

Offline Reinforcement Learning with Constrained Hybrid Action
Implicit Representation Towards Wargaming Decision-Making

Liwei Dong, Ni Li, Guanghong Gong*, and Xin Lin*

Abstract: Reinforcement Learning (RL) has emerged as a promising data-driven solution for wargaming

decision-making. However, two domain challenges still exist: (1) dealing with discrete-continuous hybrid

wargaming control and (2) accelerating RL deployment with rich offline data. Existing RL methods fail to handle

these two issues simultaneously, thereby we propose a novel offline RL method targeting hybrid action space.

A new constrained action representation technique is developed to build a bidirectional mapping between the

original hybrid action space and a latent space in a semantically consistent way. This allows learning a

continuous latent policy with offline RL with better exploration feasibility and scalability and reconstructing it

back to a needed hybrid policy. Critically, a novel offline RL optimization objective with adaptively adjusted

constraints is designed to balance the alleviation and generalization of out-of-distribution actions. Our method

demonstrates superior performance and generality across different tasks, particularly in typical realistic

wargaming scenarios.

Key words: offline Reinforcement Learning (RL); wargaming; decision-making; hybrid action space

1　Introduction

Wargaming is a critical decision-support tool widely
used in military and security domains to evaluate
strategies for real-world operations[1]. Generally,

wargaming can be described as a simulation of conflict
or competition where individuals make decisions
targeting specific tasks and respond to the outcomes of
those decisions[2]. In modern wargaming on computer-
based simulation systems, a decision-making model is
needed to produce sequential commands under various
wargaming scenarios. However, traditional wargaming
decision-making methods are often based on
knowledge-driven approaches[3, 4], which lack the
flexibility to handle complex and dynamic wargaming
scenarios.

Reinforcement Learning (RL) has shown its
effectiveness and superiority in various challenging
real-world decision-making tasks, such as energy
management[5, 6], satellite scheduling[7], mobile
navigation[8, 9], neural speech enhancement[10],
manufacturing scheduling[11], vehicle charging
scheduling[12], and math solving[13], etc. Therefore, RL
recently has emerged as a promising data-driven
solution for wargaming decision-making
problems[14–16]. However, these prior works have not

 Liwei Dong and Xin Lin are with School of Automation

Science and Electrical Engineering, Beihang University, Beijing
100191, China. E-mail: vivian_keith@buaa.edu.cn; lx@buaa.
edu.cn.

 Ni Li is with School of Automation Science and Electrical
Engineering, Beihang University, Beijing 100191, China; State
Key Laboratory of Virtual Reality Technology and Systems,
Beihang University, Beijing 100191, China; and also with
Zhongguancun Laboratory, Beijing 100191, China. E-mail:
lini@buaa.edu.cn.

 Guanghong Gong is with School of Automation Science and
Electrical Engineering, Beihang University, Beijing 100191,
China; and also with State Key Laboratory of Virtual Reality
Technology and Systems, Beihang University, Beijing 100191,
China. E-mail: ggh@buaa.edu.cn.

* To whom correspondence should be addressed.
 Manuscript received: 2023-07-24; revised: 2023-08-31;

accepted: 2023-09-18

TSINGHUA SCIENCE AND TECHNOLOGY
ISSN 1007-0214 11/24 pp1422−1440
DOI: 10 .26599 /TST.2023 .9010100
Volume 29, Number 5, October 2024

© The author(s) 2024. The articles published in this open access journal are distributed under the terms of the

Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

explored the following two critical domain issues:
First, these works adopt an inefficient online paradigm,
which requires a tremendous amount of online training
costs. Abundant offline domain data produced by
historical decision-making models are neglected to
accelerate RL’s deployment. These data can be
leveraged by the offline RL paradigm to train a
reasonable policy while avoiding massive online
interactions. Second, wargaming decision-making
commands naturally form a hybrid action space with
both discrete and continuous action properties (detailed
in Section 3.2.1). However, most previous work
directly conducts discrete/continuous control or prunes
the action space based on scenario-specific priors,
which probably leads to inadequate control
performance. Noteworthy, these two significant issues
also exist in a wide range of other real-world domains,
like automatic driving. Specifically, the hybrid action
space is a more general and natural action abstraction
paradigm, and it is increasingly needed to leverage rich
and readily available domain offline data to rapidly
deploy of RL-based decision-making model. Therefore,
we seek an effective RL schema to address above two
issues.

Many studies have been conducted on offline
RL[17–24] that can learn from pre-collected static
datasets, and RL in hybrid action space[5, 25–30] that can
deal with discrete-continuous hybrid control tasks.
However, current RL methods cannot simultaneously
handle these two challenging issues. Specifically, the
action space is either continuous or discrete in existing
offline RL methods. Conversely, existing RL
algorithms targeting hybrid actions are designed and
validated under the online paradigms. Moreover,
although some RL algorithms[25, 26] targeting hybrid
action space build upon off-policy algorithms, a
significant decrease in the performance of off-policy
algorithms is demonstrated when applied directly to
static offline datasets[17, 18]. Thereby, there is currently
a strong need for RL approaches targeting hybrid
actions tailored for offline settings.

Aiming at the current dilemma at the significant
intersection of offline RL and hybrid control, this paper
proposes Constrained Hybrid Action Implicit
Representation (CHAIR), a novel offline RL method
targeting hybrid action space. CHAIR comprises two
learning stages: an implicit representation learning
stage and a constrained offline RL stage.

In the implicit representation learning stage, we
transform the problem from hybrid control into
continuous control, by learning an implicit
representation of the original hybrid action within the
offline dataset’s support. Inspired by recent advances
in representation learning[18, 25, 31], we develop a new
constrained action representation technique, which
implicitly maps the original hybrid action space into a
semantically consistent and compact laten
representation space. It is allowed to learn a continuous
latent policy in the constructed representation space
with better exploration feasibility and action
scalability. The representation is reversible, that is, the
learned latent policy can be reconstructed as a hybrid
policy needed for the deployment in realistic
environments. In contrast to a previous work, Hybrid
Action Representation (HyAR)[25], which uses the
similar representation technique and relies on online
interactions to further refine the representation, CHAIR
develops more strict representation constraints to build
a more semantically consistent representation space
within the support of the offline dataset. To be specific,
CHAIR makes three key improvements to meet offline
settings: (1) explicitly characterizing the dependency
between the discreate and continuous components
according to the natural decision-making sequence in
the hybrid action space; (2) explicitly constraining the
reconstruction shift of the discrete action component;
and (3) constraining the similarity between the original
and reconstructed hybrid actions by explicitly
modeling their consistent impacts on environmental
dynamics.

In the constrained offline RL stage, we perform
offline RL for the latent policy learning in the
constructed latent representation space. To alleviate the
Out-Of-Distribution (OOD) action shift problem[20, 32]

under offline settings, we augment the offline RL
optimization objective using two critical techniques:
introducing a behavior cloning penalty and using a
maximum-minimum combined Q-learning target.
Moreover, we develop an adaptive weight adjustment
mechanism to dynamically align and control the
components of the offline RL optimization objective
during learning. The dynamical adjustment balances
the alleviation and generalization of OOD actions,
resulting in better policy robustness and flexibility.

Through comprehensive experimental evaluation on
toy game tasks and typical wargaming scenarios, our

 Liwei Dong et al.: Offline Reinforcement Learning with Constrained Hybrid Action Implicit Representation Towards... 1423

method shows its superior performance and good
stability and generality. Unlike previous domain works
deploying RL into the wargaming field, our method
can effectively learn reasonable decision-making
policies with hybrid commands only based on offline
data. The main contributions of this paper are
summarized as follows:

● Targeting domain demands, we propose a novel
offline RL method crafted for discrete-continuous
hybrid action spaces using the action representation
technique.

● We develop a new constrained hybrid action
representation technique crafted for offline RL. This
technique realizes a bidirectional mapping between the
original hybrid action space and a latent space in a
semantically consistent way. The representation space
within the support of the offline dataset comes with
better exploration feasibility and action scalability,
allowing training a latent policy that can be
reconstructed back to a needed hybrid policy.

● We design a novel augmented offline RL
optimization objective with constraint components to
further constrain the OOD action shift.
Correspondingly, an adaptive weight adjustment
approach is developed to dynamically control the
objective components for a better balance between
conservatism and generalization of the offline RL
policy.

The remainder of this paper is structured as follows.
In Section 2, we review and discuss related previous
works. Section 3 provides the formulation of key
concepts and the domain problem. In Section 4, we
present our proposed method in detail. In Section 5, we
evaluate our method on toy game tasks to validate its
preliminary effectiveness. In Section 6, we present a
systematic case study of our proposed method in
typical wargaming scenarios. Section 7 provides a
discussion, and Section 8 is the summary of this work.

2　Related Work

2.1　Offline reinforcement learning

In offline RL, the agent must rely on a static dataset of
historical data to learn the policy[32]. Many offline RL
methods build on top of the existing off-policy RL
algorithms, but additionally constrain the notorious
OOD action shift to deal with the extrapolation error
problem under offline settings. For example, REM[33]

uses a randomized Q-function ensemble to learn a

robust value estimation that mitigates the
overestimation of potential OOD future actions. Other
work suggests to prevent OOD actions by constraining
the learning policy with some explicit regularization,
such as employing a Kullback-Leibler (KL) divergence
or Maximum Mean Divergence (MMD)[20, 34],
leveraging auxiliary behavioral cloning loss[19], and
using a model-based paradigm with conservative
penalties[35].

To achieve the constraint, our method mainly follows
another direction that uses the action representation
technique to model the action distribution in the offline
dataset to implicitly constrain the policy. For example,
BCQ[17] uses Conditional Variational Auto-Encoder
(CVAE)[36] to produce a close action distribution, and
constrains the policy by sampling from the distribution.
Polocy in the Latent Action Space (PLAS)[18], a similar
work to ours, employs the CVAE model to learn a
latent action space where a latent policy is directly
optimized, which implicitly constrains the policy by
action construction. However, PLAS primarily
performs the updates in the original action space with
decoded one-step future action, which is only
applicable to continuous action spaces, whereas our
method specifically designed for hybrid action spaces
is executed totally in the latent space constrained
within the support of the offline dataset. Nevertheless,
the action space is either continuous or discrete in these
previous studies, that is, they are unable to deal with
hybrid actions.

2.2　Reinforcement learning in hybrid action
spaces

It is intractable to effectively deal with a complex
heterogeneous discrete-continuous hybrid action space
by using most traditional RL algorithms directly.
Currently, research on this problem is still relatively
limited. Some study puts efforts into modifying the
existing RL algorithms to align with the hybrid action
space.

For example, Parameterized Action with Deep
Deterministic Policy Gradient (PADDPG)[29] modifies
the Deep Deterministic Policy Gradient (DDPG)
framework to let the actor output a unified continuous
vector that concatenates the values of all discrete
actions and all of their corresponding continuous
parameters. This unnatural approach somewhat
introduces parameterization redundancy, which has a
scalability problem in high-dimensional scenarios.

 1424 Tsinghua Science and Technology, October 2024, 29(5): 1422−1440

Hybrid Proximal Policy Optimization (HPPO)[30]

modifies the Proximal Policy Optimization (PPO)
framework to use a state-value critic to address the
over-parameterization problem of DDPG, and employs
two parallel actors with different output structures to
model the discrete and continuous components,
respectively, as mentioned earlier. However, the
neglect of the implicit dependence between the discrete
and continuous components in these two methods may
pose problems, as this dependence is crucial for
modeling the original property of hybrid actions[25].
Pamameterized Deep Q-Nerwork (PDQN)[26] considers
such a dependence by combining the Deep Q-Network
(DQN) and DDPG structures, where the DDPG actor
outputs all continuous parameters and the DQN critic
takes a discrete action concatenated with all of these
parameters to output a value estimate. However, PDQN
still comes with the parameter redundancy problem. A
recent work, HyAR[25] provides another direction based
on the action representation technique[18, 37] to address
the hybrid action issue. It maps the original hybrid
action space into a unified and decodable
representation space, and let the RL agent learn a latent
policy in such a space, which resembles the paradigm
of PLAS[18]. However, these previous work has
demonstrated to be effective in online settings. There is
currently a lack of RL approaches targeting hybrid
actions tailored for offline settings.

2.3　Wargaming decision-making

Traditional wargaming decision-making has heavily
relied on the knowledge-based paradigm, such as rule-
based expert systems[3], Bayesian inference[38], and
Finite State Machine (FSM)[39]. However, these
approaches have limitations in dealing with modern
complex wargaming scenarios, lacking flexibility and
error tolerance. Specifically, it is challenging to
develop a comprehensive rule-based expert system
with sufficient inference rules covering massive
wargaming situations. Bayesian inference is also
severely affected by the designer’s expertise, which
determines how well the Bayesian network structure
can extract and perceive the wargaming situations. For
FSMs, determining the state transitions scenario by
scenario may be challenging.

In recent times, there has been a growing interest
amongst researchers in using RL methods for decision-
modeling in the field of wargaming[14–16]. This can be

seen as a data-driven paradigm that has demonstrated
potential in some wargaming scenarios. However,
these previous work has primarily focused on the
deployment of RL, i.e., adapting existing RL
algorithms to some wargaming scenarios. They train
RL-driven decision-making models from scratch with
an online paradigm, which largely relies on massive
interactions with the wargaming environment, resulting
in low training efficiency. Moreover, few of these
previous works consider modeling the wargaming
decision-making problem in a natural hybrid action
space. Most of them consider simple continuous
control or discrete control by manually discretizing the
continuous parameters.

3　Background

3.1　Preliminaries

(S, A, P, R, γ)
S A
P : S×A×S→ [0,1]

R : S×A×S→ R γ ∈ [0,1]
t ∈ {0, 1, . . . , T }

π : S→A
rt

st+1 ∈ S P
(st, at, rt, st+1)

(s, a, r, s′)
π∗

π∗ = argmax
π

Eπ
[∑

t γ
trt
]

E

Qπ (s, a) = Eπ
[∑

t γ
trt | s0 = s,

a0 = a]

(1) Markov decision process. In RL, an agent
interacts with its environment sequentially, which can
be modeled as a standard Markov Decision Process
(MDP) consisting of five components:
a set of states , a set of actions , state transition
probabilities , a reward function

, and a discount factor . At
each time step in an MDP, the agent
continuously performs its policy , then
obtains a instant reward and transfers to a next state

 following . Such a trahectory segment
 is referred to as a transition, often

denoted by . The goal of the RL agent is to
find an optimal policy that maximizes the expected
discounted cumulative reward (i.e., return), that is

, where denotes the
expectation operator. The action-value function (Q-
function) is defined as

, and always updated using Temporal
Difference (TD) learning[40] with Bellman iterations,

Qπ (s, a) = Es′
[
rt +γQπ (s′, a′

)]
(1)

s′

a′ = π (s′)
where denotes the state on the next time step, and

 is the action on the next time step.

πω(s)

Qπω
θ

(s,a)

DDPG[41], which is crafted for continuous control
with Actor Critic (AC) framework. The actor of DDPG
is a deterministic parameterized policy , that is
optimized with respect to the critic, a parameterized
action-value estimate . DDPG optimizes the
policy following Deterministic Policy Gradient

 Liwei Dong et al.: Offline Reinforcement Learning with Constrained Hybrid Action Implicit Representation Towards... 1425

(DPG)[42],

ω← argmax
ω

Es
[
Qπω
θ

(s, πω (s))
]

(2)

Qθ

πω (s)
Qθ

which corresponds to learning an approximation to the
maximum of a critic , with the gradient ascent
propagating through both an actor and the critic

. Our method in this paper builds on the top of
TD3[43], an efficacious enhancement of DDPG.

D =
{(

si, ai, ri, s′i
)}N

i=1

D

(2) Offline reinforcement learning. An offline RL
problem can be described in the following way: We are
given a static dataset with a finite
number of transitions that are beforehand collected
with one or more behavioral policies. Only by
exploiting , the problem of offline RL is to learn a
policy that can achieve the highest possible cumulative
reward when it can be applied to real MDPs[24].

Qπ(s,a) Qπ(s′,a′)

Offline RL suffers the extrapolation error induced by
OOD actions, also known as the action distribution
shift problem[17, 20, 32]. Specifically, the distribution of
actions in the offline dataset may differ significantly
from the distribution of actions, that the agent would
select if it was to interact with the environment in real-
time. Thus, the agent may learn to exploit biases in the
offline dataset, eventually leading to a suboptimal
policy performing poorly in the real environment. In
terms of TD learning with Eq. (1), when we bootstrap

 using that are missing or rare in the
offline dataset, the value estimation may be
accumulated to be arbitrarily wrong[17, 18].

ak

(k, xk) k ∈ K
K = {k1, k2, . . . , kK}

xk ∈ Xk ⊆ Rmk mk

A

(3) Hybrid action space. Following the classic
notations[27], a hybrid action space can be described in
the following mathematical way: A hybrid action is
denoted as a tuple , where is a discrete
action selected from a finite set ,
and each discrete action has its corresponding
continuous parameter where denotes
the parameter dimension. Then, the entire hybrid action
space is given,

A =
∪
k∈K
{ak := (k, xk) | xk ∈ Xk} (3)

which denotes the union of each optional discrete
action with all its possible parameters.

There is a noteworthy dependency between the two
heterogeneous components (discrete actions and
continuous parameters) of hybrid actions[25]. That is, a
discrete action determines the dimension, the valid
range, and the practical semantics of its associated
continuous parameters.

Considering the dependency, the RL agent in a
hybrid action space should perform the natural
decision-making sequence, that is, it should select the
discrete action first based on the current state, and then
choose the corresponding continuous parameters.

3.2　Problem formulation

3.2.1　Problem statement
This paper aims at the domain problem of wargaming
In this study, we concentrate on the domain decision-
making, detailed below problem for simulated
wargaming scenarios. Below, we present this domain
problem and elucidate some relevant technical
concepts.

We first elucidate some relevant domain concepts as
follows. A force unit comprises a controllable group of
equipment platforms of a specific size, governed by
certain formation rules, such as aircraft, warships, or
tanks. In computer-simulated wargaming, a force unit
is represented as a wargaming entity that captures its
physical and behavioral characteristics. These
wargaming entities respond to decision commands
when activated in the simulation. A wargaming
scenario refers to the specific simulated wargaming
confrontation circumstances, encompassing mission
goals, the wargaming area, and the exact composition
of the fighting forces, among other factors. In general,
the fighting forces in a wargaming scenario are divided
into two sides: red and blue. Each side has its own
collaborative force units, whose actions are controlled
to fulfill a specific combat mission, such as occupying
the opponent’s command base or bombing the
opponent’s ship.

A Course Of Action (COA) represents a high-level
command that covers valid actions with clear semantic
information for all individual units, such as “Unit one
attacks the targets in area A”, “Unit two moves to area
B”, and so on. In wargaming tasks, a COA is often a
typical hybrid action. For example, when deciding to
execute an attack action, it is necessary to determine
the associated attack distance; when executing a
movement action, it is needed to choose the associated
position and range of the movement destination area.

At each simulation time step in a wargaming
scenario, the force units of a specific side need to be
commanded collaboratively to complete the specific
mission. Hence, the key problem of this study is
constructing a decision-making model to generate
sequential COAs conditioned on the dynamic

 1426 Tsinghua Science and Technology, October 2024, 29(5): 1422−1440

wargaming situation for mission completion. The
decision-making model takes the current wargaming
situation as input and produces valid COAs using
decision-making algorithms.
3.2.2　Modeling schema
In Fig. 1, we present how we model the wargaming
decision-making problem with an offline RL
framework in a hybrid action space.

As shown in the lower block of Fig. 1, we use the
proposed method CHAIR to offline train an RL-driven
wargaming decision-making model, that can be
deployed into a realistic wargaming environment,
merely based on the early-prepared wargaming offline
dataset. The upper block of Fig. 1 presents the online
wargaming MDPs with existing decision-making
policies to prepare historical transitions for building the
needed offline dataset. For our problem formulation,
the wargaming MDP is abstracted as follows.

Agent. The agent in a wargaming MDP represents
the wargaming decision-making model. Its policy
outputting sequential COAs directs the collaborative
wargaming entities towards fulfilling a particular

mission in the wargaming scenario.
Environment. The environment in a wargaming

MDP pertains to the simulated wargaming environment
established for a specific wargaming scenario. It
interacts continuously with the agent by responding to
the agent’s action and providing the latest wargaming
situation data and reward signal.

State. The state in a wargaming MDP is a continuous
vector that is abstracted from the raw wargaming
situation data. Each element of the vector is normalized
and indicates an environmental feature that the agent
observes at the current time step.

Action. The action in a wargaming MDP is a hybrid
action that corresponds to a specific COA generated by
the decision-making model, as shown in Fig. 1.
Without loss of generality in wargaming scenarios, this
paper mainly considers two typical discrete actions:
“attack” (to attack the targets in some area) and
“move” (to move to some area for patrolling). The
action “move” has four associated continuous
parameters: the x and y coordinates of the area center,
as well as the width and length of the area. Besides

Fig. 1 Modeling framework of the wargaming decision-making problem.

 Liwei Dong et al.: Offline Reinforcement Learning with Constrained Hybrid Action Implicit Representation Towards... 1427

these four parameters, the action “attack” is
accompanied by another continuous parameter: the
attack distance, which defines the farthest distance
from which the targets can be attacked.

Reward. The reward in a wargaming MDP is a
scalar value given by a task-specific reward function at
each time step to drive RL. Generally, the reward
function is manually engineered scenario by scenario.

In Section 6.1, we present wargaming scenario cases
with more specific modeling details, including the
specific construction of vectorized states and hybrid
actions, as well as the specific manually designed
reward functions.

4　Method

In this section, we expound on CHAIR, depicted in
Fig. 2. As Fig. 2 shows, CHAIR is composed of the
following two learning stages.

(1) Implicit representation learning

ak = (k, xk)
ãk = (ek, zxk)

ek zxk

D
D̃

In this stage, we seek a unified and compact
representation for the heterogeneous hybrid action
space encompassing both discrete and corresponding
continuous components. That is, the representation
goal is to map the original hybrid actions
into a latent action in a latent space, where

 and are the latent variables of the discrete and
continuous components, respectively. This
representation of the hybrid action enables us to
transform the offline dataset in the original hybrid
action space to a dataset in a latent continuous
action space, thereby helping to apply off-policy RL
algorithms applicable to continuous action spaces for
addressing offline settings. Furthermore, performing
offline RL in the represented latent space demonstrates
benefits in terms of better exploration feasibility and
action scalability[18].

(2) Constrained offline RL
In this stage, we perform constrained offline RL in

the previously obtained laten representation space.
With several critical constraints that are adaptively
adjusted, the offline RL employs the offline data in
latent representation space to learn a latent RL policy,
which maps from a state to a latent action. The latent
policy is reconstructed into a hybrid policy with the
prior implicit representation technique to be deployed
in a realistic environment.

4.1　Implicit representation learning

First, we demonstrate that the desired representation
should satisfy the following requirements:

(1) The representation should consider the
dependence between discrete and continuous
components of the original hybrid actions.

(2) The representation should be reversible, that is,
we can reconstruct the original hybrid action from its
representation, enabling interaction with the
environment for further deployment.

(3) The representation should consider the OOD
constraints within the support of the offline dataset to
be applicable to offline RL settings.
4.1.1　Representation and reconstruction of hybrid

action

Eζ1

Eζ2

qϕ ϕ pψ

The workflow of the proposed implicit representation
schema is shown in Fig. 3. As Fig. 3 shows, CHAIR
introduces the embedding technique[44] and CVAE for
the representation and reconstruction of hybrid actions,
as shown in Fig. 3. For the representation of the
discrete actions, two parameterized components are
built: an embedding layer and an extracting layer

. For the representation of the continuous
parameters, we use a CVAE model composed of an
encoder with parameter and a decoder

Fig. 2 Overall framework of CHAIR.

 1428 Tsinghua Science and Technology, October 2024, 29(5): 1422−1440

ψparameterized by .

Eζ1 s
k

ek = Eζ1 (k, s) ∈ Rd1

qϕ ek

xk

zxk = qϕ (xk,ek) ∈ Rd2

pψ

x̃k = pψ(zxk ,ek) zxk

Eζ2

k̃ = Eζ2 (ek) ek

These components function in the following way.
The embedding layer and the encoder are designed to
construct the latent representation of the hybrid actions.
Specifically, the embedding layer takes the state
as a condition and maps the original discrete action
into a latent embedded variable .
Then, the encoder takes the embedded variable as
a condition, and maps the continuous parameter into
a latent encoded variable . Note
that this mapping models the implicit dependence
between discrete actions and continuous parameters,
which conforms to the natural decision-making
process, satisfying the abovementioned Requirement
(1). The extracting layer and the decoder execute the
process of reconstructing the hybrid action from its
latent representation. In specific, the decoder takes
the same condition as the encoder, and obtains the
original continuous parameter’s reconstruction

, from the latent encoded variable .
The extracting layer reconstructs the discrete action

 from the latent embedding variable . This
reconstruction helps satisfy the abovementioned
Requirement (2).

Optimizing CVAE. The goal of the CVAE model is
to generate action samples that come from the same
action distribution as the original dataset. To achieve

qϕ (xk,ek) µ

σ

N (µ,σ) zxk

pψ (zxk , ek)

LVAE

this, the encoder outputs the mean and
standard deviation of a Gaussian distribution

. The latent encoded variable is sampled
from this Gaussian and passed into the decoder

 to reconstruct the original action. The
CVAE model is trained to maximize the variational
lower bound[39], namely, to minimize the loss ,

LVAE = ED
[
∥x̃k − xk∥2+DKL (N(µ,σ) ∥ N (0,1))

]
(4)

where the first term is the reconstruction loss with
the Mean Square Error (MSE), and the second term
is a regularization loss with the KL-divergence
between the distribution of the latent encoded variable
and its standard Gaussian prior. Minimizing this loss
function can drive the extracting layer to reconstruct
the original discrete actions from the latent embedded
vectors as faithfully as possible. Meanwhile, this
minimization constrains the reconstructed discrete
actions to be within the support range of the offline
data, which is crucial for offline RL.

ek

LEXT

Optimizing extracting layer. The goal of the
extracting layer is to reconstruct the original discrete
action from the latent embedded variable . In this
respect, the distribution of the reconstructed discrete
actions should be close to the original distribution from
the offline dataset. Thus, the extracting layer is trained
to minimize the loss ,

Fig. 3 Workflow of the implicit representation schema.

 Liwei Dong et al.: Offline Reinforcement Learning with Constrained Hybrid Action Implicit Representation Towards... 1429

LEXT =

ED
[
H
(
softmax

(
Eζ2 (ek)

)
, onehot (k)

)]
(5)

H()
softmax ()

onehot ()

where is the Cross Entropy (CE) of two
categorical distributions, the operator
converts the output of the extracting layer into a
categorical distribution, and the operator
converts the index of the discrete action into a one-hot
vector. By minimizing the above losses, our schema
implicitly models the state-action distribution in the
offline dataset, as well as the dependencies between
discrete and continuous components. This
minimization eventually constrains the action
representation and reconstruction to be within the
support of the offline dataset, which helps meet the
abovementioned Requirement (3).
4.1.2　Representation constraint with consistent

dynamics
In the preceding discussion, we present our schema for
constructing a unified and compact latent
representation space for hybrid actions. However, the
obtained representation space may suffer from
pathologies that makes it unable to discriminate
between the different impacts of hybrid actions on the
environment. That is, it is uninvolved in the consistent
impact of both original and reconstructed hybrid
actions on the environmental dynamics. Consequently,
such a representation may be ineffective when applied
to learning RL in an MDP framework, which relies
heavily on knowledge of environmental dynamics.
These intuitions were demonstrated in other previous
studies[45, 46].

Motivated by these intuitions, a semantically
smoother latent representation space is suggested,
where the latent actions in colse proximity correspond
to the original hybrid actions with similar
environmental impacts[25]. To this end, we propose a
consistent dynamics constraint to refine the
representation of hybrid actions, which helps to better
meet the abovementioned Requirement (3).

dα
α

(
k̃, x̃k
)

In specific, we build a dynamics predictor
parameterized by to explicitly model the impact of
reconstructed hybrid action (the discrete action and
continuous parameters jointly function) on the state
transitions. It takes reconstructed hybrid action
and outputs the prediction of the environmental
dynamics driven by the reconstruction, as shown in
Fig. 3. In principle, the prediction should be consistent
with the real environmental dynamics. That is, we

LDYN

optimize the dynamics predictor by minimizing the loss
,

LDYN = ED
[∥∥∥∥dα (k̃, x̃k

)
−∆s
∥∥∥∥2] (6)

dα
(
k̃, x̃k
)

∆s = s′− s
where is the output of the dynamics predictor,
and the state residual represents the real
environmental dynamics. This unsupervised loss of the
dynamics predictor acts as an additional crucial
constraint to force the latent representation to be
semantically smoother. This property is beneficial for
RL to learn the knowledge environment. Intuitively,
this constraint also makes the latent representation
more consistent with the offline data distribution,
which will facilitate the subsequent offline RL.

LIRIn this way, we obtain the complete loss function
for the implicit representation learning stage,

LIR =LVAE+LEXT+LDYN (7)
As shown in the lower right of Fig. 3, training with

this complete loss function ensures that our implicit
representation schema satisfies the three requirements
stated earlier. As a result, the hybrid action space can
be mutually mapped with the latent representation
space. By incorporating several constraints that we
have added, a hybrid action space that closely
approximates the original one can be reconstructed,
where the reconstructed actions are distributed as much
as possible within the support of the offline dataset.

4.2　Constrained offline reinforcement learning

In the preceding stage, we obtain an implicit
representation of the hybrid action space, whereby we
map original hybrid actions into latent actions.
Meanwhile, a constrained hybrid action space can be
reconstructed from the latent action space, which helps
us to execute offline RL. In this stage, we propose to
perform offline RL in the latent action space rather
than in the original hybrid action space. In specific, the
offline RL learns a latent RL policy which maps from a
state to a latent action. When the offline RL is finished,
the learned latent policy can be transformed into a
realistic hybrid policy through the reconstruction
components in deployment in the real environment.
This helps to transform the problem of hybrid control
into continuous control, thereby incorporating off-
policy RL algorithms for continuous control.
4.2.1　Offline TD3 with latent action constraints
In this paper, we use TD3[19, 43]. To further ensure the
offline RL effectively learns a latent policy, we

 1430 Tsinghua Science and Technology, October 2024, 29(5): 1422−1440

develop two additional techniques to constrain the
OOD action shift. First, we add a Behavior Cloning
(BC) loss term to penalize the latent action shift out of
the latent representation space. Second, we use a
variant of Clipped Double Q-learning (CDQ) to
penalize uncertainty over the future estimate to
constrain the Q-function overestimation bias. These
two constraints are inspired by previous works[17, 19],
but we make a critical improvement by granting them
dynamic weights to adaptively control the constraint
degree. Below, we present the details.

πω(s) = (e, z)

Qπω

Qθi=1, 2 (s, πω(s))
πω̄ Qθ̄i=1, 2

Offline TD3 framework. TD3 parameterizes an
actor network that models a latent policy .
Besides, double critic networks are parameterized to
estimate the latent action value , that is,

. These three networks have their
corresponding target networks: and to
stabilize learning. Regularly, the parameters of the
target networks are softly updated to the current
network parameters,
 ω̄← τω+ (1−τ) ω̄,

θ̄i← τθi+ (1−τ) θ̄i, i = 1, 2
(8)

D̃ = {(s, ãk, r, s′)}
ak = (k, xk)

ãk = (ek, zxk) πω(s)

Offline TD3 learning. In the above AC framework,
with an offline dataset , where the
original hybrid actions are represented by
latent actions , the latent policy is
optimized,

πω (s)← argmax
π

ED
[
λJQ−βLBC

]
(9)

JQ

LBC

λ

β

LBC

where is the objective term of maximizing the
overall action value corresponding to Eq. (2), and
is the abovementioned additional BC loss term. and

 are their dynamic weights of them (detailed in the
following Section 4.2.2). is the MSE between the
latent policy’s output and the latent actions supported
in the offline dataset,

LBC = ∥πω (s)− ãk∥2 = ∥(e, z)− (ek, zk)∥2 (10)
JQ

∇ωJQ

The objective term is optimized by DPG ascent
propagating through both actor and critic. Concretely,
its gradient is induced as follows:

∇ωJQ = ED
[
∇ωπω (s)∇ãQθ1 (s, ã) | ã = πω(s)

]
(11)

LCDQ

where the critics are updated by minimizing the
abovementioned CDQ loss ,

LCDQ = ED
[(

rt +γTCDQ−Qθi (s,πω (s))
)2] ,

i = 1, 2 (12)

TCDQCritically, a variant of CDQ target is adopted
here for TD updating, given by a minimum-maximum
convex combination,

LCDQ =βmin
i=1, 2

Qθ̄i

(
s′, πω̄(s′)

)
+

(1−β) max
i=1, 2

Qθ̄i

(
s′, πω̄(s′)

)
(13)

β ∈ [0,1]
β = 1

where the minimum term penalizes the future estimates
in uncertain regions and encourages the latent policy to
prioritize actions that lead to states within the support.
This minimum serves to reduce the overestimation bias
and high variance in TD learning. In contrast the
maximum term reflects the level of greediness in the
Q-function update. Here, we reuse the dynamic weight

 to control the penalty strength on the
uncertainty of future estimates. If , the update
corresponds to the original CDQ that performs the
most conservative Q-function updating.
4.2.2　Adaptive weight adjustment

λ β

λ

β

In this section, we present an adaptive weight
adjustment technique to dynamically control the
components of the offline RL optimization objective.
That is, we adjust the following two weights: and .
The primary objective of designing an adaptive weight
adjustment mechanism is to strike some balances.
Regarding , we seek a balance between the scales of
two optimization objective terms in Eq. (9) for better
training stability. Regarding , we seek a balance
between the constraints on OOD actions and the
generalization of exploration feasibility. To be specific,
on the one hand, offline RL requires constraints on the
OOD action shift. However, on the other hand, these
constraints should not be overly stringent, as it may
restrict the exploration feasibility leading to the
degradation of policy generalization. This outcome
may result in a significant loss in overall policy
performance improvement.

JQ LBC

λ JQ

LBC

As shown in Eq. (9), the policy optimization
objective is to maximize and minimize . These
two terms are needed to obtain balance because their
scales are often different. Therefore, we dynamically
adjust the weight to normalize the scale of to be
aligned with the scale of ,

λ =
1
N

∑
{(s, ãk)}N1

∥ãk∥
|Qθ1 (s, ãk)| (14)

Nwhere is the offline dataset size. In practice, this
mean term is estimated over mini-batches, rather than
the entire dataset. This is similar to the normalization

 Liwei Dong et al.: Offline Reinforcement Learning with Constrained Hybrid Action Implicit Representation Towards... 1431

trick used in a previous work[19], but we directly
compare the norms of the action and its value estimate,
avoiding the introduction of extra hyper-parameters.

β

β βF

As stated earlier, the weight serves two constraint-
adjustment purposes: controlling the BC term to
penalize the action shift out of the latent representation
space, and controlling the CDQ target to penalize the
uncertainty over the future estimates. Intuitively, these
two adjustments are consistent. Specifically, in the
early stage of learning, a strong penalty should be
imposed to constrain the policy within the support of
the offline dataset. As the policy is optimized and
stabilized, the constraints can be relaxed appropriately
to increase the flexibility to select actions, improving
the policy’s OOD generalization moderately[18]. To this
end, is linearly annealed from 1 to its final value ,

β← β− 1−βF

T
(15)

T
β

βF = 0.85

where is the total training steps. Hereby, the
dynamical somewhat balances the alleviation and
generalization of OOD actions during offline learning.
It is worth noting that the constraints should not be
overly relaxed to violate the constraint premise of
offline RL, so the final value should not be too small.
In practice, we use . Besides stabilizing and
improving policy learning, the above adaptive
constraint adjustment technique helps our method to
avoid additional hyper-parameter fine-tuning.

4.3　Complete algorithm

We outline the proposed CHAIR in the pseudocode
provided in Algorithm 1.

5　Effectiveness evaluation

In this section, we aim to evaluate the preliminary
effectiveness of our proposed approach. Subsequently,
we provide the detailed experimental settings and
results.

5.1　Experimental Environments

We built three toy game environments which are used
as typical benchmarks in previous works[25–27, 30]

towards hybrid actions, visualized in Fig. 4.
Platform. In this environment, the agent has three

discrete actions: “run”, “hop”, and “leap”, and each is
accompanied by a continuous parameter to determine
the horizontal displacement. The agent’s goal is to
successfully reach the goal platform by hopping over
enemies and leaping across gaps between platforms. A
six-dimensional state space describes the position and
velocity of the agent and local enemy, as well as the
lengths of the current and next platform. The reward
for a step is calculated as the distance covered in this
step divided by the total route length, adding a penalty
of –0.5 if this step fails.

Robot soccer. In this environment, the agent aims to
score a goal against a keeper who tries to intercept the
ball. There are two discrete actions: “kick” and
“move”, each with two parameters that define the
target position’s coordinates. A 14-dimensional state
space gives features, including the position, velocity,

Algorithm 1　CHAIR

Input: Offline dataset ={(si, ai, ri, si')}N
i=1;

maximum representation learning steps M;
maximum offline RL steps T

// Implicit representation learning
1: for i=1 to M do
2: Sample minibatches from ;
3: Optimize ζ1, ζ2, φ, and ψ with Eq. (7);

// Constrained offline RL
4: Initial the latent policy network πω, two critic networks, Qθ1

 and
Qθ2

, and their target networks, πω, Qθ1
, and Qθ2

;
5: for i=1 to T do
6: Sample a minibatch of B transitions {(si, ai, ri, si')}B

i=1 from ;
Transform the original actionin each transition into the
latent space: ai → ai, using the learned representation
components;
Optimize the latent policy with Eq. (9);

7:

8:

− − −

~

(a) (b) (c)
Fig. 4 Three toy game environments, (a) platform, (b) robot soccer, and (c) target search.

 1432 Tsinghua Science and Technology, October 2024, 29(5): 1422−1440

and orientation of the player, keeper, and ball. The
reward for a step is 0 for intermediate steps, 50 for a
terminal goal state, and −c for a terminal non-goal state,
where c is the distance between the ball and the goal.

Target search. In this environment, the agent tries to
move towards a target circle area and stop in it. The
agent has three hybrid actions: “turn” with a parameter
that defines the rotation value, “accelerate” with a
parameter that defines the acceleration power, and
“break” without parameters. The 10-dimensional state
space describes features, such as the player’s position,
speed, direction, and distance relative to the target, as
well as an indicator that becomes 1 if the player is
inside the target zone. The reward for a step is the
distance of the player from the target of the last step
minus the current distance.

5.2　Experimental settings

105

4×105

Offline dataset. Considering the availability of public
implementations and the stability of performance, we
select four existing RL algorithms (PADDPG, PDQN,
HPPO, and HyAR) crafted for hybrid actions as
behavioral policies to prepare our offline dataset. For
each environment, beforehand, we online run them
separately to collect their transitions for the offline
dataset construction. A total of transitions from
each algorithm are collected during the online
interaction with the environment, resulting in an offline
dataset composed of transitions. The collection
begins after the first task is successful to adequately
capture diverse transitions that cover successful
experiences. The adoption of four distinct behavioral
policies for data collection is designed to emulate the
practical diversity of offline data sources encountered
in real-world tasks.

Method comparison. As far as our knowledge
extends, currently no other offline RL algorithms exist
targeting hybrid actions. Hence, to compare against our
proposed method CHAIR, we construct two strong
baselines based on typical existing typical algorithms
tailored for hybrid actions: (1) offline-HyAR that
directly applies HyAR to the offline setting, and (2)
offline-PDQN that directly applies PDQN to the offline
setting. The main rationale behind choosing HyAR and
PDQN as baselines is their off-policy nature, which
inherently enables the use of data from other
behavioral policies, making them suitable for
adaptation under offline settings. Due to the inability to
utilize off-policy data[26], the offline version of

PADDPG is not considered as our baseline. Similarly,
HPPO is also excluded as it is based on on-policy PPO.
Our proposed method is trained and compared with
two baselines using the same prepared offline dataset.

10−4 10−3 10−4

τ = 0.005
γ = 0.99

106

d1 = 4,d2 = 4

Algorithm setup. To ensure comparison fairness, the
shared hypermeters are set as identical for each
algorithm in three environments. The algorithm setups
are detailed as follows. All networks are structured
with fully connected layers and optimized using
Adam[47]. Both the encoder and the decoder of CVAE
have two hidden layers (500, 500). Both the actor and
the critic have two hidden layers (300, 300). The
embedding layer and the extracting layer of CHAIR
have 300 units each. The dynamics predictor of
CHAIR has two hidden layers (400, 400). The learning
rates for the actor, the critic, and the CVAE are set as

, , and , respectively. The target network’s
update rate is set to . The discount factor is

. Each algorithm trains the offline RL policy
with the same mini-batch size of 128 and the same
training iterations of time steps. For CHAIR and
offline-HyAR, the representation components are
trained in 106 time steps before the offline RL stage,
and the latent action dimension (discrete and
continuous latent action) is set as . The
continuous parameters are padded to the same length
aligned with their maximum dimension. The
representation components are fixed when training the
offline RL. The vectorized states are normalized over
mini-batches during the training of each algorithm to
make it has proven well-suited for offline settings[19].
All hyperparameters involved were set heuristically
and optimized through a coarse grid search.

Performance evaluation. During the offline
training, the policy is evaluated every 104 training time
steps over 10 online episodes, and the Average Episode
Return (AER, the average return of these 10 test
episodes) is adopted as the performance criterion. For
each environment and each algorithm, the experiment
was run over five random seeds and the results are
averaged across them.

5.3　Experimental results

Figure 5 shows the performance comparison results for
our method and the other two baselines in three toy
game tasks.

From Fig. 5, we can see that our method significantly
outperforms the two baselines in all three
environments, and our method exhibits better stability

 Liwei Dong et al.: Offline Reinforcement Learning with Constrained Hybrid Action Implicit Representation Towards... 1433

than the other two baselines across the training process.
Moreover, our method shows good generality across
different environments with steady policy-enhancing
ability. In contrast, although the other two baselines
achieve reasonable performance improvement in
platform and robot soccer, they almost fail in target
search with a very slight improvement. From the view
of the final performance improvement, offline-HyAR is
superior in two baselines (slightly surpassing offline-
PDQN in all three environments), while our method
achieves performance improvements that are about two
times, four times and five times higher than offline-
HyAR in the three environments, respectively.

These comparison results demonstrate that our
method CHAIR effectively improves the offline RL
agent’s policy performance using the fixed offline
dataset with good generality across tasks.

6　Case Study

In this section, we investigate the applicability and
generalization of our proposed approach in realistic
wargaming scenarios. To achieve this, we create two

representative wargaming scenarios and conduct a
comprehensive case study on each scenario. Below, we
will provide details.

6.1　Scenario construction

Our case study is based on a pre-existing wargaming
simulation system that encompasses a range of
representative simulated wargaming entities, as well as
a scheduling engine to facilitate their interactions.
Leveraging this system, we can construct diverse
wargaming scenarios that involve a variety of missions,
areas, and force compositions, etc. Through abstracting
and simplifying the properties of typical realistic
wargaming scenarios, we first build a simulated
wargaming ground called Wargaming Confrontation
Ground (WCG) involving typical wargaming
environments and platforms, illustrated in Fig. 6. In
WCG, the blue and red sides with their respective force
units, can engage in customized scenarios where three
types of platforms (bombers, fighters, and ships) are
involved in confrontations following specific rules. We
depict basic confrontation rules as follows.

0.5

0.4

0.3

0.2

0.1

Av
er

ag
e

ep
is

od
e

re
tu

rn

0

−0.1
0 5 10 15 20

Training time steps (×105)

(a) Platform

25 30 35 40

CHAIR (ours)
Offine-HyAR
Offine-PDQN

0.6

0.4
0.5

0.3
0.2
0.1

Av
er

ag
e

ep
is

od
e

re
tu

rn

0
−0.1
−0.2

0 5 10 15 20
Training time steps (×105)

(b) Robot soccer

25 30 35 40

CHAIR (ours)
Offine-HyAR
Offine-PDQN

1.0
0.8
0.6
0.4
0.2

Av
er

ag
e

ep
is

od
e

re
tu

rn

0
−0.2
−0.4
−0.6
−0.8

0 5 10 15 20
Training time steps (×105)

(c) Target search

25 30 35 40

CHAIR (ours)
Offine-HyAR
Offine-PDQN

Fig. 5 Performance comparison for three algorithms in three toy game environments.

Ship-bombing

Aircraft-chasing

Fig. 6 Illustration of wargaming confrontation ground.

 1434 Tsinghua Science and Technology, October 2024, 29(5): 1422−1440

Confrontation rules. A force unit, directly
commanded by the decision-making model, can be
composed of a designated number of platforms that act
in accordance with unified orders. Aircraft (including
bombers and fighters) take off from their respective
airports. The red ship is initially located at the near
center of the ground and moves within a defined area
to defend air space during confrontations. Each fighter
is equipped with six air-to-air missiles solely for
engaging aerial targets. Each bomber armed with two
air-to-land missiles, is limited to bombing land or sea
targets and is unable to retaliate in the air. The red ship
has 15 sea-to-air missiles for attacking air targets. An
aircraft is considered destroyed upon being hit once.
The ship is regarded as sunk if it is hit twice. Notably,
there exists a somewhat negative correlation between
hitting accuracy and attack distance, necessitating a
trade-off between swift attacks and precision. For
simplicity, both sides have access to global
environmental information throughout the
confrontation.

As Fig. 6 shows, to maintain both generality and
typicality, we constructed two wargaming scenarios
with different difficulties based on WCG: aircraft-
chasing and ship-bombing to perform this case study,
detailed as follows.
6.1.1　Aircraft-chasing
Mission. As shown in Fig. 6, the objective of the
aircraft-chasing scenario is for the blue side to deploy
its fighters to pursue and attack the red side’s bombers.
The mission entails shooting down all the red side’s
bombers.

Two sides. The blue side controls one force unit
comprising five fighters, while the red side has one
force unit comprising five bombers. The decision-
making model of the blue side is driven by an RL
algorithm, whereas that of the red side is driven by a
random algorithm.

Hybrid actions. For the blue side’s RL agent, each
force unit has two discrete action options: attack or
move, and each discrete action comes with its
associated continuous parameters, as stated in Section
3.2.2. When the attack action is activated, each aircraft
of the unit searches for accessible targets within the
area and attack range determined by the continuous
parameters, subsequently launches missiles to attack
the closest target or taking no action if no accessible
targets are found. When the move action is activated,

each aircraft in the unit collectively move to patrol the
target area defined by the continuous parameters,
following a unified motion pattern while maintaining a
specific distance around the area center.

Vectorized state. A five-dimensional vector is
employed to describe the state of each aircraft. The
first three elements, normalized to the range of [0, 1],
represent the aircraft’s x-axis coordinate, y-axis
coordinate, and ammunition consumption, respectively.
The fourth element is a binary value indicating whether
the aircraft is a bomber or a fighter (1 for bomber, 0 for
fighter), while the fifth element is a binary value
indicating whether the aircraft is alive (1 for alive, 0 for
destroyed). Consequently, the global state can be
represented as a 50-dimensional concatenated vector
encompassing the information of all 10 aircraft.

Engineered reward. To drive the blue side’s RL
agent, a task-specific reward function is engineered
considering the following factors: the bonus for
approaching the red bombers, the bonus for shooting
down the red bombers, and the penalty for ammunition
waste. The final formulation of the engineered reward
function for this scenario is given as follows:

rt = w1
Nd

5
+w2e−δ−w3

Naa

30
(16)

Nd

Naa

δ

w1 w2 w3

w1 = 0.50 w2 = 0.75 w3 = 0.10

where represents the number of bombers destroyed
at this time step, is the number of air-to-air
missiles launched at this time step, and represents the
distances between the two units (a unit’s position is
determined by the average coordinates of its existing
aircraft). The weights , , and are empirically
set as , , and after coarse
fine-tuning.

Termination conditions. An episode ends with
success when all red bombers are shot down.
Conversely, it terminates in failure for either of the
following conditions: (1) All the red fighters have
depleted their ammunition, or (2) the episode lasts for
over 200 time steps.
6.1.2　Ship-bombing
Mission. As shown in Fig. 6, in this ship-bombing
scenario, the blue side is tasked to bomb the red side’s
ship, while the red side defends the ship to be safe. The
mission is to successfully sink the red ship by bombing
it with bombers.

Two sides. The blue side has three force units: two
comprise five bombers each and one comprises 10
fighters (to interfere with the red ship and fighters

 Liwei Dong et al.: Offline Reinforcement Learning with Constrained Hybrid Action Implicit Representation Towards... 1435

attacking the blue bombers). The red side has one force
unit comprising six fighters and a ship. The decision-
making model of the blue side is driven by an RL
algorithm, whereas that of the red side is driven by a
rule-based strategy.

8 = 23

Hybrid actions. The same hybrid action of a unit in
the aircraft-chasing scenario is followed in this
scenario, but the total number of discrete action options
becomes that corresponds to all discrete
combinations of three blue side’s units.

Vectorized state. The same vectorized state setting
of an aircraft in aircraft-chasing scenario is followed in
this scenario. Besides, we use another four-dimensional
vector to describe the state of the ship, where the
elements are the normalized x-axis coordinate, y-axis
coordinate, ammunition consumption, and a binary
value indicating whether the ship has been hit once
(equals to 0 if never hit, 1 if hit once). Therefore, the
global state is denoted by a 134-dimensional
concatenated vector encompassing the information of
20 blue side’s aircraft, six red side’s aircraft and a ship.

Engineered reward. Likewise, we craft the reward
function for this scenario considering the following
factors: the bonus for approaching the red ship, the
bonus for hitting the red ship, the penalty for aircraft
loss, and the penalty for ammunition waste. Finally, the
task-specific engineered reward function is

rt = w1Is+w2e−δSB −w3
Nal

20
−w4

Nb

10
−w5

N f

5
(17)

Is

Nal

Nb N f

δSB

w1 = 0.80 w2 = 0.40 w3 = 0.15 w4 = 0.10 w5 =

0.05

where denotes if the red ship is hit at this time step
(if hit, it equals 1, otherwise, 0), is the number of
the air-to-land missiles launched by blue bombers at
this time step, and are respectively the loss
numbers of blue bombers and blue fighters at this time
step, represents the distance between the red ship
and bomber unit that has remaining ammunition and is
closer to the ship (the unit’s position is measured by
the average coordinates of its existing bombers). Here,
the weights of each part are empirically set as

, , , , and
 after coarse fine-tuning.

Termination conditions. The episode terminates
with success when the red ship is bombed to be sunk,
while it terminates with failure when either of the
following events happens: (1) all blue bombers are shot
down, (2) all blue bombers have run out of
ammunition, and (3) the episode lasts over 300 time
steps.

6.2　Experimental settings

In this case study, we basically retain the experimental
settings as those in Section 5.2, and customize some
settings according to the features of wargaming
scenarios, as follows.

Offline dataset. The offline dataset becomes larger
with 6×105 transitions that are collected from four
algorithms with 150k transitions each.

d1 = 6
d2 = 6

Algorithm setup. Likewise, we use the same
algorithm setups in two wargaming scenarios.
Differently, we make the following modifications to
the setups of three algorithms to adapt the higher-
dimension information in wargaming scenarios: The
actor and the critic increase the hidden layer size to
(500, 500). The hidden layer size in the encoder and
the decoder becomes (800, 800), and that of the
dynamics predictor becomes (600, 600). The widths of
the embedding layer and the extracting layer become
500. The latent action dimension is set as and

. Each algorithm trains the RL policy training
iterations 4.0 × 106 time steps. The training timesteps
of representation learning become 2.0 × 106, and the
offline RL training time steps remain at 4.0 × 106.

Performance evaluation. Considering the domain
feature of wargaming tasks, we adopt several
additional criteria besides AER to evaluate the policy
performance: (1) Success Rate (SR, regularly evaluated
10 times over 100 online episodes during the whole
policy training stage); (2) Force Cost Rate (FCR,
evaluated when the training is finished over 100 online
episodes, denoting the average of the force unit death
rate over all successful episodes); and (3) Ammunition
Cost Rate (ACR, evaluated when the training is
finished over 100 online episodes, the average of
ammunition consumption rate over all successful
episodes). FCR and ACR indicate the wargaming
losses of the decision-making model, and the lower
these two criteria, the more effective the decision-
making model.

6.3　Experimental results

We show the comparison results for our method and
the other two baselines in two typical wargaming
scenarios in Fig. 7 and Table 1.

From the Figs. 7a and 7b, we can obtain similar
findings as those from the evaluation results in Section
5.3. Specifically, the AER of our method CHAIR
significantly surpasses that of the other two baselines
in both wargaming scenarios, and our method shows

 1436 Tsinghua Science and Technology, October 2024, 29(5): 1422−1440

better stability and generality. From the final AER
improvement, offline-PDQN is slightly stronger than
offline-HyAR in the two wargaming scenarios, but
only reaches about 1/4 of CHAIR. Likewise, from the
SR evaluation results shown in Figs. 7c and 7d, we can
observe the following evidence to show CHAIR’s
considerable superiority: Notably, CHAIR steadily
improves the success rate to 50.8% and 41.2% in
aircraft-chasing and more complex ship-bombing,
respectively. In contrast, the success rates of the other
two baselines can barely exceed 10% (offline-HyAR:
14.3%; offline-PDQN: 11.4%) in aircraft-chasing, and
cannot even surpass 10% in more difficult ship-
bombing (offline-HyAR: 7.4%; offline-PDQN: 6.3%).
The comparison results of the success rate demonstrate
that CHAIR’s policy has superior capability in solving
wargaming tasks.

As can be seen from Table 1, CHAIR has much less
wargaming loss (in terms of FCR and ACR) than the
other two baselines. Considering that CHAIR has the
highest success rate, this comparison of wargaming
losses clearly indicates that CHAIR achieves a much
more efficient policy than the other two baselines. That
is, CHAIR’s policy can solve the wargaming tasks at
less cost.

To sum up, these the above empirical findings in this
case study reveal several facts: (1) Our method CHAIR
effectively improves the offline RL agent’s policy only
using the static offline wargaming dataset with hybrid
COA actions. (2) The policy obtained by our method is

more efficient, with less wargaming losses and higher
success rates. (3) Our method has good generality
across typical wargaming scenarios with the its steady
policy-enhancing ability and superior performance.

7　Discussion
The reason why our method can demonstrate the
superiority may lie in the following aspects: (1) During
the implicit representation phase, we explicitly impose
constraints on the consistency between discrete actions
and state transitions. This imposition ensures better
alignment of action space mappings, thereby
guaranteeing stability and effectiveness in training
within the offline paradigm. (2) In the offline RL
phase, the introduction of dynamic OOD action
constraints allows for a balanced exploration-
exploitation trade-off and mitigates extrapolation
errors, resulting in improved policy performance. In
contrast, HyAR and PDQN are originally online
algorithms that rely on continuous interaction with the
environment to update TD estimates. They lack
sufficient constraints to ensure successful policy
improvement when transferred to the offline paradigm
with a fixed dataset.

Future works may include several directions to
improve our work, discussed as follows. First, we have
not sufficiently investigated the impact of the latent
action dimension and offline dataset quality on the
learning performance, due to the limited experimental
time cost. This issue may need to be further explored in
future works based on systematic ablation studies.
Second, we share the global information and perform
centralized control for each unit in our wargaming
scenario, which to some extent does not conform to the
natural wargaming settings. Considering the
applicability to wargaming scenarios with local
observation and more abundant units, it may be a
promising line to combine the proposed method with
the multi-agent RL paradigm under a partially observed
MDP framework. Third, future studies could try to
refine the policy acquired through offline RL with

0.6
0.5
0.4
0.3
0.2
0.1

Av
er

ag
e

ep
is

od
e

re
tu

rn

0
−0.1

0 5 10 15 20
Training time steps (×105)

(a) Aircraft-chasing

25 30 35 40 0 5 10 15 20
Training time steps (×105)

25 30 35 40 0 5 10 15 20
Training time steps (×105)

25 30 35 40 0 5 10 15 20
Training time steps (×105)

25 30 35 40

CHAIR (ours)
Offine-HyAR
Offine-PDQN

0.5
0.4
0.3
0.2
0.1

Av
er

ag
e

ep
is

od
e

re
tu

rn

0

−0.2
−0.1

(b) Ship-bombing

CHAIR (ours)
Offine-HyAR
Offine-PDQN

0.6

0.5

0.4

0.3

0.2Su
cc

es
s r

at
e

0.1

0

(c) Aircraft-chasing

CHAIR (ours)
Offine-HyAR
Offine-PDQN

0.508

0.143
0.114

0.5

0.4

0.3

0.2

Su
cc

es
s r

at
e

0.1

0

(d) Ship-bombing

CHAIR (ours)
Offine-HyAR
Offine-PDQN

0.412

0.074
0.063

Fig. 7 Performance comparison for three algorithms in two wargaming scenarios.

Table 1 Comparison results of FCR and ACR for three
algorithms in the two wargaming scenarios. FCR is not
applicable in aircraft-chasing scenario. The best results are
marked in bold.

Algorithm
Aircraft-chasing Ship-bombing
FCR ACR FCR ACR

CHAIR (ours) – 20.5 85.4 76.2
Offline-HyAR – 37.5 94.3 84.9
Offline-PDQN – 40.2 96.6 86.5

 Liwei Dong et al.: Offline Reinforcement Learning with Constrained Hybrid Action Implicit Representation Towards... 1437

further online interactions in the real environment.
Last, it is valuable to enhance the present
representation method to wider forms of hybrid action
space, for example, multi-level hybrid actions in a
hierarchical structure.

8　Conclusion

This paper aims at the wargaming decision-making
problem with discrete-continuous hybrid commands
under offline settings, which current RL methods fail to
address. Towards this domain demand, we propose
CHAIR, a novel two-stage offline RL method crafted
for hybrid action spaces. Using a new constrained
action representation technique, CHAIR first
transforms the problem from hybrid control into
continuous control, allowing learning of a latent policy
in a representation space with better exploration
feasibility and action scalability. Then, for better policy
robustness and flexibility, CHAIR develops a novel
optimization objective with adaptively adjusted
constraint components to balance the alleviation and
generalization of OOD action under offline settings.
Finally, CHAIR learns a latent policy that can be
reconstructed back to a hybrid policy. Through the
systematic evaluation, we demonstrate the superior
performance, stability, and generality of CHAIR across
typical toy game tasks and our realistic wargaming
scenarios. Futhermore, this work can also provide a
preliminary exploration to leverage the abundant
domain offline data in the wargaming field to
accelerate the RL deployment, rather than training RL-
based decision-making models from scratch relying on
time-consuming online interactions.

References

 R. R. Hill and J. O. Miller, A history of United States
military simulation, in Proc. 2017 Winter Simulation Conf.
(WSC), Las Vegas, NV, USA, 2017, pp. 346–364.

[1]

 J. Appleget, An introduction to wargaming and modeling
and simulation, in Simulation and Wargaming, C.
Turnitsa, C. Blais, and A. Tolk, Eds. Hoboken, NJ, USA:
John Wiley & Sons, 2021, pp. 1−22.

[2]

 S. Wang and Y. Liu, Modeling and simulation of CGF
aerial targets for simulation training, in Proc. Int. Conf.
Computer Intelligent Systems and Network Remote
Control (CISNRC 2020), doi: 10.12783/dtcse/cisnr2020/
35167.

[3]

 Ö. F. Arar and K. Ayan, A flexible rule-based framework
for pilot performance analysis in air combat simulation
systems, Turk. J. Elec. Eng. Comp. Sci., vol. 21, no. 8, pp.
2397–2415, 2013.

[4]

 C. Huang, H. Zhang, L. Wang, X. Luo, and Y. Song,
Mixed deep reinforcement learning considering discrete-
continuous hybrid action space for smart home energy
management, J. Mod. Power Syst. Clean Energy, vol. 10,
no. 3, pp. 743–754, 2022.

[5]

 K. Gao, Y. Huang, A. Sadollah, and L. Wang, A review of
energy-efficient scheduling in intelligent production
systems, Complex Intell. Syst., vol. 6, no. 2, pp. 237–249,
2020.

[6]

 Y. He, L. Xing, Y. Chen, W. Pedrycz, L. Wang, and G.
Wu, A generic Markov decision process model and
reinforcement learning method for scheduling agile earth
observation satellites, IEEE Trans. Syst. Man Cybern.
Syst., vol. 52, no. 3, pp. 1463–1474, 2022.

[7]

 K. Zhu and T. Zhang, Deep reinforcement learning based
mobile robot navigation: A review, Tsinghua Science and
Technology, vol. 26, no. 5, pp. 674–691, 2021.

[8]

 K. Zhao and L. Ning, Hybrid navigation method for
multiple robots facing dynamic obstacles, Tsinghua
Science and Technology, vol. 27, no. 6, pp. 894–901,
2022.

[9]

 X. Hao, C. Xu, L. Xie, and H. Li, Optimizing the
perceptual quality of time-domain speech enhancement
with reinforcement learning, Tsinghua Science and
Technology, vol. 27, no. 6, pp. 939–947, 2022.

[10]

 L. Wang, Z. Pan, and J. Wang, A review of reinforcement
learning based intelligent optimization for manufacturing
scheduling, Complex System Modeling and Simulation,
vol. 1, no. 4, pp. 257–270, 2021.

[11]

 M. Tan, Z. Zhang, Y. Ren, I. Richard, and Y. Zhang,
Multi-agent system for electric vehicle charging
scheduling in parking lots, Complex System Modeling and
Simulation, vol. 3, no. 2, pp. 129–142, 2023.

[12]

 Z. Liao and S. Li, Solving nonlinear equations systems
with an enhanced reinforcement learning based differential
evolution, Complex System Modeling and Simulation, vol.
2, no. 1, pp. 78–95, 2022.

[13]

 W. Shi, Y. H. Feng, G. Q. Cheng, H. L. Huang, J. C.
Huang, Z. Liu, and W. He, Research on multi-aircraft
cooperative air combat method based on deep
reinforcement learning, (in Chinese), Acta Autom. Sin.,
vol. 47, no. 7, pp. 1610–1623, 2021.

[14]

 B. Yuksek, U. M. Demirezen, and G. Inalhan,
Development of UCAV fleet autonomy by reinforcement
learning in a wargame simulation environment, in Proc.
AIAA Scitech 2021 Forum, doi: 10.2514/6.2021-0175.

[15]

 Y. Sun, B. Yuan, Q. Xiang, J. Zhou, J. Yu, D. Dai, and X.
Zhou, Intelligent decision-making and human language
communication based on deep reinforcement learning in a
wargame environment, IEEE Trans. Hum. Mach. Syst.,
vol. 53, pp. 201–214, 2023.

[16]

 S. Fujimoto, D. Meger, and D. Precup, Off-policy deep
reinforcement learning without exploration, in Proc. 36th

Int. Conf. Machine Learning, Long Beach, CA, USA,
2019, pp. 2052–2062.

[17]

 W. Zhou, S. Bajracharya, and D. Held, PLAS: Latent
action space for offline reinforcement learning, in Proc.
2020 4th Conf. Robot Learning, Cambridge, MA, USA,

[18]

 1438 Tsinghua Science and Technology, October 2024, 29(5): 1422−1440

2021, pp. 1719–1735.
 S. Fujimoto and S. Gu, A minimalist approach to offline
reinforcement learning, in Proc. 34th Int. Conf. Neural
Information Processing Systems, Virtual Event, 2021, pp.
20132–20145.

[19]

 A. Kumar, A. Zhou, G. Tucker, and S. Levine,
Conservative Q-learning for offline reinforcement
learning, in Proc. 34th Int. Conf. Neural Information
Processing Systems, Vancouver, Canada, 2020, p. 100.

[20]

 C. Zhao, K. Huang, and C. Yuan, DCE: Offline
reinforcement learning with double conservative
estimates, in Proc. 11th Int. Conf. Learning
Representations, doi: 10.48550/arXiv.2209.13132.

[21]

 Y. Wu, G. Tucker, and O. Nachum, Behavior regularized
offline reinforcement learning, arXiv preprint arXiv:
1911.11361, 2019.

[22]

 T. Yu, G. Thomas, L. Yu, S. Ermon, J. Zou, S. Levine, C.
Finn, and T. Ma, MOPO: Model-based offline policy
optimization, in Proc. 34th Int. Conf. Neural Information
Processing Systems, Vancouver, Canada, 2020, p. 1185.

[23]

 R. Kidambi, A. Rajeswaran, P. Netrapalli, and T.
Joachims, MOReL: Model-based offline reinforcement
learning, in Proc. 34th Int. Conf. Neural Information
Processing Systems, Vancouver, Canada, 2020, p. 1830.

[24]

 B. Li, H. Tang, Y. Zheng, J. Hao, P. Li, Z. Wang, Z.
Meng, and L. Wang, HyAR: Addressing discrete-
continuous action reinforcement learning via hybrid action
representation, in Proc. the 10th Int. Conf. Learning
Representations, Virtual Event, doi: 10.48550/arXiv.2109.
05490.

[25]

 J. Xiong, Q. Wang, Z. Yang, P. Sun, L. Han, Y. Zheng, H.
Fu, T. Zhang, J. Liu, and H. Liu, Parametrized deep Q-
networks learning: Reinforcement learning with discrete-
continuous hybrid action space, arXiv preprint arXiv:
1810.06394, 2018.

[26]

 W. Masson, P. Ranchod, and G. Konidaris, Reinforcement
learning with parameterized actions, in Proc. 10th AAAI
Conf. Artificial Intelligence, Phoenix, AZ, USA, 2016, pp.
1934–1940.

[27]

 C. J. Bester, S. D. James, and G. D. Konidaris, Multi-pass
Q-networks for deep reinforcement learning with
parameterised action spaces, arXiv preprint arXiv:
1905.04388, 2019.

[28]

 M. Hausknecht and P. Stone, Deep reinforcement learning
in parameterized action space, in Proc. the 4th Int. Conf.
Learning Representations, San Juan, PR, USA, doi:
10.48550/arXiv.1511.04143.

[29]

 Z. Fan, R. Su, W. Zhang, and Y. Yu, Hybrid actor-critic
reinforcement learning in parameterized action space, in
Proc. 28th Int. Joint Conf. Artificial Intelligence, Macao,
China, 2019, pp. 2279–2285.

[30]

 X. Lou, Q. Yin, J. Zhang, C. Yu, Z. He, N. Cheng, and K.
Huang, Offline reinforcement learning with
representations for actions, Inf. Sci., vol. 610, pp.
746–758, 2022.

[31]

 S. Levine, A. Kumar, G. Tucker, and J. Fu, Offline
reinforcement learning: Tutorial, review, and perspectives
on open problems, arXiv preprint arXiv: 2005.01643,

[32]

2020.
 R. Agarwal, D. Schuurmans, and M. Norouzi, An
optimistic perspective on offline reinforcement learning, in
Proc. 37th Int. Conf. Machine Learning, Virtual Event,
2020, pp. 104–114.

[33]

 Y. Guo, S. Feng, N. Le Roux, E. Chi, H. Lee, and M.
Chen, Batch reinforcement learning through continuation
method, in Proc. the 9th Int. Conf. Learning
Representations, Virtual Event, https://openreview.net/
forum?id=po-DLlBuAuz, 2021.

[34]

 P. Swazinna, S. Udluft, D. Hein, and T. Runkler,
Comparing model-free and model-based algorithms for
offline reinforcement learning, IFAC-Papers On Line, vol.
55, no. 15, pp. 19–26, 2022.

[35]

 D. P. Kingma and M. Welling, Auto-encoding variational
Bayes, arXiv preprint arXiv: 1312.6114, 2022.

[36]

 W. Whitney, R. Agarwal, K. Cho, and A. Gupta,
Dynamics-aware embeddings, in Proc. the 8th Int. Conf.
Learning Representations, Addis Ababa, Ethiopia, doi:
10.48550/arXiv.1908.09357.

[37]

 C. Huang, K. Dong, H. Huang, S. Tang, and Z. Zhang,
Autonomous air combat maneuver decision using
Bayesian inference and moving horizon optimization, J.
Syst. Eng. Electron., vol. 29, no. 1, pp. 86–97, 2018.

[38]

 M. Masek, C. P. Lam, L. Benke, L. Kelly, and M.
Papasimeon, Discovering emergent agent behaviour with
evolutionary finite state machines, in Proc. 21st Int. Conf.
PRIMA 2018: Principles and Practice of Multi-Agent
Systems, Tokyo, Japan, 2018, pp. 19–34.

[39]

 R. S. Sutton and A. G. Barto, Reinforcement Learning: An
Introduction, 2nd ed. Cambridge, MA, USA: The MIT
Press, 2018.

[40]

 T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y.
Tassa, D. Silver, and D. Wierstra, Continuous control with
deep reinforcement learning, arXiv preprint arXiv:
1509.02971, 2019.

[41]

 D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and
M. Riedmiller, Deterministic policy gradient algorithms,
in Proc. 31st Int. Conf. Machine Learning, Beijing, China,
2014, pp. 387–395.

[42]

 S. Fujimoto, H. van Hoof, and D. Meger, Addressing
function approximation error in actor-critic methods, in
Proc. 35th Int. Conf. Machine Learning, Stockholm,
Sweden, 2018, pp. 1587–31596.

[43]

 C. Guo and F. Berkhahn, Entity embeddings of categorical
variables, arXiv preprint arXiv: 1604.06737, 2016.

[44]

 A. Grosnit, R. Tutunov, A. M. Maraval, R. R. Griffiths, A.
I. Cowen-Rivers, L. Yang, L. Zhu, W. Lyu, Z. Chen, J.
Wang, et al., High-dimensional Bayesian optimisation
with variational autoencoders and deep metric learning,
arXiv preprint arXiv: 2106.03609, 2021.

[45]

 M. Schwarzer, N. Rajkumar, M. Noukhovitch, A. Anand,
L. Charlin, R. D. Hjelm, P. Bachman, and A. C. Courville,
Pretraining representations for data-efficient reinforcement
learning, in Proc. 34th Int. Conf. Neural Information
Processing Systems, Virtual Event, 2021, pp.
12686–12699.

[46]

 D. P. Kingma and J. Ba, Adam: A method for stochastic
optimization, arXiv preprint arXiv: 1412.6980, 2017.

[47]

 Liwei Dong et al.: Offline Reinforcement Learning with Constrained Hybrid Action Implicit Representation Towards... 1439

Liwei Dong received the BEng degree in
automation from University of Electronic
Science and Technology of China in 2017.
Since 2017, he is pursuing the PhD degree
in navigation, control, and guidance at
School of Automation Science and
Electrical Engineering, Beihang
University, China. His current research

interests include system simulation and modeling, reinforcement
learning, and intelligent decision modeling.

Ni Li received the PhD degree in
navigation, guidance, and control from
Beihang University, China in 2006. She is
currently a professor at School of
Automation Science and Electrical
Engineering, and Key Laboratory of
Advanced Simulation Aeronautical
Technology, Beihang University, China.

Her main research interests include system modeling and
simulation, digital prototyping, virtual reality, and intelligent
modeling.

Guanghong Gong received the BEng,
MEng, and PhD degrees from Beihang
University, China in 1990, 1993, and 1997,
respectively. She is currently a professor at
School of Automation Science and
Electrical Engineering, and Key
Laboratory of Advanced Simulation
Aeronautical Technology, Beihang

University, China. She won the Science and Technology
Progress Award of the Ministry of Education and the National
Defense Science and Technology Progress Award for many
times. Her research interests include virtual reality, artificial
intelligence, and distributed interactive simulation.

Xin Lin received the MEng and PhD
degrees from Beihang University, China in
1996 and 2001, respectively. He is
currently a lecturer at School of
Automation Science and Electrical
Engineering, Beihang University, China.
His research interests include system
modeling and simulation.

 1440 Tsinghua Science and Technology, October 2024, 29(5): 1422−1440

