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Abstract: To obtain a suitable scheduling scheme in an effective time range, the minimum completion time is

taken as the objective of Flexible Job Shop scheduling Problems (FJSP) with different scales, and Composite

Dispatching Rules (CDRs) are applied to generate feasible solutions. Firstly, the binary tree coding method is

adopted,  and  the  constructed  function  set  is  normalized.  Secondly,  a  CDR  mining  approach  based  on  an

Improved  Genetic  Programming  Algorithm  (IGPA)  is  designed.  Two  population  initialization  methods  are

introduced to enrich the initial population, and a superior and inferior population separation strategy is designed

to  improve  the  global  search  ability  of  the  algorithm.  At  the  same time,  two  individual  mutation  methods  are

introduced to  improve the algorithm’s  local  search ability,  to  achieve the balance between global  search and

local  search.  In  addition,  the  effectiveness  of  the  IGPA  and  the  superiority  of  CDRs  are  verified  through

comparative  analysis.  Finally,  Deep  Reinforcement  Learning  (DRL)  is  employed  to  solve  the  FJSP  by

incorporating  the  CDRs  as  the  action  set,  the  selection  times  are  counted  to  further  verify  the  superiority  of

CDRs.
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1　Introduction

In  recent  years,  the  global  economy  has  experienced
rapid  development,  leading  to  the  reform  and
innovation  of  job  shop  models.  The  traditional  large-

scale  manufacturing  has  gradually  changed  to  small
batch and multi variety customization, and meanwhile,
the  energy  utilization  and  processing  efficiency  have
been paid more and more attention by complex product
manufacturing  enterprise,  such  as  the  special  vehicle
equipment  manufacturing  enterprises.  The  special
vehicle plays an important role in special task scenarios
such  as  patrol,  transportation,  disaster  prevention,  etc.
that  can  effectively  improve  the  efficiency  of  social
development  with  their  specialized  nature.  With  the
diversification  of  market  demand,  special  vehicle
manufacturing  enterprises  also  face  many  challenges,
and  how  to  quickly  deliver  products  has  become  the
core  of  enterprise  competition.  In  the  practical
manufacturing  workshop,  each  part  can  be  processed
by  different  manufacturing  equipment,  and  the
processing  time  of  the  same  type  of  parts  also  varies
with  the  different  working  years,  manufacturers  and
power  consumption  of  the  equipment.  At  the  same
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time, with the increase of uncertain interference factors
in  practical  production  environment,  the  traditional
scheduling  strategy  cannot  meet  the  demand  of
scheduling  manager.  Therefore,  how  to  generate
feasible  and  effective  scheduling  scheme  is  a  key
problem  that  managers  urgently  need  to  solve.  The
scheduling  of  the  special  vehicle  manufacturing
workshop  can  be  taken  as  the  Flexible  Job  shop
Scheduling  Problem  (FJSP),  which  is  an  extension  of
the Job Shop Problem (JSP) and widely recognized as a
NP-hard  problem[1].  To  address  this  challenge,
intelligent  search  algorithms  are  often  employed  to
obtain  better  approximate  optimal  solutions[2-4].  The
intelligent  search  algorithm  provides  a  specific
approximate  optimal  solution  for  the  FJSP[5].  Meng
et  al.[6] addressed  the  Autonomous  Guided  Vehicles
(AGV) constraint problem in the FJSP and propose an
improved  Genetic  Algorithm  (GA)  to  solve  it.  Long
et  al.[7] combined  the  Q-learning  algorithm  with  the
artificial  swarm  algorithm  to  create  a  self-learning
artificial swarm algorithm for the insertion of new jobs
in  the  FJSP  and  demonstrate  the  effectiveness  of  the
algorithm through example analysis. Li et al.[8] applied
a  Hybrid  Chemical  Reaction  Optimization  (HCRO)
algorithm to address the distributed FJSP, they develop
a  novel  encoding-decoding  method  for  Flexible
Manufacturing  Unit  (FMU)  and  design  an  improved
method  of  critical-FMU  to  improve  the  global  and
local search ability of the algorithm. Duan and Wang[9]

introduce  two  metrics  to  assess  the  robustness  of  the
system  which  refers  to  dynamic  events  like  machine
failures and new job arrivals, a multi-objective particle
swarm optimization algorithm has  been constructed to
solve it that mainly focuses on the total system energy
consumption,  manufacturing  time,  and  integrated
reusability.  The  improved  intelligent  search  algorithm
can  yield  better  results  when  solving  the  FJSP.
However,  the  time  required  to  solve  the  problem
increases as the problem size increases[10], and it needs
to  be  solved  again  when  the  shop  processing
parameters change.

With the scale of the problem increasing, it not only
results  in  higher  computational  cost  but  also  fails  to

provide a more desirable approximate optimal solution
within  a  reasonable  time  to  meet  the  scheduling
requirements.  Therefore,  the  Dispatching  Rule
(DR)[11,12] which  can  solve  the  FJSP  with  a  lower
computational  complexity  has  been  attracted  by  many
research  scholars.  The  DR  method  has  a  lower
computational  complexity  and  is  easier  to  implement,
resulting  in  faster  response  speeds.  It  can  effectively
meet  the  actual  production  needs  of  the  workshop.
When compared to heuristic algorithms, the advantages
of the DR method are more pronounced for large-scale
workshop  scheduling  problems[13].  DR,  known  as  the
priority  assignment  rule[14],  sorts  the  processed
workpieces  based  on  their  priority  and  addresses  two
subproblems in shop scheduling: operations sequencing
and machine selection[15]. The comparison between the
intelligent search algorithm and DR for solving FJSP is
shown in Table 1.

The DR can be separated into single DR (SDR) and
composite  DR  (CDR).  The  SDR  contains  the  Earliest
Due  Date  (EDD)[16],  Shortest  Processing  Time
(SPT)[17],  First  In  First  Out  (FIFO)[18],  Longest
Processing Time (LPT), Slack Time (ST), etc.[19] Chen
and  Matis[20] applied  an  SDR  to  optimize  the  mean
tardiness  of  weighted  workpieces  in  a  job  shop  and
achieve  favorable  outcomes.  Mihoubi  et  al.[21]

proposed  an  agent-assisted  simulation-based
experimental  optimization  method  for  the  combined
optimization  problem  associated  with  FJSP,  it  can
balance the short-term reactivity of the shop in the face
of  repeated  perturbations  and  the  overall  performance
of  the  manufacturing  system.  Heger  and  Voss[22]

integrated  the  traditional  FJSP  with  AGV  to  optimize
the  operation  sequence  and  vehicle  scheduling.
Teymourifar et al.[23] constructed a due date allocation
model  of  a  dynamic  FJSP,  propose  a  new SDR based
on  the  combination  characteristics  of  job  shops,  and
validate  the  model  through  simulation.  Đurasević  and
Jakobović[24] proposed  a  DR  selection  procedure  to
select the appropriate DR from the set of evolved DRs
based  on  the  features  of  the  problem  instances  to  be
solved,  which  achieves  better  results  than  those

 

Table 1    Comparison of intelligent search algorithms and DR.
Contrast content Intelligent search algorithm DR
Calculation result Specific solution Priority rule

Scheduling method Specific solution guides scheduling program Priority guides scheduling program
Complexity Relatively high Relatively low
Reusability Not reusable Reusable
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obtained when only a single DR is selected. Now, some
literatures  use  deep  reinforcement  learning  (DRL)  to
solve  such  problems[25].  Chang  et  al.[26] focused  on
providing  an  optimal  dispatching  algorithm  for  the
AGV  in  a  mobile  metal  board  manufacturing  facility,
and  used  DRL  to  learn  an  AGV’s  dispatching
algorithms.  Song  et  al.[27] considered  the  well-known
FJSP  and  address  these  issues  by  proposing  a  novel
DRL method to learn high-quality Priority Dispatching
Rules  (PDRs)  end  to  end.  Liu  et  al.[28] developed  a
novel  DRL-based  PMS  method,  this  can  efficiently
select  a  sequence  of  DRs  based  on  the  current
environment  or  unexpected  events.  Gui  et  al. [29]

proposed  a  scheduling  method  based  on  DRL  for  the
dynamic  flexible  job-shop  scheduling  problem,  which
achieves significantly better scheduling results than an
SDR  and  the  DQN-based  method.  Min  and  Kim[30]

proposed  a  reinforcement  learning-based  Apparent
Tardiness Cost (ATC) DR that estimates the lookahead
parameter directly from raw job data. The proposed DR
displayed the best performance in the main experiment,
which  compared  the  performance  with  five  existing
DRs.  However,  the  applications  of  SDR only  utilize  a
portion  of  the  feature  information  from  the  shop
production scheduling process,  resulting in suboptimal
performance[31].  To  overcome  the  limitation  of  the
SDR, the CDR is obtained by combining the SDR with
different  operators.  The  CDR  has  higher  performance
and inherits  the advantages of SDR [32].  There are two
methods  for  establishing  CDR:  manual  method,  and
heuristic  combination  by  using  intelligent  algorithm.
Because  the  characteristic  parameters  of  FJSP  are
generally  large,  designing  CDR  manually  is  not  only
time-consuming  but  also  leads  to  relatively  poor
optimization performance[33, 34]. With the advancement
of  intelligent  algorithms,  several  researchers  have
explored  the  generation  of  CDR  by  applying  the
intelligent  algorithms.  Durasević  and  Jakobović[35]

employed  an  evolutionary  algorithm  to  generate  job
shop  CDR  and  achieve  improved  mean  flow  time.
Shady et al.[36] developed an adaptive feature selection
mechanism  that  utilizes  a  new  expression  for  Genetic
Programming  (GP)  rules.  The  GP  algorithm  is
relatively  simple  to  operate  and  offers  high  flexibility
and  a  learning  mechanism,  which  is  suitable  for
heuristic combination of different SDRs[37]. Xu et al.[38]

developed  a  heuristic  template  for  making  delayed
routing  decisions  and  three  different  delayed  routing
strategies  with  optimization  objectives  of  energy

efficiency and mean tardiness, the results of compared
experiments  demonstrate  that  the  Genetic
Programming  Hyper-Heuristic  (GPHH)  approach  with
delayed routing outperforms the state-of-the-art GPHH
approach.  Zhang  et  al.[39] proposed  a  hybrid  GP
algorithm to develop a DR for an intelligent job shop,
and verify the effectiveness of the developed algorithm
by  conducting  a  study  on  two  real  scenarios.  Jun  and
Lee[40] introduced a decision-tree-based approach with
feature  construction  and  tree-based  learning,  it  can
automatically  extract  DR  from  existing  or  well-
performing DRs. Wang et al.[41] conducted research on
the  daily  surgery  scheduling  problem  with  operating
room  eligibility  and  dedicated  surgeons,  and  propose
an  adaptive  composite  dispatching  method  that
combines  three  popular  rules  to  address  this  problem.
Nguyen  et  al.[42] developed  a  new  agent-assisted  GP
algorithm  to  improve  the  computational  requirements,
accuracy,  and  quality  of  the  evolutionary  rules  of  the
GP algorithm.  Mei  et  al.[43] proposed a  GP algorithm-
based  feature  selection  algorithm  for  FJSP  which  can
effectively  reduce  the  computation  time,  and  the
algorithm’s  fitness  values  are  evaluated  by  using  a
simulation model.

The GP algorithm, commonly used for mining CDR
in workshops, has shown high performance. However,
few  studies  have  applied  the  Improved  GP  Algorithm
(IGPA) to solve FJSP, and also few studies have used
DRs  as  the  action  set  in  the  computation  process  of
DRL-based FJSP solution  that  can  verify  the  different
performance of CDR and SDR by counting the selected
times.  Therefore,  this  paper  presents  an  IGPA  for
mining  CDR  in  solving  FJSP.  Firstly,  a  strategy  of
separating  the  population  into  superior  and  inferior
populations  are  introduced  to  increase  diversity  and
avoid  early  convergence  to  local  optimal  solutions.
Secondly,  a  leaf  node  mutation  and  non-leaf  node
mutation strategy are applied to enhance the algorithm’s
local  search  ability.  Additionally,  a  normalization
method is employed to normalize the terminator set of
IGPA  individuals,  ensuring  the  algorithm’s  overall
performance.  Moreover,  the  optimized  CDR’s
performance  is  validated  by  applying  it  to  solve  FJSP
with  different  sizes  and  comparing  it  with  existing
SDR. Finally, the DRL is used to solve FJSP to further
demonstrate CDR’ superiority by taking different DRs
as the action set of DRL.

The  remainder  of  this  paper  is  divided  into  five
sections,  Section  2  describes  the  FJSP  and
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corresponding  model  construction.  Section  3
introduces  the  proposed  IGPA.  Sections  4  and  5
present  the  simulation  experiments,  comparisons  and
analysis.  Section  6  shows  the  conclusions  and  future
work.

2　Problem  Description  and  Model
Construction

J = {J1,

J2, ..., Jn} m
M = {M1,M2, ...,Mm} Ji

Ni

Oi = {Oi,1,Oi,2, ...,Oi,Ni } Oi j

Mi, j ⊆ M

FJSP can be described as follows: In FJSP, there are n
workpieces  to  be  processed,  denoted  as 

,  which  can  be  processed  on  machines
denoted as . Each workpiece  has

 operations with sequential constraints, expressed as
.  Each  operation  has  one  or

more  optional  processing  machines,  denoted  as
.  Additionally,  each  operation  alternative

concentration  of  machines  to  process  the  operation
consumes different processing times.

2.1　Assumptions

To  facilitate  the  construction  of  the  mathematical
model, the following assumptions are introduced in this
paper for FJSP:

(1) All equipment is available at time 0.
(2) Once a workpiece has begun processing, it cannot

be interrupted until it is completed.
(3) The conversion time of the processing equipment

and  transportation  time  between  different  operations
are not considered.

(4)  Machine  failure,  material  shortage,  etc.  are  not
considered.

(5)  The  processes  of  different  workpieces  are
independent  of  each  other  and  there  is  no  sequential
constraint relationship.

(6) The due date for each workpiece is predetermined
and fixed during processing.

2.2　Variable definition

2.3　Model construction

Job  shop  scheduling  aims  to  optimize  one  or  more
specific  performance  indicators  by  arranging
operations  sequencing  and  machine  selection  while
meeting assumptions and constraints. In this paper, the
objective of the FJSP is to minimize the MCT.

Objective function:
 

f1 =max{Ci|i = 1,2, ...,n} (1)

The constraint in Eq. (2) states that each operation of
each workpiece can only be processed by one optional
machine.
 

MN j∑
l=1

αi jl = 1,∀i, j; i = 1,2, ...n; j = 1,2, ...,b; l = 1,2, ...,MN j

(2)

The constraint in Eq. (3) indicates that a machine can
only  process  one  operation  of  a  workpiece  at  a  time,
and  there  are  sequential  constraints  for  different
workpieces on the same processing machine.
 

S i, j+

m∑
k=1

Pi jkβi jk ⩽ S i′, j′ + I(1− θi
′, j′

i, j ), i, i′ = 1,2, ...n;

 

j = 1,2, ...,bi; j′ = 1,2, ...,bi′ (3)

 

Table 2    Parameter and meaning.
Parameter Meaning

n Total number of workpieces
m Total number of machines
Ni iTotal number of operations for workpiece 
i i ∈ {1,2, ...,n}Workpiece index number, 
j j ∈ {1,2, ...,Ni}Work order index number, 
k k ∈ {1,2, ...,m}Machine index number, 

l
The index number of the processing machine

of the j-th operation
(to be continued)

Table 2    Parameter and meaning. (continued)
Parameter Meaning

Ji The i-th workpiece to be processed
Oi, j JiThe j-th operation of 
Mk The k-th machine
Mi, j Ji jThe set of optional machines for  in operation 

Ci i
Completion time of the last operation of the

workpiece 
Di JiDue date of 

MN j Number of machines available for the j-th operation
M j,l The l-th available machine of the j-th operation
S i, j Oi, jStart processing time of operation 
Pi jk Oi, j MkProcessing time of operation  on the machine 

I A large enough positive number
bi JiTotal number of operations of workpiece 

Ei, j
j

i
Completion time of the operation  corresponding to

the workpiece 

θ
i′, j′

i, j
Oi, j

Oi′ j′ θ
i′, j′

i, j θ
i′, j′

i, j

0-1 variable: if operation  is processed before
operation , =1; otherwise =0

αi jl
Oi, j

M j,l αi jl αi jl

0-1 variable: if operation  is processed on machine
, =1; otherwise =0

βi jk
Oi, j

Mk βi jk βi jk

0-1 variable: if operation is selected to machine
, =1; otherwise =0
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Each workpiece must follow a specific process route
and  there  is  a  sequence  relationship  between  the
various operations of the same workpiece, as expressed
in Eq. (4) and Eq. (5).
 

Ei, j ⩽ S i′, j′ + I · (1− θi
′, j′

i, j ),∀i, i′, j, j′; i, i′ = 1,2, ...,n;
 

j, j′ = 1,2, ...bi (4)
 

Ei′, j′ ⩽ S i, j+ I · θi
′, j′

i, j ,∀i, i′, j, j′; i, i′ = 1,2, ...,n;
 

j, j′ = 1,2, ...bi (5)
The  constraint  in  Eq.  (6)  indicates  that  once

processing  has  begun,  the  workpiece  cannot  be
interrupted.
 

Ei, j = S i, j+

m∑
k=1

Pi jkβi jk, i = 1,2, ...,n; j = 1,2, ...,bi (6)

2.4　Composition of combination rule

CDR is  a  heuristic  approach that  improves  production
scheduling  processes  by  combining  information  from
multiple sources. It is typically represented by a binary
tree, which includes a terminator set and a function set.
These  sets  contain  important  information  for  the
algorithm’s  operation.  Therefore,  selecting  the
appropriate  function  set  and  terminator  set  not  only
reduces  the  search  space  of  the  algorithm  but  also
enhances  the  rationality  of  CDR,  which  is  crucial  for
improving the effectiveness of the solution.

(1) Determination of terminator set
The  representative  characteristic  parameters  of  the

workshop are selected as the terminator set of CDR to
obtain  higher-quality  solutions  for  solving  FJSP,  and
the specific terminator sets are shown in Table 3.

(2) Determination of function set
Based  on  Reference  [37],  in  order  to  get  a  better

combination  of  DRs  and  ensure  population  diversity,
the  maximum  and  minimum  functions  are  introduced
and the specific function set is shown in Table 4.

3　IGPA

The  GP  algorithm,  proposed  by  Koza  in  1994,  is  an
evolutionary  computational  method  that  imitates  the
idea  of  biological  evolution[44].  Similar  to  GA,  it
contains  population  initialization,  crossover,  mutation,
and  selection  for  iterative  operations  to  obtain  an
approximate  optimal  solution.  However,  the  GP
algorithm  distinguishes  itself  by  allowing  dynamic
changes in the logical structure and size of individuals,

making  it  suitable  for  solving  more  complex
problems[45].  Unlike  heuristic  optimization  algorithms
that  produce  specific  solutions,  the  GP  algorithm
generates  heuristic  rules  that  can  produce  specific
solutions.  An example of  a  CDR generated by the GP
algorithm  is  shown  in Fig.  1,  the  terminator  of  the
binary  tree  represents  an  SDR,  and  the  expression  of
the CDR is obtained by performing an inorder traversal
of the binary tree.

The CDR guides the FJSP in generating the pseudo-
code  process  for  a  specific  scheduling  scheme  as
shown in Algorithm 1.

In the heuristic combination of SDRs, the terminator
and  function  sets  of  the  formed  binary  tree  are
randomly  chosen.  However,  the  non-uniformity  of  the

 

Table 3    Terminator set.
Full name Abbreviation Meaning

Processing Time PT Processing time of operation
Weight W Workpiece weight

Due Date DD Due date of the workpiece

Num of Operations NOP Total number of operations of
workpiece

Avg Total Process
Time ATPT Average total processing time

of the workpiece
Remaining

Processing Time RPT Remaining processing time of
the workpiece

Num of Operations
Remaining NOR Number of operations

remaining on the workpiece
Current Time CT Current time

Next Processing
Time NPT Processing time of next

operation
Release Date RD Workpiece Release date

 

Table 4    Function set.
Function symbol Meaning

+ Terminator summation
− Terminator subtraction
* Terminator multiplication

/ Divide by terminator and return 1
if the divisor is 0

Max Take maximum value
Min Take minimum value

 

PT RDDD W

*

+

−

 
Fig. 1    GP tree of “(DD*W) + (PT−RD)”.
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terminator’s  magnitude  often  leads  to  more
meaningless  solutions  when  direct  function  operations
are performed. This significantly hampers the evolution
speed of the algorithm. For instance, the generated DR
(DD*W)  +  (PT−RD)  cannot  be  functionally  operated
theoretically.  Nevertheless,  it  is  inevitable  to  generate
such solutions during the population evolution process.
To  improve  the  overall  performance  of  the  algorithm
for  its  normalization  process,  this  paper  employs  a
normalization treatment for an SDR, the priority value
of a SDR is unified in the range of 0-1 to facilitate the
calculation  of  the  algorithm,  and  it  is  applicable  to
large,  medium,  and  small  three  scale  models,  it  is
shown in Eq. (7).
 

Ra,i =
ai−αmin

αmax−αmin
(7)

αmin αmax

a

ai a i
Ra,i i

a

In  Eq.  (7),  and  are  the  minimum  and
maximum  values  of  the  workpiece  attribute 
determined  by  an  SDR  in  the  workpiece  to  be
processed;  is the value of attribute  of workpiece 
and  is  the  priority  of  workpiece  determined  by
attribute  after the normalization process.

i
Taking  the  NOR  as  an  example,  the  priority  of  the

workpiece  after  the  normalization  process  can  be
expressed as

 

RNOR,i =
NORi−NORmin

NORmax−NORmin
(8)

NORmin NORmax

NORi

i RNOR,i

i

In  Eq.  (8),  and  are  the  minimum
and  maximum  values  of  the  number  of  remaining
operations  of  the  workpieces  to  be  processed,
respectively;  is  the  number  of  remaining
operations of the workpiece ;  is the priority of
the workpiece  determined by the SDR and NOR after
normalization.

3.1　Population initialization

The  genetic  diversity  of  the  offspring  population  is
primarily  influenced  by  the  initial  population.
According to the method described in Ref. [40], half of
the  individuals  are  generated  using  the  growth
generation  method,  while  the  other  half  are  generated
using  the  full  generation  method.  The  growth
generation  method  randomly  selects  the  depth  value
within a given maximum depth to create the IGPA tree,
and  the  full  generation  method  sets  the  depth  of  the
IGPA  tree  to  ensure  that  all  created  IGPA  trees  have
the  same  depth  and  shape.  Therefore,  the  hybrid
generation  method  combines  the  advantages  of  them
and  plays  a  crucial  role  in  speeding  up  algorithm
convergence. Figures  2 and 3 show  the  individuals
generated by the growth generation method and the full
generation  method,  respectively.  In Fig.  2,  the
maximum  depth  is  set  to “3”,  and  individuals  are
constructed  by  randomly  selecting  depth  values
between “1” and “3” to form the IGPA tree. In Fig. 3,
 

DD RD

+
RD

CT NOR

−

+

(a) Depth value “1” (b) Depth value “2”

PT RD

/

NPT CTATPT W

/

−

−

+

(c) Depth value “3” 
Fig. 2    Growth generative IGP tree.

 

Algorithm 1　CDR guidance generation scheduling program
Input Workpiece set J

OutputSpecific scheduling solution
1 Begin

2
　Calculation of the priority of the operation based
　on CDR;

3 　Ranking of operations according to their priority;
4 　If the sequence has the same priority do
5 　　Randomizing the operations;
6 　Else
7 　　Ranking of operations by priority;
8 　End if

9
　Selection of equipment for the process based
　operation sequence;

10
　Calculate the cumulative process time for the optional
　processing machine;

11
　If only one machine with the shortest cumulative
　process time do

12 　　Select this equipment to process the operation;
13 　Else
14 　　Random selection of processing equipment;
15 　End if
16 　Return Operation sequence and machine selection;
17 End
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the full  generation method applies  a  fixed depth value
“3”.

3.2　Adaptation evaluation

The IGPA individual refers to a collection of computer
programs that are represented as a tree structure. These
programs  are  capable  of  calculating  the  processing
priority  of  a  workpiece  and  determining  various
parameters  such  as  completion  time  and  delay  time
based  on  the  priority.  For  this  study,  the  MCT  is
selected  as  the  adaptation  function  to  address  the
scheduling problem.

3.3　Population evolution

(1) Crossover
In IGPA, two parent individuals are randomly chosen

and a random number is generated. This number is then
compared with the crossover probability. If the random
number  is  smaller  than  the  crossover  probability,  the
crossover  operation  is  executed.  Otherwise,  the
operation  proceeds  to  the  next  step.  During  the
crossover  operation,  two  non-leaf  nodes  are  randomly
selected from the parent generation. The subtrees with
these two nodes  as  the  root  nodes  are  exchanged with
each  other,  resulting  in  two  child  individuals.  This
process is shown in Fig. 4.

(2) Mutation
When  performing  mutation  operations,  randomly

select  nodes  other  than  the  root  node  as  mutation
points.  There  are  two  mutation  forms:  leaf  nodes  and
non-leaf  nodes  mutation.  If  the  selected  node is  a  leaf
node,  select  an  element  from  the  terminator  set  to
replace  it.  If  the  selected  node  is  a  non-leaf  node,
deleting the subtree with this node as the root and then
regenerating  a  new  subtree.  The  depth  of  the  new
subtree  should  not  exceed  the  maximum  depth,  as
shown in Fig. 5.

(3) Selection
To  increase  the  evolutionary  rate  of  the  population

and maintain diversity, a roulette selection operation is
introduced  during  the  selection  operation,  as  well  as
incorporating  an  elite  retention  strategy,  and  the
individuals with the best fitness values in the previous
generation are directly retained to the next  generation.
To prevent the algorithm failing into the local optimal
solution,  a  dynamic  population  strategy  is  used  to
divide  the  population  into  superior  population  and
inferior  population  according  to  the  size  of  fitness
value.  To  ensure  the  high-quality  individuals  in  the
population  have  a  high  probability  of  being  inherited
and  improve  the  population  diversity,  each  population
size  is  set  to  50% of  the  total  population.  Different
update  strategies  are  implemented  for  the  two
populations  to  improve  the  local  and  global  search
ability of the IGPA, which is shown in Fig. 6.

3.4　IGPA flowchart

The  flowchart  IGPA  is  illustrated  in Fig.  7,  and  the
execution steps are as follows:

Step  1: Generating  the  initial  population  by  the
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*
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/
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Fig. 3    Full generative IGP tree with value “3”.
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Fig. 4    IGPA tree crossover operation.
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(b) Non-leaf node mutation 
Fig. 5    IGPA tree mutation operation.
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population initialization strategy in Section 2.1.
Step 2: Calculating the population fitness value and

ranking  them in  ascending  order  by  fitness  value,  and
dividing the ranked populations into two equal parts to
get the “superior population” and “inferior population”.

Step  3:  Updating  the “superior  population” by
applying  the  crossover  and  mutation  strategies  in

Section  2.3,  the “inferior  population” is  updated  by
randomly generating new individuals instead of the old
ones.

Step  4: Incorporating  the  updated “superior
population” and “inferior  population” and  the  roulette
selection operation and the elitist preservation strategy
are used for population evolution.

Step  5: Repeating Step  2 − Step  4 until  the
algorithm  satisfies  the  termination  condition  and
outputting the solution.

4　Simulation Experiment

4.1　Simulation scenario construction

In order to verify the effectiveness of scheduling rules
guiding the generation of scheduling schemes for shop
scheduling problems, the FJSP is extended on the basis
of  special  vehicle  parts  production  workshops.  Based
on  the  resource  selection  constraints  and  the  level  of
flexibility,  the  FJSP  can  be  classified  into  two  types:
total  FJSP  (T-FJSP)  and  partial  FJSP  (P-FJSP).  The
degree  of  flexibility  coefficient  is  introduced  in  this
paper,  and  dividing  the  FJSP  into  three  types:  100%

 

Population

New population

Ranking of fitness values divide the 
population evenly

Superior 
population

Crossover, mutation to 
renew population
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Fig. 6    Strategies  for  separating  superior  and  inferior
population.
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Fig. 7    IGPA flowchart.
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M = {5,10,15}

J = {10,20,50,100,200}

flexible,  60% flexible,  and  30% flexible.  The  higher
the  flexibility  coefficient,  the  more  operations  the
workshop  machine  can  handle.  The  workshop
machines  are  categorized  into  three  sizes:

,  indicating that the number of machines
in  workshops  of  different  sizes  are  5,  10,  and  15,
respectively. The number of workpieces is divided into
five categories , and to make the
research  closer  to  a  real  production  scenario  and
balance the machine workload, the combination of the
number of workpieces and machines is limited, and the
combination  mode  is  shown  in Table  5[46].  The  case
follows  the  naming  rule “the  number  of  workpieces-
number  of  machines-flexibility  coefficient”,  e.g.,
J20M10F3 indicates 20 workpieces, 10 total machines,
and 30% flexibility  degree coefficient.  The processing
time of each workpiece in the flexible workshop varies
depending  on  the  selected  machine.  In  this  paper,  the
range  of  the  operations  number  for  each  workpiece  is
set as [1, 2m] and the corresponding operations number
is  randomly  distributed.  Additionally,  the  range  of
operation time is set as [m/2, 2m] and each operation’s
processing  time  is  randomly  distributed.  According  to
references [47] and [48], the confirmation of workpiece
weights  usually  depends  on  the  actual  production
situation of the workshop and the historical processing
data  of  the  workpieces,  and  a  specific  proportion  is
more in line with the actual processing situation of the
workpieces.  To  differentiate  the  importance  of
workpieces, different weights are assigned based on the
4:2:1  principle,  representing  important  workpieces,
relatively  important  workpieces,  and  generally
important workpieces. They account for 20%, 60% and
20% of  the  total  workpieces,  respectively.  Different
priorities  result  in  different  processing  sequences,
which  leads  to  different  maximum  completion  times
for each workpiece[47].

The  due  date  of  the  workpiece  is  determined  using
the total work content (TWK) rule and the due date for
each workpiece is defined as follows.
 

di = ri+α×
Ni∑
j=1

pi, j (9)

di ri

ri ∈ [0,20] ri = [0,40] α
α

Pi, j

Oi, j

In Eq. (9),  is the due date of the i-th workpiece; 
is  the  start  processing  time  of  the  workpiece.  If  the
number  of  workpieces  does  not  exceed  50,  then

.  Otherwise, ;  is  the  due-date-
tightness level, and the larger the value of , the looser
the  due  date.  is  the  processing  time  of  operation

.
Three different due-date-tightness levels “2, 4, 8” are

set to represent extremely urgent parts, urgent parts and
less urgent parts, and the mean total processing time of
each operation is defined as：
 

p̄i, j =

n(F(Oi, j))∑
k=1

pi, j,k

n(F(Oi, j))
(10)

Pi, j,k

Oi, j Mk n(F(Oi, j))
Oi, j

In Eq. (10),  is the processing time of operation
 on  machine .  is  the  number  of

machines that can process operation .
DRs  as  a  specific  representation  of  the  workshop’s

characteristics.  It  is  important  to  note  that  the  same
DRs  should  yield  the  same  results  for  workshops  of
different sizes. In this paper, the IGPA is employed to
obtain  CDRs.  The  training  set  consists  of  small-scale
workshops from Table 5. The generated CDRs are then
applied to solve scheduling problems in medium-scale
and  large-scale  workshops,  in  order  to  validate  their
effectiveness in FJSP scenarios.

4.2　Parameter setting

Id

Td

Pc Pm

En

L16(45)

The main parameters of IGPA are the initial maximum
depth  of  individuals  ( ),  the  maximum  depth  of
individuals after crossover mutation ( ), the crossover
probability ( ), the mutation probability ( ), and the
number  of  elitist  preservation  ( ).  In  this  paper,  the
parameters  of  IGPA will  be  set  by  the  orthogonal  test
method,  and  four  different  levels  of  values  are  set  for
each  parameter  which  is  shown  in Table  6.  Selecting

 orthogonal table, setting the maximum number
of  iterations  as  100,  taking  the  J50M10F6  as  an
example, each group running 20 times, and the average
value  of  MCT  is  taken  as  the  test  results  (which  is
shown  in Table  7,  and  the  unit  of  MCT  is  hour).
Simultaneously,  the  mean  value  of  each  parameter  at

 

Table 5    Workshop size information.
Scale Number of workpieces Number of machines

Small-scale
10 5
20 5
50 5

Medium-scale
20 10
50 10
100 10

Large-scale
50 15
100 15
200 15
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Id = 7 Td = 17
Pc = 0.3 Pm = 0.06 En = 10

different  levels  is  calculated,  and  the  change  trend  is
shown in Fig.  8,  the  smaller  the  value  of  MCT is,  the
stronger the optimization performance of the algorithm,
thus the parameters of IGPA are set as , ,

, , .

4.3　Analysis of result

The proposed method in this paper was implemented in
Python using PyCharm 2019.3.3 x64 on a Windows 10
machine with an Intel(R) Core (TM) i5-8250U CPU @
1.60  GHz,  16GB  RAM.  The  comparison  results
between  the  GP  algorithm  and  IGPA  are  shown  in
Table  8.  It  is  evident  that  the  IGPA  is  more  effective
than  the  GP  algorithm.  The  convergence  curve  of  the
approximate  solution  is  shown  in Fig.  9,  where  the
horizontal axis represents the number of iterations and
the  vertical  axis  represents  the  MCT  in  hours.  The
iteration  curve  of  IGPA  decreases  steadily  which
verifies  the  effectiveness  of  the  superior  and  inferior
populations strategy.

According to the orthogonal tests in Section 3.2, the
algorithm  can  get  a  higher  performance  when  the
number of elite reservations is 10, therefore, 10 optimal
DRs combinations  are  selected  in  the  form of  one  out
of two to obtain a better DRs combination. To facilitate
a comparison of the rules, five optimal rules (which are
illustrated  in Table  9)  from  the  better  CDRs  are
selected  and  compared  its  performance  with  five

 

Table 6    Parameter factor level.

Parameter
Parameter level

1 2 3 4
Id 5 6 7 8
Td 15 16 17 18
Pc 0.3 0.4 0.5 0.6
Pm 0.04 0.05 0.06 0.07
En 5 10 15 20

 

Table 7    Orthogonal test results.
Test

number
Parameter level Test result

average(h)Id Td Pc Pm En

1 5 15 0.3 0.04 5 448.16
2 5 16 0.4 0.05 10 450.34
3 5 17 0.5 0.06 15 447.51
4 5 18 0.6 0.07 20 452.22
5 6 15 0.4 0.06 20 452.39
6 6 16 0.3 0.07 15 450.16
7 6 17 0.6 0.04 10 450.3
8 6 18 0.5 0.05 5 452.39
9 7 15 0.5 0.07 10 446.5
10 7 16 0.6 0.06 5 447.56
11 7 17 0.3 0.05 20 445.27
12 7 18 0.4 0.04 15 448.15
13 8 15 0.6 0.05 15 446.56
14 8 16 0.5 0.04 20 451.1
15 8 17 0.4 0.07 5 448.86
16 8 18 0.3 0.06 10 441.91

 

 
Fig. 8    Variation trend of each parameter level.
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existing  SDRs  (SPT,  FIFO,  EDD,  LPT,  and  ST)  in
simulation experiments.

There  are  27  different  combinations  of  cases  based
on  the  size  of  the  workshop  and  the  degree  of
flexibility  coefficient.  To avoid the  randomness  of  the
experimental  results,  30  groups  of  cases  are

regenerated  and  which  have  been  solved  by  the  five
different  CDRs  and  SDRs,  and  30  groups  of
corresponding  results  are  averaged  which  is  presented
in Table  10.  It  also  can  be  seen  that  the  CDRs
outperform the SDRs.

In  order  to  validate  the  effectiveness  of  CDR,  the

 

Table 8    Comparison of MCT (h).
Example scale Example name GP algorithm IGPA

Small-scale
J10M5F10 50 41
J20M5F10 66 60
J50M5F10 135 127

Medium-scale
J20M10F10 124 113
J50M10F10 236 228
J100M10F10 452 435

Large-scale
J50M15F10 269 253
J100M15F10 588 571
J200M15F10 942 927

 

 
Fig. 9    Example iteration graph.
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data  from Table  10 has  been  processed  and  analyzed
from four different perspectives.

(1) Generality of CDR
To  investigate  the  effectiveness  of  the  same  DR  in

workshops  of  different  sizes,  the  lower-size  workshop
is used as the training set to obtain a better CDR which
is  applied  to  solve  the  medium  and  higher-size
workshops  and  compared  with  the  common  SDR.
Figure 10 presents the performance of each DR in three
different size workshops.

To  further  compare  and  analyze  the  performance
difference of each DR at different workshop sizes,  the
variance  analysis  method  based  on  change  ratio  is
introduced  to  compare  whether  there  is  an  overlap
between  the  sample  means  of  SDR  and  CDR  at
confidence intervals above 0.95. The results are shown
in Fig. 11, where there is some overlap between Rule_3
and  FIFO,  but  the  optimization  results  are  better  in
comparison.  Rule1,  Rule_2,  Rule_4,  Rule_5,  and  the
other  rules  do not  overlap  and the  MCT is  lower  than

 

Table 9    Five different CDRs.
CDRs Rule expression
Rule_1 ATPT+2RD-CT+PT
Rule_2 min{DD/ATPT,2W*RPT}
Rule_3 CT*max{NPT,NOR}+3ATPT
Rule_4 RD*(3NOP-ATPT)
Rule_5 2CT-NPT+3RPT

 

Table 10    Comparison results between SDRs and CDRs.
Scale Example name SPT FIFO EDD LPT ST Rule_1 Rule_2 Rule_3 Rule_4 Rule_5

Small-scale

J10M5F3 115.3 104.7 116.2 127.6 109.6 91.6 95.7 98.1 92.4 94.9
J10M5F6 85.7 77.8 86.3 94.8 81.4 68.1 71.1 72.9 68.7 70.5
J10M5F10 53.6 48.6 54.0 59.3 50.9 42.5 44.4 45.6 42.9 44.1
J20M5F3 204.0 185.3 205.5 225.8 193.9 162.1 169.3 173.6 163.5 167.9
J20M5F6 139.2 126.4 140.3 154.1 132.3 110.6 115.5 118.5 111.6 114.6
J20M5F10 80.3 72.9 80.9 88.9 76.3 63.8 66.7 68.4 64.4 66.1
J50M5F3 470.1 426.9 473.6 520.3 446.8 373.5 390.1 400.0 376.7 386.9
J50M5F6 299.9 272.3 302.1 331.9 285.0 238.3 248.9 255.2 240.3 246.8
J50M5F10 160.7 145.9 161.9 177.8 152.7 127.6 133.3 136.7 128.7 132.2

Medium-scale

J20M10F3 378.8 344.5 380.8 420.4 361.0 301.6 312.8 320.7 304.2 312.1
J20M10F6 257.9 234.6 259.3 286.2 245.8 205.3 213.0 218.4 207.1 212.5
J20M10F10 149.2 135.7 149.9 165.5 142.2 118.7 123.2 126.3 119.8 122.9
J50M10F3 872.9 793.9 877.4 968.7 831.9 694.9 720.9 739.1 701.0 719.2
J50M10F6 556.9 506.5 559.7 618.0 530.7 443.3 459.9 471.5 447.2 458.8
J50M10F10 298.3 271.3 299.9 331.1 284.3 237.5 246.4 252.6 239.6 245.8
J100M10F3 1696.4 1542.8 1705.1 1882.6 1616.7 1350.4 1400.9 1436.3 1362.4 1397.7
J100M10F6 1054.1 958.6 1059.5 1169.8 1004.5 839.1 870.5 892.4 846.5 868.5
J100M10F10 546.9 497.4 549.7 607.0 521.2 435.4 451.7 463.1 439.2 450.6

Large-scale

J50M15F3 973.8 886.2 978.6 1077.9 927.9 775.0 803.6 824.9 783.2 802.0
J50M15F6 621.2 565.4 624.3 687.6 591.9 494.4 512.7 526.2 499.7 511.6
J50M15F10 332.8 302.9 334.4 368.4 317.1 264.9 274.7 281.9 267.7 274.1
J100M15F3 1892.4 1722.3 1901.8 2094.7 1803.2 1506.1 1561.8 1603.0 1522.1 1558.6
J100M15F6 1175.9 1070.2 1181.7 1301.6 1120.5 935.8 970.4 996.1 945.8 968.5
J100M15F10 610.1 555.3 613.2 675.3 581.4 485.6 503.5 516.8 490.7 502.5
J200M15F3 3729.7 3394.4 3748.2 4128.4 3554.0 2968.4 3078.1 3159.4 2999.9 3071.8
J200M15F6 1938.5 1764.3 1948.2 2145.8 1847.2 1542.8 1599.9 1642.1 1559.2 1596.6
J200M15F10 1164.8 1060.1 1170.6 1289.3 1109.9 927.0 961.3 986.7 936.8 959.3
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that of the SDR.
(2) Stability of CDR
Figure  12 illustrates  the  performance  of  each  DR at

three  different  degrees  of  workshop  flexibility
coefficients  (100%,  60%,  and  30%).  It  reveals  that  as
the  workshop  flexibility  coefficient  decreases,  the
objective  value  of  each  DR  gradually  increases.
Among  the  various  SDRs,  CDRs  perform  better  at
different  degrees  of  workshop  flexibility,  indicating
their strong ability to resist external disturbances.

(3)  Influence  of  delivery  date  margin  coefficient  on

CDR

α = 2 α = 4 α = 8

When  generating  extension  cases,  three  different
delivery  date  margin  coefficients  are  set.  The
coefficients , ,  represent  extremely
urgent  workpieces,  urgent  workpieces,  and less  urgent
workpieces respectively,  the optimization performance
is  presented  in Fig.  13 and  the  MCT  for  each  rule  is
shown in Table 11. It can be seen that the delivery date
margin coefficients have a minor impact  on the MCT.
The reason is that  the delivery date margin coefficient
mainly  affects  the  mean  tardiness  weight  of  the
workpiece. In addition, the FIFO rule demonstrates the
best  performance  in  optimizing  the  minimized  MCT.
The FIFO rule employs the RD to schedule workpieces
to be processed, and the workpieces with an earlier RD
date  have  a  higher  probability  of  being  selected  for
processing compared to the workpieces with a later RD
date,  which  ultimately  reduces  the  total  processing
time.

(4) Performance of CDR on mean weighted tardiness
of workpieces

As  shown  in Fig.  14,  the  optimization  performance
of  different  DRs  on  the  mean  weighted  tardiness  of
workpieces  has  been  compared.  With  the  due  date
margin  coefficient  increases,  the  performance  of  the
DR gradually improves. The main reason is that as the

 

 
Fig. 10    DRs performance at different scales.

 

 
Fig. 11    Upper  and  lower  bounds  of  the  sample  mean with
the 95% confidence interval.

 

 
Fig. 12    Performance of DRs with different flexibility coefficients.
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due date margin coefficient increases, the delivery date
of the workpiece will also increase. The FIFO performs
the  worst  due  to  the  fact  that  it  only  considers  the
weight of the workpiece based on its arrival sequence,
without  considering  the  processing  time  and  delivery
date of the workpiece.

5　DRL-Based  Analysis  of  the  CDRs
Performance

In  order  to  further  verify  the  superiority  of  the  CDRs
compared  with  the  SDR  in  solving  FJSP,  the  CDRs
generated  in  Section  3  and  the  SDRs  are  taken  as  the
optional  action  set  of  DRL  in  solving  FJSP.  Making
statistics on the action selection in the DRL calculation
process,  i.e.,  the  number  of  times  CDR  and  SDR  are
selected.  If  CDR  is  selected  more  times  than  SDR,
CDR  has  better  performance.  Otherwise,  SDR  has
better performance.

5.1　State characteristics definition

Flexible  job  shops  are  complex  and  diverse,  with  a
production  process  that  involves  multiple  parameters.
Choosing  appropriate  state  characteristics  can
effectively  improve  the  perception  of  the  scheduling
system.  Two types  of  state  characteristics  are  defined,
one  is  the  equipment  and  describes  its  operational
status, and the other is the workpiece and describes its
processing. The details are as follows.

(1) Average machine load
 

Uave(t) =

m∑
k=1

Uk(t)

m
(11)

m
Uk(t) k
t

In Eq. (11),  is the number of processing machines
and  denotes  the  utilization  rate  of  machine  at
time .
 

Uk(t) =

n∑
i=1

pik

MCTk(t)
(12)

Pik

Ji k
MCTk(t)

k t

In  Eq.  (12),  denotes  the  time  required  for  the
workpiece  to  be  processed  on  the  machine  and

 denotes the cumulative processing time of the
machine  at moment .

(2) The ratio of the remaining processing operations
at the current decision-making time to the total number
of operations.
 

OR =

n∑
i=1

ui

m×n
(13)

ui

i
In  Eq.  (13),  indicates  the  number  of  operations

remaining for the workpiece .
(3) The ratio of the remaining processing time of the

workpiece  at  the  current  decision-making  time  to  the
total processing time.
 

TR =

n∑
i=1

u∑
j=1

Pi j

n∑
i=1

m∑
j=1

Pi j

(14)

(4)  The  ratio  of  the  minimum  delay  time  to  the
maximum  delay  time  at  the  current  decision-making
time.
 

DT =
min(t−DDi j)
max(t−DDi j)

(15)

(5)  The  operation  delay  ratio  is  the  ratio  of  the
average  processing  time  and  the  average  relaxation
time  of  the  remaining  workpieces  at  the  current
scheduling time.
 

Tard =
EMPT

EMS T +λ
(16)

 

 

 
Fig. 13    Performance  of  DRs  with  different  delivery  date
margin coefficients.

 

Table 11    MCT of each rule in different delivery date margin coefficients.
α SPT FIFO EDD LPT ST Rule_1 Rule_2 Rule_3 Rule_4 Rule_5
2 737 670 740 816 702 586 608 624 592 607
4 730 664 734 809 695 581 603 618 587 601
8 727 661 731 805 693 578 600 616 584 599
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EMPT =
1
n

n∑
i=1

u∑
j=1

pi j (17)

 

EMS T =
1
n

n∑
i=1

 u∑
j=1

pi j+PS T−DDi

 (18)

PS T u
λ

where  denotes  the  current  decision  moment, 
denotes the number of remaining operations, and  is a
positive number that guarantees the significance of the
characteristic parameters.

5.2　Action set selection

The  action  set  contains  all  the  possible  behaviors
generated  by  the  agent  at  the  decision  point,  it  is  the
sum of all the optional executable actions of the agent,
and  the  agent  guides  the  production  scheduling  of  the
workshop  by  selecting  the  actions.  In  this  paper,  five
SDRs and the CDRs obtained in Section 3 are selected
to  construct  the  action  set.  These  are  presented  in
Tables 12 and 13, respectively.

The scheduling objective of this paper is to minimize
the MCT, therefore, in order to facilitate the calculation

of the reward function, the reward function is designed
as follows:
 

rsq = −Ciks (19)

rsq

Ji Mk

s Ciks

Ji s

where  is  the  reward  obtained  after  assigning
workpiece  to  equipment  for  processing  at  each
scheduling  decision  point  in  stage ,  and  is  the
completion  time  of  workpiece  in  stage .  The
rewards  designed  in  this  paper  are  negative,  and  the
purpose  of  the  agent  in  the  execution  process  is  to
avoid getting negative rewards, so the maximum value
of the total reward is 0.

5.3　Analysis of result

To  further  verify  the  superior  performance  of  the
CDRs,  the  selection  of  actions  in  the  calculation
process  of  the  arithmetic  case  is  counted.  The
probability  of  being  selected  by  SDRs  and  CDRs  is
compared  to  demonstrate  the  superior  performance  of
the  CDRs.  By  analyzing  the  iteration  process  of  the
cases  J10M5F3,  J20M10F3,  and  J50M15F3,  the
frequency of selecting ten rules by DRL is recorded, as
shown in Fig. 15. As the number of training increases,
there  is  a  gradual  decrease  in  the  selection  of  actions
action 1 − action 5, which represent SDRs. Conversely,
there  is  a  gradual  increase  in  the  selection  of  actions
action 6 − action 10, which represent the CDRs. These
figures  demonstrate  the  superior  performance  of  the
CDRs in DQL by acting as action sets. Additionally, it
highlights  the  effectiveness  of  using  CDRs
simultaneously  to  generate  suitable  scheduling
schemes.

6　Conclusion and Future Work

In this paper,  an IGPA has been proposed to mine the
CDRs for FJSP. To prevent the algorithm from falling
into  local  optimal  solutions,  the  superior  and  inferior
population  separation  strategy  is  designed.
Additionally,  a  normalization  method  is  introduced  to
normalize  the  terminator  set  to  reduce  unintended
solutions  during  the  optimization  process.  The  leaf
node mutation and non-leaf node mutation strategy are

 

 
Fig. 14    Optimal performance of DRs for mean tardiness of
weight.

 

Table 12    SDR action set.
Action Rule name Explanation

action1 SPT Rule Prioritize operations with short
processing times

action2 EDD Rule Priority processing of operations with
an early due date

action3 FIFO Rule Prioritize operations that arrive at the
equipment earlier

action4 OSL Rule Prioritize operations with low slack
time

action5 LPT Rule Prioritize operations with long
processing times

 

Table 13    CDR action set.
Action Rule name Rule expression
action6 Rule_1 ATPT+2RD-CT+PT
action7 Rule_2 min{DD/ATPT,2W*RPT}
action8 Rule_3 CT*max{NPT,NOR}+3ATPT
action9 Rule_4 RD*(3NOP-ATPT)
action10 Rule_5 2CT-NPT+3RPT
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designed  to  enhance  the  algorithm’s  local  search
ability.  The  algorithm  parameters  are  determined  by
applying  orthogonal  tests,  and  30  test  cases  are
generated for comparing the optimized CDRs with the
SDRs.  The comparison results  effectively demonstrate
the advantages of CDRs over SDRs and also highlight
the  effectiveness  of  the  IGPA  in  CDRs  evolving.
Finally, in order to further verify the superiority of the
CDRs,  the  DRL  is  employed  to  solve  the  FJSP  by
incorporating  the  CDRs  as  an  action  set,  and  the

statistical  analysis  of  the  selection  times  is  illustrated.
For  future  work,  the  priority  of  the  machine  can  be
introduced  into  the  DRs  to  reduce  the  differences
existing  between  the  shop  scheduling  model  and  the
manufacturing  system.  Meanwhile,  other  optimization
strategies can be introduced to mine the DRs to further
improve the solution efficiency of the algorithm.
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