectively improving the quality
of  the  neighborhood  solution,  and  the  critical  path
method is the most important method. The critical path
method is a network graph method in which the critical
path  refers  to  the  longest  path  between  two  points  in
the  network  graph.  It  was  proposed  by  Kelley  Jr  and
Walker[92] in  1959  to  solve  the  project  scheduling
problem,  and  Conway  et  al.[93] introduced  the  critical
path method into the JSP, which was used to represent
the  longest  distance  from  the  start  vertex  to  the  end
vertex  in  the  disjunctive  graph  (that  is,  the  maximum
completion  time  of  the  solution).  Since  then,  most  of
the  research  on  the  neighborhood  solution  of  the  JSP
has been based on the critical path. However, although
the critical path was first applied to the concept of the
disjunctive  graph,  it  does  not  intuitively  express  the
relationship  between  the  critical  path  and  other
operations  in  the  whole  scheduling  scheme.  On  the
contrary,  this  relationship  can  be  clearly  found  in  the
Gantt  chart,  so  the  Gantt  chart  is  mainly  used  to
express  and  explain  the  related  concepts  or  properties
in this part.

Potts[94] pointed out the role of the critical path in the
JSP;  that  is,  when  the  processing  sequence  of
operations  on  the  critical  path  does  not  change,  the
total completion time will not decrease. This points out
that  the  optimization  bottleneck  of  the  JSP  is  the
processing  sequence  of  the  operations  on  the  critical
path,  and  changing  the  processing  sequence  of  other
operations  will  not  improve  the  current  solution.  This
finding  dramatically  reduces  the  number  of
neighborhood solutions in the JSP. Grabowski et al.[95]

proposed the concept of the critical block based on the
critical path, a block composed of operations processed
on the same machine and with adjacent processing time
in the critical path. The Gantt chart in Fig. 4 identifies
the critical path as shown in Fig. 7, which contains four
critical blocks.
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Based on the above,  scholars improve the quality of
neighborhood solutions by further analyzing the critical
path  blocks.  Matsuo  et  al.[8] pointed  out  that  if  the
processing  sequence  of  operations  is  only  changed
inside  the  critical  block,  the  total  makespan  will  not
decrease.  Bazewicz  et  al.[89] pointed  out  that  if  other
operations  were  inserted  before  the  first  operation  in
the first critical block, the total completion time would
not decrease, and if other operations were inserted after
the  last  operation  in  the  last  critical  block,  the  total
completion time would not decrease. In addition, there
is some other domain knowledge that can improve the
quality  of  neighborhood  solutions.  Although  they  do
not appear in the literature, they are also introduced in
this  paper,  and  the  corresponding  proof  is  given.  To
better  describe  this  domain  knowledge,  the  definitions
of symbols are given below:
• x: one operation of the schedule;
• mx : the machine used to process x;
• px : the processing time of the x;
• jp[x]:  the  operation  in  the  same  job  as x,  and

processing just before x;
• js[x]:  the  operation  in  the  same  job  as x,  and

processing just after x;
• mp[x]:  the  operation  processed  on  the  same

machine as x, and processing just before x;
• ms[x]:  the  operation  processed  on  the  same

machine as x, and processing just after x;

• F(x): the maximum weight sum of a path from s to
x in the disjunctive graph (x is not included);
• R(x): the maximum weight sum of a path from x to

e in the disjunctive graph (x is not included);

O1 O2 Ok

Assuming  that  the  operations  on  one  critical  block
are ( , , …, ), as shown in Fig. 8. Therefore, it
is  easy  to  know  that  if  the  first  operation  or  the  last
operation on this block is not changed, the makespan of
neighborhood  solutions  will  not  be  reduced.  In  the
following, we will give four other properties which can
use  constraints  to  judge  whether  one  neighborhood
solution  is  worse  than  the  current  one  so  as  to  reduce
the evaluation times of neighborhood solutions.

Ot

O2 Ok−1 Ot pjp Ot ⩾ O1

Ot

O1

Proposition  1 　 Assuming  that  the  operation 
belongs to ( , …, ). If F(jp[ ])+ [ ]  F( ),
the  neighborhood  solution  obtained  by  moving  to
the  position  just  before  will  not  be  better  than  the
current one.

O1
∑k

i=1 Oi

Ok

Ot O1

C’ ⩾ Ot pjp[Ot]
∑k

i=1 Oi Ok ⩾

Proof　The makespan of the current solution can be
calculated. by the formulation: C = F( )+ p( )+
R( ). If a neighborhood solution obtained by moving

 to the position just before , the makespan of this
neighborhood  solution  is  satisfied  with  the  inequality:

 F(jp[ ]) +  +  [p( )] + R( )  C. ■
Ot

O2 Ok−1 O2 pjp[O2] ⩾ O1

O1

Ot

Proposition  2　 Assuming  that  the  operation 
belongs to ( , …, ). If F(jp[ ])+  F( ),
the  neighborhood  solution  obtained  by  moving  to
the  position  just  after  will  not  be  better  than  the
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Fig. 7    Critical path and critical blocks in the Gantt chart.
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current one.

O1
∑k

i=1 Oi

Ok

O1 Ot

C’ ⩾ O2 pjp[O2]
∑k

i=1 Oi

Ok ⩾

Proof　The makespan of the current solution can be
calculated. by the formulation: C = F( )+ p( )+
R( ). If a neighborhood solution obtained by moving

 to  the  position  just  after ,  the  makespan  of  this
neighborhood  solution  is  satisfied  with  the
inequality:  F(jp[ ])  +  +  [p( )]  +
R( )  C. ■

Ot

O2 Ok−1 Ot p js[Ot] ⩾ Ok

Ot

Ok

Proposition  3　 Assuming  that  the  operation 
belongs to ( , …, ). If R(js[ ])+  R( ),
the  neighborhood  solution  obtained  by  moving  to
the  position  just  after  will  not  be  better  than  the
current one.

Proof　Similar to the proof of Proposition 1. ■
Ot

O2 Ok−1 Ok−1 pjs[Ok−1] ⩾
Ok

Ok Ot

Proposition  4　 Assuming  that  the  operation 
belongs  to  ( ,  …, ).  If R(js[ ])+
R( ),  the  neighborhood solution  obtained  by  moving

 to the position just before  will not be better than
the current one.

Proof　Similar to the proof of Proposition 2. ■
3.3.2　Feasibility of neighborhood solutions
When  changing  the  processing  sequence  of  the
operations on the critical path block, there are generally
two  methods  to  avoid  the  infeasible  neighborhood
solutions:  1)  avoid  the  infeasible  solutions  by  using
some  constraints;  2)  transform  the  infeasible  into  the
feasible when the neighborhood solution is found to be
an  infeasible  solution.  This  paper  will  not  discuss
which  method is  better,  but  only  describe  the  relevant
domain knowledge.

pv ⩾ pjs[u]

pu ⩾
pjp[v]

There  are  few  feasibility  studies  on  the  JSP.  Van
Laarhoven  et  al.[57] found  that  the  neighborhood
solution  obtained  by  exchanging  the  processing
sequence of any two adjacent operations on any critical
path block must be feasible and proved its correctness.
Balas and Vazacopoulos[60] proposed a set of constraint
conditions  and  proved  that  the  neighborhood  solution
generated by inserting the operation before or after the
other  operation  must  be  the  feasible  solution  if  the
conditions  were  met.  It  is  assumed  that u and v are
operations  processed  on  the  same  machine,  and u is
processed  before v in  the  current  solution.  When  the
constraint  conditions R(v)+  R(js[u])+  are
satisfied,  the  neighborhood  solution  obtained  by
inserting u into  the  position  just  after v is  a  feasible
solution.  When  the  constraint  conditions F(u)+
F(jp[v])+  are  satisfied,  the  neighborhood solution
obtained by inserting v into the position just before u is
a  feasible  solution.  Balas’s  work  gives  constraints  on

the  generation  of  feasible  solutions  by  arbitrary
insertion,  not  just  adjacent  swapping.  However,  since
the  constraint  conditions  proposed  by  Balas  are
sufficient  but  not  necessary  conditions  for  feasible
solutions,  that  is,  although such constraints can ensure
that  the  neighborhood  solutions  obtained  are  feasible,
some  feasible  neighborhood  solutions  will  also  be
deleted  as  infeasible  solutions.  Gui  et  al.  gave  the
necessary  and  sufficient  conditions  for  feasible
solutions  by  analyzing  the  necessary  and  sufficient
conditions  for  infeasible  solutions[96].  That  is,  it  is
assumed  that u and v are  operations  processed  on  the
same  machine,  and u is  processed  before v in  the
current solution. When there is no path from js(u) to v
in  the  disjunctive  graph,  the  neighborhood  solution
obtained by inserting u into the position just  after v is
feasible.  When  there  is  no  path  from u to  jp(v)  in  the
disjunctive  graph,  the  neighborhood  solution  obtained
by inserting v into the position just before u is feasible.
By  giving  the  necessary  and  sufficient  conditions  for
feasible solutions of the JSP, all feasible neighborhood
solutions  near  the  current  solution  can  be  searched,
making the local search more adequate.
3.3.3　Evaluation of neighborhood solutions
The evaluation of neighborhood solutions is realized by
using  the  information  of  the  current  solution  to
estimate  the  function  value  of  neighborhood  ones  to
reduce  the  number  of  re-decoding  of  neighborhood
solutions.  The  evaluation  of  neighborhood  solutions
needs to ensure the accuracy of the estimated value and
the computational speed, which needs to make full use
of the local information in the problem.

Taillard  proposed  an  evaluation  method  for
exchanging  two  adjacent  operations  on  critical  path
blocks to generate neighborhood solutions[97]. Suppose
that u is processed before v.  Since only the processing
order of these two operations changes in the disjunctive
graph  of  the  neighborhood  solution,  the  other
operations  unrelated  to u and v in  the  graph  will  not
undergo any change. For the operations that are related
to u and v, if these operations are preceded by u and v,
the  longest  path  from  the  start  vertex  to  these
operations  will  not  change,  and  if  these  operations
follow u and v,  the longest  path from these operations
to  the  end  vertex  does  not  change.  This  unchanged
information  can  be  used  to  compute  the  longest  path
from  the  start  vertex  to v and u,  and  the  longest
distance  from v and u to  the  end  vertex.  We can  then
compute the longest path that goes through v or u from
the start vertex to the end vertex. The maximum value
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among  them  is  used  as  the  evaluation  value  of  the
neighborhood  solution.  The  specific  calculation
formula is: C’=max{F’(v)+ +R’(v), F’(u)+ +R’(u)},
where F’(x)=max{F’(jp[x])+ ,F’(mp[x])+ }
and R’(x)=max{R’(js[x])+ , R’(ms[x])+ }.  In
the paper, the authors prove that this way of estimating
the  neighborhood  solution  is  the  lower  bound  of  the
neighborhood  solution.  Balas  et  al.[60] proposed  the
evaluation  method  of  generating  neighborhood
solutions by inserting an operation before or after other
operations  on  the  critical  path  block.  The  overall  idea
of  this  method  is  similar  to  that  proposed  by  Taillard,
that is, using the information of the current solution to
calculate  the  length  of  the  longest  path,  which
simultaneously  goes  through  the  start  vertex,  the  end
vertex,  and  any  operation  that  the  processing  order  is
changed.  The  calculation  is  as  follows: C’=max{F’
(v)+ +R’(v), F’(u)+ +R’(u), F’(x)+ +R’(x)}, where
x belongs  to  the  operations  between u and v in  the
critical  path  block.  Nowicki  and  Smutnicki[61]

improved the method of Taillard; that is, in addition to
calculating  the  longest  path  in  the  neighborhood
solution  that  passes  through v and u,  it  also  needs  to
calculate the longest path that does not pass through u
and v, and finally take the maximum value among them
as the function value of the neighborhood solution. The
authors mentioned in the paper that if the longest path
through u and v is greater than the function value of the
current  solution,  it  is  not  necessary  to  calculate  the
longest  path  without u and v.  Since  the  longest  path
length  from  the  start  vertex  to  the  end  vertex  is  the
function  value  of  the  solution,  it  is  known  that  the
evaluation  value  obtained  by  the  method  of  Nowicki
et  al.  is  the  exact  function  value  of  the  neighborhood
solution.  However,  this  method  is  not  widely  used
because it  is  too complex to calculate the longest path
without passing through u and v.  It needs to transform
the disjunctive graph of the neighborhood solution into
a  topological  sort  and  calculate  the  longest  path  of  all
operations before v and after u.  Gui et al.[98] improved

pv pu

Balas  et  al.’s  method and proved that  it  only  needs  to
calculate  the  longest  path  through u and v in  the
neighborhood  solution  to  obtain  the  same  effect  as
Balas  and  Vazacopoulos’s  method[60].  With  this
property,  the  makespan  can  be  calculated  as C’ =
max{F’(v)+ +R’(v), F’(u)+ +R’(u)},  where  the
operations between u and v in the critical path block do
not need to be calculated again.

3.4　Types of solutions

In  the  JSP,  when  the  processing  sequence  of  the
operations  on  each  machine  is  determined,  it  can  also
obtain  infinite  different  scheduling  schemes  because
infinite different idle-time can be inserted between the
operations.  It  is  clear  that  scheduling  schemes  that
insert  idle  time  are  meaningless,  so  researchers  have
defined  several  different  types  of  solutions  to  avoid
mostly  meaningless  scheduling  schemes.  Although
some of these types were proposed to be applicable to
earlier  heuristic  rules,  the  analysis  of  these  solution
types  is  beneficial  for  us  to  deepen  our  understanding
of  the  JSP.  These  different  scheduling  types  have  a
certain  subsumption  relationship  with  each  other,
which is described in detail as follows.
3.4.1　Non-delayed schedule

O2,3

O3,3 O2,3

O2,3

The  non-delayed  schedule  refers  to  a  solution  where
the corresponding machine is idle when there is no job
waiting.  This  type  of  solution  was  first  proposed  by
Jackson[4],  and  it  was  called  availability  schedule  at
that time, and later renamed as non-delayed scheduling
by Nugent[99] in his doctoral thesis. Using the Gantt chart
in Fig. 4 as an example, it is obvious that this solution
is  not  a  non-delayed  schedule  because  the  operation

 waits from time 5, and the machine M2 is idle. If
we  change  the  processing  sequence  of  and ,
then  it  is  a  non-delayed  schedule,  although  the  start
time of  is delayed. As it is shown in Fig. 9a.
3.4.2　Active schedule
The  active  schedule  refers  to  a  solution  in  which  no
operation  can  advance  its  start  time  by  moving  to  the
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Fig. 9    Gantt chart of a non-delayed schedule and a full-active schedule.
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left  in  a  scheduling  scheme  on  the  premise  of  not
delaying  the  start  processing  time  of  other  operations.
This  solution  type  was  first  introduced  by  Giffler
et al.[38] and proved that the optimal scheduling scheme
must  be  in  the  set  of  active  schedules  of  the  problem.
Using  the  Gantt  chart  in Fig.  4 as  an  example,  it  is
obviously  that  this  solution  is  an  active  schedule,
because  no matter  which operation starts  earlier,  there
is at least one operation should delay its start time.
3.4.3　Semi-active schedule
The semi-active schedule refers to a solution in which
no  operation  can  be  processed  earlier  when  the
processing  sequence  of  the  jobs  is  not  changed.  This
solution  type  first  introduced  by  Nugent[99],  which
makes  the  processing  time of  each  operation  a  unique
value  when  the  processing  sequence  of  the  processes
on the machine is determined. Using the Gantt chart in
Fig. 4 as an example, it is obviously that this solution is
a  semi-active  schedule,  because  there  is  no  idle  time
inserted  into  the  solution.  With  the  semi-active
schedule, it is reasonable for us to represent a solution
by a sequence. It is easy to know that the optimal must
be the semi-active schedule.
3.4.4　Full-active schedule

O2,3

O1,2

The  full-active  schedule  refers  to  a  solution  in  which
no operation can be moved to the left or right to make
the  scheduling  scheme  better  on  the  premise  that  the
start time of other operations is not delayed. This type
of schedule was first proposed by Zhang et al.[100] and
proved that  the optimal  scheduling scheme must  be in
the set of full-active schedule of the problem. Using the
Gantt chart in Fig. 4 as an example, we can know that
the solution is not a full-active schedule because when
the operation  moves right to the position just after

,  the  solution  will  be  better  and  the  start  time  of
other operations is not delayed, as it is shown in Fig. 9b.
From the definitions of different types of solutions, we
can  see  that  there  is  an  inclusion  relation  between  the
types of these solutions,  and the Venn diagram of this
inclusion  relation  is  shown  in Fig.  10.  The  optimal
solution  in  the  figure  is  in  the  full-active  scheduling
solution,  but  as  said  above,  for  small-scale  problems,
the  optimal  solution  may  also  be  a  non-delayed
scheduling solution.

4　Analysis  of  the  Relationship  between
Domain  Knowledge  and  Meta-Heuristic
Algorithms

The  domain  knowledge  in  the  JSP  has  been

summarized  and  classified  above.  This  section  will
elaborate  on  the  corresponding  relationship  between
domain  knowledge  and  meta-heuristic  algorithms,  as
well as its application in meta-heuristic algorithms. The
effectiveness  of  this  domain  knowledge  in  meta-
heuristic  algorithms  is  analyzed  through  classical
literature. Finally, the relationship among optimization
problems,  domain  knowledge  and  optimization
methods is analyzed.

4.1　Applications  of  domain  knowledge  in  meta-
heuristic algorithms

The  domain  knowledge  mentioned  in  Section  3  is
classified  according  to  the  execution  process  of  the
algorithm.  Since  it  is  obvious  to  design  the  encoding
and decoding of meta-heuristic algorithms by using the
problem  representations  and  the  types  of  the  solution,
this  part  mainly  introduces  how  to  use  the  global
information and local information in the JSP to design
the optimization operator in the meta-heuristics.

Because  there  are  many  local  optimal  in  the  search
space of the JSP, the global information is mainly used
to  guide  algorithms  to  jump  out  of  the  local  area  and
provide new areas worth further exploration. However,
as can be seen from the above, the mining of the global
characteristics of the JSP in the existing research is not
sufficient.  Only  several  pieces  of  literature  proposed
that  the  fitness  landscape  of  the  JSP  has  the
characteristics  of  the  big  valley.  Based  on  this,  some
scholars  have  proposed  using  path  relinking  to  search
the space between two local optimal points, which can
effectively  solve  the  optimization  problem  with  many
local optimal points. The experimental results of some
literatures also show that path relinking can effectively
solve the JSP[73, 89, 101].

The  local  characteristics  in  the  JSP  are  generally
used  to  design  neighborhood  structures  of  the
algorithm  and  evaluation  methods  for  neighborhood
solutions.  The  use  of  the  evaluation  of  neighborhood
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solutions has been elaborated in detail in Section 3, so
the  applications  for  neighborhood  structures  is  mainly
introduced in this part. The neighborhood structure is a
perturbation  rule  on  the  current  solution  to  produce  a
set  of  neighborhood  solutions.  The  design  of
neighborhood  structure  in  the  JSP  should  follow  two
principles[102]:  1)  Reduce the number of  neighborhood
solutions  that  do  not  improve  the  current  solution;  2)
The generated neighborhood solution must be feasible.
This  makes  the  neighborhood  structure  need  to
combine  the  local  information  in  the  JSP.  Since  the
main  purpose  of  this  paper  is  to  review  the  domain
knowledge  in  the  JSP  rather  than  neighborhood
structures,  so  this  part  only  introduces  the  five  most
effective  neighborhood  structures  and  explains  how
domain knowledge is used in them. This paper will use
the  critical  block  to  introduce  them,  where  the
operations in the critical block are ( , , …, ), as
shown in Fig. 11.

In  order  to  compare  the  differences  between  these
neighborhood structures, we use a table to represent the
perturbation  operation,  the  domain  knowledge  about
quality  and  feasibility  used,  and  the  number  of
neighborhood  solutions  that  can  be  obtained  on  a
critical  block  for  each  neighborhood  structure.  The
details are shown in Table 2.

(1)  If  the  processing  sequence  of  operations  on  the
critical  path  does  not  change,  the  total  makespan  will
not decrease;

(2)  If  the  processing  sequence  of  operations  is  only
changed  inside  the  critical  block,  the  total  makespan
will not decrease;

(3) If operations in the first critical block move to the
position before the first operation, the total completion
time will not decrease; If operations in the last critical
block move to the position after the last operation, the
total completion time will not decrease;

(4)  The  neighborhood  solution  obtained  by
exchanging the processing sequence of any two adjacent

operations  of  any  one  critical  path  block  must  be  a
feasible solution;

pv ⩾ p js[u]

pu ⩾ p jp[v]

(5)  Assuming  that u and v are  in  the  critical  block,
and u is  processed  before v.  When  the  constraint
conditions R(v)+  R(js[u])+  are  satisfied,  the
neighborhood solution obtained by inserting u into the
position  just  after v is  a  feasible  solution;  When  the
constraint  conditions F(u)+  F(jp[v])+  are
satisfied,  the  neighborhood  solution  obtained  by
inserting v into  the  position  just  before u is  a  feasible
solution.

From the above table, we can see that since different
researchers  have  different  understandings  of  the  same
domain  knowledge,  the  designed  neighborhood
structure  may  be  different  even  if  the  same  domain
knowledge  is  used.  For  example,  most  researchers
achieve the purpose of (1) by changing the processing
sequence  inside  the  critical  path  block.  However,  Xie
et al. proposed that the same effect can be achieved by
moving the operations inside the critical  path block to
the  outside.  For  another  example,  Nowicki  and
Smutnicki  realized  (2)  by  only  exchanging  the
positions  of  the  first  two  or  the  last  two  operations  in
the  critical  block,  while  Balas  and  Vazacopoulos
proposed that (2) could also be realized by inserting the
operations  in  the  critical  block  to  the  position  just
before (after)  the first  (last)  operation.  On the basis  of
Balas  and  Vazacopoulos,  Zhang  et  al.  proposed  that
inserting  the  first  (last)  operation  on  the  critical  block
after (before) other operations can also achieve (2).

4.2　Effectiveness  of  domain  knowledge  in  meta-
heuristic algorithms

In  the  existing  research,  almost  all  the  meta-heuristic
algorithms use the above domain knowledge to obtain
good  solutions  in  the  JSP.  In  order  to  highlight  the
application  effect  of  this  domain  knowledge,  this  part
sorts out the research on the upper bound of refreshing
instances in the benchmark of the JSP and analyzes the
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domain knowledge applied to them.
In  the  JSP,  there  are  8  types  of  benchmarks,  242

different  instances  for  all,  including  FT[39],  LA[105],
ABZ[56],  ORB[106],  SWV[107],  YN[108],  TA[109],  and

DMU[110]. Due to the hardness of the JSP, there are still
many  open  problems  so  far  in  which  the  upper  and
lower  bounds  of  the  instances  are  not  equal.  The
website  (http://optimizizer.com/jobshop.php)  has

 

Table 1    The summary of the domain knowledge in the JSP.
Type Domain knowledge

Problem
representation

Gantt chart
1. Marsh proposed the Harmonogram to represent the workflow network diagram[83];
2. Gantt used this chart to discuss scheduling problems[84];
3. Clark named this kind of chart the Gantt chart[85].

Disjunctive graph

1. Roy and Sussmann first proposed the use of a disjunctive graph to represent the JSP[86];
2. Balas designed an exact algorithm based on the disjunctive graph[6];
3. White and Rogers described the extensions and limitations of the disjunctive graph[87];
4. Bazewicz et al. pointed out that the disjunctive graph was more popular than the Gantt
graph to represent the JSP[89];
5. Nowicki et al. proposed the permutation-graph to represent the JSP[90].

Global
information

Fitness landscape
analysis

1. Mattfeld et al. showed that the inherent characteristics of the problem had an impact on
the heuristic algorithm based on local search[70];
2. Bierwirth et al. showed that the fitness landscape of the JSP is irregular[71];
3. Streeter et al. showed that the fitness landscape of the JSP is related to the problem scale,
and it was verified that JSP has “big valley” terrain in different instances[72].

Local
information

Quality of
neighborhood solutions

1. Kelley et al. proposed the critical path method for the project scheduling problem[92];
2. Conway et al. introduced the critical path method into the JSP[93];
3. Potts pointed out the role of the critical path in the JSP[94];
4. Grabowski et al. proposed the concept of the critical path block based on the critical
path[95];
5. Matsuo pointed out that if the processing sequence of operations is only changed inside
the critical block, the total makespan will not decrease[8];
6. Nowicki et al. pointed out that if other operations were inserted before the first operation
in the first critical block, the total completion time would not decrease, and if other
operations were inserted after the last operation in the last critical block, the total
completion time would not decrease[61].

Feasibility of
neighborhood
solutions

1. Van Laarhoven et al. found that the neighborhood solution obtained by exchanging the
processing sequence of any two adjacent operations on any critical path block must be
feasible and proved its correctness[57];
2. Balas et al. proposed a set of constraint conditions and proved that the neighborhood
solution generated by inserting the operation before or after the other operation must be the
feasible solution if the conditions were met[60];
3. Gui et al. gave the necessary and sufficient conditions for feasible solutions by analyzing
the necessary and sufficient conditions for infeasible solutions[96].

Evaluation of
neighborhood
solutions

1. Taillard proposed an evaluation method for exchanging two adjacent operations on
critical path blocks to generate neighborhood solutions[97];
2. Balas et al. proposed the evaluation method of generating neighborhood solutions by
inserting an operation before or after other operations on the critical path block[60];
3. Nowicki et al. improved the method of Taillard[61];
4. Gui et al. improved Balas et al. ’s method[98].

Types of
solutions

Non-delayed schedule
1. It was first proposed by Jackson, and it was called availability schedule at that time[4];
2. Nugent renamed it as non-delayed scheduling[99].

Active schedule 1. It was first introduced by Giffler and Thompson and proved that the optimal scheduling
scheme must be in the set of active schedules of the problem[38].

Semi-active schedule 1. It was first introduced by Nugent[99].

Full-active schedule 1. It was first proposed by Zhang et al., and proved that the optimal scheduling scheme must
be in the set of full-active schedule of the problem[69].
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updated  the  upper  and  lower  bounds  of  these  open
instances  and  also  lists  the  literature  that  refreshed
these instances. In this part, only the literature listed on
the website is collated, and the domain knowledge used
in these algorithms is summarized, as shown in Table 3.
Since  all  meta-heuristics  require  the  encoding  and
decoding  of  the  problem,  they  are  not  enumerated  in
the  table.  Only  the  use  of  global  characteristics
(represented  by  GC)  and  local  characteristics
(represented by LC) is  counted.  The symbol Y is  used
to  indicate  the  use  of  the  corresponding  domain

knowledge.
Among the above articles, except for Brinkkötter and

Brucker’s work[111],  the algorithms used for refreshing
the  instances  are  all  meta-heuristic  algorithms,  and
only  one  of  them[117] does  not  use  the  domain
knowledge  mentioned  above.  Of  course,  the  optimal
solutions  of  instances[111, 117] were  also  found  in  the
later  papers[103, 115, 116].  This  shows  that  the  meta-
heuristic  algorithm  combined  with  problem  domain
knowledge can solve the job shop scheduling problem
efficiently.

 

Table 2    Details of different neighborhood structures.
Reference Perturbation operator Quality Feasibility Number
Van Laarhoven
et al.[57] 1. Exchange the position of any two adjacent operations. (1) (4) k−1;

Nowicki and
Smutnicki[90]

1. Exchange the position of the first or last two operations; 2. except
for the position change by the first two operations in the first critical
block or the last two operations in the last critical block.

(1), (2), (3) (4)

1 (the first or last
critical block); 2 (the
other critical path
blocks);

Balas and
Vazacopoulos[60]

1. Move one operation to the position just before (after) the first
(last) operation. (1), (2) (5) No more than 2(k−1);

Zhang et al.[103]
1. Move one operation to the position just before (after) the first
(last) operation; 2. move the first (last) operation to the position just
after (before) other operations.

(1), (2) (5) No more than 4(k−1)-
2;

Xie et al.[104]

1. Move one operation (except for the first one) to the position
before (not only just before) the first operation; 2. move one
operation (except for the last one) to the position after (not only just
after) the last operation.

(1), (2) (5) More than the number
generated by Zhang’s;

 

Table 3    Details of different neighborhood structures.
Reference GC LC Instance Reference GC LC Instance

Taillard[97] - Y
TA 01, 35, 51, 52, 53, 54,
56, 57, 58, 59, 60, 71, 72,
73, 74, 75, 76, 77, 78, 79

Pardalos et al.[73] Y Y TA 32; DMU 06,07,08

Balas and
Vazacopoulos[60] - Y TA 03, 18 Zhang et al.[112] - Y DMU 13, 26

Nowicki and
Smutnicki[90] - Y TA 02, 14 Beck et al.[113] - Y TA 24, 26

Demirkol et al.[110] - - DMU 32, 33, 34, 35 Gonçalves and Resende[114] - Y DMU18,46
Brinkkötter and
Brucker[111] - -

TA 05, 06, 07, 08, 09, 10,
12; DMU 03, 04, 05 Peng et al.[115] Y Y

TA47,49,50; DMU 11,
41, 50; SWV 01, 15

Nowicki and
Smutnicki[61] Y Y TA 22, 23, 27, 30, 45 Shylo and Shams[101] Y Y

TA 48; DMU 12, 16,
17,42, 43, 44, 47, 48, 49,
51, 67, 72, 74, 75; ABZ
08, 09; SWV 02, 03, 07,
09, 10, 11, 13, 14 YN
01,02,03,04

Pardalos and Shylo[68] - Y
TA 11, 15, 19, 20; DMU
10

Constanino and Segura[116] - Y

TA 34, 40, 42, 44; DMU
19, 20, 45, 52, 53, 54, 55,
58, 59, 60, 61, 62, 63, 64,
65, 66, 68, 69, 70, 71, 73,
76, 77, 78, 79, 80; SWV
06, 12

Zhang et al.[103] - Y TA 28, 33, 37 Xie et al.[104] - Y DUM 56, 57
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4.3　Relationship  among  optimization  problems,
domain knowledge and optimization methods

From  the  above  analysis,  it  is  obvious  that  the  meta-
heuristic algorithms with the domain knowledge in the
JSP  have  an  effective  improvement  for  the  meta-
heuristic  algorithms.  In  fact,  this  situation  does  not
only exist  in the JSP. When the domain knowledge of
other shop scheduling problems, or even other types of
optimization  problems,  is  used  in  the  design  of  meta-
heuristic  algorithms,  the  optimization  effect  of  the
algorithm can be effectively improved. Similarly, even
if  the  optimization  algorithm  is  not  a  meta-heuristic
algorithm, the corresponding domain knowledge of the
problem can also improve the optimization effect of the
algorithm.  Therefore,  it  is  necessary  to  discuss  the
relationship  among  optimization  problems,  domain
knowledge  and  optimization  algorithms,  and  a
triangular  ring  graph  is  used  to  represent  the
relationship between them, as shown in Fig. 12.

In the figure, there are two different correspondences
between these three: 1) The clockwise loop in the inner
circle represents the thinking process before solving the
problem.  Specifically,  the  optimization method should
be  selected  according  to  the  characteristics  of  the
optimization  problem  (e.g.,  the  JSP  is  an  NP-hard
problem,  and  the  meta-heuristic  algorithm  is  a  good
choice).  Secondly,  it  is  necessary  to  map  the  domain
knowledge  to  be  used  according  to  the  type  of
optimization  method  (different  types  of  algorithms
require  different  domain  knowledge,  for  example,
mixed-integer  programming  model  uses  more  convex
optimization and branch and bound domain knowledge,
while  the  meta-heuristic  algorithm  uses  domain
knowledge  such  as  globe  information  and  local
information of the search space).  Finally,  according to
the required domain knowledge, the acquisition method
in  the  problem  is  analyzed  (for  example,  the  domain
knowledge  of  the  fitness  landscape  of  the  solution
space needs to use the means of statistics, etc.); 2) The
counterclockwise loop of the outer circle represents the

application  process  of  the  algorithm  design.  Firstly,  it
is  necessary  to  obtain  the  required  domain  knowledge
in  the  optimization  problem  (through  theoretical
analysis,  machine  learning,  etc.).  Secondly,  specific
domain  knowledge  should  be  used  in  the  design  of
optimization methods (such as global characteristics or
local  characteristics  for  the  design  of  algorithm
optimization  operators).  Finally,  the  designed
optimization  algorithm  is  used  to  solve  the
optimization problem.

In  fact,  the  pairwise  correspondence  between  these
three  is  also  the  direction  to  be  studied  in  the
optimization problem. The problems that how to select
the  optimization  method  through  the  optimization
problem,  how to  know the  type  of  domain  knowledge
needed by the type of optimization method, and how to
analyze  the  optimization  problem  through  the  type  of
domain knowledge, similarly, the problems that how to
mine  domain  knowledge  from  optimization  problems,
how  to  use  domain  knowledge  to  design  optimization
algorithms,  and how to use optimization algorithms to
solve problems should be further studied. Although this
paper  does  not  give  the  specific  research  methods  for
these problems, through the analysis of the relationship
between  the  above  problems,  the  research  directions
are more clear for the study of optimization problems,
and  we  believe  that  it  could  play  a  certain  role  in
promoting the  research of  optimization problems.  It  is
hoped  that  the  discussion  can  provide  some  reference
for the solving of optimization problems or the design
of optimization methods.

5　Discussion and Research Direction

In  Sections  3  and  4,  we  summarized  the  domain
knowledge  in  the  JSP for  the  design  of  meta-heuristic
algorithms.  It  is  easy  to  know that  domain  knowledge
plays an important role in meta-heuristic algorithms. In
this  section,  the  shortcomings  of  the  existing  research
and the research directions are proposed for the JSP.

 

 
Fig. 12    Relationship between different types of solutions.
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5.1　Paying more attention to the fitness landscape
analysis for the JSP

In  continuous  optimization  problems,  global
characteristics  can  be  used  to  determine  the  difficulty
of  the  optimization  problem  and  can  also  greatly
improve  the  optimization  performance  of  the
algorithm.  It  shows  the  importance  of  global
characteristics  for  solving  optimization  problems.  In
the JSP, fitness landscape analysis is generally used to
describe  the  global  characteristics  of  this  problem.
However, the study of fitness landscape analysis in the
JSP is insufficient, so more attention should be paid to
it  in  future  research.  Research  from  three  aspects  can
be  considered:  1)  To  construct  an  appropriate  metric
space  to  describe  the  geometric  relationship  between
different  solutions  in  the  solution  space;  2)  Study  the
sampling  methods  (such  as  random  sampling  or
uniform  sampling,  etc.)  for  the  JSP  to  obtain  data  for
analysis;  3)  Choose  suitable  statistical  parameters  to
describe the characteristics of the fitness landscape.

5.2　Domain knowledge of the relationship between
different objectives

In  actual  production,  there  may  be  many  different
optimization  objectives.  The  existing  research  usually
directly uses multi-objective optimization algorithm to
solve the problem by showing the conflict relationship
between  different  objectives  through  examples.
However,  the  relationship  between  different
optimization  objectives  is  complex,  and  there  may  be
different  combinations  of  conflict  and  non-conflict
among  them.  If  the  multi-objective  optimization
algorithm is simply used, it may lead to low efficiency
and  poor  results.  Therefore,  the  domain  knowledge  of
the relationship between different objectives should be
analyzed.

5.3　Extending  the  domain  knowledge  to  other
problems

Domain  knowledge  is  very  important  to  the
optimization algorithm design,  which can improve the
optimization performance of the algorithm. However, it
is  very  difficult  to  extract  the  desired  domain
knowledge  from  the  problem.  Therefore,  transferring
the  known  domain  knowledge  to  other  similar
problems by  analyzing  the  similarities  and  differences
between  these  problems  is  a  promising  research
direction.  For  example,  the  domain  knowledge  related
to  the  feasibility  of  neighborhood  solutions  in  the

classical JSP can also be applied to other JSP, such as
flexible  JSP,  JSP  considering  transportation  time,  etc.
Of  course,  some  domain  knowledge  needs  to  be
adjusted  before  it  can  be  applied  to  other  problems,
such  as  the  evaluation  methods  for  neighborhood
solutions.

5.4　Using  data-driven  approaches  to  obtain
domain knowledge of the problem

As  mentioned  above,  domain  knowledge  mining  is  a
difficult  task,  especially  for  complex  combinatorial
optimization  problems.  In  this  case,  we  can  utilize
some  data-driven  approaches  such  as  deep  learning,
reinforcement  learning,  etc.  By  using  these  methods,
we can find some rules in a large number of data, and
can  apply  these  rules  to  the  solution  of  the  problem.
For  example,  some  rules  or  phenomena  have  been
found  in  the  optimization  process,  but  it  may  be
difficult  to  draw  clear  conclusions  through  theoretical
analysis.  At  this  time,  a  large  number  of  samples  can
be  analyzed  using  machine  learning  methods,  and
finally  a  conclusion  can  be  given  to  improve  the
optimization  performance  of  the  meta-heuristic
algorithm.

5.5　Selecting  a  meta-heuristic  algorithm
framework  according  to  the  domain
knowledge

In  addition  to  the  strategies  designed  by  domain
knowledge, there are also many optimization strategies
or frameworks unrelated to specific problems in meta-
heuristic  algorithms,  such  as  Metropolis  criterion  in
simulated  annealing  algorithm,  tabu  criterion  in  tabu
search  algorithm,  and  optimization  frameworks
(crossover,  mutation,  selection)  in  genetic  algorithm,
which  can  also  directly  affect  the  optimization
performance  of  the  algorithm.  These  optimization
strategies  or  frameworks  have  certain  generalization
properties,  which  can  be  applied  to  different  types  of
optimization problems. However,  how to choose these
optimization  strategies  and  frameworks  for  a  specific
problem  is  unknown.  In  fact,  although  these
optimization strategies and frameworks are not designed
by the domain knowledge of the problem, they must be
compatible  with  the  deeper  domain  knowledge  of  the
problem  if  they  have  excellent  performance  on  a
specific  problem.  Therefore,  how  to  use  the  domain
knowledge  of  the  problem  to  select  optimization
strategies  and  frameworks  of  meta-heuristics  is  a
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promising research direction.
In  addition  to  the  research  directions  mentioned

above,  there  are  many  directions  or  methods  for
domain  knowledge  in  the  JSP  that  deserve  to  be
studied.  In  fact,  the  process  of  algorithm  design  is  to
constantly discover and use the domain knowledge of a
specific  problem,  and  it  is  this  process  that  promotes
the  development  of  the  field  of  shop scheduling,  even
the whole field of operations research.

6　Conclusion

The  main  work  of  this  paper  is  to  survey  the  domain
knowledge  used  in  the  design  of  meta-heuristic
algorithms  for  the  JSP.  Firstly,  the  importance  of
domain  knowledge  for  the  design  of  optimization
algorithms is highlighted. After that, this paper reviews
the  development  of  optimization  algorithms  for  the
JSP.  It  shows  that  meta-heuristic  algorithms  are  the
mainstream  methods  for  this  problem  and  points  out
that  different  types  of  optimization  algorithms  need
different  domain  knowledge.  Then,  the  domain
knowledge  in  the  JSP  is  summarized,  classified  and
analyzed  according  to  the  optimization  steps  of  meta-
heuristics,  and  the  application  of  these  domains
knowledge in the design of meta-heuristics is presented.
By  analyzing  the  literatures  which  refreshed  datasets,
this  paper  illustrates  that  domain  knowledge  is  the
guarantee to ensure the excellent performance of meta-
heuristic algorithms. At the same time, the relationship
between  optimization  problems,  optimization  methods
and domain knowledge is discussed. Finally, this paper
lists the shortcomings of the existing research, and puts
forward  the  need  to  strengthen  the  research  on  fitness
landscape  and  objective  analysis,  expand  the
application of domain knowledge, use new technology
to  mine  domain  knowledge,  and  analyze  the  role  of
meta-heuristic  algorithms  in  optimization.  Although
the main research object of this paper is JSP and meta-
heuristic  algorithms,  the  discussion  in  this  paper  can
also provide reference for other optimization problems
or optimization algorithm design.
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