

Domain Knowledge Used in Meta-Heuristic Algorithms for the
Job-Shop Scheduling Problem: Review and Analysis

Lin Gui, Xinyu Li*, Qingfu Zhang, and Liang Gao

Abstract: Meta-heuristic algorithms search the problem solution space to obtain a satisfactory solution within a

reasonable timeframe. By combining domain knowledge of the specific optimization problem, the search

efficiency and quality of meta-heuristic algorithms can be significantly improved, making it crucial to identify and

summarize domain knowledge within the problem. In this paper, we summarize and analyze domain knowledge

that can be applied to meta-heuristic algorithms in the job-shop scheduling problem (JSP). Firstly, this paper

delves into the importance of domain knowledge in optimization algorithm design. After that, the development

of different methods for the JSP are reviewed, and the domain knowledge in it for meta-heuristic algorithms is

summarized and classified. Applications of this domain knowledge are analyzed, showing it is indispensable in

ensuring the optimization performance of meta-heuristic algorithms. Finally, this paper analyzes the relationship

among domain knowledge, optimization problems, and optimization algorithms, and points out the

shortcomings of the existing research and puts forward research prospects. This paper comprehensively

summarizes the domain knowledge in the JSP, and discusses the relationship between the optimization

problems, optimization algorithms and domain knowledge, which provides a research direction for the meta-

heuristic algorithm design for solving the JSP in the future.

Key words: domain knowledge; job-shop scheduling problem; meta-heuristic algorithm

1　Introduction

Optimization problems can be regarded as finding the
optimal solution from a finite or infinite set of
solutions. Intuitively, the optimal solution can always
be found if we enumerate all the solutions and compare
them. However, even for a problem with finite solutions,

it is usually unacceptable because of the cost by simple
enumeration. Therefore, an optimization algorithm
needs to be designed that combines the characteristics
of the specific problem (such as the structure of the
solution space) so as to achieve the purpose of implicit
enumeration; that is, only part of solutions are
compared for the optimal solution. Here, we regard the
characteristics of the optimization problem as domain
knowledge, a kind of prior knowledge of the specific
problem. The “No Free Lunch” theorems[1] also state
that combining domain knowledge of a specific
problem can improve the performance of the algorithm.
Although domain knowledge means different things in
different problems, this paper refers to the properties of
an individual solution or the relationships between
solutions, which can be used in the algorithm to
improve its effectiveness and efficiency.

 Lin Gui, Xinyu Li, and Liang Gao are with State Key

Laboratory of Digital Manufacturing Equipment and
Technology, Huazhong University of Science and Technology,
Wuhan 430074, China. E-mail: whguilin@163.com;
lixinyu@mail.hust.edu.cn; gaoliang@mail.hust.edu.cn.

 Lin Gui and Qingfu Zhang are with Department of Computer
Science, City University of Hong Kong, Hong Kong, China.
E-mail: qingfu.zhang@cityu.edu.hk.

* To whom correspondence should be addressed.
 Manuscript received: 2023-07-18; revised: 2023-11-11;

accepted: 2023-11-13

TSINGHUA SCIENCE AND TECHNOLOGY
ISSN 1007-0214 08/24 pp1368−1389
DOI: 10 .26599 /TST.2023 .9010140
Volume 29, Number 5, October 2024

© The author(s) 2024. The articles published in this open access journal are distributed under the terms of the

Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

This paper focuses on the job-shop scheduling
problem (JSP), which widely exists in the field of
manufacturing[2, 3]. JSP is a classic combinatorial
optimization problem. To solve this problem, many
different types of optimization algorithms have been
proposed, such as heuristic rules[4, 5], exact algorithms[6],
approximate algorithms[7], meta-heuristic algorithms[8],
expert systems[9], neural networks[10] and different
kinds of artificial intelligence method[11−13]. Among
them, the meta-heuristic algorithm is the most effective
one, because it has the ability to jump out of the local
optimum during its search[14].

In the past decades, most of the researchers have
preferred to use domain knowledge when designing
meta-heuristic algorithms. However, to the best of our
knowledge, it is still a fuzzy concept in the existing
research, which usually be obtained and used according
to the intuition and experience of researchers[15].
Therefore, the main task of this paper is to summarize,
classify and analyze the domain knowledge used in the
design of meta-heuristic algorithms for the JSP. This
paper firstly surveys the development of methods for
solving the JSP. After that, the domain knowledge
which can be used in the meta-heuristic algorithms for
the JSP is summarized and classified, and their
applications and effectiveness are analyzed. Finally,
the shortcomings of the existing research are pointed
out and promising research directions are proposed.
Obviously, this review article is not only suitable for
researchers of shop scheduling problems, but also has
reference value for researchers of other optimization
problems and optimization methods.

The main contents of this paper are as follows: In
Section 2, the development of methods is summarized.
Section 3 illustrates the domain knowledge in the JSP
and classifies it into four types. Section 4 mainly
reviews the applications and effectiveness of domain
knowledge in meta-heuristic algorithms for the JSP.
Section 5 proposes some promising research directions.
Section 6 concludes this paper.

2　Development of Methods for Solving the
Job-Shop Scheduling Problem

To the best of our knowledge, Akers Jr and Friedman
studied a JSP with two jobs and four machines in
1955[16], and the term “job shop” was first formally
proposed in the research literature by Sisson in
1959[17]. In nearly 70 years of development, the JSP
has been greatly extended by considering the

transportation time[18], distributed[19], setup time[20, 21],
machine flexibility[22, 23], dynamic events[24], fuzzy
processing time[25, 26], multi-objective[27−29] and other
characteristics[30, 31] to meet the needs of actual
production. So far, there have been many literature
reviews related to the JSPs, including the study of the
models[32], the solving methods[33], and the JSP with
other constraints[34], etc. Different from other reviews,
the focus of this paper is not to review the development
of the problem or the solution methods, but to
summarize and analyze the domain knowledge in the
problem that can be applied to algorithm design. It is
hoped that this review can provide a basis for the
problem solving, and also hope to guide the research
ideas of meta-heuristic algorithm design. In this
section, we give a brief review of the development of
methods for the JSP to emphasize the importance of
meta-heuristic algorithms, and show that the domain
knowledge used in different types of algorithms is not
the same.

JSP can be easily described as follows: there are n
jobs, and each job needs to be processed on m different
machines with predetermined sequences. Each job can
only be processed on one machine at one time, and
each machine can only process one job at one time.
Preemption is not permitted when one job is processing
on a machine[32]. The essential research in this field is
the emergence of computational complexity theory in
the 1970s. It makes researchers realize that most of the
JSPs are NP-hard, which is almost impossible to design
an algorithm to obtain the optimal solution within an
acceptable time. After that, scholars preferred to find
the near-optimal solution through some approximate
methods. Parker named the period before the study of
computational complexity theory as B.C. (Before
Complexity), and the period after it as A.D. (Advanced
Difficulty)[35], as shown in Fig. 1. The following will
introduce the primary methods for the JSP in these two
periods.

In the early stage, scholars put forward many heuristic
rules, which became the basis of classical scheduling
theory, for solving the scheduling problems in actual
production. Heuristic rules for the JSP include Jackson’s
rule[36], shortest processing time (STP) rule, and the
sum of weighted completion times (SWPT)[37], etc.
And then, different priority dispatch rules are also
proposed[38−41]. Although these heuristic rules can
solve the JSP quickly, the results obtained by using
these heuristic rules are not satisfactory as the size of

 Lin Gui et al.: Domain Knowledge Used in Meta-heuristic Algorithms for the Job-Shop Scheduling ... 1369

problems increases. Subsequently, many scholars
studied how to use the enumeration method, such as
the branch-and-bound technology, to solve the shop
scheduling problem for the optimal solution. For the
JSP, researchers designed active schedule generation
branching or used the disjunctive graph to construct a
search tree to realize implicit enumeration of all
feasible solutions[6, 42]. Although branch-and-bound
technology can obtain the optimal solution to the
problem, due to the long calculation time required by
this method, it can only be applied to the scheduling
problem that the number of operations is less than 250,
so it is difficult to apply to the actual production
problem.

As mentioned before, the 1970s, the time of the
emergence of complexity theory research, was the most
critical period for the development of shop scheduling
problems, which directly brought a significant turn in
scholars’ research direction. In 1979, Garey and
Johnson summarized 320 NP problems, including shop
scheduling problems[43]. Later, it was also proved that
only a few JSP with special conditions could be solved
in polynomial time, and the other general problems are
NP problems[44]. After that, people shift the research
focus back to the approximation methods, which
mainly includes approximation algorithms, constraint
programming algorithms, neural networks, heuristic
algorithms, and so on. The approximation algorithm
gives the multiple of the optimal solution obtained by
the algorithm in the worst case by the worst-case analysis
or probabilistic analysis. Approximation algorithms are
usually designed for parallel machine scheduling
problems and flow-shop scheduling problems but
are relatively rare for the JSP. There is only some
research for special JSP with only two machines or two
jobs[45, 46, 47]. The constraint programming algorithm is
to reduce the search space through constraint
propagation and finally obtain a feasible solution[48].
However, since the ultimate goal of the constraint

programming algorithm is to obtain a feasible solution,
the results obtained by constraint programming are not
ideal. In addition, the expert system and the neural
network have been used to solve the JSP in the
1990s[49−51], but they have yet to be further developed
due to the poor effect.

The most effective approximate methods for the JSP
are meta-heuristic algorithms. The local search is an
essential meta-heuristic algorithm, and the first time it
proposed for a shop scheduling problem was by
Nicholson[52]. However, due to the limitations of the
computing power of computers and the fact that it
seemed too simple to be worth studying, this method
did not receive enough attention until the simulated
annealing algorithm was proposed by Kirkpatrick
et al.[53] and the tabu search algorithm proposed by
Glover[54, 55]. The booming development of this method
originated in 1988 when a heuristic algorithm proposed
by Adams et al. succeeded in finding the optimal
solution of a classical instance (FT 10) of the
JSP[56]. So far, many scholars have proposed or
improved local search algorithms which can solve the
JSP well[57−61]. In addition to the local search
algorithms, there are many meta-heuristic algorithms,
such as the population-based evolutionary algorithm,
which can also solve the JSP very well. Fisher and
Rinnooy Kan[62] emphasized the important principles
for generating good heuristic techniques: design,
analysis and implementation. The common population-
based meta-heuristic algorithms for the JSP are genetic
algorithms[63, 64], ant colony optimization
algorithms[65], particle swarm optimization
algorithms[66, 67], various hybrid algorithms[68, 69], and
so on. These algorithms guide the evolution of
individuals by simulating the behavior of populations
of different organisms in nature. Of course, some
scholars analyzed the fitness landscape of the
JSP[70−72] and designed individual evolutionary
strategies in the algorithm according to the

Fig. 1 Two periods of the research for the JSP.

 1370 Tsinghua Science and Technology, October 2024, 29(5): 1368−1389

characteristics of the fitness landscape[61, 73]. Due to its
superior performance in solving the JSP, more and
more different types of meta-heuristic algorithms have
been designed, such as the chemical-reaction
optimization[74], the intelligent water drops
algorithm[75], hybrid fruit fly optimisation algorithm[76],
the hybrid election campaign optimization algorithm[77]

and the imperialist competition algorithm[78]. However,
some scholars point out that most of these meta-
heuristic algorithms have the same optimization
framework but just analogy these algorithms to
different biological or human social behaviors, which
is not innovative enough[79].

In recent years, with the development of machine
learning technology, more and more scholars have
begun to study how to solve the shop scheduling
problem directly or indirectly by machine
learning[80−83]. This method has great advantages for
solving dynamic shop scheduling problems because it
can achieve offline learning and online optimization,
making it respond to the demand of dynamic shop
scheduling problems quickly. However, except for this,
the meta-heuristic algorithm is still the most
advantageous method.

We searched articles with the keyword “job shop
scheduling” in the title and the literature type “Article”
in Scopus, among which there were 1731 relevant
articles from 2001 to 2022. We classify the literature
that uses algorithms to solve problems into two
categories: the literature using meta-heuristic algorithms
and the literature using other methods. The changing
trend of the publication of these two types of literature

in the past 22 years is shown in Fig. 2. Although the
results retrieved in this paper are not necessarily
accurate, they can reflect the development trend of
solving methods for the JSP; that is, the meta-heuristic
algorithm has been the mainstream method for the last
20 years.

The meta-heuristic algorithm is the most popular
method to solve the JSP. One of the important reasons
is that a large amount of related domain knowledge can
guarantee the optimization performance of the
algorithm. It can also be seen that domain knowledge
contained in the problem is not universal for all types
of algorithms because of the essentially different
optimizations of different algorithm types. For
example, heuristic rules construct a solution through
several choices, so the domain knowledge should be
related to make each choice as best as possible. The
branch and bound algorithm obtains the optimal solution
of a problem by means of implicit enumeration, so the
domain knowledge should be related to reducing the
number of solutions to improve the optimization
efficiency. In this paper, we focus on the meta-heuristic
algorithm, which is an algorithm that searches in the
solution space of the problem, so the domain
knowledge should be related to solutions.

3　Domain Knowledge for Designing Meta-
Heuristic Algorithms for the JSP

The “No Free Lunch” theorem states that no one
algorithm is better than another one on all optimization
problems, which indicates that it is important to
incorporate domain knowledge into the algorithm for a

Fig. 2 Trend of the methods for the JSP in the last 20 years.

 Lin Gui et al.: Domain Knowledge Used in Meta-heuristic Algorithms for the Job-Shop Scheduling ... 1371

specific problem[1]. In fact, domain knowledge can be
regarded as a kind of prior knowledge of the problem,
and the performance of the optimization algorithm can
be improved by using this knowledge. This section
summarizes the domain knowledge in the JSP used for
designing meta-heuristic algorithms and classifies this
domain knowledge according to the optimization
process of this algorithm. Generally, when it uses the
meta-heuristic algorithm to solve the JSP, the problem
needs to be mapped to the coding space first, and then
the algorithm searches in the space through some
neighborhood structures or search strategies. Finally,
the final optimization result is obtained by decoding
the searched solution. Therefore, the domain
knowledge applied to the meta-heuristic algorithm can
be divided into four types according to the execution
process of the algorithm: 1) Problem representation; 2)
Global characteristics of the solution space; 3) Local
characteristics of the solution space; 4)Types of
solutions. The relationship between domain knowledge
and meta-heuristic algorithms can be shown in Fig. 3.

3.1　Problem representation

In fact, problem representation can be understood as
the process of modeling or coding, and the search
space of the algorithm is determined by choice of
problem representation. The most common problem
representation is a mathematical programming model,
which can represent any optimization problem in terms
of decision variables, constraints, and objective
functions. However, this representation can only be
solved by mathematical programming methods. In the
meta-heuristic algorithms, the commonly used problem
representations for the JSP are the Gantt chart and the
disjunctive graph. Of course, other representations, like
the permutation-disjunctive graph, have been proposed
by some scholars, but these are also essentially

combinations of representations of Gantt and the
disjunctive graph. In this part, we use simple examples
to show the Gantt chart and the disjunctive graph and
briefly introduce the history of these two
representations.
3.1.1　Gantt chart

O1,1 O1,2 O1,3 O2,1 O2,2 O2,3

O3,1 O3,2 O3,3 O j,i

i j
m j,i p j,i

O j,i

Gantt chart is a kind of bar chart to show the start and
end time of each task, and it can intuitively represent
the time relationship between all tasks so that resources
can be correctly allocated. Gantt chart has been widely
used in various task arrangement activities, including
the JSP. A simple example is given for it. Suppose
there are three jobs (, ,), (, ,),
(, ,), where the notation means the
-th operation of the -th job. These operations are

processed on three machines, and [,] represents
the machine and time of the operation . The
processing information of these operations are ([1, 3],
[2, 3], [3, 2]), ([1, 3], [3, 2], [2, 2]), and ([1, 3], [3, 2],
[2, 3]). The JSP needs to decide the processing
sequence of the jobs on each machine to minimize the
makespan of the whole scheduling scheme. With the
information given above, we can draw a Gantt chart by
determining the processing sequence of the jobs on
each machine, as shown in Fig. 4.

The Gantt chart has a long history of development.
As early as the mid-1890s, Polish engineer Karel
Adamiecki proposed a Harmonogram to represent the
workflow network diagram, which could show the start
and end time of the execution of different tasks[83]. In
1912, Swiss engineer Herman Schurch introduced a
graphical and quantitative chart called “bauprogramm”
for management projects. He used a histogram to
represent the workload of different jobs and a shadow
effect to represent different types of jobs. In 1913, Henry
Laurence Gantt published the book Work, Wages,
and Profits[84], which summarized his management

Fig. 3 Relationship between domain knowledge and meta-heuristic algorithms.

 1372 Tsinghua Science and Technology, October 2024, 29(5): 1368−1389

experience from the production practice, including the
use of the Gantt chart. In later work, Gantt used this
chart to discuss scheduling problems. It is worth
mentioning that Henry Laurence Gantt did not name
this kind of graph as a Gantt chart in the book. Three
years after Mr. Gantt’s death, Clark published the book
The Gantt chart: A working tool of management[85] to
commemorate Mr. Gantt’s contribution to management
science and officially named this kind of chart the
Gantt chart. Later, the Gantt chart was widely used in
the shop scheduling problem to express the processing
time and production sequence of jobs.

With the Gantt chart, it is easy to know about the
start and end time of each operation, and people can
also use this Gantt chart to improve the schedule by
different methods. In the very beginning, it is a
common way to look at the Gantt chart to see if the
scheduling scheme can be improved by changing the
order of operations on certain machines. With the
increase in the number of machines and jobs, the
method of manual observation has become no longer
effective. It is necessary to give the processing
sequence of each machine through an appropriate
algorithm. In the meta-heuristic algorithm, a scheduling
scheme can be expressed by a permutation for each
machine, which corresponds to the processing sequence
of each machine in the Gantt chart.
3.1.2　Disjunctive graph
The disjunctive graph is a kind of network graph that
uses vertices to represent the operations in jobs,

connecting arcs to represent the relationships between
operations in the same jobs, and disjunctive arcs to
represent the relationships between operations that
should be processed on the same machine. By deciding
the direction of each disjunctive arc (that is, deciding
the processing sequence of two operations on the same
machine), the final processing sequence on each
machine can be determined, and finally, the scheduling
scheme can be obtained. A disjunctive graph can be
represented by a triple G=(V, A, E), where V denotes
the set of vertices in G, A denotes the set of connecting
arcs in G, and E denotes the set of disjunctive arcs in
G. For the convenience of representation, two virtual
vertices, s and e, which are used to represent the
starting point and the ending point of all the jobs,
respectively, are generally added to the disjunctive
graph, as shown in Fig. 5a.

O2,1 O1,1

In the disjunctive graph, the length of the arc or the
weight of the vertex can be expressed as the processing
time of the corresponding operation. For ease of
understanding, the weight of the vertex is set to the
processing time of the operation in this paper, and the
weight of the virtual vertex (s and e) and the length of
all arcs are 0. By determining the direction of the
disjunctive arc and calculating the longest path from
the starting vertex to the end vertex, the maximum
completion time of the scheduling scheme can be
obtained, as shown in Fig. 5b. For a more concise
picture, some redundant disjunctive arcs have been
removed, such as the arc from to . Deletions

M

Pr
oc

es
si

ng
 m

ac
hi

ne

3

M2

M1 O2,1 O3,1 O1,1

O3,3 O2,3 O1,2

O2,2 O3,2 O1,3

119863 5 13 16 18

Fig. 4 Gantt chart of a solution for the JSP.

s eO2,1 O2,2 O2,3

O3,1 O3,2

(a)

O3,3

O1,1

M1 M3 M2

O1,2 O1,3

s eO2,1 O2,2 O2,3

O3,1 O3,2

(b)

O3,3

O1,1 O1,2 O1,3

Fig. 5 Disjunctive graph of the JSP.

 Lin Gui et al.: Domain Knowledge Used in Meta-heuristic Algorithms for the Job-Shop Scheduling ... 1373

like this will also be adopted in later disjunctive graphs
and will not be elaborated on in the following. In fact,
each disjunctive arc in the disjunctive graph can be
regarded as a (0,1) variable, and the direction of the
disjunctive arc is determined by the value of each
variable. However, if it is not properly decided, it will
make the disjunctive graph form cycles, as shown in
Fig. 6a. It is obvious that the solution represented by
the disjunctive graph with a cycle is infeasible because
it is impossible to determine which operation starts first
among these several operations in the cycle. In fact,
infeasible solutions will also appear if the processing
sequence of the jobs is not properly changed in the
Gantt chart. However, they cannot be displayed in the
Gantt chart, so the infeasible solutions in the JSP are
generally discussed in the disjunctive graph.

Roy and Sussman[86] first proposed the use of a
disjunctive graph to represent the JSP. Balas[6]

designed an exact algorithm based on the disjunctive
graph, and then more and more scholars used it to solve
the JSP. White and Rogers[87] described the extensions
and limitations of the disjunctive graph. They
successfully extended the disjunctive graph model to
represent the JSP with assembly and disassembly
operations, due dates, scheduled maintenance, setup
time, priority tasks, and so on. But they also pointed
out that it may be difficult to apply the model to
industrial situations because parallel machines cannot
be modeled directly. Gui et al.[88] used a disjunctive
graph to represent the hybrid flow-shop scheduling
problem, which means the parallel machines can also
be represented by the disjunctive graph. Bazewicz et
al.[89] pointed out that the disjunctive graph was more
popular than the Gantt graph to represent the JSP.
Since the development of the network graph is more
mature than the scheduling problem, using the
disjunctive graph to represent the JSP can make full
use of the existing knowledge in the network graph,
such as the critical path. At the same time, the
disjunctive graph can be more conducive to the

analysis of the problem, such as the feasibility of a
solution. However, there will be a large number of
infeasible solutions when using the disjunctive graph to
make a decision on the problem. These infeasible
solutions stem not only from the fact that operations on
different machines in the disjunctive graph jointly
produce cycles, but also from the fact that operations
on the same machine produce cycles, as shown in
Fig. 6b. This makes it impossible to represent the
processing sequence of operations on the same
machine by a permutation. To this end, Nowicki and
Smutnicki proposed the permutation-graph model[90],
which essentially combines the advantages of the Gantt
graph and disjunctive graph to express the job shop
scheduling problem, and now it has become the most
commonly used expression form.

3.2　Global characteristics of the solution space

Global characteristics of the solution space refers to the
indexes or properties used to describe the overall trend
of optimization space, such as linearity/non-linearity
and convexity/non-convexity in continuous optimization
problems. With the appropriate global characteristics, it
can effectively guide the iteration direction of the
algorithm to find the optimal solution. For example,
suppose a continuous optimization problem is convex.
In that case, the optimal solution of the problem must
be at the point that the derivative is 0 or the edge of the
solution space, and the optimal solution can be found
along the direction of the derivative descent, which
provides great convenience for the optimal solution of
convex optimization problems.

For combinatorial optimization problems such as the
JSP, we usually use the fitness landscape to describe
the global characteristics of a problem. The concept of
fitness landscape was proposed by Wright for the field
of biological evolution[91], and then this concept was
gradually adopted in the field of optimization to represent
the solution space of a problem. In the existing
research, there is not too much research on the fitness

s eO2,1 O2,2 O2,3

O3,1 O3,2

(a)

O3,3

O1,1 O1,2 O1,3

s eO2,1 O2,2 O2,3

O3,1 O3,2

(b)

O3,3

O1,1 O1,2 O1,3

Fig. 6 Infeasible solutions for the JSP.

 1374 Tsinghua Science and Technology, October 2024, 29(5): 1368−1389

landscape analysis of the JSP. On the one hand, the
definition of some parameters required to describe the
fitness landscape of the problem is not uniform, such as
the definition of distance between two solutions, which
may lead to different conclusions for the same
problem. On the other hand, the fitness landscape of
this problem is very complex, so it is difficult to find
out the rule directly to guide the search. Mattfeld
et al.[70] analyzed the fitness landscape of the JSP and
showed that the inherent characteristics of the problem
had an impact on the heuristic algorithm based on local
search. Bierwirth et al.[71] showed that the fitness
landscape of the JSP is irregular. Streeter and Smith[72]

showed that the fitness landscape of the JSP is related
to the problem scale, and it was verified that JSP has
“big valley” terrain in different instances. The
description of the fitness landscape for this problem
can provide some guidance for the design of the
algorithm, such as the path relinking used in the
algorithm for “big valley” .

3.3　Local characteristics of the solution space

Local characteristics of the solution space can be
considered as the neighborhood characteristics, which
indicates the relationship between the neighborhood
solutions obtained from the current solution by small
perturbation. In the JSP, the usage of the local
characteristics can be divided into three categories: 1)
How to obtain a neighborhood solution that is better
than the current solution; 2) How to obtain feasible
neighborhood solutions; 3) How to use the
characteristics of the current solution to obtain the
objective function value of the neighborhood solution.
These can be summarized as the quality of
neighborhood solutions, the feasibility of neighborhood
solutions, and the evaluation of neighborhood
solutions. By entirely using these three kinds of local
characteristics, the quality and efficiency of the
algorithm can be significantly improved. In this paper,
we mainly introduce some properties in local
characteristics of the JSP, and detailed proof can be
obtained from the corresponding literature. In the JSP,
the local disturbances are usually generated by
selecting one operation and inserting it before or after
the other operations, which are processed on the same
machine. Of course, some disturbances choose multiple
operations and change their processing sequences
simultaneously, but these disturbances can be obtained
by the former through multiple steps, so the relevant

information on neighborhood solutions of multiple
disturbances is not involved in this paper. Next, this
paper will elaborate on the specific local characteristics
in the JSP.
3.3.1　Quality of neighborhood solutions
It is known that most of the neighborhood solutions
generated by perturbation are worse than the current
ones. These neighborhood solutions not only make no
sense for the iteration of the algorithm but also incur a
huge computational cost. Therefore, how to avoid
generating solutions that do not improve the current
solution is the key to effectively improving the quality
of the neighborhood solution, and the critical path
method is the most important method. The critical path
method is a network graph method in which the critical
path refers to the longest path between two points in
the network graph. It was proposed by Kelley Jr and
Walker[92] in 1959 to solve the project scheduling
problem, and Conway et al.[93] introduced the critical
path method into the JSP, which was used to represent
the longest distance from the start vertex to the end
vertex in the disjunctive graph (that is, the maximum
completion time of the solution). Since then, most of
the research on the neighborhood solution of the JSP
has been based on the critical path. However, although
the critical path was first applied to the concept of the
disjunctive graph, it does not intuitively express the
relationship between the critical path and other
operations in the whole scheduling scheme. On the
contrary, this relationship can be clearly found in the
Gantt chart, so the Gantt chart is mainly used to
express and explain the related concepts or properties
in this part.

Potts[94] pointed out the role of the critical path in the
JSP; that is, when the processing sequence of
operations on the critical path does not change, the
total completion time will not decrease. This points out
that the optimization bottleneck of the JSP is the
processing sequence of the operations on the critical
path, and changing the processing sequence of other
operations will not improve the current solution. This
finding dramatically reduces the number of
neighborhood solutions in the JSP. Grabowski et al.[95]

proposed the concept of the critical block based on the
critical path, a block composed of operations processed
on the same machine and with adjacent processing time
in the critical path. The Gantt chart in Fig. 4 identifies
the critical path as shown in Fig. 7, which contains four
critical blocks.

 Lin Gui et al.: Domain Knowledge Used in Meta-heuristic Algorithms for the Job-Shop Scheduling ... 1375

Based on the above, scholars improve the quality of
neighborhood solutions by further analyzing the critical
path blocks. Matsuo et al.[8] pointed out that if the
processing sequence of operations is only changed
inside the critical block, the total makespan will not
decrease. Bazewicz et al.[89] pointed out that if other
operations were inserted before the first operation in
the first critical block, the total completion time would
not decrease, and if other operations were inserted after
the last operation in the last critical block, the total
completion time would not decrease. In addition, there
is some other domain knowledge that can improve the
quality of neighborhood solutions. Although they do
not appear in the literature, they are also introduced in
this paper, and the corresponding proof is given. To
better describe this domain knowledge, the definitions
of symbols are given below:
• x: one operation of the schedule;
• mx : the machine used to process x;
• px : the processing time of the x;
• jp[x]: the operation in the same job as x, and

processing just before x;
• js[x]: the operation in the same job as x, and

processing just after x;
• mp[x]: the operation processed on the same

machine as x, and processing just before x;
• ms[x]: the operation processed on the same

machine as x, and processing just after x;

• F(x): the maximum weight sum of a path from s to
x in the disjunctive graph (x is not included);
• R(x): the maximum weight sum of a path from x to

e in the disjunctive graph (x is not included);

O1 O2 Ok

Assuming that the operations on one critical block
are (, , …,), as shown in Fig. 8. Therefore, it
is easy to know that if the first operation or the last
operation on this block is not changed, the makespan of
neighborhood solutions will not be reduced. In the
following, we will give four other properties which can
use constraints to judge whether one neighborhood
solution is worse than the current one so as to reduce
the evaluation times of neighborhood solutions.

Ot

O2 Ok−1 Ot pjp Ot ⩾ O1

Ot

O1

Proposition 1 　 Assuming that the operation
belongs to (, …,). If F(jp[])+ [] F(),
the neighborhood solution obtained by moving to
the position just before will not be better than the
current one.

O1
∑k

i=1 Oi

Ok

Ot O1

C’ ⩾ Ot pjp[Ot]
∑k

i=1 Oi Ok ⩾

Proof　The makespan of the current solution can be
calculated. by the formulation: C = F()+ p()+
R(). If a neighborhood solution obtained by moving

 to the position just before , the makespan of this
neighborhood solution is satisfied with the inequality:

 F(jp[]) + + [p()] + R() C. ■
Ot

O2 Ok−1 O2 pjp[O2] ⩾ O1

O1

Ot

Proposition 2　 Assuming that the operation
belongs to (, …,). If F(jp[])+ F(),
the neighborhood solution obtained by moving to
the position just after will not be better than the

M3

M2

M1 O2,1 O3,1 O1,1

O3,3 O2,3 O1,2

O2,2 O3,2 O1,3

Pr
oc

es
si

ng
 m

ac
hi

ne

Time
119863 5 13 16 18

Fig. 7 Critical path and critical blocks in the Gantt chart.

mp[O1] O1 O2
… Ok−1 ms[Ok] …

js[Ok] …

Ok

jp[Oi]

…

…M3

M2

M1Pr
oc

es
si

ng
 m

ac
hi

ne

Time
Fig. 8 Illustration of the critical block mentioned above.

 1376 Tsinghua Science and Technology, October 2024, 29(5): 1368−1389

current one.

O1
∑k

i=1 Oi

Ok

O1 Ot

C’ ⩾ O2 pjp[O2]
∑k

i=1 Oi

Ok ⩾

Proof　The makespan of the current solution can be
calculated. by the formulation: C = F()+ p()+
R(). If a neighborhood solution obtained by moving

 to the position just after , the makespan of this
neighborhood solution is satisfied with the
inequality: F(jp[]) + + [p()] +
R() C. ■

Ot

O2 Ok−1 Ot p js[Ot] ⩾ Ok

Ot

Ok

Proposition 3　 Assuming that the operation
belongs to (, …,). If R(js[])+ R(),
the neighborhood solution obtained by moving to
the position just after will not be better than the
current one.

Proof　Similar to the proof of Proposition 1. ■
Ot

O2 Ok−1 Ok−1 pjs[Ok−1] ⩾
Ok

Ok Ot

Proposition 4　 Assuming that the operation
belongs to (, …,). If R(js[])+
R(), the neighborhood solution obtained by moving

 to the position just before will not be better than
the current one.

Proof　Similar to the proof of Proposition 2. ■
3.3.2　Feasibility of neighborhood solutions
When changing the processing sequence of the
operations on the critical path block, there are generally
two methods to avoid the infeasible neighborhood
solutions: 1) avoid the infeasible solutions by using
some constraints; 2) transform the infeasible into the
feasible when the neighborhood solution is found to be
an infeasible solution. This paper will not discuss
which method is better, but only describe the relevant
domain knowledge.

pv ⩾ pjs[u]

pu ⩾
pjp[v]

There are few feasibility studies on the JSP. Van
Laarhoven et al.[57] found that the neighborhood
solution obtained by exchanging the processing
sequence of any two adjacent operations on any critical
path block must be feasible and proved its correctness.
Balas and Vazacopoulos[60] proposed a set of constraint
conditions and proved that the neighborhood solution
generated by inserting the operation before or after the
other operation must be the feasible solution if the
conditions were met. It is assumed that u and v are
operations processed on the same machine, and u is
processed before v in the current solution. When the
constraint conditions R(v)+ R(js[u])+ are
satisfied, the neighborhood solution obtained by
inserting u into the position just after v is a feasible
solution. When the constraint conditions F(u)+
F(jp[v])+ are satisfied, the neighborhood solution
obtained by inserting v into the position just before u is
a feasible solution. Balas’s work gives constraints on

the generation of feasible solutions by arbitrary
insertion, not just adjacent swapping. However, since
the constraint conditions proposed by Balas are
sufficient but not necessary conditions for feasible
solutions, that is, although such constraints can ensure
that the neighborhood solutions obtained are feasible,
some feasible neighborhood solutions will also be
deleted as infeasible solutions. Gui et al. gave the
necessary and sufficient conditions for feasible
solutions by analyzing the necessary and sufficient
conditions for infeasible solutions[96]. That is, it is
assumed that u and v are operations processed on the
same machine, and u is processed before v in the
current solution. When there is no path from js(u) to v
in the disjunctive graph, the neighborhood solution
obtained by inserting u into the position just after v is
feasible. When there is no path from u to jp(v) in the
disjunctive graph, the neighborhood solution obtained
by inserting v into the position just before u is feasible.
By giving the necessary and sufficient conditions for
feasible solutions of the JSP, all feasible neighborhood
solutions near the current solution can be searched,
making the local search more adequate.
3.3.3　Evaluation of neighborhood solutions
The evaluation of neighborhood solutions is realized by
using the information of the current solution to
estimate the function value of neighborhood ones to
reduce the number of re-decoding of neighborhood
solutions. The evaluation of neighborhood solutions
needs to ensure the accuracy of the estimated value and
the computational speed, which needs to make full use
of the local information in the problem.

Taillard proposed an evaluation method for
exchanging two adjacent operations on critical path
blocks to generate neighborhood solutions[97]. Suppose
that u is processed before v. Since only the processing
order of these two operations changes in the disjunctive
graph of the neighborhood solution, the other
operations unrelated to u and v in the graph will not
undergo any change. For the operations that are related
to u and v, if these operations are preceded by u and v,
the longest path from the start vertex to these
operations will not change, and if these operations
follow u and v, the longest path from these operations
to the end vertex does not change. This unchanged
information can be used to compute the longest path
from the start vertex to v and u, and the longest
distance from v and u to the end vertex. We can then
compute the longest path that goes through v or u from
the start vertex to the end vertex. The maximum value

 Lin Gui et al.: Domain Knowledge Used in Meta-heuristic Algorithms for the Job-Shop Scheduling ... 1377

pv pu

pjp[x] pmp[x]

pjs[x] pms[x]

pv pu px

among them is used as the evaluation value of the
neighborhood solution. The specific calculation
formula is: C’=max{F’(v)+ +R’(v), F’(u)+ +R’(u)},
where F’(x)=max{F’(jp[x])+ ,F’(mp[x])+ }
and R’(x)=max{R’(js[x])+ , R’(ms[x])+ }. In
the paper, the authors prove that this way of estimating
the neighborhood solution is the lower bound of the
neighborhood solution. Balas et al.[60] proposed the
evaluation method of generating neighborhood
solutions by inserting an operation before or after other
operations on the critical path block. The overall idea
of this method is similar to that proposed by Taillard,
that is, using the information of the current solution to
calculate the length of the longest path, which
simultaneously goes through the start vertex, the end
vertex, and any operation that the processing order is
changed. The calculation is as follows: C’=max{F’
(v)+ +R’(v), F’(u)+ +R’(u), F’(x)+ +R’(x)}, where
x belongs to the operations between u and v in the
critical path block. Nowicki and Smutnicki[61]

improved the method of Taillard; that is, in addition to
calculating the longest path in the neighborhood
solution that passes through v and u, it also needs to
calculate the longest path that does not pass through u
and v, and finally take the maximum value among them
as the function value of the neighborhood solution. The
authors mentioned in the paper that if the longest path
through u and v is greater than the function value of the
current solution, it is not necessary to calculate the
longest path without u and v. Since the longest path
length from the start vertex to the end vertex is the
function value of the solution, it is known that the
evaluation value obtained by the method of Nowicki
et al. is the exact function value of the neighborhood
solution. However, this method is not widely used
because it is too complex to calculate the longest path
without passing through u and v. It needs to transform
the disjunctive graph of the neighborhood solution into
a topological sort and calculate the longest path of all
operations before v and after u. Gui et al.[98] improved

pv pu

Balas et al.’s method and proved that it only needs to
calculate the longest path through u and v in the
neighborhood solution to obtain the same effect as
Balas and Vazacopoulos’s method[60]. With this
property, the makespan can be calculated as C’ =
max{F’(v)+ +R’(v), F’(u)+ +R’(u)}, where the
operations between u and v in the critical path block do
not need to be calculated again.

3.4　Types of solutions

In the JSP, when the processing sequence of the
operations on each machine is determined, it can also
obtain infinite different scheduling schemes because
infinite different idle-time can be inserted between the
operations. It is clear that scheduling schemes that
insert idle time are meaningless, so researchers have
defined several different types of solutions to avoid
mostly meaningless scheduling schemes. Although
some of these types were proposed to be applicable to
earlier heuristic rules, the analysis of these solution
types is beneficial for us to deepen our understanding
of the JSP. These different scheduling types have a
certain subsumption relationship with each other,
which is described in detail as follows.
3.4.1　Non-delayed schedule

O2,3

O3,3 O2,3

O2,3

The non-delayed schedule refers to a solution where
the corresponding machine is idle when there is no job
waiting. This type of solution was first proposed by
Jackson[4], and it was called availability schedule at
that time, and later renamed as non-delayed scheduling
by Nugent[99] in his doctoral thesis. Using the Gantt chart
in Fig. 4 as an example, it is obvious that this solution
is not a non-delayed schedule because the operation

 waits from time 5, and the machine M2 is idle. If
we change the processing sequence of and ,
then it is a non-delayed schedule, although the start
time of is delayed. As it is shown in Fig. 9a.
3.4.2　Active schedule
The active schedule refers to a solution in which no
operation can advance its start time by moving to the

M3

M2

M1 O2,1 O3,1

O2,2 O3,2 O1,3

O2,3 O3,3 O1,2

O1,1

(a)

M3

M2

M1 O2,1 O3,1

O2,2 O3,2 O1,3

O2,3 O1,2 O3,3

O1,1

(b)
Time Time

Pr
oc

es
si

ng
 m

ac
hi

ne

Pr
oc

es
si

ng
 m

ac
hi

ne

11986 73 5 14 16 12986 73 5 14 15

Fig. 9 Gantt chart of a non-delayed schedule and a full-active schedule.

 1378 Tsinghua Science and Technology, October 2024, 29(5): 1368−1389

left in a scheduling scheme on the premise of not
delaying the start processing time of other operations.
This solution type was first introduced by Giffler
et al.[38] and proved that the optimal scheduling scheme
must be in the set of active schedules of the problem.
Using the Gantt chart in Fig. 4 as an example, it is
obviously that this solution is an active schedule,
because no matter which operation starts earlier, there
is at least one operation should delay its start time.
3.4.3　Semi-active schedule
The semi-active schedule refers to a solution in which
no operation can be processed earlier when the
processing sequence of the jobs is not changed. This
solution type first introduced by Nugent[99], which
makes the processing time of each operation a unique
value when the processing sequence of the processes
on the machine is determined. Using the Gantt chart in
Fig. 4 as an example, it is obviously that this solution is
a semi-active schedule, because there is no idle time
inserted into the solution. With the semi-active
schedule, it is reasonable for us to represent a solution
by a sequence. It is easy to know that the optimal must
be the semi-active schedule.
3.4.4　Full-active schedule

O2,3

O1,2

The full-active schedule refers to a solution in which
no operation can be moved to the left or right to make
the scheduling scheme better on the premise that the
start time of other operations is not delayed. This type
of schedule was first proposed by Zhang et al.[100] and
proved that the optimal scheduling scheme must be in
the set of full-active schedule of the problem. Using the
Gantt chart in Fig. 4 as an example, we can know that
the solution is not a full-active schedule because when
the operation moves right to the position just after

, the solution will be better and the start time of
other operations is not delayed, as it is shown in Fig. 9b.
From the definitions of different types of solutions, we
can see that there is an inclusion relation between the
types of these solutions, and the Venn diagram of this
inclusion relation is shown in Fig. 10. The optimal
solution in the figure is in the full-active scheduling
solution, but as said above, for small-scale problems,
the optimal solution may also be a non-delayed
scheduling solution.

4　Analysis of the Relationship between
Domain Knowledge and Meta-Heuristic
Algorithms

The domain knowledge in the JSP has been

summarized and classified above. This section will
elaborate on the corresponding relationship between
domain knowledge and meta-heuristic algorithms, as
well as its application in meta-heuristic algorithms. The
effectiveness of this domain knowledge in meta-
heuristic algorithms is analyzed through classical
literature. Finally, the relationship among optimization
problems, domain knowledge and optimization
methods is analyzed.

4.1　Applications of domain knowledge in meta-
heuristic algorithms

The domain knowledge mentioned in Section 3 is
classified according to the execution process of the
algorithm. Since it is obvious to design the encoding
and decoding of meta-heuristic algorithms by using the
problem representations and the types of the solution,
this part mainly introduces how to use the global
information and local information in the JSP to design
the optimization operator in the meta-heuristics.

Because there are many local optimal in the search
space of the JSP, the global information is mainly used
to guide algorithms to jump out of the local area and
provide new areas worth further exploration. However,
as can be seen from the above, the mining of the global
characteristics of the JSP in the existing research is not
sufficient. Only several pieces of literature proposed
that the fitness landscape of the JSP has the
characteristics of the big valley. Based on this, some
scholars have proposed using path relinking to search
the space between two local optimal points, which can
effectively solve the optimization problem with many
local optimal points. The experimental results of some
literatures also show that path relinking can effectively
solve the JSP[73, 89, 101].

The local characteristics in the JSP are generally
used to design neighborhood structures of the
algorithm and evaluation methods for neighborhood
solutions. The use of the evaluation of neighborhood

Optimal solution
Fig. 10 Relationship between different types of solutions.

 Lin Gui et al.: Domain Knowledge Used in Meta-heuristic Algorithms for the Job-Shop Scheduling ... 1379

O1 O2 Ok

solutions has been elaborated in detail in Section 3, so
the applications for neighborhood structures is mainly
introduced in this part. The neighborhood structure is a
perturbation rule on the current solution to produce a
set of neighborhood solutions. The design of
neighborhood structure in the JSP should follow two
principles[102]: 1) Reduce the number of neighborhood
solutions that do not improve the current solution; 2)
The generated neighborhood solution must be feasible.
This makes the neighborhood structure need to
combine the local information in the JSP. Since the
main purpose of this paper is to review the domain
knowledge in the JSP rather than neighborhood
structures, so this part only introduces the five most
effective neighborhood structures and explains how
domain knowledge is used in them. This paper will use
the critical block to introduce them, where the
operations in the critical block are (, , …,), as
shown in Fig. 11.

In order to compare the differences between these
neighborhood structures, we use a table to represent the
perturbation operation, the domain knowledge about
quality and feasibility used, and the number of
neighborhood solutions that can be obtained on a
critical block for each neighborhood structure. The
details are shown in Table 2.

(1) If the processing sequence of operations on the
critical path does not change, the total makespan will
not decrease;

(2) If the processing sequence of operations is only
changed inside the critical block, the total makespan
will not decrease;

(3) If operations in the first critical block move to the
position before the first operation, the total completion
time will not decrease; If operations in the last critical
block move to the position after the last operation, the
total completion time will not decrease;

(4) The neighborhood solution obtained by
exchanging the processing sequence of any two adjacent

operations of any one critical path block must be a
feasible solution;

pv ⩾ p js[u]

pu ⩾ p jp[v]

(5) Assuming that u and v are in the critical block,
and u is processed before v. When the constraint
conditions R(v)+ R(js[u])+ are satisfied, the
neighborhood solution obtained by inserting u into the
position just after v is a feasible solution; When the
constraint conditions F(u)+ F(jp[v])+ are
satisfied, the neighborhood solution obtained by
inserting v into the position just before u is a feasible
solution.

From the above table, we can see that since different
researchers have different understandings of the same
domain knowledge, the designed neighborhood
structure may be different even if the same domain
knowledge is used. For example, most researchers
achieve the purpose of (1) by changing the processing
sequence inside the critical path block. However, Xie
et al. proposed that the same effect can be achieved by
moving the operations inside the critical path block to
the outside. For another example, Nowicki and
Smutnicki realized (2) by only exchanging the
positions of the first two or the last two operations in
the critical block, while Balas and Vazacopoulos
proposed that (2) could also be realized by inserting the
operations in the critical block to the position just
before (after) the first (last) operation. On the basis of
Balas and Vazacopoulos, Zhang et al. proposed that
inserting the first (last) operation on the critical block
after (before) other operations can also achieve (2).

4.2　Effectiveness of domain knowledge in meta-
heuristic algorithms

In the existing research, almost all the meta-heuristic
algorithms use the above domain knowledge to obtain
good solutions in the JSP. In order to highlight the
application effect of this domain knowledge, this part
sorts out the research on the upper bound of refreshing
instances in the benchmark of the JSP and analyzes the

mp[O1] O1 O2 O3 … Ok−2 Ok−1 ms[Ok] …

js[Ok] …

Ok

jp[O1]

…

…M3

M2

M1

Pr
oc

es
si

ng
 m

ac
hi

ne

Time
Fig. 11 Relationship between different types of solutions.

 1380 Tsinghua Science and Technology, October 2024, 29(5): 1368−1389

domain knowledge applied to them.
In the JSP, there are 8 types of benchmarks, 242

different instances for all, including FT[39], LA[105],
ABZ[56], ORB[106], SWV[107], YN[108], TA[109], and

DMU[110]. Due to the hardness of the JSP, there are still
many open problems so far in which the upper and
lower bounds of the instances are not equal. The
website (http://optimizizer.com/jobshop.php) has

Table 1 The summary of the domain knowledge in the JSP.
Type Domain knowledge

Problem
representation

Gantt chart
1. Marsh proposed the Harmonogram to represent the workflow network diagram[83];
2. Gantt used this chart to discuss scheduling problems[84];
3. Clark named this kind of chart the Gantt chart[85].

Disjunctive graph

1. Roy and Sussmann first proposed the use of a disjunctive graph to represent the JSP[86];
2. Balas designed an exact algorithm based on the disjunctive graph[6];
3. White and Rogers described the extensions and limitations of the disjunctive graph[87];
4. Bazewicz et al. pointed out that the disjunctive graph was more popular than the Gantt
graph to represent the JSP[89];
5. Nowicki et al. proposed the permutation-graph to represent the JSP[90].

Global
information

Fitness landscape
analysis

1. Mattfeld et al. showed that the inherent characteristics of the problem had an impact on
the heuristic algorithm based on local search[70];
2. Bierwirth et al. showed that the fitness landscape of the JSP is irregular[71];
3. Streeter et al. showed that the fitness landscape of the JSP is related to the problem scale,
and it was verified that JSP has “big valley” terrain in different instances[72].

Local
information

Quality of
neighborhood solutions

1. Kelley et al. proposed the critical path method for the project scheduling problem[92];
2. Conway et al. introduced the critical path method into the JSP[93];
3. Potts pointed out the role of the critical path in the JSP[94];
4. Grabowski et al. proposed the concept of the critical path block based on the critical
path[95];
5. Matsuo pointed out that if the processing sequence of operations is only changed inside
the critical block, the total makespan will not decrease[8];
6. Nowicki et al. pointed out that if other operations were inserted before the first operation
in the first critical block, the total completion time would not decrease, and if other
operations were inserted after the last operation in the last critical block, the total
completion time would not decrease[61].

Feasibility of
neighborhood
solutions

1. Van Laarhoven et al. found that the neighborhood solution obtained by exchanging the
processing sequence of any two adjacent operations on any critical path block must be
feasible and proved its correctness[57];
2. Balas et al. proposed a set of constraint conditions and proved that the neighborhood
solution generated by inserting the operation before or after the other operation must be the
feasible solution if the conditions were met[60];
3. Gui et al. gave the necessary and sufficient conditions for feasible solutions by analyzing
the necessary and sufficient conditions for infeasible solutions[96].

Evaluation of
neighborhood
solutions

1. Taillard proposed an evaluation method for exchanging two adjacent operations on
critical path blocks to generate neighborhood solutions[97];
2. Balas et al. proposed the evaluation method of generating neighborhood solutions by
inserting an operation before or after other operations on the critical path block[60];
3. Nowicki et al. improved the method of Taillard[61];
4. Gui et al. improved Balas et al. ’s method[98].

Types of
solutions

Non-delayed schedule
1. It was first proposed by Jackson, and it was called availability schedule at that time[4];
2. Nugent renamed it as non-delayed scheduling[99].

Active schedule 1. It was first introduced by Giffler and Thompson and proved that the optimal scheduling
scheme must be in the set of active schedules of the problem[38].

Semi-active schedule 1. It was first introduced by Nugent[99].

Full-active schedule 1. It was first proposed by Zhang et al., and proved that the optimal scheduling scheme must
be in the set of full-active schedule of the problem[69].

 Lin Gui et al.: Domain Knowledge Used in Meta-heuristic Algorithms for the Job-Shop Scheduling ... 1381

updated the upper and lower bounds of these open
instances and also lists the literature that refreshed
these instances. In this part, only the literature listed on
the website is collated, and the domain knowledge used
in these algorithms is summarized, as shown in Table 3.
Since all meta-heuristics require the encoding and
decoding of the problem, they are not enumerated in
the table. Only the use of global characteristics
(represented by GC) and local characteristics
(represented by LC) is counted. The symbol Y is used
to indicate the use of the corresponding domain

knowledge.
Among the above articles, except for Brinkkötter and

Brucker’s work[111], the algorithms used for refreshing
the instances are all meta-heuristic algorithms, and
only one of them[117] does not use the domain
knowledge mentioned above. Of course, the optimal
solutions of instances[111, 117] were also found in the
later papers[103, 115, 116]. This shows that the meta-
heuristic algorithm combined with problem domain
knowledge can solve the job shop scheduling problem
efficiently.

Table 2 Details of different neighborhood structures.
Reference Perturbation operator Quality Feasibility Number
Van Laarhoven
et al.[57] 1. Exchange the position of any two adjacent operations. (1) (4) k−1;

Nowicki and
Smutnicki[90]

1. Exchange the position of the first or last two operations; 2. except
for the position change by the first two operations in the first critical
block or the last two operations in the last critical block.

(1), (2), (3) (4)

1 (the first or last
critical block); 2 (the
other critical path
blocks);

Balas and
Vazacopoulos[60]

1. Move one operation to the position just before (after) the first
(last) operation. (1), (2) (5) No more than 2(k−1);

Zhang et al.[103]
1. Move one operation to the position just before (after) the first
(last) operation; 2. move the first (last) operation to the position just
after (before) other operations.

(1), (2) (5) No more than 4(k−1)-
2;

Xie et al.[104]

1. Move one operation (except for the first one) to the position
before (not only just before) the first operation; 2. move one
operation (except for the last one) to the position after (not only just
after) the last operation.

(1), (2) (5) More than the number
generated by Zhang’s;

Table 3 Details of different neighborhood structures.
Reference GC LC Instance Reference GC LC Instance

Taillard[97] - Y
TA 01, 35, 51, 52, 53, 54,
56, 57, 58, 59, 60, 71, 72,
73, 74, 75, 76, 77, 78, 79

Pardalos et al.[73] Y Y TA 32; DMU 06,07,08

Balas and
Vazacopoulos[60] - Y TA 03, 18 Zhang et al.[112] - Y DMU 13, 26

Nowicki and
Smutnicki[90] - Y TA 02, 14 Beck et al.[113] - Y TA 24, 26

Demirkol et al.[110] - - DMU 32, 33, 34, 35 Gonçalves and Resende[114] - Y DMU18,46
Brinkkötter and
Brucker[111] - -

TA 05, 06, 07, 08, 09, 10,
12; DMU 03, 04, 05 Peng et al.[115] Y Y

TA47,49,50; DMU 11,
41, 50; SWV 01, 15

Nowicki and
Smutnicki[61] Y Y TA 22, 23, 27, 30, 45 Shylo and Shams[101] Y Y

TA 48; DMU 12, 16,
17,42, 43, 44, 47, 48, 49,
51, 67, 72, 74, 75; ABZ
08, 09; SWV 02, 03, 07,
09, 10, 11, 13, 14 YN
01,02,03,04

Pardalos and Shylo[68] - Y
TA 11, 15, 19, 20; DMU
10

Constanino and Segura[116] - Y

TA 34, 40, 42, 44; DMU
19, 20, 45, 52, 53, 54, 55,
58, 59, 60, 61, 62, 63, 64,
65, 66, 68, 69, 70, 71, 73,
76, 77, 78, 79, 80; SWV
06, 12

Zhang et al.[103] - Y TA 28, 33, 37 Xie et al.[104] - Y DUM 56, 57

 1382 Tsinghua Science and Technology, October 2024, 29(5): 1368−1389

4.3　Relationship among optimization problems,
domain knowledge and optimization methods

From the above analysis, it is obvious that the meta-
heuristic algorithms with the domain knowledge in the
JSP have an effective improvement for the meta-
heuristic algorithms. In fact, this situation does not
only exist in the JSP. When the domain knowledge of
other shop scheduling problems, or even other types of
optimization problems, is used in the design of meta-
heuristic algorithms, the optimization effect of the
algorithm can be effectively improved. Similarly, even
if the optimization algorithm is not a meta-heuristic
algorithm, the corresponding domain knowledge of the
problem can also improve the optimization effect of the
algorithm. Therefore, it is necessary to discuss the
relationship among optimization problems, domain
knowledge and optimization algorithms, and a
triangular ring graph is used to represent the
relationship between them, as shown in Fig. 12.

In the figure, there are two different correspondences
between these three: 1) The clockwise loop in the inner
circle represents the thinking process before solving the
problem. Specifically, the optimization method should
be selected according to the characteristics of the
optimization problem (e.g., the JSP is an NP-hard
problem, and the meta-heuristic algorithm is a good
choice). Secondly, it is necessary to map the domain
knowledge to be used according to the type of
optimization method (different types of algorithms
require different domain knowledge, for example,
mixed-integer programming model uses more convex
optimization and branch and bound domain knowledge,
while the meta-heuristic algorithm uses domain
knowledge such as globe information and local
information of the search space). Finally, according to
the required domain knowledge, the acquisition method
in the problem is analyzed (for example, the domain
knowledge of the fitness landscape of the solution
space needs to use the means of statistics, etc.); 2) The
counterclockwise loop of the outer circle represents the

application process of the algorithm design. Firstly, it
is necessary to obtain the required domain knowledge
in the optimization problem (through theoretical
analysis, machine learning, etc.). Secondly, specific
domain knowledge should be used in the design of
optimization methods (such as global characteristics or
local characteristics for the design of algorithm
optimization operators). Finally, the designed
optimization algorithm is used to solve the
optimization problem.

In fact, the pairwise correspondence between these
three is also the direction to be studied in the
optimization problem. The problems that how to select
the optimization method through the optimization
problem, how to know the type of domain knowledge
needed by the type of optimization method, and how to
analyze the optimization problem through the type of
domain knowledge, similarly, the problems that how to
mine domain knowledge from optimization problems,
how to use domain knowledge to design optimization
algorithms, and how to use optimization algorithms to
solve problems should be further studied. Although this
paper does not give the specific research methods for
these problems, through the analysis of the relationship
between the above problems, the research directions
are more clear for the study of optimization problems,
and we believe that it could play a certain role in
promoting the research of optimization problems. It is
hoped that the discussion can provide some reference
for the solving of optimization problems or the design
of optimization methods.

5　Discussion and Research Direction

In Sections 3 and 4, we summarized the domain
knowledge in the JSP for the design of meta-heuristic
algorithms. It is easy to know that domain knowledge
plays an important role in meta-heuristic algorithms. In
this section, the shortcomings of the existing research
and the research directions are proposed for the JSP.

Fig. 12 Relationship between different types of solutions.

 Lin Gui et al.: Domain Knowledge Used in Meta-heuristic Algorithms for the Job-Shop Scheduling ... 1383

5.1　Paying more attention to the fitness landscape
analysis for the JSP

In continuous optimization problems, global
characteristics can be used to determine the difficulty
of the optimization problem and can also greatly
improve the optimization performance of the
algorithm. It shows the importance of global
characteristics for solving optimization problems. In
the JSP, fitness landscape analysis is generally used to
describe the global characteristics of this problem.
However, the study of fitness landscape analysis in the
JSP is insufficient, so more attention should be paid to
it in future research. Research from three aspects can
be considered: 1) To construct an appropriate metric
space to describe the geometric relationship between
different solutions in the solution space; 2) Study the
sampling methods (such as random sampling or
uniform sampling, etc.) for the JSP to obtain data for
analysis; 3) Choose suitable statistical parameters to
describe the characteristics of the fitness landscape.

5.2　Domain knowledge of the relationship between
different objectives

In actual production, there may be many different
optimization objectives. The existing research usually
directly uses multi-objective optimization algorithm to
solve the problem by showing the conflict relationship
between different objectives through examples.
However, the relationship between different
optimization objectives is complex, and there may be
different combinations of conflict and non-conflict
among them. If the multi-objective optimization
algorithm is simply used, it may lead to low efficiency
and poor results. Therefore, the domain knowledge of
the relationship between different objectives should be
analyzed.

5.3　Extending the domain knowledge to other
problems

Domain knowledge is very important to the
optimization algorithm design, which can improve the
optimization performance of the algorithm. However, it
is very difficult to extract the desired domain
knowledge from the problem. Therefore, transferring
the known domain knowledge to other similar
problems by analyzing the similarities and differences
between these problems is a promising research
direction. For example, the domain knowledge related
to the feasibility of neighborhood solutions in the

classical JSP can also be applied to other JSP, such as
flexible JSP, JSP considering transportation time, etc.
Of course, some domain knowledge needs to be
adjusted before it can be applied to other problems,
such as the evaluation methods for neighborhood
solutions.

5.4　Using data-driven approaches to obtain
domain knowledge of the problem

As mentioned above, domain knowledge mining is a
difficult task, especially for complex combinatorial
optimization problems. In this case, we can utilize
some data-driven approaches such as deep learning,
reinforcement learning, etc. By using these methods,
we can find some rules in a large number of data, and
can apply these rules to the solution of the problem.
For example, some rules or phenomena have been
found in the optimization process, but it may be
difficult to draw clear conclusions through theoretical
analysis. At this time, a large number of samples can
be analyzed using machine learning methods, and
finally a conclusion can be given to improve the
optimization performance of the meta-heuristic
algorithm.

5.5　Selecting a meta-heuristic algorithm
framework according to the domain
knowledge

In addition to the strategies designed by domain
knowledge, there are also many optimization strategies
or frameworks unrelated to specific problems in meta-
heuristic algorithms, such as Metropolis criterion in
simulated annealing algorithm, tabu criterion in tabu
search algorithm, and optimization frameworks
(crossover, mutation, selection) in genetic algorithm,
which can also directly affect the optimization
performance of the algorithm. These optimization
strategies or frameworks have certain generalization
properties, which can be applied to different types of
optimization problems. However, how to choose these
optimization strategies and frameworks for a specific
problem is unknown. In fact, although these
optimization strategies and frameworks are not designed
by the domain knowledge of the problem, they must be
compatible with the deeper domain knowledge of the
problem if they have excellent performance on a
specific problem. Therefore, how to use the domain
knowledge of the problem to select optimization
strategies and frameworks of meta-heuristics is a

 1384 Tsinghua Science and Technology, October 2024, 29(5): 1368−1389

promising research direction.
In addition to the research directions mentioned

above, there are many directions or methods for
domain knowledge in the JSP that deserve to be
studied. In fact, the process of algorithm design is to
constantly discover and use the domain knowledge of a
specific problem, and it is this process that promotes
the development of the field of shop scheduling, even
the whole field of operations research.

6　Conclusion

The main work of this paper is to survey the domain
knowledge used in the design of meta-heuristic
algorithms for the JSP. Firstly, the importance of
domain knowledge for the design of optimization
algorithms is highlighted. After that, this paper reviews
the development of optimization algorithms for the
JSP. It shows that meta-heuristic algorithms are the
mainstream methods for this problem and points out
that different types of optimization algorithms need
different domain knowledge. Then, the domain
knowledge in the JSP is summarized, classified and
analyzed according to the optimization steps of meta-
heuristics, and the application of these domains
knowledge in the design of meta-heuristics is presented.
By analyzing the literatures which refreshed datasets,
this paper illustrates that domain knowledge is the
guarantee to ensure the excellent performance of meta-
heuristic algorithms. At the same time, the relationship
between optimization problems, optimization methods
and domain knowledge is discussed. Finally, this paper
lists the shortcomings of the existing research, and puts
forward the need to strengthen the research on fitness
landscape and objective analysis, expand the
application of domain knowledge, use new technology
to mine domain knowledge, and analyze the role of
meta-heuristic algorithms in optimization. Although
the main research object of this paper is JSP and meta-
heuristic algorithms, the discussion in this paper can
also provide reference for other optimization problems
or optimization algorithm design.

Acknowledgment

This work was supported by the National Natural Science
Foundation of China (Nos. U21B2029 and 51825502).

References

 D. H. Wolpert and W. G. Macready, No free lunch[1]

theorems for optimization, IEEE Trans. Evol. Comput.,
vol. 1, no. 1, pp. 67–82, 1997.
 Y. An, X. Chen, K. Gao, Y. Li, and L. Zhang,
Multiobjective flexible job-shop rescheduling with new
job insertion and machine preventive maintenance, IEEE
Trans. Cybern., vol. 53, no. 5, pp. 3101–3113, 2023.

[2]

 Y. Fu, Y. Hou, Z. Wang, X. Wu, K. Gao, and L. Wang,
Distributed scheduling problems in intelligent
manufacturing systems, Tsing Science and Technology,
vol. 26, no. 5, pp. 625–645, 2021.

[3]

 J. R. Jackson, Notes on some sheduling problems,
research report no. 35, Research Report, Management
Sciences Research Project, UCLA, 1954.

[4]

 Z. Hu and D. Li, Improved heuristic job scheduling
method to enhance throughput for big data analytics,
Tsing Science and Technology, vol. 27, no. 2, pp.
344–357, 2022.

[5]

 E. Balas, Machine sequencing via disjunctive graphs: An
implicit enumeration algorithm, Oper. Res., vol. 17, no.
6, pp. 941–957, 1969.

[6]

 P. Brucker, An efficient algorithm for the job-shop
problem with two jobs, Computing, vol. 40, no. 4, pp.
353–359, 1988.

[7]

 H. Matsuo, C. Juck SUH, and R. S. Sullivan, A
controlled search simulated annealing method for the
single machine weighted tardiness problem, Ann. Oper.
Res., vol. 21, no. 1, pp. 85–108, 1989.

[8]

 S. M. Alexander, An expert system for the selection of
scheduling rules in a job shop, Comput. Ind. Eng., vol.
12, no. 3, pp. 167–171, 1987.

[9]

 Z. Liu, Y. Wang, X. Liang, Y. Ma, Y. Feng, G. Cheng,
and Z. Liu, A graph neural networks-based deep Q-
learning approach for job shop scheduling problems in
traffic management, Inf. Sci., vol. 607, pp. 1211–1223,
2022.

[10]

 L. Wang, Z. Pan, and J. Wang, A review of
reinforcement learning based intelligent optimization for
manufacturing scheduling, Complex System Modeling
and Simulation, vol. 1, no. 4, pp. 257–270, 2021.

[11]

 Z. Chen, L. Zhang, X. Wang, and P. Gu, Optimal design
of flexible job shop scheduling under resource
preemption based on deep reinforcement learning,
Complex System Modeling and Simulation, vol. 2, no. 2,
pp. 174–185, 2022.

[12]

 B. Xi and D. Lei, Q-learning-based teaching-learning
optimization for distributed two-stage hybrid flow shop
scheduling with fuzzy processing time, Complex Syst.
Model. Simul., vol. 2, no. 2, pp. 113–129, 2022.

[13]

 M. Gendreau and J. Y. Potvin, Handbook of
metaheuristics, Vol.2 New York: Springer, 2010, p. 9.

[14]

 P. P. Bonissone, R. Subbu, N. Eklund, and T. R. Kiehl,
Evolutionary algorithms+ domain knowledge= real-world
evolutionary computation, IEEE Trans. Evol. Comput.,
vol. 10, no. 3, pp. 256–280, 2006.

[15]

 S. B. Akers Jr and J. Friedman, A non-numerical
approach to production scheduling problems, J. Oper.
Res. Soc., vol. 3, no. 4, pp. 429–442, 1955.

[16]

 R. L. Sisson, Methods of sequencing in job shops—A
review, Oper. Res., vol. 7, no. 1, pp. 10–29, 1959.

[17]

 Lin Gui et al.: Domain Knowledge Used in Meta-heuristic Algorithms for the Job-Shop Scheduling ... 1385

 H. E. Nouri, O. B. Driss, and K. Ghédira, A classification
schema for the job shop scheduling problem with
transportation resources: state-of-the-art review, in
Artificial Intelligence Perspectives in Intelligent Systems:
Proceedings of the 5th Computer Science On-line
Conference 2016 (CSOC2016), Springer International
Publishing, vol. 1, pp. 1−11, 2016.

[18]

 Q. Li, J. Li, Q. Zhang, P. Duan, and T. Meng, An
improved whale optimisation algorithm for distributed
assembly flow shop with crane transportation, Int. J.
Autom. Control, vol. 15, no. 6, pp. 710–743, 2021.

[19]

 S. C. Kim and P. M. Bobrowski, Impact of sequence-
dependent setup time on job shop scheduling
performance, Int. J. Prod. Res., vol. 32, no. 7, pp.
1503–1520, 1994.

[20]

 X. Han, Y. Han, Q. Chen, J. Li, H. Sang, Y. Liu, Q. Pan,
and Y. Nojima, Distributed flow shop scheduling with
sequence-dependent setup times using an improved
iterated greedy algorithm, Complex System Modeling and
Simulation, vol. 1, no. 3, pp. 198–217, 2021.

[21]

 K. Gao, F. Yang, M. Zhou, Q. Pan, and P. N. Suganthan,
Flexible job-shop rescheduling for new job insertion by
using discrete Jaya algorithm, IEEE Trans. Cybern., vol.
49, no. 5, pp. 1944–1955, 2019.

[22]

 X. Wu, X. Xiao, and Q. Cui, Multi-objective flexible
flow shop batch scheduling problem with renewable
energy, Int. J. Autom. Control, vol. 14,nos.5-6, pp.
519–553, 2020.

[23]

 K. Z. Gao, P. N. Suganthan, T. J. Chua, C. S. Chong, T.
X. Cai, and Q. K. Pan, A two-stage artificial bee colony
algorithm scheduling flexible job-shop scheduling
problem with new job insertion, Expert Syst. Appl., vol.
42, no. 21, pp. 7652–7663, 2015.

[24]

 Q. Liu, C. Wang, X. Li, and L. Gao, Mathematical
modeling and a multiswarm collaborative optimization
algorithm for fuzzy integrated process planning and
scheduling problem, Tsing Science and Technology, vol.
29, no. 2, pp. 285–304, 2024.

[25]

 L. Sun, T. Lu, Z. Li, Y. Li, Y. Yu, and J. Liu, Research
on steelmaking-continuous casting production scheduling
problem with uncertain processing time based on
Lagrangian relaxation framework, Int. J. Autom. Control,
vol. 16, no. 1, pp. 87–107, 2022.

[26]

 K. Z. Gao, P. N. Suganthan, Q. K. Pan, T. J. Chua, T. X.
Cai, and C. S. Chong, Pareto-based grouping discrete
harmony search algorithm for multi-objective flexible job
shop scheduling, Inf. Sci, vol. 289, pp. 76–90, 2014.

[27]

 W. Zhang, W. Hou, C. Li, W. Yang, and M. Gen,
Multidirection update-based multiobjective particle
swarm optimization for mixed no-idle flow-shop
scheduling problem, Complex System Modeling and
Simulation, vol. 1, no. 3, pp. 176–197, 2021.

[28]

 E. Jiang, L. Wang, and J. Wang, Decomposition-based
multi-objective optimization for energy-aware distributed
hybrid flow shop scheduling with multiprocessor tasks,
Tsing Science and Technology, vol. 26, no. 5, pp.
646–663, 2021.

[29]

 K. Z. Gao, P. N. Suganthan, Q. K. Pan, M. F. Tasgetiren,[30]

and A. Sadollah, Artificial bee colony algorithm for
scheduling and rescheduling fuzzy flexible job shop
problem with new job insertion, Knowl. Based. Syst., vol.
109, pp. 1–16, 2016.
 K. Z. Gao, P. N. Suganthan, Q. K. Pan, T. J. Chua, C. S.
Chong, and T. X. Cai, An improved artificial bee colony
algorithm for flexible job-shop scheduling problem with
fuzzy processing time, Expert Syst. Appl., vol. 65, pp.
52–67, 2016.

[31]

 H. Xiong, S. Shi, D. Ren, and J. Hu, A survey of job shop
scheduling problem: The types and models, Comput.
Oper. Res., vol. 142, p. 105731, 2022.

[32]

 J. Błażewicz, W. Domschke, and E. Pesch, The job shop
scheduling problem: Conventional and new solution
techniques, Eur. J. Oper. Res., vol. 93, no. 1, pp. 1–33,
1996.

[33]

 M. Dhiflaoui, H. E. Nouri, and O. B. Driss, Dual-
resource constraints in classical and flexible job shop
problems: A state-of-the-art review, Procedia Comput.
Sci., vol. 126, pp. 1507–1515, 2018.

[34]

 R. G. Parker, Deterministic Scheduling Theory, CRC
Press, 1996.

[35]

 S. M. Johnson, An extension of johnson’s results on job
lot scheduling, Nav. Res. Logist., vol. 3, pp. 201–203,
1956.

[36]

 W. E. Smith, Various optimizers for single-stage
production, Nav. Res. Logist., vol. 3, pp. 59–66, 1956.

[37]

 B. Giffler and G. L. Thompson, Algorithms for solving
production-scheduling problems, Oper. Res., vol. 8, no.
4, pp. 487–503, 1960.

[38]

 H. Fisher and G. L. Thompson, Probabilistic learning
combinations of local job-shop scheduling rules, In: Muth
JF and Thompson GL (eds). Industrial Scheduling,
Prentice-Hall: Englewood Cliffs, NJ, pp. 225– 251, 1963.

[39]

 W. B. Crowston, F. Glover, and J. D. Trawick,
Probabilistic and parametric learning combinations of
local job shop scheduling rules, Research Report
Carnegie Inst of Tech Pittsburgh Pa Graduate School of
Industrial Administration, 1963.

[40]

 B. Jeremiah, A. Lalchandani, and L. Schrage, Heuristics
Rules Toward Optimal Scheduling, Department of
Industrial Engineering, Research Report, Cornell
University, New York, USA, 1964.

[41]

 G. H. Brooks, An algorithm for finding optimal or near
optimal solutions to the production scheduling problem,
J. Ind. Eng., vol. 16, no. 1, pp. 34–40, 1969.

[42]

 M. R. Garey and D. S. Johnson, Computers and
Intertract-ability: A Guide to the Theory of NP-
Completeness, Freeman, San Francisco, CA, 1979.

[43]

 E. L. Lawler, J. K. Lenstra, and A. H. G. Rinnooy Kan,
Recent developments in deterministic sequencing and
scheduling: A survey, In Deterministic and Stochastic
Scheduling: Proceedings of the NATO Advanced Study
and Research Institute on Theoretical Approaches to
Scheduling Problems held in Durham, England, pp.
35−73, 1981.

[44]

 M. Hefetz and I. Adiri, An efficient optimal algorithm for
the two-machines unit-time job shop schedule-length
problem, Math. Oper. Res., vol. 7, no. 3, pp. 354–360,

[45]

 1386 Tsinghua Science and Technology, October 2024, 29(5): 1368−1389

1982.
 Y. N. Sotskov, Optimal scheduling two jobs with regular
criterion, Design Processes Automating, pp. 86–95, 1985.

[46]

 P. Brucker, An efficient algorithm for the job-shop
problem with two jobs, Computing, vol. 40, no. 4, pp.
353–359, 1988.

[47]

 N. M. Sadeh, Look-ahead techniques for micro-
opportunistic job shop scheduling, Research Report,
Carnegie Mellon University, 1991.

[48]

 M. Charalambous and K. S. Hindi, A review of artificial
intelligence-based job-shop scheduling systems,
Information and Decision Technologies, vol. 17, no. 3,
pp. 189–202, 1991.

[49]

 D. N. Zhou, V. Cherkassky, T. R. Baldwin, and D. W.
Hong, Scaling neural network for job-shop scheduling, In
1990 IJCNN International Joint Conference on Neural
Networks, San Diego, CA, USA, 1990, vol.3, pp.
889−894.

[50]

 D. N. Zhou, V. Cherkassky, T. R. Baldwin and D. E.
Olson, A neural network approach to job-shop
scheduling, IEEE Trans. Neural Netw., vol. 2, no. 1, pp.
175–179, 1991.

[51]

 T. A. J. Nicholson, A sequential method for discrete
optimization problems and its application to the
assignment, travelling salesman, and three machine
scheduling problems, IMA J. Appl. Math., vol. 3, no. 4,
pp. 362–375, 1967.

[52]

 S. Kirkpatrick, C. D. Gelatt Jr, and M. P.Vecchi,
Optimization by simulated annealing, Science, vol. 220,
no. 4598, pp. 671–680, 1983.

[53]

 F. Glover, Tabu search—part I, ORSA J. Comput., vol. 1,
no. 3, pp. 190–206, 1989.

[54]

 F. Glover, Tabu search—part Ⅱ, ORSA J. Comput., vol.
2, no. 1, pp. 4–32, 1990.

[55]

 J. Adams, E. Balas, and D. Zawack, The shifting
bottleneck procedure for job shop scheduling, Manage.
Sci., vol. 34, no. 3, pp. 391–401, 1988.

[56]

 N. J. Van Laarhoven, E. H. Aarts, and J. K. Lenstra, Job
shop scheduling by simulated annealing, Oper. Res., vol.
40, no. 1, pp. 113–125, 1992.

[57]

 E. H. L. Aarts, P. J. M. Van Laarhooven, and N. L. J.
Ulder, Local search based algorithms for job-shop
scheduling, Working Paper, Department of Mathematics
and Computer Science, Eindhoven University of
Technology, Eindhoven, The Netherlands, 1991.

[58]

 E. Taillard, Parallel taboo search technique for the job-
shop scheduling problem, Internal Research Report
ORWP89/11, Department de Mathematiques (DMA),
Ecole Polytechnique Federale de Lausanne, 1015
Lausanne Switzerland, 1989.

[59]

 E. Balas and A. Vazacopoulos, Guided local search with
shifting bottleneck for job shop scheduling, Manage. Sci.,
vol. 44, no. 2, pp. 262–275, 1998.

[60]

 E. Nowicki and C. Smutnicki, An advanced tabu search
algorithm for the job shop problem, J. Scheduling, vol. 8,
no. 2, pp. 145–159, 2005.

[61]

 M. L. Fisher and A. H. Rinnooy Kan, The design,
analysis and implementation of heuristics, Manage. Sci.,
vol. 34, no. 3, pp. 263–265, 1988.

[62]

 F. Della Croce, R. Tadei, and G. Volta, A genetic
algorithm for the job shop problem, Comput. Oper. Res.,
vol. 22, no. 1, pp. 15–24, 1995.

[63]

 H. L. Fang, P. Ross, and D. Corne, A promising genetic
algorithm approach to job-shop scheduling, rescheduling,
and open-shop scheduling problems, Berlin, Heidelberg:
University of Edinburgh, Department of Artificial
Intelligence, pp. 375−382, 1993.

[64]

 A. Colorni, M. Dorigo, V. Maniezzo, and M. Trubian,
Ant system for job-shop scheduling, JORBEL-Belgian
Journal of Operations Research, Statistics, and
Computer Science, vol. 34, no. 1, pp. 39–53, 1994.

[65]

 Z. Lian, B. Jiao, and X. Gu, A similar particle swarm
optimization algorithm for job-shop scheduling to
minimize makespan, Appl. Math. Comput., vol. 183, no.
2, pp. 1008–1017, 2006.

[66]

 O. Niu, B. Jiao, and X. Gu, Particle swarm optimization
combined with genetic operators for job shop scheduling
problem with fuzzy processing time, Appl. Math.
Comput., vol. 205, no. 1, pp. 148–158, 2008.

[67]

 P. M. Pardalos and O. V. Shylo, An algorithm for the job
shop scheduling problem based on global equilibrium
search techniques, Comput. Manag. Sci., vol. 3, no. 4, pp.
331–348, 2006.

[68]

 G. Zhang, X. Shao, P. Li, and L. Gao, An effective
hybrid particle swarm optimization algorithm for multi-
objective flexible job-shop scheduling problem, Comput.
Ind. Eng., vol. 56, no. 4, pp. 1309–1318, 2009.

[69]

 D. C. Mattfeld, C. Bierwirth, and H. Kopfer, A search
space analysis of the job shop scheduling problem, Ann.
Oper. Res., vol. 86, pp. 441–453, 1999.

[70]

 C. Bierwirth, D. C. Mattfeld, and J. P. Watson,
Landscape regularity and random walks for the job-shop
scheduling problem, In European Conference on
Evolutionary Computation in Combinatorial
Optimization (pp. 21-30). Springer, Berlin, Heidelberg,
2004.

[71]

 M. J. Streeter and S. F. Smith, How the landscape of
random job shop scheduling instances depends on the
ratio of jobs to machines, J. Artif. Intell. Res., vol. 26, pp.
247–287, 2006.

[72]

 P. M. Pardalos, O. V. Shylo, and A. Vazacopoulos,
Solving job shop scheduling problems utilizing the
properties of backbone and “big valley”, Comput. Optim.
Appl., vol. 47, no. 1, pp. 61–76, 2010.

[73]

 J. Li, X. Gu, Y. Zhang, and X. Zhou, Distributed flexible
job-shop scheduling problem based on hybrid chemical
reaction optimization algorithm, Complex System
Modeling and Simulation, vol. 2, no. 2, pp. 156–173,
2022.

[74]

 S. H. Niu, S. K. Ong, and A. Y. C. Nee, An improved
intelligent water drops algorithm for achieving optimal
job-shop scheduling solutions, Int. J. Prod. Res., vol. 50,
no. 15, pp. 4192–4205, 2012.

[75]

 B. Wu, J. Cheng, and M. Dong, Hybrid fruit fly
optimisation algorithm for field service scheduling
problem, Int. J. Autom. Control, vol. 14, no. 5-6, pp.
554–570, 2020.

[76]

 Lin Gui et al.: Domain Knowledge Used in Meta-heuristic Algorithms for the Job-Shop Scheduling ... 1387

 S. Wang, C. Liu, D. Pei, and J. Wang, A novel hybrid
election campaign optimisation algorithm for multi-
objective flexible job-shop scheduling problem, Int. J.
Struct. Integr., vol. 7, no. 3, pp. 160–170, 2013.

[77]

 S. Wang, G. Liu, and S. Gao, A hybrid discrete
imperialist competition algorithm for fuzzy job-shop
scheduling problems, IEEE Access, vol. 4, pp.
9320–9331, 2017.

[78]

 C. Aranha, C. L. Camacho Villaló n, F. Campelo, M.
Dorigo, R. Ruiz, M. Sevaux, K. Sörensen, and T. Stü
tzle, Metaphor-based metaheuristics, a call for action: the
elephant in the room, Swarm Intell., vol. 16, no. 1, pp.
1–6, 2022.

[79]

 S. Nguyen, M. Zhang, M. Johnston, and K. C. Tan, A
computational study of representations in genetic
programming to evolve dispatching rules for the job shop
scheduling problem, IEEE Trans. Evol. Comput., vol. 17,
no. 5, pp. 621–639, 2012.

[80]

 S. Mirshekarian and D. N. Šormaz,Correlation of job-
shop scheduling problem features with scheduling
efficiency, Expert Syst. Appl., vol. 62, pp. 131–147,
2016.

[81]

 Z. C. Li, B. Qian, R. Hu, L. L. Chang, and J. B. Yang, An
elitist nondominated sorting hybrid algorithm for multi-
objective flexible job-shop scheduling problem with
sequence-dependent setups, Knowl. Based Syst., vol. 173,
pp. 83–112, 2019.

[82]

 E. R. Marsh, The harmonogram: An overlooked method
of scheduling work, Proj. Manage. Q., vol. 7, no. 1, pp.
21–25, 1976.

[83]

 H. L. Gantt, Work, Wages and Profits, Engineering
Magazine Co., New York, 1916.

[84]

 W. Clark, The Gantt chart: A working tool of
management, Ronald Press Company, 1922.

[85]

 B. Roy and B. Sussman, Les problem`es d’
ordonnancement avec contraintes disjonctives (in
French). Note DS No. 9 bis, SEMA, Montrouge, 1964.

[86]

 K. P. White and R. V. Rogers, Job-shop scheduling:
Limits of the binary disjunctive formulation, Int. J. Prod.
Res., vol. 28, no. 12, pp. 2187–2200, 1990.

[87]

 L. Gui, L. Fu, X. Li, W. Zhou, L. Gao, Z. Xiang, and W.
Zhu, Optimisation framework and method for solving the
serial dual-shop collaborative scheduling problem, Int. J.
Prod. Res., vol. 61, pp. 4341–4357, 2022.

[88]

 J. Bazewicz, W. Domschke, and E. Pesch, The job shop
scheduling problem: Conventional and new solution
techniques, Eur. J. Oper. Res., vol. 93, no. 1, pp. 1–33,
1996.

[89]

 E. Nowicki and C. Smutnicki, A fast taboo search
algorithm for the job shop problem, Manage. Sci., vol.
42, no. 6, pp. 797–813, 1996.

[90]

 S. Wright, The roles of mutation, inbreeding,
crossbreeding, and selection in evolution, Proceedings of
the Sixth international Congress of Genetics, vol. 1, pp.
356–366, 1932.

[91]

 J. E. Kelley Jr and M. R. Walker, Critical-path planning
and scheduling. In Papers presented at the December,
Eastern Joint IRE-AIEE-ACM Computer Conference pp.
160−173, 1959.

[92]

 P. W. Conway, W. L. Maxwell and L. W. Miller, Theory
of Scheduling, Addison-Wesley: Reading, MA, 1967.

[93]

 C. N. Potts, Analysis of a heuristic for one machine
sequencing with release dates and delivery times, Oper.
Res., vol. 28, no. 6, pp. 1436–1441, 1980.

[94]

 J. Grabowski, E. Nowicki, and C. Smutnicki, Block
algorithm for scheduling of operations in job-shop
system (in Polish), Przeglad Statystyczny, vol. 35, pp.
67–80, 1988.

[95]

 L. Gui, X. Li, L. Gao, and C. Wang, Necessary and
sufficient conditions for feasible neighbourhood solutions
in the local search of the job-shop scheduling problem,
Chin. J. Mech. Eng., vol. 36, no. 1, pp. 1–16, 2023.

[96]

 E. Taillard, Parallel taboo search techniques for the job
shop scheduling problem, ORSA J. Comput., vol. 6, no. 2,
pp. 108–117, 1994.

[97]

 L. Gui, X. Li, L. Gao, and J. Xie, An approximate
evaluation method for neighbourhood solutions in job
shop scheduling problem, IET CIM, vol. 4, no. 3, pp.
157–165, 2022.

[98]

 C. E. Nugent, On Sampling Approaches to the Solution
of the n-by-m Static Sequencing Problem, Ph.D.
dissertation, Cornell University, USA, 1964.

[99]

 C. Zhang, Y. Rao, and P. Li, An effective hybrid genetic
algorithm for the job shop scheduling problem, Int. J.
Adv. Manuf. Technol., vol. 39, no. 9, pp. 965–974, 2008.

[100]

 O. V. Shylo and H. Shams, Boosting binary optimization
via binary classification: A case study of job shop
scheduling. arXiv preprint arXiv: 1808.10813, 2018. M.

[101]

 M. Nasiri and F. Kianfar, A GES/TS algorithm for the
job shop scheduling, Comput. Ind. Eng., vol. 62, no. 4,
pp. 946–952, 2012.

[102]

 C. Zhang, P. Li, Z. Guan, and Y. Rao, A tabu search
algorithm with a new neighborhood structure for the job
shop scheduling problem, Comput. Oper. Res., vol. 34,
no. 11, pp. 3229–3242, 2007.

[103]

 J. Xie, X. Li, L. Gao, and L. Gui, A hybrid algorithm
with a new neighborhood structure for job shop
scheduling problems, Comput. Ind. Eng., vol. 169, pp.
108205, 2022.

[104]

 Lawrence, Resource constrained project scheduling: An
experimental investigation of heuristic scheduling
techniques (Relatório técnico), dissertation, Carnegie
Mellon University, Pittsburgh, USA, 1984.

[105]

 D. Applegate and W. Cook, A computational study of the
job-shop scheduling problem, ORSA J. Comput., vol. 3,
no. 2, pp. 149–156, 1991.

[106]

 R. H. Storer, S. D. Wu, and R. Vaccari, New search
spaces for sequencing problems with application to job
shop scheduling, Manage. Sci., vol. 38, no. 10, pp.
1495–1509, 1992.

[107]

 T. Yamada and R. Nakano, A genetic algorithm
applicable to large-scale job-shop problems, In PPSN
vol. 2, pp. 281−290, 1992.

[108]

 E. Taillard, Benchmarks for basic scheduling problems,
Eur. J. Oper. Res., vol. 64, no. 2, pp. 278–285, 1993.

[109]

 E. Demirkol, S. Mehta, and R. Uzsoy, Benchmarks for
shop scheduling problems, Eur. J. Oper. Res., vol. 109,
no. 1, pp. 137–141, 1998.

[110]

 1388 Tsinghua Science and Technology, October 2024, 29(5): 1368−1389

 W. Brinkkötter and P. Brucker, Solving open benchmark
instances for the job‐shop problem by parallel head–tail
adjustments, J. Scheduling, vol. 4, no. 1, pp. 53–64,
2001.

[111]

 C. Zhang, P. Li, Y. Rao, and Z. Guan, A very fast TS/SA
algorithm for the job shop scheduling problem, Comput.
Oper. Res., vol. 35, no. 1, pp. 282–294, 2008.

[112]

 J. C. Beck, T. K. Feng, and J. P. Watson, Combining
constraint programming and local search for job-shop
scheduling, INFORMS J. Comput., vol. 23, no. 1, pp.
1–14, 2011.

[113]

 J. F. Gonçalves and M. G. Resende, A biased random-
key genetic algorithm for job-shop scheduling, AT&T
Labs Research Technical Report, vol. 46, pp. 253−271,

[114]

2011.
 B. Peng, Z. Lü, and T. C. E. Cheng, A tabu search/path
relinking algorithm to solve the job shop scheduling
problem, Comput. Oper. Res., vol. 53, pp. 154–164,
2015.

[115]

 O. H. Constanino and C. Segura, A parallel memetic
algorithm with explicit management of diversity for the
job shop scheduling problem, Appl. Intell., vol. 52, no. 1,
pp. 141–153, 2022.

[116]

 E. Demirkol, S. Mehta, and R. Uzsoy, A computational
study of shifting bottleneck procedures for shop
scheduling problems, J. Heuristics, vol. 3, no. 2, pp.
111–137, 1997.

[117]

Lin Gui received the BS degree in
mechanical engineering from Shandong
University, Jinan, China, 2018. He is
currently pursuing the PhD degree in
industrial engineering with the Huazhong
University of Science and Technology,
Wuhan, China. His research interests are
shop scheduling problems and
optimisation algorithms.

Xinyu Li received the PhD degree from
Huazhong University of Science and
Technology, China in 2009. He is a
professor of Huazhong University of
Science and Technology. He has published
more than 90 peer reviewed papers. He
serves as an associate editor of IET
Collaborative Intelligent Manufacturing,

and the editorial board member of Sensors. His research
interests include intelligent algorithms, big data, and machine
learning, among others.

Qingfu Zhang received the PhD degree
from Xidian University, China in 1994. He
is a Chair Professor of City University of
Hong Kong. He serves as an associate
editor of IEEE Transactions on
Evolutionary Computation, IEEE
Transactions on Cybernetics and
International Journal of Swarm

Intelligence Research. His research interests include evolutionary
computation, multiobjective optimization, and machine learning.

Liang Gao received the PhD degree from
Huazhong University of Science and
Technology, China in 2002. He is a
professor of Huazhong University of
Science and Technology. He serves as
editor-in-chief of IET Collaborative
Intelligent Manufacturing, and associate
editor of Swarm and Evolutionary

Computation and Journal of Industrial and Production
Engineering. His research interests are the research on the
application of intelligent optimization and machine learning
methods in design and manufacturing.

 Lin Gui et al.: Domain Knowledge Used in Meta-heuristic Algorithms for the Job-Shop Scheduling ... 1389

