
 

Offline Reinforcement Learning with Constrained Hybrid Action
Implicit Representation Towards Wargaming Decision-Making

Liwei Dong, Ni Li, Guanghong Gong*, and Xin Lin*

Abstract: Reinforcement  Learning  (RL)  has  emerged  as  a  promising  data-driven  solution  for  wargaming

decision-making.  However,  two  domain  challenges  still  exist:  (1)  dealing  with  discrete-continuous  hybrid

wargaming control and (2) accelerating RL deployment with rich offline data. Existing RL methods fail to handle

these two issues simultaneously, thereby we propose a novel offline RL method targeting hybrid action space.

A new constrained action representation technique is developed to build a bidirectional mapping between the

original  hybrid  action  space  and  a  latent  space  in  a  semantically  consistent  way.  This  allows  learning  a

continuous  latent  policy  with  offline  RL  with  better  exploration  feasibility  and  scalability  and  reconstructing  it

back  to  a  needed  hybrid  policy.  Critically,  a  novel  offline  RL  optimization  objective  with  adaptively  adjusted

constraints is designed to balance the alleviation and generalization of out-of-distribution actions. Our method

demonstrates  superior  performance  and  generality  across  different  tasks,  particularly  in  typical  realistic

wargaming scenarios.
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1　Introduction

Wargaming  is  a  critical  decision-support  tool  widely
used  in  military  and  security  domains  to  evaluate
strategies  for  real-world  operations[1].  Generally,

wargaming can be described as a simulation of conflict
or  competition  where  individuals  make  decisions
targeting specific tasks and respond to the outcomes of
those decisions[2]. In modern wargaming on computer-
based simulation systems,  a  decision-making model  is
needed to produce sequential commands under various
wargaming scenarios. However, traditional wargaming
decision-making  methods  are  often  based  on
knowledge-driven  approaches[3, 4],  which  lack  the
flexibility  to  handle  complex and dynamic wargaming
scenarios.

Reinforcement  Learning  (RL)  has  shown  its
effectiveness  and  superiority  in  various  challenging
real-world  decision-making  tasks,  such  as  energy
management[5, 6],  satellite  scheduling[7],  mobile
navigation[8, 9],  neural  speech  enhancement[10],
manufacturing  scheduling[11],  vehicle  charging
scheduling[12], and math solving[13], etc. Therefore, RL
recently  has  emerged  as  a  promising  data-driven
solution  for  wargaming  decision-making
problems[14–16].  However,  these  prior  works  have  not
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explored  the  following  two  critical  domain  issues:
First, these works adopt an inefficient online paradigm,
which requires a tremendous amount of online training
costs.  Abundant  offline  domain  data  produced  by
historical  decision-making  models  are  neglected  to
accelerate  RL’s  deployment.  These  data  can  be
leveraged  by  the  offline  RL  paradigm  to  train  a
reasonable  policy  while  avoiding  massive  online
interactions.  Second,  wargaming  decision-making
commands  naturally  form  a  hybrid  action  space  with
both discrete and continuous action properties (detailed
in  Section  3.2.1).  However,  most  previous  work
directly conducts discrete/continuous control or prunes
the  action  space  based  on  scenario-specific  priors,
which  probably  leads  to  inadequate  control
performance.  Noteworthy,  these  two  significant  issues
also exist in a wide range of other real-world domains,
like  automatic  driving.  Specifically,  the  hybrid  action
space  is  a  more  general  and  natural  action  abstraction
paradigm, and it is increasingly needed to leverage rich
and  readily  available  domain  offline  data  to  rapidly
deploy of RL-based decision-making model. Therefore,
we seek an effective RL schema to address above two
issues.

Many  studies  have  been  conducted  on  offline
RL[17–24] that  can  learn  from  pre-collected  static
datasets, and RL in hybrid action space[5, 25–30] that can
deal  with  discrete-continuous  hybrid  control  tasks.
However,  current  RL  methods  cannot  simultaneously
handle  these  two  challenging  issues.  Specifically,  the
action space is either continuous or discrete in existing
offline  RL  methods.  Conversely,  existing  RL
algorithms  targeting  hybrid  actions  are  designed  and
validated  under  the  online  paradigms.  Moreover,
although  some  RL  algorithms[25, 26] targeting  hybrid
action  space  build  upon  off-policy  algorithms,  a
significant  decrease  in  the  performance  of  off-policy
algorithms  is  demonstrated  when  applied  directly  to
static offline datasets[17, 18].  Thereby,  there is  currently
a  strong  need  for  RL  approaches  targeting  hybrid
actions tailored for offline settings.

Aiming  at  the  current  dilemma  at  the  significant
intersection of offline RL and hybrid control, this paper
proposes  Constrained  Hybrid  Action  Implicit
Representation  (CHAIR),  a  novel  offline  RL  method
targeting  hybrid  action  space.  CHAIR  comprises  two
learning  stages:  an  implicit  representation  learning
stage and a constrained offline RL stage.

In  the  implicit  representation  learning  stage,  we
transform  the  problem  from  hybrid  control  into
continuous  control,  by  learning  an  implicit
representation  of  the  original  hybrid  action  within  the
offline  dataset’s  support.  Inspired  by  recent  advances
in  representation  learning[18, 25, 31],  we  develop  a  new
constrained  action  representation  technique,  which
implicitly maps the original hybrid action space into a
semantically  consistent  and  compact  laten
representation space. It is allowed to learn a continuous
latent  policy  in  the  constructed  representation  space
with  better  exploration  feasibility  and  action
scalability. The representation is reversible, that is, the
learned  latent  policy  can  be  reconstructed  as  a  hybrid
policy  needed  for  the  deployment  in  realistic
environments.  In  contrast  to  a  previous  work,  Hybrid
Action  Representation  (HyAR)[25],  which  uses  the
similar  representation  technique  and  relies  on  online
interactions to further refine the representation, CHAIR
develops more strict representation constraints to build
a  more  semantically  consistent  representation  space
within the support of the offline dataset. To be specific,
CHAIR makes three key improvements to meet offline
settings:  (1)  explicitly  characterizing  the  dependency
between  the  discreate  and  continuous  components
according  to  the  natural  decision-making  sequence  in
the hybrid action space;  (2)  explicitly  constraining the
reconstruction  shift  of  the  discrete  action  component;
and (3) constraining the similarity between the original
and  reconstructed  hybrid  actions  by  explicitly
modeling  their  consistent  impacts  on  environmental
dynamics.

In  the  constrained  offline  RL  stage,  we  perform
offline  RL  for  the  latent  policy  learning  in  the
constructed latent representation space. To alleviate the
Out-Of-Distribution  (OOD)  action  shift  problem[20, 32]

under  offline  settings,  we  augment  the  offline  RL
optimization  objective  using  two  critical  techniques:
introducing  a  behavior  cloning  penalty  and  using  a
maximum-minimum  combined  Q-learning  target.
Moreover,  we  develop  an  adaptive  weight  adjustment
mechanism  to  dynamically  align  and  control  the
components  of  the  offline  RL  optimization  objective
during  learning.  The  dynamical  adjustment  balances
the  alleviation  and  generalization  of  OOD  actions,
resulting in better policy robustness and flexibility.

Through  comprehensive  experimental  evaluation  on
toy  game  tasks  and  typical  wargaming  scenarios,  our
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method  shows  its  superior  performance  and  good
stability and generality. Unlike previous domain works
deploying  RL  into  the  wargaming  field,  our  method
can  effectively  learn  reasonable  decision-making
policies  with  hybrid  commands  only  based  on  offline
data.  The  main  contributions  of  this  paper  are
summarized as follows:

●  Targeting  domain  demands,  we  propose  a  novel
offline  RL  method  crafted  for  discrete-continuous
hybrid  action  spaces  using  the  action  representation
technique.

●  We  develop  a  new  constrained  hybrid  action
representation  technique  crafted  for  offline  RL.  This
technique realizes a bidirectional mapping between the
original  hybrid  action  space  and  a  latent  space  in  a
semantically  consistent  way.  The  representation  space
within  the  support  of  the  offline  dataset  comes  with
better  exploration  feasibility  and  action  scalability,
allowing  training  a  latent  policy  that  can  be
reconstructed back to a needed hybrid policy.

●  We  design  a  novel  augmented  offline  RL
optimization  objective  with  constraint  components  to
further  constrain  the  OOD  action  shift.
Correspondingly,  an  adaptive  weight  adjustment
approach  is  developed  to  dynamically  control  the
objective  components  for  a  better  balance  between
conservatism  and  generalization  of  the  offline  RL
policy.

The remainder of this paper is structured as follows.
In  Section  2,  we  review  and  discuss  related  previous
works.  Section  3  provides  the  formulation  of  key
concepts  and  the  domain  problem.  In  Section  4,  we
present our proposed method in detail. In Section 5, we
evaluate  our  method  on  toy  game  tasks  to  validate  its
preliminary  effectiveness.  In  Section  6,  we  present  a
systematic  case  study  of  our  proposed  method  in
typical  wargaming  scenarios.  Section  7  provides  a
discussion, and Section 8 is the summary of this work.

2　Related Work

2.1　Offline reinforcement learning

In offline RL, the agent must rely on a static dataset of
historical  data to learn the policy[32].  Many offline RL
methods  build  on  top  of  the  existing  off-policy  RL
algorithms,  but  additionally  constrain  the  notorious
OOD  action  shift  to  deal  with  the  extrapolation  error
problem  under  offline  settings.  For  example,  REM[33]

uses  a  randomized  Q-function  ensemble  to  learn  a

robust  value  estimation  that  mitigates  the
overestimation of  potential  OOD future  actions.  Other
work suggests to prevent OOD actions by constraining
the  learning  policy  with  some  explicit  regularization,
such as employing a Kullback-Leibler (KL) divergence
or  Maximum  Mean  Divergence  (MMD)[20, 34],
leveraging  auxiliary  behavioral  cloning  loss[19],  and
using  a  model-based  paradigm  with  conservative
penalties[35].

To achieve the constraint, our method mainly follows
another  direction  that  uses  the  action  representation
technique to model the action distribution in the offline
dataset to implicitly constrain the policy. For example,
BCQ[17] uses  Conditional  Variational  Auto-Encoder
(CVAE)[36] to  produce  a  close  action  distribution,  and
constrains the policy by sampling from the distribution.
Polocy in the Latent Action Space (PLAS)[18], a similar
work  to  ours,  employs  the  CVAE  model  to  learn  a
latent  action  space  where  a  latent  policy  is  directly
optimized,  which  implicitly  constrains  the  policy  by
action  construction.  However,  PLAS  primarily
performs  the  updates  in  the  original  action  space  with
decoded  one-step  future  action,  which  is  only
applicable  to  continuous  action  spaces,  whereas  our
method  specifically  designed  for  hybrid  action  spaces
is  executed  totally  in  the  latent  space  constrained
within the support  of the offline dataset.  Nevertheless,
the action space is either continuous or discrete in these
previous  studies,  that  is,  they  are  unable  to  deal  with
hybrid actions.

2.2　Reinforcement  learning  in  hybrid  action
spaces

It  is  intractable  to  effectively  deal  with  a  complex
heterogeneous  discrete-continuous  hybrid  action  space
by  using  most  traditional  RL  algorithms  directly.
Currently,  research  on  this  problem  is  still  relatively
limited.  Some  study  puts  efforts  into  modifying  the
existing RL algorithms to align with the hybrid action
space.

For  example,  Parameterized  Action  with  Deep
Deterministic  Policy  Gradient  (PADDPG)[29] modifies
the  Deep  Deterministic  Policy  Gradient  (DDPG)
framework to let  the actor output a unified continuous
vector  that  concatenates  the  values  of  all  discrete
actions  and  all  of  their  corresponding  continuous
parameters.  This  unnatural  approach  somewhat
introduces  parameterization  redundancy,  which  has  a
scalability  problem  in  high-dimensional  scenarios.
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Hybrid  Proximal  Policy  Optimization  (HPPO)[30]

modifies  the  Proximal  Policy  Optimization  (PPO)
framework  to  use  a  state-value  critic  to  address  the
over-parameterization problem of DDPG, and employs
two  parallel  actors  with  different  output  structures  to
model  the  discrete  and  continuous  components,
respectively,  as  mentioned  earlier.  However,  the
neglect of the implicit dependence between the discrete
and continuous components in these two methods may
pose  problems,  as  this  dependence  is  crucial  for
modeling  the  original  property  of  hybrid  actions[25].
Pamameterized Deep Q-Nerwork (PDQN)[26] considers
such a dependence by combining the Deep Q-Network
(DQN)  and  DDPG  structures,  where  the  DDPG  actor
outputs  all  continuous  parameters  and  the  DQN  critic
takes  a  discrete  action  concatenated  with  all  of  these
parameters to output a value estimate. However, PDQN
still comes with the parameter redundancy problem. A
recent work, HyAR[25] provides another direction based
on the  action representation technique[18, 37] to  address
the  hybrid  action  issue.  It  maps  the  original  hybrid
action  space  into  a  unified  and  decodable
representation space, and let the RL agent learn a latent
policy  in  such a  space,  which  resembles  the  paradigm
of  PLAS[18].  However,  these  previous  work  has
demonstrated to be effective in online settings. There is
currently  a  lack  of  RL  approaches  targeting  hybrid
actions tailored for offline settings.

2.3　Wargaming decision-making

Traditional  wargaming  decision-making  has  heavily
relied on the knowledge-based paradigm, such as rule-
based  expert  systems[3],  Bayesian  inference[38],  and
Finite  State  Machine  (FSM)[39].  However,  these
approaches  have  limitations  in  dealing  with  modern
complex  wargaming  scenarios,  lacking  flexibility  and
error  tolerance.  Specifically,  it  is  challenging  to
develop  a  comprehensive  rule-based  expert  system
with  sufficient  inference  rules  covering  massive
wargaming  situations.  Bayesian  inference  is  also
severely  affected  by  the  designer’s  expertise,  which
determines  how  well  the  Bayesian  network  structure
can extract and perceive the wargaming situations. For
FSMs,  determining  the  state  transitions  scenario  by
scenario may be challenging.

In  recent  times,  there  has  been  a  growing  interest
amongst researchers in using RL methods for decision-
modeling in  the field  of  wargaming[14–16].  This  can be

seen  as  a  data-driven  paradigm  that  has  demonstrated
potential  in  some  wargaming  scenarios.  However,
these  previous  work  has  primarily  focused  on  the
deployment  of  RL,  i.e.,  adapting  existing  RL
algorithms  to  some  wargaming  scenarios.  They  train
RL-driven  decision-making  models  from  scratch  with
an  online  paradigm,  which  largely  relies  on  massive
interactions with the wargaming environment, resulting
in  low  training  efficiency.  Moreover,  few  of  these
previous  works  consider  modeling  the  wargaming
decision-making  problem  in  a  natural  hybrid  action
space.  Most  of  them  consider  simple  continuous
control or discrete control by manually discretizing the
continuous parameters.

3　Background

3.1　Preliminaries

(S, A, P, R, γ)
S A
P : S×A×S→ [0,1]

R : S×A×S→ R γ ∈ [0,1]
t ∈ {0, 1, . . . , T }

π : S→A
rt

st+1 ∈ S P
(st, at, rt, st+1)

(s, a, r, s′)
π∗

π∗ = argmax
π

Eπ
[∑

t γ
trt
]

E

Qπ (s, a) = Eπ
[∑

t γ
trt | s0 = s,

a0 = a]

(1)  Markov  decision  process. In  RL,  an  agent
interacts  with  its  environment  sequentially,  which  can
be  modeled  as  a  standard  Markov  Decision  Process
(MDP)  consisting of five components:
a  set  of  states ,  a  set  of  actions ,  state  transition
probabilities ,  a  reward  function

,  and  a  discount  factor .  At
each  time  step  in  an  MDP,  the  agent
continuously  performs  its  policy ,  then
obtains a instant reward  and transfers to a next state

 following .  Such  a  trahectory  segment
 is  referred  to  as  a  transition,  often

denoted by .  The goal of the RL agent is to
find an optimal policy  that maximizes the expected
discounted  cumulative  reward  (i.e.,  return),  that  is

,  where  denotes  the
expectation  operator.  The  action-value  function  (Q-
function)  is  defined  as 

,  and  always  updated  using  Temporal
Difference (TD) learning[40] with Bellman iterations,
 

Qπ (s, a) = Es′
[
rt +γQπ (s′, a′

)]
(1)

s′

a′ = π (s′)
where  denotes  the  state  on  the  next  time  step,  and

 is the action on the next time step.

πω(s)

Qπω
θ

(s,a)

DDPG[41],  which  is  crafted  for  continuous  control
with Actor Critic (AC) framework. The actor of DDPG
is  a  deterministic  parameterized  policy ,  that  is
optimized  with  respect  to  the  critic,  a  parameterized
action-value  estimate .  DDPG  optimizes  the
policy  following  Deterministic  Policy  Gradient
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(DPG)[42],
 

ω← argmax
ω

Es
[
Qπω
θ

(s, πω (s))
]

(2)

Qθ

πω (s)
Qθ

which corresponds to learning an approximation to the
maximum  of  a  critic ,  with  the  gradient  ascent
propagating through both an actor  and the critic

.  Our  method  in  this  paper  builds  on  the  top  of
TD3[43], an efficacious enhancement of DDPG.

D =
{(

si, ai, ri, s′i
)}N

i=1

D

(2)  Offline  reinforcement  learning. An  offline  RL
problem can be described in the following way: We are
given a static dataset  with a finite
number  of  transitions  that  are  beforehand  collected
with  one  or  more  behavioral  policies.  Only  by
exploiting ,  the  problem  of  offline  RL  is  to  learn  a
policy that can achieve the highest possible cumulative
reward when it can be applied to real MDPs[24].

Qπ(s,a) Qπ(s′,a′)

Offline RL suffers the extrapolation error induced by
OOD  actions,  also  known  as  the  action  distribution
shift  problem[17, 20, 32].  Specifically,  the  distribution  of
actions  in  the  offline  dataset  may  differ  significantly
from  the  distribution  of  actions,  that  the  agent  would
select if it was to interact with the environment in real-
time. Thus, the agent may learn to exploit biases in the
offline  dataset,  eventually  leading  to  a  suboptimal
policy  performing  poorly  in  the  real  environment.  In
terms of TD learning with Eq. (1),  when we bootstrap

 using  that  are  missing or  rare  in  the
offline  dataset,  the  value  estimation  may  be
accumulated to be arbitrarily wrong[17, 18].

ak

(k, xk) k ∈ K
K = {k1, k2, . . . , kK}

xk ∈ Xk ⊆ Rmk mk

A

(3)  Hybrid  action  space. Following  the  classic
notations[27], a hybrid action space can be described in
the following mathematical way: A hybrid action  is
denoted  as  a  tuple ,  where  is  a  discrete
action  selected  from  a  finite  set ,
and  each  discrete  action  has  its  corresponding
continuous  parameter  where  denotes
the parameter dimension. Then, the entire hybrid action
space  is given,
 

A =
∪
k∈K
{ak := (k, xk) | xk ∈ Xk} (3)

which  denotes  the  union  of  each  optional  discrete
action with all its possible parameters.

There  is  a  noteworthy  dependency  between  the  two
heterogeneous  components  (discrete  actions  and
continuous parameters) of hybrid actions[25].  That is,  a
discrete  action  determines  the  dimension,  the  valid
range,  and  the  practical  semantics  of  its  associated
continuous parameters.

Considering  the  dependency,  the  RL  agent  in  a
hybrid  action  space  should  perform  the  natural
decision-making  sequence,  that  is,  it  should  select  the
discrete action first based on the current state, and then
choose the corresponding continuous parameters.

3.2　Problem formulation

3.2.1　Problem statement
This  paper  aims at  the  domain problem of  wargaming
In  this  study,  we  concentrate  on  the  domain  decision-
making,  detailed  below  problem  for  simulated
wargaming  scenarios.  Below,  we  present  this  domain
problem  and  elucidate  some  relevant  technical
concepts.

We first elucidate some relevant domain concepts as
follows. A force unit comprises a controllable group of
equipment  platforms  of  a  specific  size,  governed  by
certain  formation  rules,  such  as  aircraft,  warships,  or
tanks.  In  computer-simulated  wargaming,  a  force  unit
is  represented  as  a  wargaming  entity  that  captures  its
physical  and  behavioral  characteristics.  These
wargaming  entities  respond  to  decision  commands
when  activated  in  the  simulation.  A  wargaming
scenario  refers  to  the  specific  simulated  wargaming
confrontation  circumstances,  encompassing  mission
goals,  the  wargaming  area,  and  the  exact  composition
of the fighting forces, among other factors. In general,
the fighting forces in a wargaming scenario are divided
into  two  sides:  red  and  blue.  Each  side  has  its  own
collaborative  force  units,  whose  actions  are  controlled
to fulfill a specific combat mission, such as occupying
the  opponent’s  command  base  or  bombing  the
opponent’s ship.

A  Course  Of  Action  (COA)  represents  a  high-level
command that covers valid actions with clear semantic
information  for  all  individual  units,  such as “Unit  one
attacks the targets in area A”, “Unit two moves to area
B”,  and  so  on.  In  wargaming  tasks,  a  COA is  often  a
typical  hybrid  action.  For  example,  when  deciding  to
execute  an  attack  action,  it  is  necessary  to  determine
the  associated  attack  distance;  when  executing  a
movement action, it is needed to choose the associated
position and range of the movement destination area.

At  each  simulation  time  step  in  a  wargaming
scenario,  the  force  units  of  a  specific  side  need  to  be
commanded  collaboratively  to  complete  the  specific
mission.  Hence,  the  key  problem  of  this  study  is
constructing  a  decision-making  model  to  generate
sequential  COAs  conditioned  on  the  dynamic
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wargaming  situation  for  mission  completion.  The
decision-making  model  takes  the  current  wargaming
situation  as  input  and  produces  valid  COAs  using
decision-making algorithms.
3.2.2　Modeling schema
In Fig.  1,  we  present  how  we  model  the  wargaming
decision-making  problem  with  an  offline  RL
framework in a hybrid action space.

As  shown  in  the  lower  block  of Fig.  1,  we  use  the
proposed method CHAIR to offline train an RL-driven
wargaming  decision-making  model,  that  can  be
deployed  into  a  realistic  wargaming  environment,
merely based on the early-prepared wargaming offline
dataset.  The  upper  block  of Fig.  1 presents  the  online
wargaming  MDPs  with  existing  decision-making
policies to prepare historical transitions for building the
needed  offline  dataset.  For  our  problem  formulation,
the wargaming MDP is abstracted as follows.

Agent.  The  agent  in  a  wargaming  MDP  represents
the  wargaming  decision-making  model.  Its  policy
outputting  sequential  COAs  directs  the  collaborative
wargaming  entities  towards  fulfilling  a  particular

mission in the wargaming scenario.
Environment.  The  environment  in  a  wargaming

MDP pertains to the simulated wargaming environment
established  for  a  specific  wargaming  scenario.  It
interacts continuously with the agent by responding to
the  agent’s  action  and  providing  the  latest  wargaming
situation data and reward signal.

State. The state in a wargaming MDP is a continuous
vector  that  is  abstracted  from  the  raw  wargaming
situation data. Each element of the vector is normalized
and  indicates  an  environmental  feature  that  the  agent
observes at the current time step.

Action. The action in a wargaming MDP is a hybrid
action that corresponds to a specific COA generated by
the  decision-making  model,  as  shown  in Fig.  1.
Without loss of generality in wargaming scenarios, this
paper  mainly  considers  two  typical  discrete  actions:
“attack” (to  attack  the  targets  in  some  area)  and
“move” (to  move  to  some  area  for  patrolling).  The
action “move” has  four  associated  continuous
parameters:  the x and y coordinates of the area center,
as  well  as  the  width  and  length  of  the  area.  Besides

 

 
Fig. 1    Modeling framework of the wargaming decision-making problem.

  Liwei Dong et al.:  Offline Reinforcement Learning with Constrained Hybrid Action Implicit Representation Towards... 1427

 



these  four  parameters,  the  action “attack” is
accompanied  by  another  continuous  parameter:  the
attack  distance,  which  defines  the  farthest  distance
from which the targets can be attacked.

Reward.  The  reward  in  a  wargaming  MDP  is  a
scalar value given by a task-specific reward function at
each  time  step  to  drive  RL.  Generally,  the  reward
function is manually engineered scenario by scenario.

In Section 6.1, we present wargaming scenario cases
with  more  specific  modeling  details,  including  the
specific  construction  of  vectorized  states  and  hybrid
actions,  as  well  as  the  specific  manually  designed
reward functions.

4　Method

In  this  section,  we  expound  on  CHAIR,  depicted  in
Fig.  2.  As Fig.  2 shows,  CHAIR  is  composed  of  the
following two learning stages.

(1) Implicit representation learning

ak = (k, xk)
ãk = (ek, zxk )

ek zxk

D
D̃

In  this  stage,  we  seek  a  unified  and  compact
representation  for  the  heterogeneous  hybrid  action
space  encompassing  both  discrete  and  corresponding
continuous  components.  That  is,  the  representation
goal  is  to  map  the  original  hybrid  actions 
into a latent action  in a latent space, where

 and  are  the  latent  variables  of  the  discrete  and
continuous  components,  respectively.  This
representation  of  the  hybrid  action  enables  us  to
transform  the  offline  dataset  in  the  original  hybrid
action  space  to  a  dataset  in  a  latent  continuous
action  space,  thereby  helping  to  apply  off-policy  RL
algorithms  applicable  to  continuous  action  spaces  for
addressing  offline  settings.  Furthermore,  performing
offline RL in the represented latent space demonstrates
benefits  in  terms  of  better  exploration  feasibility  and
action scalability[18].

(2) Constrained offline RL
In  this  stage,  we  perform  constrained  offline  RL  in

the  previously  obtained  laten  representation  space.
With  several  critical  constraints  that  are  adaptively
adjusted,  the  offline  RL  employs  the  offline  data  in
latent  representation space to learn a latent  RL policy,
which  maps  from a  state  to  a  latent  action.  The  latent
policy  is  reconstructed  into  a  hybrid  policy  with  the
prior  implicit  representation  technique  to  be  deployed
in a realistic environment.

4.1　Implicit representation learning

First,  we  demonstrate  that  the  desired  representation
should satisfy the following requirements:

(1) The  representation  should  consider  the
dependence  between  discrete  and  continuous
components of the original hybrid actions.

(2) The  representation  should  be  reversible,  that  is,
we  can  reconstruct  the  original  hybrid  action  from  its
representation,  enabling  interaction  with  the
environment for further deployment.

(3) The  representation  should  consider  the  OOD
constraints  within  the  support  of  the  offline  dataset  to
be applicable to offline RL settings.
4.1.1　Representation and reconstruction of hybrid

action

Eζ1

Eζ2

qϕ ϕ pψ

The  workflow  of  the  proposed  implicit  representation
schema  is  shown  in Fig.  3.  As Fig.  3 shows,  CHAIR
introduces  the  embedding technique[44] and CVAE for
the representation and reconstruction of hybrid actions,
as  shown  in Fig.  3.  For  the  representation  of  the
discrete  actions,  two  parameterized  components  are
built:  an  embedding  layer  and  an  extracting  layer

.  For  the  representation  of  the  continuous
parameters,  we  use  a  CVAE  model  composed  of  an
encoder  with  parameter  and  a  decoder 

 

 
Fig. 2    Overall framework of CHAIR.
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ψparameterized by .

Eζ1 s
k

ek = Eζ1 (k, s) ∈ Rd1

qϕ ek

xk

zxk = qϕ (xk,ek) ∈ Rd2

pψ

x̃k = pψ(zxk ,ek) zxk

Eζ2

k̃ = Eζ2 (ek) ek

These  components  function  in  the  following  way.
The  embedding  layer  and  the  encoder  are  designed  to
construct the latent representation of the hybrid actions.
Specifically, the embedding layer  takes the state 
as  a  condition  and  maps  the  original  discrete  action 
into  a  latent  embedded  variable .
Then, the encoder  takes the embedded variable  as
a condition, and maps the continuous parameter  into
a  latent  encoded  variable .  Note
that  this  mapping  models  the  implicit  dependence
between  discrete  actions  and  continuous  parameters,
which  conforms  to  the  natural  decision-making
process,  satisfying  the  abovementioned  Requirement
(1).  The  extracting  layer  and  the  decoder  execute  the
process  of  reconstructing  the  hybrid  action  from  its
latent  representation.  In specific,  the decoder  takes
the  same  condition  as  the  encoder,  and  obtains  the
original  continuous  parameter’s  reconstruction

,  from  the  latent  encoded  variable .
The extracting layer  reconstructs the discrete action

 from the latent embedding variable . This
reconstruction  helps  satisfy  the  abovementioned
Requirement (2).

Optimizing CVAE. The goal of the CVAE model is
to  generate  action  samples  that  come  from  the  same
action  distribution  as  the  original  dataset.  To  achieve

qϕ (xk,ek) µ

σ

N (µ,σ) zxk

pψ (zxk , ek)

LVAE

this,  the  encoder  outputs  the  mean  and
standard  deviation  of  a  Gaussian  distribution

.  The  latent  encoded  variable  is  sampled
from  this  Gaussian  and  passed  into  the  decoder

 to  reconstruct  the  original  action.  The
CVAE  model  is  trained  to  maximize  the  variational
lower bound[39], namely, to minimize the loss ,
 

LVAE = ED
[
∥x̃k − xk∥2+DKL (N(µ,σ) ∥ N (0,1))

]
(4)

where  the  first  term  is  the  reconstruction  loss  with
the  Mean  Square  Error  (MSE),  and  the  second  term
is  a  regularization  loss  with  the  KL-divergence
between the distribution of the latent encoded variable
and  its  standard  Gaussian  prior.  Minimizing  this  loss
function  can  drive  the  extracting  layer  to  reconstruct
the  original  discrete  actions  from the  latent  embedded
vectors  as  faithfully  as  possible.  Meanwhile,  this
minimization  constrains  the  reconstructed  discrete
actions  to  be  within  the  support  range  of  the  offline
data, which is crucial for offline RL.

ek

LEXT

Optimizing  extracting  layer.  The  goal  of  the
extracting  layer  is  to  reconstruct  the  original  discrete
action  from  the  latent  embedded  variable .  In  this
respect,  the  distribution  of  the  reconstructed  discrete
actions should be close to the original distribution from
the offline dataset. Thus, the extracting layer is trained
to minimize the loss ,

 

 
Fig. 3    Workflow of the implicit representation schema.
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LEXT =

ED
[
H
(
softmax

(
Eζ2 (ek)

)
, onehot (k)

)]
(5)

H( )
softmax ( )

onehot ( )

where  is  the  Cross  Entropy  (CE)  of  two
categorical  distributions,  the  operator
converts  the  output  of  the  extracting  layer  into  a
categorical  distribution,  and  the  operator
converts the index of the discrete action into a one-hot
vector.  By  minimizing  the  above  losses,  our  schema
implicitly  models  the  state-action  distribution  in  the
offline  dataset,  as  well  as  the  dependencies  between
discrete  and  continuous  components.  This
minimization  eventually  constrains  the  action
representation  and  reconstruction  to  be  within  the
support  of  the  offline  dataset,  which  helps  meet  the
abovementioned Requirement (3).
4.1.2　Representation  constraint  with  consistent

dynamics
In the preceding discussion, we present our schema for
constructing  a  unified  and  compact  latent
representation  space  for  hybrid  actions.  However,  the
obtained  representation  space  may  suffer  from
pathologies  that  makes  it  unable  to  discriminate
between the different impacts of hybrid actions on the
environment. That is, it is uninvolved in the consistent
impact  of  both  original  and  reconstructed  hybrid
actions on the environmental dynamics. Consequently,
such a representation may be ineffective when applied
to  learning  RL  in  an  MDP  framework,  which  relies
heavily  on  knowledge  of  environmental  dynamics.
These  intuitions  were  demonstrated  in  other  previous
studies[45, 46].

Motivated  by  these  intuitions,  a  semantically
smoother  latent  representation  space  is  suggested,
where the latent actions in colse proximity correspond
to  the  original  hybrid  actions  with  similar
environmental  impacts[25].  To  this  end,  we  propose  a
consistent  dynamics  constraint  to  refine  the
representation  of  hybrid  actions,  which  helps  to  better
meet the abovementioned Requirement (3).

dα
α

(
k̃, x̃k
)

In  specific,  we  build  a  dynamics  predictor 
parameterized  by  to  explicitly  model  the  impact  of
reconstructed  hybrid  action  (the  discrete  action  and
continuous  parameters  jointly  function)  on  the  state
transitions.  It  takes  reconstructed  hybrid  action 
and  outputs  the  prediction  of  the  environmental
dynamics  driven  by  the  reconstruction,  as  shown  in
Fig. 3. In principle, the prediction should be consistent
with  the  real  environmental  dynamics.  That  is,  we

LDYN

optimize the dynamics predictor by minimizing the loss
,

 

LDYN = ED
[∥∥∥∥dα (k̃, x̃k

)
−∆s
∥∥∥∥2] (6)

dα
(
k̃, x̃k
)

∆s = s′− s
where  is the output of the dynamics predictor,
and  the  state  residual  represents  the  real
environmental dynamics. This unsupervised loss of the
dynamics  predictor  acts  as  an  additional  crucial
constraint  to  force  the  latent  representation  to  be
semantically  smoother.  This  property  is  beneficial  for
RL  to  learn  the  knowledge  environment.  Intuitively,
this  constraint  also  makes  the  latent  representation
more  consistent  with  the  offline  data  distribution,
which will facilitate the subsequent offline RL.

LIRIn this way, we obtain the complete loss function 
for the implicit representation learning stage,
 

LIR =LVAE+LEXT+LDYN (7)
As shown in  the  lower  right  of Fig.  3,  training with

this  complete  loss  function  ensures  that  our  implicit
representation  schema  satisfies  the  three  requirements
stated  earlier.  As  a  result,  the  hybrid  action  space  can
be  mutually  mapped  with  the  latent  representation
space.  By  incorporating  several  constraints  that  we
have  added,  a  hybrid  action  space  that  closely
approximates  the  original  one  can  be  reconstructed,
where the reconstructed actions are distributed as much
as possible within the support of the offline dataset.

4.2　Constrained offline reinforcement learning

In  the  preceding  stage,  we  obtain  an  implicit
representation of  the  hybrid  action space,  whereby we
map  original  hybrid  actions  into  latent  actions.
Meanwhile,  a  constrained  hybrid  action  space  can  be
reconstructed from the latent action space, which helps
us  to  execute  offline  RL.  In  this  stage,  we  propose  to
perform  offline  RL  in  the  latent  action  space  rather
than in the original hybrid action space. In specific, the
offline RL learns a latent RL policy which maps from a
state to a latent action. When the offline RL is finished,
the  learned  latent  policy  can  be  transformed  into  a
realistic  hybrid  policy  through  the  reconstruction
components  in  deployment  in  the  real  environment.
This  helps  to  transform the  problem of  hybrid  control
into  continuous  control,  thereby  incorporating  off-
policy RL algorithms for continuous control.
4.2.1　Offline TD3 with latent action constraints
In this  paper,  we use TD3[19, 43].  To further  ensure the
offline  RL  effectively  learns  a  latent  policy,  we
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develop  two  additional  techniques  to  constrain  the
OOD  action  shift.  First,  we  add  a  Behavior  Cloning
(BC) loss term to penalize the latent action shift out of
the  latent  representation  space.  Second,  we  use  a
variant  of  Clipped  Double  Q-learning  (CDQ)  to
penalize  uncertainty  over  the  future  estimate  to
constrain  the  Q-function  overestimation  bias.  These
two  constraints  are  inspired  by  previous  works[17, 19],
but  we make a  critical  improvement  by granting them
dynamic  weights  to  adaptively  control  the  constraint
degree. Below, we present the details.

πω(s) = (e, z)

Qπω

Qθi=1, 2 (s, πω(s))
πω̄ Qθ̄i=1, 2

Offline  TD3  framework.  TD3  parameterizes  an
actor network that models a latent policy .
Besides,  double  critic  networks  are  parameterized  to
estimate  the  latent  action  value ,  that  is,

.  These  three  networks  have  their
corresponding  target  networks:  and  to
stabilize  learning.  Regularly,  the  parameters  of  the
target  networks  are  softly  updated  to  the  current
network parameters,
  ω̄← τω+ (1−τ) ω̄,

θ̄i← τθi+ (1−τ) θ̄i, i = 1, 2
(8)

D̃ = {(s, ãk, r, s′)}
ak = (k, xk)

ãk = (ek, zxk ) πω(s)

Offline TD3 learning.  In the above AC framework,
with  an  offline  dataset ,  where  the
original  hybrid  actions  are  represented  by
latent  actions ,  the  latent  policy  is
optimized,
 

πω (s)← argmax
π

ED
[
λJQ−βLBC

]
(9)

JQ

LBC

λ

β

LBC

where  is  the  objective  term  of  maximizing  the
overall action value corresponding to Eq. (2), and 
is  the  abovementioned additional  BC loss  term.  and

 are  their  dynamic  weights  of  them  (detailed  in  the
following Section 4.2.2).  is the MSE between the
latent  policy’s  output  and  the  latent  actions  supported
in the offline dataset,
 

LBC = ∥πω (s)− ãk∥2 = ∥(e, z)− (ek, zk)∥2 (10)
JQ

∇ωJQ

The objective  term  is  optimized by DPG ascent
propagating  through  both  actor  and  critic.  Concretely,
its gradient  is induced as follows:
 

∇ωJQ = ED
[
∇ωπω (s)∇ãQθ1 (s, ã) | ã = πω(s)

]
(11)

LCDQ

where  the  critics  are  updated  by  minimizing  the
abovementioned CDQ loss ,
 

LCDQ = ED
[(

rt +γTCDQ−Qθi (s,πω (s))
)2] ,

i = 1, 2 (12)

TCDQCritically,  a  variant  of  CDQ target  is  adopted
here for  TD updating,  given by a minimum-maximum
convex combination,
 

LCDQ =βmin
i=1, 2

Qθ̄i

(
s′, πω̄(s′)

)
+

(1−β) max
i=1, 2

Qθ̄i

(
s′, πω̄(s′)

)
(13)

β ∈ [0,1]
β = 1

where the minimum term penalizes the future estimates
in uncertain regions and encourages the latent policy to
prioritize actions that lead to states within the support.
This minimum serves to reduce the overestimation bias
and  high  variance  in  TD  learning.  In  contrast  the
maximum  term  reflects  the  level  of  greediness  in  the
Q-function update. Here, we reuse the dynamic weight

 to  control  the  penalty  strength  on  the
uncertainty  of  future  estimates.  If ,  the  update
corresponds  to  the  original  CDQ  that  performs  the
most conservative Q-function updating.
4.2.2　Adaptive weight adjustment

λ β

λ

β

In  this  section,  we  present  an  adaptive  weight
adjustment  technique  to  dynamically  control  the
components  of  the  offline  RL  optimization  objective.
That is, we adjust the following two weights:  and .
The primary objective of designing an adaptive weight
adjustment  mechanism  is  to  strike  some  balances.
Regarding ,  we seek a balance between the scales of
two  optimization  objective  terms  in  Eq.  (9)  for  better
training  stability.  Regarding ,  we  seek  a  balance
between  the  constraints  on  OOD  actions  and  the
generalization of exploration feasibility. To be specific,
on the one hand, offline RL requires constraints on the
OOD  action  shift.  However,  on  the  other  hand,  these
constraints  should  not  be  overly  stringent,  as  it  may
restrict  the  exploration  feasibility  leading  to  the
degradation  of  policy  generalization.  This  outcome
may  result  in  a  significant  loss  in  overall  policy
performance improvement.

JQ LBC

λ JQ

LBC

As  shown  in  Eq.  (9),  the  policy  optimization
objective is to maximize  and minimize . These
two  terms  are  needed  to  obtain  balance  because  their
scales  are  often  different.  Therefore,  we  dynamically
adjust the weight  to normalize the scale of  to be
aligned with the scale of ,
 

λ =
1
N

∑
{(s, ãk)}N1

∥ãk∥
|Qθ1 (s, ãk)| (14)

Nwhere  is  the  offline  dataset  size.  In  practice,  this
mean  term is  estimated  over  mini-batches,  rather  than
the  entire  dataset.  This  is  similar  to  the  normalization
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trick  used  in  a  previous  work[19],  but  we  directly
compare the norms of the action and its value estimate,
avoiding the introduction of extra hyper-parameters.

β

β βF

As stated earlier, the weight  serves two constraint-
adjustment  purposes:  controlling  the  BC  term  to
penalize the action shift out of the latent representation
space,  and  controlling  the  CDQ  target  to  penalize  the
uncertainty over the future estimates. Intuitively, these
two  adjustments  are  consistent.  Specifically,  in  the
early  stage  of  learning,  a  strong  penalty  should  be
imposed  to  constrain  the  policy  within  the  support  of
the  offline  dataset.  As  the  policy  is  optimized  and
stabilized,  the constraints  can be relaxed appropriately
to  increase  the  flexibility  to  select  actions,  improving
the policy’s OOD generalization moderately[18]. To this
end,  is linearly annealed from 1 to its final value ,
 

β← β− 1−βF

T
(15)

T
β

βF = 0.85

where  is  the  total  training  steps.  Hereby,  the
dynamical  somewhat  balances  the  alleviation  and
generalization of OOD actions during offline learning.
It  is  worth  noting  that  the  constraints  should  not  be
overly  relaxed  to  violate  the  constraint  premise  of
offline RL, so the final  value should not  be too small.
In  practice,  we  use .  Besides  stabilizing  and
improving  policy  learning,  the  above  adaptive
constraint  adjustment  technique  helps  our  method  to
avoid additional hyper-parameter fine-tuning.

4.3　Complete algorithm

We  outline  the  proposed  CHAIR  in  the  pseudocode
provided in Algorithm 1.

5　Effectiveness evaluation

In  this  section,  we  aim  to  evaluate  the  preliminary
effectiveness of  our proposed approach.  Subsequently,
we  provide  the  detailed  experimental  settings  and
results.

5.1　Experimental Environments

We built  three toy game environments which are used
as  typical  benchmarks  in  previous  works[25–27, 30]

towards hybrid actions, visualized in Fig. 4.
Platform.  In  this  environment,  the  agent  has  three

discrete  actions: “run”, “hop”,  and “leap”,  and each is
accompanied  by  a  continuous  parameter  to  determine
the  horizontal  displacement.  The  agent’s  goal  is  to
successfully  reach  the  goal  platform  by  hopping  over
enemies and leaping across gaps between platforms. A
six-dimensional  state  space  describes  the  position  and
velocity  of  the  agent  and  local  enemy,  as  well  as  the
lengths  of  the  current  and  next  platform.  The  reward
for  a  step  is  calculated  as  the  distance  covered  in  this
step divided by the total route length, adding a penalty
of –0.5 if this step fails.

Robot soccer. In this environment, the agent aims to
score a goal against a keeper who tries to intercept the
ball.  There  are  two  discrete  actions: “kick” and
“move”,  each  with  two  parameters  that  define  the
target  position’s  coordinates.  A  14-dimensional  state
space  gives  features,  including  the  position,  velocity,

 

Algorithm 1　CHAIR

Input: Offline dataset ={(si, ai, ri, si' )}N
i=1;

maximum representation learning steps M;
maximum offline RL steps T

//  Implicit representation learning
1: for i=1 to M do
2: Sample minibatches from ;
3: Optimize ζ1, ζ2, φ, and ψ with Eq. (7);

//  Constrained offline RL
4: Initial the latent policy network πω, two critic networks, Qθ1

 and
Qθ2

, and their target networks, πω, Qθ1
, and Qθ2

;
5: for i=1 to T do
6: Sample a minibatch of B transitions {(si, ai, ri, si')}B

i=1 from ;
Transform the original actionin each transition into the
latent space: ai → ai, using the learned representation
components;
Optimize the latent policy with Eq. (9);

7:

8:

− − −

~

 

 

(a) (b) (c) 
Fig. 4    Three toy game environments, (a) platform, (b) robot soccer, and (c) target search.
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and  orientation  of  the  player,  keeper,  and  ball.  The
reward  for  a  step  is  0  for  intermediate  steps,  50  for  a
terminal goal state, and −c for a terminal non-goal state,
where c is the distance between the ball and the goal.

Target search. In this environment, the agent tries to
move  towards  a  target  circle  area  and  stop  in  it.  The
agent has three hybrid actions: “turn” with a parameter
that  defines  the  rotation  value, “accelerate” with  a
parameter  that  defines  the  acceleration  power,  and
“break” without  parameters.  The  10-dimensional  state
space describes features,  such as the player’s position,
speed,  direction,  and  distance  relative  to  the  target,  as
well  as  an  indicator  that  becomes  1  if  the  player  is
inside  the  target  zone.  The  reward  for  a  step  is  the
distance  of  the  player  from  the  target  of  the  last  step
minus the current distance.

5.2　Experimental settings

105

4×105

Offline dataset.  Considering the availability of  public
implementations  and  the  stability  of  performance,  we
select  four  existing RL algorithms (PADDPG, PDQN,
HPPO,  and  HyAR)  crafted  for  hybrid  actions  as
behavioral  policies  to  prepare  our  offline  dataset.  For
each  environment,  beforehand,  we  online  run  them
separately  to  collect  their  transitions  for  the  offline
dataset  construction.  A  total  of  transitions  from
each  algorithm  are  collected  during  the  online
interaction with the environment, resulting in an offline
dataset composed of  transitions. The collection
begins  after  the  first  task  is  successful  to  adequately
capture  diverse  transitions  that  cover  successful
experiences.  The  adoption  of  four  distinct  behavioral
policies  for  data  collection  is  designed  to  emulate  the
practical  diversity  of  offline  data  sources  encountered
in real-world tasks.

Method  comparison.  As  far  as  our  knowledge
extends, currently no other offline RL algorithms exist
targeting hybrid actions. Hence, to compare against our
proposed  method  CHAIR,  we  construct  two  strong
baselines  based  on  typical  existing  typical  algorithms
tailored  for  hybrid  actions:  (1)  offline-HyAR  that
directly  applies  HyAR  to  the  offline  setting,  and  (2)
offline-PDQN that directly applies PDQN to the offline
setting. The main rationale behind choosing HyAR and
PDQN  as  baselines  is  their  off-policy  nature,  which
inherently  enables  the  use  of  data  from  other
behavioral  policies,  making  them  suitable  for
adaptation under offline settings. Due to the inability to
utilize  off-policy  data[26],  the  offline  version  of

PADDPG is not considered as our baseline.  Similarly,
HPPO is also excluded as it is based on on-policy PPO.
Our  proposed  method  is  trained  and  compared  with
two baselines using the same prepared offline dataset.

10−4 10−3 10−4

τ = 0.005
γ = 0.99

106

d1 = 4,d2 = 4

Algorithm setup. To ensure comparison fairness, the
shared  hypermeters  are  set  as  identical  for  each
algorithm in three environments.  The algorithm setups
are  detailed  as  follows.  All  networks  are  structured
with  fully  connected  layers  and  optimized  using
Adam[47].  Both the encoder and the decoder of  CVAE
have two hidden layers (500, 500).  Both the actor and
the  critic  have  two  hidden  layers  (300,  300).  The
embedding  layer  and  the  extracting  layer  of  CHAIR
have  300  units  each.  The  dynamics  predictor  of
CHAIR has two hidden layers (400, 400). The learning
rates for the actor,  the critic,  and the CVAE are set as

, , and , respectively. The target network’s
update  rate  is  set  to .  The  discount  factor  is

.  Each  algorithm  trains  the  offline  RL  policy
with  the  same  mini-batch  size  of  128  and  the  same
training  iterations  of  time  steps.  For  CHAIR  and
offline-HyAR,  the  representation  components  are
trained  in  106 time  steps  before  the  offline  RL  stage,
and  the  latent  action  dimension  (discrete  and
continuous  latent  action)  is  set  as .  The
continuous  parameters  are  padded  to  the  same  length
aligned  with  their  maximum  dimension.  The
representation components are fixed when training the
offline  RL.  The  vectorized  states  are  normalized  over
mini-batches  during  the  training  of  each  algorithm  to
make  it  has  proven  well-suited  for  offline  settings[19].
All  hyperparameters  involved  were  set  heuristically
and optimized through a coarse grid search.

Performance  evaluation.  During  the  offline
training, the policy is evaluated every 104 training time
steps over 10 online episodes, and the Average Episode
Return  (AER,  the  average  return  of  these  10  test
episodes)  is  adopted  as  the  performance  criterion.  For
each  environment  and  each  algorithm,  the  experiment
was  run  over  five  random  seeds  and  the  results  are
averaged across them.

5.3　Experimental results

Figure 5 shows the performance comparison results for
our  method  and  the  other  two  baselines  in  three  toy
game tasks.

From Fig. 5, we can see that our method significantly
outperforms  the  two  baselines  in  all  three
environments,  and  our  method  exhibits  better  stability
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than the other two baselines across the training process.
Moreover,  our  method  shows  good  generality  across
different  environments  with  steady  policy-enhancing
ability.  In  contrast,  although  the  other  two  baselines
achieve  reasonable  performance  improvement  in
platform  and  robot  soccer,  they  almost  fail  in  target
search with a very slight improvement. From the view
of the final performance improvement, offline-HyAR is
superior  in  two  baselines  (slightly  surpassing  offline-
PDQN  in  all  three  environments),  while  our  method
achieves performance improvements that are about two
times,  four  times  and  five  times  higher  than  offline-
HyAR in the three environments, respectively.

These  comparison  results  demonstrate  that  our
method  CHAIR  effectively  improves  the  offline  RL
agent’s  policy  performance  using  the  fixed  offline
dataset with good generality across tasks.

6　Case Study

In  this  section,  we  investigate  the  applicability  and
generalization  of  our  proposed  approach  in  realistic
wargaming  scenarios.  To  achieve  this,  we  create  two

representative  wargaming  scenarios  and  conduct  a
comprehensive case study on each scenario. Below, we
will provide details.

6.1　Scenario construction

Our  case  study  is  based  on  a  pre-existing  wargaming
simulation  system  that  encompasses  a  range  of
representative simulated wargaming entities, as well as
a  scheduling  engine  to  facilitate  their  interactions.
Leveraging  this  system,  we  can  construct  diverse
wargaming scenarios that involve a variety of missions,
areas, and force compositions, etc. Through abstracting
and  simplifying  the  properties  of  typical  realistic
wargaming  scenarios,  we  first  build  a  simulated
wargaming  ground  called  Wargaming  Confrontation
Ground  (WCG)  involving  typical  wargaming
environments  and  platforms,  illustrated  in Fig.  6.  In
WCG, the blue and red sides with their respective force
units,  can engage in customized scenarios where three
types  of  platforms  (bombers,  fighters,  and  ships)  are
involved in confrontations following specific rules. We
depict basic confrontation rules as follows.
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Fig. 5    Performance comparison for three algorithms in three toy game environments.
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Fig. 6    Illustration of wargaming confrontation ground.
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Confrontation  rules.  A  force  unit,  directly
commanded  by  the  decision-making  model,  can  be
composed of a designated number of platforms that act
in  accordance  with  unified  orders.  Aircraft  (including
bombers  and  fighters)  take  off  from  their  respective
airports.  The  red  ship  is  initially  located  at  the  near
center  of  the  ground  and  moves  within  a  defined  area
to defend air space during confrontations. Each fighter
is  equipped  with  six  air-to-air  missiles  solely  for
engaging  aerial  targets.  Each  bomber  armed  with  two
air-to-land  missiles,  is  limited  to  bombing  land  or  sea
targets and is unable to retaliate in the air. The red ship
has  15  sea-to-air  missiles  for  attacking  air  targets.  An
aircraft  is  considered  destroyed  upon  being  hit  once.
The ship is regarded as sunk if it is hit twice. Notably,
there  exists  a  somewhat  negative  correlation  between
hitting  accuracy  and  attack  distance,  necessitating  a
trade-off  between  swift  attacks  and  precision.  For
simplicity,  both  sides  have  access  to  global
environmental  information  throughout  the
confrontation.

As Fig.  6 shows,  to  maintain  both  generality  and
typicality,  we  constructed  two  wargaming  scenarios
with  different  difficulties  based  on  WCG:  aircraft-
chasing  and  ship-bombing  to  perform  this  case  study,
detailed as follows.
6.1.1　Aircraft-chasing
Mission.  As  shown  in Fig.  6,  the  objective  of  the
aircraft-chasing scenario  is  for  the  blue  side  to  deploy
its fighters to pursue and attack the red side’s bombers.
The  mission  entails  shooting  down  all  the  red  side’s
bombers.

Two  sides.  The  blue  side  controls  one  force  unit
comprising  five  fighters,  while  the  red  side  has  one
force  unit  comprising  five  bombers.  The  decision-
making  model  of  the  blue  side  is  driven  by  an  RL
algorithm,  whereas  that  of  the  red  side  is  driven  by  a
random algorithm.

Hybrid  actions.  For  the  blue  side’s  RL agent,  each
force  unit  has  two  discrete  action  options:  attack  or
move,  and  each  discrete  action  comes  with  its
associated  continuous  parameters,  as  stated  in  Section
3.2.2. When the attack action is activated, each aircraft
of  the  unit  searches  for  accessible  targets  within  the
area  and  attack  range  determined  by  the  continuous
parameters,  subsequently  launches  missiles  to  attack
the  closest  target  or  taking  no  action  if  no  accessible
targets  are  found.  When  the  move  action  is  activated,

each aircraft in the unit collectively move to patrol the
target  area  defined  by  the  continuous  parameters,
following a unified motion pattern while maintaining a
specific distance around the area center.

Vectorized  state.  A  five-dimensional  vector  is
employed  to  describe  the  state  of  each  aircraft.  The
first  three  elements,  normalized to  the  range of  [0,  1],
represent  the  aircraft’s x-axis  coordinate, y-axis
coordinate, and ammunition consumption, respectively.
The fourth element is a binary value indicating whether
the aircraft is a bomber or a fighter (1 for bomber, 0 for
fighter),  while  the  fifth  element  is  a  binary  value
indicating whether the aircraft is alive (1 for alive, 0 for
destroyed).  Consequently,  the  global  state  can  be
represented  as  a  50-dimensional  concatenated  vector
encompassing the information of all 10 aircraft.

Engineered  reward.  To  drive  the  blue  side’s  RL
agent,  a  task-specific  reward  function  is  engineered
considering  the  following  factors:  the  bonus  for
approaching  the  red  bombers,  the  bonus  for  shooting
down the red bombers, and the penalty for ammunition
waste.  The final  formulation of  the  engineered reward
function for this scenario is given as follows:
 

rt = w1
Nd

5
+w2e−δ−w3

Naa

30
(16)

Nd

Naa

δ

w1 w2 w3

w1 = 0.50 w2 = 0.75 w3 = 0.10

where  represents the number of bombers destroyed
at  this  time  step,  is  the  number  of  air-to-air
missiles launched at this time step, and  represents the
distances  between  the  two  units  (a  unit’s  position  is
determined  by  the  average  coordinates  of  its  existing
aircraft).  The  weights , ,  and  are  empirically
set  as , ,  and  after  coarse
fine-tuning.

Termination  conditions.  An  episode  ends  with
success  when  all  red  bombers  are  shot  down.
Conversely,  it  terminates  in  failure  for  either  of  the
following  conditions:  (1)  All  the  red  fighters  have
depleted their  ammunition,  or  (2)  the episode lasts  for
over 200 time steps.
6.1.2　Ship-bombing
Mission.  As  shown  in Fig.  6,  in  this  ship-bombing
scenario, the blue side is tasked to bomb the red side’s
ship, while the red side defends the ship to be safe. The
mission is to successfully sink the red ship by bombing
it with bombers.

Two sides.  The  blue  side  has  three  force  units:  two
comprise  five  bombers  each  and  one  comprises  10
fighters  (to  interfere  with  the  red  ship  and  fighters
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attacking the blue bombers). The red side has one force
unit  comprising  six  fighters  and  a  ship.  The  decision-
making  model  of  the  blue  side  is  driven  by  an  RL
algorithm,  whereas  that  of  the  red  side  is  driven  by  a
rule-based strategy.

8 = 23

Hybrid actions. The same hybrid action of a unit in
the  aircraft-chasing  scenario  is  followed  in  this
scenario, but the total number of discrete action options
becomes  that  corresponds  to  all  discrete
combinations of three blue side’s units.

Vectorized  state.  The  same  vectorized  state  setting
of an aircraft in aircraft-chasing scenario is followed in
this scenario. Besides, we use another four-dimensional
vector  to  describe  the  state  of  the  ship,  where  the
elements  are  the  normalized x-axis  coordinate, y-axis
coordinate,  ammunition  consumption,  and  a  binary
value  indicating  whether  the  ship  has  been  hit  once
(equals  to  0  if  never  hit,  1  if  hit  once).  Therefore,  the
global  state  is  denoted  by  a  134-dimensional
concatenated  vector  encompassing  the  information  of
20 blue side’s aircraft, six red side’s aircraft and a ship.

Engineered  reward.  Likewise,  we  craft  the  reward
function  for  this  scenario  considering  the  following
factors:  the  bonus  for  approaching  the  red  ship,  the
bonus  for  hitting  the  red  ship,  the  penalty  for  aircraft
loss, and the penalty for ammunition waste. Finally, the
task-specific engineered reward function is
 

rt = w1Is+w2e−δSB −w3
Nal

20
−w4

Nb

10
−w5

N f

5
(17)

Is

Nal

Nb N f

δSB

w1 = 0.80 w2 = 0.40 w3 = 0.15 w4 = 0.10 w5 =

0.05

where  denotes if the red ship is hit at this time step
(if  hit,  it  equals  1,  otherwise,  0),  is  the  number  of
the  air-to-land  missiles  launched  by  blue  bombers  at
this  time  step,  and  are  respectively  the  loss
numbers of blue bombers and blue fighters at this time
step,  represents  the  distance  between  the  red  ship
and bomber unit that has remaining ammunition and is
closer  to  the  ship  (the  unit’s  position  is  measured  by
the average coordinates of its existing bombers). Here,
the  weights  of  each  part  are  empirically  set  as

, , , ,  and 
 after coarse fine-tuning.

Termination  conditions. The  episode  terminates
with success when the red ship is  bombed to be sunk,
while  it  terminates  with  failure  when  either  of  the
following events happens: (1) all blue bombers are shot
down,  (2)  all  blue  bombers  have  run  out  of
ammunition,  and  (3)  the  episode  lasts  over  300  time
steps.

6.2　Experimental settings

In this case study, we basically retain the experimental
settings  as  those  in  Section  5.2,  and  customize  some
settings  according  to  the  features  of  wargaming
scenarios, as follows.

Offline  dataset.  The  offline  dataset  becomes  larger
with  6×105 transitions  that  are  collected  from  four
algorithms with 150k transitions each.

d1 = 6
d2 = 6

Algorithm  setup.  Likewise,  we  use  the  same
algorithm  setups  in  two  wargaming  scenarios.
Differently,  we  make  the  following  modifications  to
the  setups  of  three  algorithms  to  adapt  the  higher-
dimension  information  in  wargaming  scenarios:  The
actor  and  the  critic  increase  the  hidden  layer  size  to
(500,  500).  The  hidden  layer  size  in  the  encoder  and
the  decoder  becomes  (800,  800),  and  that  of  the
dynamics predictor becomes (600, 600). The widths of
the  embedding  layer  and  the  extracting  layer  become
500.  The  latent  action  dimension  is  set  as  and

.  Each  algorithm  trains  the  RL  policy  training
iterations  4.0  ×  106 time  steps.  The  training  timesteps
of  representation  learning  become  2.0  ×  106,  and  the
offline RL training time steps remain at 4.0 × 106.

Performance  evaluation.  Considering  the  domain
feature  of  wargaming  tasks,  we  adopt  several
additional  criteria  besides  AER  to  evaluate  the  policy
performance: (1) Success Rate (SR, regularly evaluated
10  times  over  100  online  episodes  during  the  whole
policy  training  stage);  (2)  Force  Cost  Rate  (FCR,
evaluated when the training is finished over 100 online
episodes,  denoting  the  average  of  the  force  unit  death
rate over all successful episodes); and (3) Ammunition
Cost  Rate  (ACR,  evaluated  when  the  training  is
finished  over  100  online  episodes,  the  average  of
ammunition  consumption  rate  over  all  successful
episodes).  FCR  and  ACR  indicate  the  wargaming
losses  of  the  decision-making  model,  and  the  lower
these  two  criteria,  the  more  effective  the  decision-
making model.

6.3　Experimental results

We  show  the  comparison  results  for  our  method  and
the  other  two  baselines  in  two  typical  wargaming
scenarios in Fig. 7 and Table 1.

From  the Figs.  7a  and 7b,  we  can  obtain  similar
findings as those from the evaluation results in Section
5.3.  Specifically,  the  AER  of  our  method  CHAIR
significantly  surpasses  that  of  the  other  two  baselines
in  both  wargaming  scenarios,  and  our  method  shows
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better  stability  and  generality.  From  the  final  AER
improvement,  offline-PDQN  is  slightly  stronger  than
offline-HyAR  in  the  two  wargaming  scenarios,  but
only reaches about  1/4 of  CHAIR. Likewise,  from the
SR evaluation results shown in Figs. 7c and 7d, we can
observe  the  following  evidence  to  show  CHAIR’s
considerable  superiority:  Notably,  CHAIR  steadily
improves  the  success  rate  to  50.8% and  41.2% in
aircraft-chasing  and  more  complex  ship-bombing,
respectively.  In contrast,  the success rates  of  the other
two  baselines  can  barely  exceed  10% (offline-HyAR:
14.3%;  offline-PDQN:  11.4%)  in  aircraft-chasing,  and
cannot  even  surpass  10% in  more  difficult  ship-
bombing  (offline-HyAR:  7.4%;  offline-PDQN:  6.3%).
The comparison results of the success rate demonstrate
that CHAIR’s policy has superior capability in solving
wargaming tasks.

As can be seen from Table 1, CHAIR has much less
wargaming  loss  (in  terms  of  FCR  and  ACR)  than  the
other  two  baselines.  Considering  that  CHAIR  has  the
highest  success  rate,  this  comparison  of  wargaming
losses  clearly  indicates  that  CHAIR  achieves  a  much
more efficient policy than the other two baselines. That
is,  CHAIR’s  policy  can  solve  the  wargaming  tasks  at
less cost.

To sum up, these the above empirical findings in this
case study reveal several facts: (1) Our method CHAIR
effectively improves the offline RL agent’s policy only
using the  static  offline  wargaming dataset  with  hybrid
COA actions. (2) The policy obtained by our method is

more  efficient,  with  less  wargaming  losses  and  higher
success  rates.  (3)  Our  method  has  good  generality
across typical  wargaming scenarios with the its  steady
policy-enhancing ability and superior performance.

7　Discussion
The  reason  why  our  method  can  demonstrate  the
superiority may lie in the following aspects: (1) During
the implicit representation phase, we explicitly impose
constraints on the consistency between discrete actions
and  state  transitions.  This  imposition  ensures  better
alignment  of  action  space  mappings,  thereby
guaranteeing  stability  and  effectiveness  in  training
within  the  offline  paradigm.  (2)  In  the  offline  RL
phase,  the  introduction  of  dynamic  OOD  action
constraints  allows  for  a  balanced  exploration-
exploitation  trade-off  and  mitigates  extrapolation
errors,  resulting  in  improved  policy  performance.  In
contrast,  HyAR  and  PDQN  are  originally  online
algorithms that rely on continuous interaction with the
environment  to  update  TD  estimates.  They  lack
sufficient  constraints  to  ensure  successful  policy
improvement when transferred to the offline paradigm
with a fixed dataset.

Future  works  may  include  several  directions  to
improve our work, discussed as follows. First, we have
not  sufficiently  investigated  the  impact  of  the  latent
action  dimension  and  offline  dataset  quality  on  the
learning  performance,  due  to  the  limited  experimental
time cost. This issue may need to be further explored in
future  works  based  on  systematic  ablation  studies.
Second,  we  share  the  global  information  and  perform
centralized  control  for  each  unit  in  our  wargaming
scenario, which to some extent does not conform to the
natural  wargaming  settings.  Considering  the
applicability  to  wargaming  scenarios  with  local
observation  and  more  abundant  units,  it  may  be  a
promising  line  to  combine  the  proposed  method  with
the multi-agent RL paradigm under a partially observed
MDP  framework.  Third,  future  studies  could  try  to
refine  the  policy  acquired  through  offline  RL  with
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Fig. 7    Performance comparison for three algorithms in two wargaming scenarios.

 

Table 1    Comparison  results  of  FCR  and  ACR  for  three
algorithms  in  the  two  wargaming  scenarios.  FCR  is  not
applicable  in  aircraft-chasing  scenario.  The  best  results  are
marked in bold.

Algorithm
Aircraft-chasing Ship-bombing
FCR ACR FCR ACR

CHAIR (ours) – 20.5 85.4 76.2
Offline-HyAR – 37.5 94.3 84.9
Offline-PDQN – 40.2 96.6 86.5
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further  online  interactions  in  the  real  environment.
Last,  it  is  valuable  to  enhance  the  present
representation method to wider forms of hybrid action
space,  for  example,  multi-level  hybrid  actions  in  a
hierarchical structure.

8　Conclusion

This  paper  aims  at  the  wargaming  decision-making
problem  with  discrete-continuous  hybrid  commands
under offline settings, which current RL methods fail to
address.  Towards  this  domain  demand,  we  propose
CHAIR,  a  novel  two-stage  offline  RL  method  crafted
for  hybrid  action  spaces.  Using  a  new  constrained
action  representation  technique,  CHAIR  first
transforms  the  problem  from  hybrid  control  into
continuous control, allowing learning of a latent policy
in  a  representation  space  with  better  exploration
feasibility and action scalability. Then, for better policy
robustness  and  flexibility,  CHAIR  develops  a  novel
optimization  objective  with  adaptively  adjusted
constraint  components  to  balance  the  alleviation  and
generalization  of  OOD  action  under  offline  settings.
Finally,  CHAIR  learns  a  latent  policy  that  can  be
reconstructed  back  to  a  hybrid  policy.  Through  the
systematic  evaluation,  we  demonstrate  the  superior
performance, stability, and generality of CHAIR across
typical  toy  game  tasks  and  our  realistic  wargaming
scenarios.  Futhermore,  this  work  can  also  provide  a
preliminary  exploration  to  leverage  the  abundant
domain  offline  data  in  the  wargaming  field  to
accelerate the RL deployment, rather than training RL-
based decision-making models from scratch relying on
time-consuming online interactions.
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