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Abstract: In order to support the perception and defense of the operation risk of the medium and low voltage

distribution  system,  it  is  crucial  to  conduct  data  mining  on  the  time  series  generated  by  the  system  to  learn

anomalous  patterns,  and  carry  out  accurate  and  timely  anomaly  detection  for  timely  discovery  of  anomalous

conditions and early alerting. And edge computing has been widely used in the processing of Internet of Things

(IoT) data. The key challenge of univariate time series anomaly detection is how to model complex nonlinear

time dependence.  However,  most  of  the previous works only model  the short-term time dependence,  without

considering  the  periodic  long-term  time  dependence.  Therefore,  we  propose  a  new  Hierarchical  Attention

Network  (HAN),  which  introduces  seven  day-level  attention  networks  to  capture  fine-grained  short-term  time

dependence, and uses a week-level attention network to model the periodic long-term time dependence. Then

we  combine  the  day-level  feature  learned  by  day-level  attention  network  and  week-level  feature  learned  by

week-level  attention  network  to  obtain  the  high-level  time  feature,  according  to  which  we  can  calculate  the

anomaly  probability  and  further  detect  the  anomaly.  Extensive  experiments  on  a  public  anomaly  detection

dataset, and deployment in a real-world medium and low voltage distribution system show the superiority of our

proposed framework over state-of-the-arts.
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1　Introduction

To support the perception and defense of the operation
risk  of  the  medium  and  low  voltage  distribution
system, it is crucial to conduct data mining on the time
series  generated  by  the  system  to  learn  anomalous
patterns[1, 2] and  carry  out  accurate  detection  of

anomalies  for  timely  discovery  of  anomalous
conditions  and  early  alerting[3, 4].  To  adapt  to  the
processing of large-scale Internet of Things (IoT) data,
edge  computing  is  also  widely  used[5–9].  In  fact,  the
medium  and  low  voltage  distribution  data  are  a  time
series  with  complex  nonlinear  time-dependent  and
periodic  characteristics  due  to  the  influence  of  user
behavior  and schedule.  When sudden abnormal events
occur,  this  periodicity  will  be  disrupted[10].  We  can
monitor  the  changes  of  medium  and  low  voltage
distribution  time  series  in  real  time  so  as  to  carry  out
operational risk assessment and safety warning for key
equipment,  which  provides  the  basis  for  the
implementation  of  preventive  maintenance  strategy  of
distribution  network  and  is  crucial  for  the  safe
operation of highly reliable distribution system. In fact,
accurate  and  efficient  anomaly  detection  for  the
univariate time series has always been a huge challenge
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and  has  become  the  focus  of  researchers  in  recent
years[11, 12].

At  the  beginning,  some  statistical  methods  such  as
Auto  Regressive  Integrated  Moving  Average
(ARIMA)[13], Kalman filtering[14], and wavelet analysis
were  applied  for  anomaly  detection  of  univariate  time
series.  Later,  some  models  based  on  traditional
machine  learning,  such  as  One-Class  Support  Vector
Machine  (OCSVM)[15, 16] based  on  singular  value
detection,  isolation  forest[17] based  on  ensemble
learning,  and k-Nearest  Neighbor  (KNN)[18] based  on
clustering,  were  proposed.  However,  these  methods
cannot capture the complex nonlinear time dependence
in  time  series.  Some  deep  learning  approaches,  which
can  be  broadly  categorized  into  supervised  model  and
unsupervised  model,  have  been  proposed  and  used  to
univariate time series anomaly detection in recent years
in an effort to address this issue. The supervised model
is  suitable  for  the  scene  where  there  are  many
anomalous labels that are accurately marked so that the
models  can  learn  the  anomalous  features.  The
nonlinear  time  dependence of  the  time  series  is
frequently  extracted  using  popular  deep  learning
networks,  such  as  Feed-forward  Neural  Network
(FNN)[19],  Convolutional  Neural  Network  (CNN),
Long  Short-Term  Memory  Network  (LSTM)[20],  and
informer[21],  and  the  anomaly  probability  is  then
determined  for  classification  using  a  classifier.
Unsupervised models are often used in scenarios where
anomalous  data  are  far  less  than  normal  data  or  even
negligible. They train the model using normal samples
to  discover  the  typical  normal  pattern  of  the  sequence
and judge the data deviating from the normal pattern as
anomalies.  Common  unsupervised  models  include
forecasting  methods  based  on  CNN,  LSTM,  or
transformer[22, 23],  such  as  LSTM-AD[24] and
DeepAnt[25], and some reconstruction models based on
Auto-Encoders  (AEs)[26],  Variational  Auto-Encoders
(VAEs),  or  Generative Adversarial  Networks (GANs),
such as Donut[27], LSTM-VAE[28], and MAD-GAN[29, 30].
They  use  either  the  reconstruction  error  or  prediction
error as the anomalous score.

The  previous  work  only  considered  the  short-term
time  dependence  of  time  series  data.  However,  in  the
industrial  context  of  medium  and  low  voltage
distribution,  due  to  the  fact  that  the  variation  of
electricity  related  time  series  data  may  be  affected  by
the  workdays  and  seasons,  there  may  be  certain
periodic patterns. If the long-term periodic dependence

cannot be captured, it will lead to the inability to learn
the  correct  potential  patterns  of  time  series. Figure  1
visualizes  the  time  series  data  of  a  week  in  a  real
medium and low voltage distribution system, and it can
be seen that the corresponding time of each day of the
week has a strong periodicity, and this periodicity will
be  broken  when  an  anomaly  occurs.  Therefore,  our
focus  is  how  to  simultaneously  model  short-term
nonlinear  time  dependence  and  long-term  periodic
dependence  patterns  of  time  series  within  a  unified
framework. Our goal is to learn advanced time features
that  consider  both  long-term  and  short-term  time
dependencies,  and  further  achieve  more  accurate
anomaly detection results.

t

Along  this  line,  we  propose  Hierarchical  Attention
Network  (HAN),  which  is  an  end-to-end  supervised
univariate  time  series  anomaly  detection  framework.
The  proposed  hierarchical  attention  network  is  mainly
composed  of  seven  day-level  multi-head  self-attention
networks  and  a  week-level  multi-head  self-attention
network. The day-level attention networks can capture
the fine-grained short-term time dependence and obtain
the day-level feature, then the day-level feature vectors
of  seven  days  are  sent  to  the  week-level  attention
network  to  model  high-level  periodic  long-term  time
dependence and get the week-level feature. Finally, the
day-level  feature  vector  and  the  week-level  feature
vector  are  connected  at  the  output  layer,  and  then  the
anomaly probability of timestamp  is obtained through
a  Multiple  Layer  Perceptron  (MLP)  network  with
sigmoid function. Then, we use a binary cross entropy
function as the goal function to reduce the discrepancy
between  the  anomaly  probability  and  the  ground  truth
anomaly  label  to  train  our  model  and  comprehend the
pattern  of  the  anomaly  data.  When  detecting,  if  the
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Fig. 1    An  example  of  periodic  time  dependence  on  the
ElecPower  dataset.  The  daily  data  flow  within  a  week  is
periodic,  and  the  red  dotted  box  indicates  that  anomalies
have occurred.
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anomaly probability is greater than or equal to 0.5, we
believe that an anomaly has occurred at this time. The
following are main contributions of this paper:

●  We  are  the  first  to  model  the  fine-grained  short-
term  time  dependence  and  periodic  long-term  time
dependence  simultaneously  in  a  unified  framework,
which  has  important  practical  significance  for
extracting the characteristics of time series.

●  We  propose  an  end-to-end  hierarchical  attention
network  framework  consisting  of  seven  day-level
attention networks  and a  week-level  attention network
to  model  the  fine-grained  day-level  short-term  time
dependence  and  periodic  week-level  long-term  time
dependence  simultaneously,  which  can  extract  more
abundant  time  features  and  thus  obtain  more  accurate
classification.

● We perform extensive experiments on a real-world
medium  and  low  voltage  distribution  system  dataset
and a public anomaly detection dataset to illustrate the
superiority  of  our  method  over  state-of-the-arts
comparing with various univariate time series anomaly
detection baselines.

The  overall  organization  of  the  paper  is  as  follows.
Section 2 conducts research on related work. Section 3
introduces the definition of the problem studied in this
article. Section 4 discusses the specific implementation
of  the  proposed  method,  and  Section  5  conducts
experiments and result analysis to verify the superiority
of our model. Section 6 concludes this paper.

2　Related Work

Univariate  time series  anomaly  detection  has  attracted
wide  attention  recently.  There  are  a  variety  of
conventional  statistics  based  methods  and  machine
learning algorithms for detecting anomalies.  The latter
usually includes supervised and unsupervised methods.

Statistical  models. The  statistical  model  includes
some  probabilistic  methods  based  on  distribution
hypothesis,  such  as  Markov  inequality,  Chebyshev
inequality,  3-sigma,  Z-score,  boxplot,  Chi-square  test,
Grubbs’ test,  and  Extreme  Studied  Deviate  test
(ESD)[26].  These  models  presuppose  that  the  data
follow  a  particular  probability  distribution,  and  any
data  that  deviate  from  this  distribution  are  considered
anomalies.  Additionally,  the  autoregressive  techniques
ARIMA[13] and  Kalman  filtering[14] can  suit  the
features  of  historical  series  to  forecast  the  following
timestamp.  And  the  frequency  domain  properties  are
used by the  wavelet  analysis  and Fourier  transform[31]

to find anomalies.
Supervised methods. Supervised anomaly detection

methods  rely  significantly  on  accurate  tagging.  A
common  problem  in  supervised  anomaly  detection  is
the  imbalance  between  anomalous  classes  and  normal
classes.  To  address  this  issue,  some  works  have
proposed  the  cost-sensitive  learning  and  adaptive  re-
sampling  methods  based  on  traditional  classification
algorithms  such  as  k-nearest  neighbor,  linear
regression,  Naive  Bayes,  random  forests[32],  decision
trees,  support  vector  machines[33],  etc.  With  the
popularity  of  some  advanced  deep  learning  models,
some  common  deep  learning  networks  such  as  FNN,
CNN,  and  LSTM  have  been  utilized  for  classification
models.  The  Opprentice[34] trains  the  random  forest
classifier  using  features  and  labels  after  extracting
anomalous  characteristics  from the  original  data  using
a  variety  of  current  deep  learning  detectors.  The
FNN[19] utilizes the raw data and labels to get a trained
deep  neural  network.  After  that,  the  output  layer
applies a  softmax function to get  the probability of  an
anomaly. Informer[21] is an effective prediction scheme
that  has  been  put  out  to  address  the  issue  of  long
sequence time-series  modeling,  using ProbSparse self-
attention and having the capacity to extract long-range
dependence  from  the  input  time  series.  We  utilize
informer to extract time series features for the purpose
of  comparison  with  our  model,  and  then  we  use  the
features to classify anomalies.

Unsupervised  methods. The  unsupervised  anomaly
detection methods concentrate on the normal mode and
do  not  need  to  label  the  anomalies.  The  KNN[18] is  a
distance-based  method,  which  calculates  the  average
distance  between  each  sample  point  and  adjacent K
samples  in  turn.  This  method  can  only  find  global
anomalies  by  comparing  distance  and  threshold  and
cannot  detect  local  anomalies.  The  Principal
Component  Analysis  (PCA)[35] converts  the  input  into
a low-dimensional space, reconstructs the original data
using the low-dimensional feature, and then utilizes the
reconstruction  deviation  as  the  anomalous  score.  The
one-class SVM trains a hyperplane by mapping data to
high-dimensional  space  using  kernel  function.  During
the  test,  if  the  data  are  within  the  hyperplane,  it  is
considered  as  normal  point,  otherwise  it  is  considered
as  anomaly.  Isolation  forest[17] is  an  unsupervised
machine  learning  algorithm,  which  defines  anomalies
as  points  that  are  widely  spaced  out  from  dense
populations  and  have  a  low  density  of  occurrence.  In
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addition,  the  idea  of  other  methods  based  on  deep
learning[36–41] is  that  if  the  normal  samples  are  much
larger  than  the  anomalous  one  in  the  training  set,  the
normal  mode  of  time  series  will  be  learned  by  the
reconstruction model or forcasting-based model during
the  training  process.  In  the  detection  phase,  the  data
deviating  from the  learned  normal  pattern,  that  is,  the
reconstruction error or forcasting error greater than the
threshold,  are  defined  as  anomalies.  Some  typical
reconstructed-based  methods  are  based  on  AE,  VAE,
and  GAN.  For  example,  the  AE[26] uses  the  neural
network  encoder  to  map  the  input  sequence  to  a  low-
dimensional  latent  space  and  then  uses  a  decoder  to
reconstruct  the  sequence.  The  Donut[27] takes  fully
connected  network  as  the  feed-forward  network  of
VAE  to  reconstruct  time  series.  To  better  model  time
dependence,  the  LSTM-VAE[28] uses  the  LSTM  as
encoder  and  decoder  to  learn  complex  nonlinear  time
dependence and reconstruct the input data. The MAD-
GAN[29] is  an  unsupervised  approach  based  on  GAN
network,  which  uses  the  Long  Short-Term  Memory-
Recurrent  Neural  Networks  (LSTM-RNN)  as  the
discriminator  and  generator  to  extract  the  inner  time
dependency  of  the  time  series.  LSTM-AD[24] utilizes
LSTM  encoding  and  decoding  networks  to  learn  time
dependencies  patterns,  while  the  DeepAnt[25] utilizes
CNN to achieve one-step prediction. Then the anomaly
detector  module  takes  the  prediction  error  as  anomaly
score.  The  GCP_LSTM[42] uses  LSTM  to  capture  the
nonlinear  relationship  of  historical  climate  data  and
employs  a  5-min long  time  window  to  focus  on
capturing short-term climate changes pattern to predict
future climate change trends. The Interaction-enhanced
and  Time-aware  Graph  Convolution  Network
(ITGCN)[43] proposes  a  Graph  Convolution  Network
(GCN)  with  improved  time  awareness  and  interaction
capabilities  and  designs  an  aggregator  to  optionally
embed  the  Point-of-Interest  (POI)  proximity
relationship  learned  by  GCN  into  each  node  feature,
which can learn the relationship between all  POIs and
the  dynamic  time  dependency  within  each  POI  at  the
same  time.  The  Preference-based  POI  Category
recommendation Model (PPCM)[44] uses local sensitive
hashing to partition users while protecting privacy and
then models time patterns using LSTM and attention to
capture the preferences of each type of user and make
POI recommendations.

In  summary,  previous  work  either  used  statistical
methods  to  fit  the  distribution  of  data  or  used  deep

learning  networks  such  as  LSTM  to  learn  short-term
time  dependencies  within  time  series.  However,  there
was  a  lack  of  analysis  of  long-term  periodic
dependencies, which may result in the loss of important
periodic information and the inability to learn potential
patterns of time series correctly, leading to the inability
to  detect  anomalies  in  a  timely  and  accurate  manner.
The  solution  to  this  problem  has  also  created  an
advantage for our method compared to previous work.
We  consider  the  time  dependencies  within  the
sequence from the day and week levels, which can not
only  model  short-term  dependencies  but  also  explore
periodic  patterns,  thus  obtaining  richer  time  features.
Specifically,  in  order  to  model  the  complex  nonlinear
time  dependence  and  periodicity  of  univariate  time
series,  we  propose  the  hierarchical  attention  network,
which  adopts  the  day-level  attention  network  and
week-level  attention  network  to  capture  the  fine-
grained short-term time dependence and periodic long-
term time dependence simultaneously.

3　Problem Statement

yt

y′t
xt−7w+1, xt−7w+2, . . . , xt

Ot

t at

Ot ⩾ 0.5 at = 1
t

In  this  work,  we  concentrate  on  the  univariate  time
series  anomaly  detection  task.  Since  anomalous  data
account for a non-negligible proportion of our dataset,
we use the supervised method to model the time series.
Specifically, our hierarchical attention network models
time  dependence,  gets  the  day-level  feature  vector 
and the week-level feature vector  from the historical
time  series ,  and  then  uses  a
classifier  to  obtain  the  anomaly  probability  of
timestamp . Our goal is to get the anomaly label . If

,  we  assume  that ,  which  means  that  an
anomaly  occurs  at  timestamp .  The  definition  of
symbols in the text is shown in Table 1.

4　Model Architecture

4.1　Model overview

The  medium and  low  voltage  distribution  data  are  a
time series with complex nonlinear time-dependent and
periodic  characteristics.  To  model  the  fine-grained
short-term  time  dependence  and  periodic  long-term
time  dependence  in  the  medium  and  low  voltage
distribution  time  series  simultaneously,  we  propose  a
hierarchical attention network, which consists of seven
day-level  self-attention  networks  and  one  week-level
self-attention network. As shown in Fig. 2,  the overall
framework  consists  of  three  modules.  The  day-level

    1184 Tsinghua Science and Technology, August 2024, 29(4): 1181−1193

 



t

yt t

y′t

t

self-attention  networks  use  seven  multi-head  self-
attention  networks  to  model  the  time  series  data  of
seven  days  before  the  current  timestamp ,
respectively.  Specifically,  we  take  the  data  of  the  last
day as input of the last self-attention network to get the
day-level feature  of the timestamp  and employ the
data of the first  six days as input of the other six self-
attention networks to get the day-level features of each
day. Finally, the day-level features of these seven days
will be fed into the week-level self-attention network to
further  extract  the  week-level  feature .  In  the  output
layer, the day-level feature vector of last day learned by
the  day-level  attention  network  and  the  week-level
feature  vector  learned  by  week-level  attention
networkwill  be  connected  and  then  sent  to  an  MLP
network to get the anomaly probability of timestamp .

t

In  the  training  stage,  the  difference  between  the
anomaly  probability  and  anomaly  label  is  measured
using  a  binary  cross  entropy  loss  function,  and  back-
propagation is used to train the model to recognize the
characteristics  of  the  anomalous  data.  When
performing  anomaly  detection,  if  the  anomaly
probability is greater than or equal to 0.5 at timestamp
,  we  assume  that  an  anomaly  has  occurred  at  this

moment.

4.2　Day-level attention network

t

In  order  to  model  the  fine-grained  short-term  time
dependence in the medium and low voltage distribution
univariate time series, we utilize seven multi-head self-
attention  networks  to  model  the  time  series  data  of
seven days before the current time , respectively.

xt t
d

First,  we  use  the  embedding  module  to  convert  the
input  value  at  every  timestamp  to  the  input
embeddings  vectors  of  dimension .  In  addition,  we
also  include “positional  encodings” to  the  input
embeddings  to  utilize  the  order  of  input  data.  In  our
work,  we  use  sine  and  cosine  functions  of  various
frequencies  as  the  positional  encodings  which  can
encode  the  relative  positions  information.  The
positional  encodings  are  a  vector  having  the  same
dimension with the input embeddings,  and we add the
input  embeddings  and  positional  encodings  to  get  the
input of day-level multi-head self-attention module:
 

gt = emb(xt)+pos_enc(xt) (1)

gt ∈ Rl emb
pos_enc
where ,  the  is  a  linear  mapping,  and  the

 represents the sine cosine encoding process.

xt−nw+1, xt−nw+2, . . . , xt−(n−1)w n
Through the  above  embedding  layer,  we can  embed

the  sequence  of  the -th

 

Table 1    Notations.
Index Definition

w Number of timestamps in a fixed window.
xt Input time series value at timestamp t.
gt Vector after embedding at timestamp t.

yt
Day-level attention network output at
timestamp t.

y
′
t

Week-level attention network output at
timestamp t.

l Dimension of vector after embedding.

lk
Dimension of the query Q and key K in self-
attention network.

lv
Dimension of the value V in self-attention
network.

H
Number of heads in multi-head attention
networks.

Ot Anomaly probability at timestamp t.
Gt Ground truth label at timestamp t.
at Anomaly label at timestamp t.
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Fig. 2    Framework of  the proposed HAN which mainly includes seven day-level  self-attention networks,  one week-level  self-
attention network, and a classifier.
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gt−nw+1,gt−nw+2, . . . ,gt−(n−1)w

gn ∈ Rw×l

Q K V

day  into  the  input  token 
noted as . The input tokens are firstly mapped
into queries , keys , and values :
 

Q = gnΦ
Q
i ,K = gnΦ

K
i ,V = gnΦ

V
i (2)

Q ∈ Rw×l K ∈ Rw×l V ∈ Rw×l ΦQ
i ∈ Rl×l

ΦK
i ∈ Rl×l ΦV

i ∈ Rl×l

n
H Q K V H

lk lk lv

headh

where , , and . The ,
, and  are linear projection matrixes.

For  the -th  day-level  multi-head  attention  network
with  heads, we linearly map the , , and  for 
times  with  various  linear  projections  to , ,  and 
dimensions. Next, we parallelize the attention function
and  apply  the  scaled  dot  product  to  determine  each
head’s output, represented as :
 

headh = Attention(QΦQ
h ,KΦ

K
h ,VΦ

V
h ) =

Softmax

QΦQ
h KΦK

h
T

√
lk

VΦV
h

(3)

ΦQ
h ∈ R

l×lk ΦK
h ∈ R

l×lk ΦV
h ∈ R

l×lv

lk = lv = l/H
where , ,  and  are linear
projection matrixes, and .

Finally,  the  final  outputs  of  day-level  attention
network  are  obtained  by  connecting  the  outputs  of  all
heads and then projecting them once more:
 

MultiHead(Q,K,V) = Cat(head1,head2, . . . ,headH)ΦO

(4)
H

ΦO ∈ RHlv×l

n
yt−nw+1,yt−nw+2, . . . ,yt−(n−1)w

yn

where Cat is the abbreviation for concatenate,  is the
total  number  of  heads,  and .  And  we  note
the  outputs  of  the -th  day-level  attention  network  as
the  day-level  features ,
abbreviated as :
 

yn =MultiHead(Q,K,V) (5)

yt−6w,yt−5w, . . . ,yt

y ∈ R7×l

We  take  the  last  day-level  feature  vector
 of  each  day-level  window  to  form  a

matrix  as the input of the week-level attention
network.

4.3　Week-level attention network

Considering the periodic long-term time dependence in
the  medium  and  low  voltage  distribution  time  series,
we utilize a week-level attention network whose inputs
are  seven  day-level  features  learned  by  the  day-level
attention  network  to  further  extract  the  week-level
feature.

y ∈ R7×l

y Q
′

K
′

V
′

The  inputs  of  the  week-level  attention  network  are
the day-level feature vector matrix .  We firstly
project  the  input  matrix  into  week-level  queries ,
keys , and values :
 

Q
′
= yΘQ

i ,K
′
= yΘK

i ,V
′
= yΘV

i (6)

Q
′ ∈ R7×l K

′ ∈ R7×l V
′ ∈ R7×l

ΘQ
i ∈ Rl×l ΘK

i ∈ Rl×l ΘV
i ∈ Rl×l

Q
′
, K

′
,

and V
′

H h
head′h

where , ,  and .  The
, ,  and  are  learnable

projection  matrixs.  Then,  using  various  linear
projection  matrices,  we  linearly  project  the 

 to  distinct  subspaces.  For  the -th  head,  we
apply the scaled dot-product to obtain the output :
 

head′h = Attention(Q
′
ΘQ

h ,K
′
ΘK

h ,V
′
ΘV

h ) =

Softmax

Q
′
ΘQ

h K
′
ΘK

h
T

√
lk

V ′ΘV
h

(7)

ΘQ
h ∈ R

l×lk ΘK
h ∈ R

l×lk ΘV
h ∈ R

l×lv

lk = lv = l/H
where , ,  and  are  linear
projection matixs, and . Connect the output
of  all  heads,  we  can  obtain  the  final  outputs  of  the
week-level attention network:
 

MultiHead(Q
′
,K
′
,V
′
)=Cat

(
head′1,head′2, . . . ,head′H

)
ΘO

(8)
H

ΘO ∈ RHlv×l

y′t−6w,

y′t−5w, . . . ,y
′
t y′

where  represents  the  number  of  heads,  and
.  And  we  note  the  outputs  of  week-level

attention  network  as  week-level  features 
, abbreviated as :

 

y′ =MultiHead(Q
′
,K
′
,V
′
) (9)

The specific  implementation  and training  process  of
the above HAN is shown in Algorithm 1.

4.4　Output layer

Ot t

The  day-level  feature  vectors  and  the  week-level
feature  vector  learned  by  the  day-level  attention
networks  and  week-level  attention  network,
respectively,  are  connected  and  then  sent  to  an  MLP
network  with  sigmoid  function  to  get  the  anomaly
probability  at timestamp :
 

Ot =MLP
([

yt,y
′
t

])
(10)

4.5　Objective function and training

Since the anomaly samples in our datasets account up a
substantial  percentage  of  the  total  data,  the  univariate
time  series  anomaly  detection  issue  is  seen  as  a
classification  problem,  and  the  supervised  learning
approach is used.

Ot

Gt

When training,  we use the binary cross  entropy loss
as  the  objective  function  to  decrease  the  discrepancy
between  the  anomaly  probability  and  ground  truth
label :
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LBCE = −Gtlog(Ot)− (1−Gt)log(1−Ot) (11)

And  the  network  parameters  are  updated  by  gradient
descent algorithm.

4.6　Anomaly detection

Ot

at

t
t

During  anomaly  detection,  we  extract  the  time-
dependent and periodic characteristics of the input time
series  through  the  hierarchical  attention  network  and
obtain  the  anomaly  probability  through  the  output
layer.  If  the  anomaly  probability  is  greater  than  or
equal  to  0.5,  we  set  the  anomaly  label  to  1,  which
means  an  anomaly  occurs  at  the  timestamp .
Otherwise,  we  assume  the  timestamp  is  normal.
Specifically,

 

at =

1 , Ot ⩾ 0.5;
0 , Ot < 0.5

(12)

5　Experiment

5.1　Datasets description

We  evaluate  our  model  over  two  anomaly  detection
datasets:  the  private  ElecPower  and  the  public
Dodgers.

● ElecPower. The ElecPower is a dataset composed
of medium and low voltage distribution univariate time
series  collected  from  the  State  Grid  Beijing  Electric
Power Company. We continuously collect the medium
and  low  voltage  distribution  data  at  5-min  intervals
between December 27, 2020 and February 6, 2021. The
whole  dataset  contains  12  098  data,  including  4578
marked  anomaly  data,  accounting  for  37.84% of  the
whole dataset. In details, normal data are marked as 0,
and  anomalous  data  are  marked  as  1.  And  the  attack
time varies from 5 to 200 min.

● Dodgers[45]. The  Dogers  dataset  collects  the
vehicle  count  of  the  101  freeway  on-ramp  near  the
Dodge  Stadium,  where  the  Los  Angeles  Dodgers
baseball  team’s  home  game  is  located.  Under  normal
circumstances,  the  traffic  flow  at  the  intersection  of
expressway presents a normal peak in the morning and
evening  and  when  there  are  competitions.  When  a
traffic  accident  occurs,  the  traffic  flow  changes
abnormally.  Each  data  point  in  the  dataset  represents
the  traffic  flow  within  5  min  of  the  adjacent  history,
and the entire dataset contains 133 attacks in total.

We split the training set, verification set, and test set
depending  on  the  ratio  of  7∶1∶2.  Additionally,  we
have  standardised  the  datasets.  Especially,  for  the
training data:
 

x̃ =
x−µ
σ

(13)

x x̃
µ σ

where  is  the  original  training  set  data.  is  the
normalized training set data.  and  are the mean and
variance of the training set, respectively.

5.2　Experimental setup

Baselines. We  compare  the  performance  of  the
proposed method with ten popular time series anomaly
detection methods, including:

● ARIMA[13]: The  ARIMA  is  an  autoregressive
integrated  moving  average  model,  which  predicts  the
future  based  on  the  historical  lag  value  and  takes  the

 

Algorithm 1　Training of hierarchical attention networks
xt−7w+1, xt−7w+2, . . . , xt

Gt

Input: A historical sequence  of one
week before the current moment, classification labels  with
anomaly 1 and normal 0, and N epochs.
Output: Trained HAN.

N 1:   for epoch = 1∶  do
n 2:       for each day  do

t n 3:         for each moment  in day  do

gt ← emb(xt)+pos_enc(xt) 4:                ,
 5:         end for

gn ← gt−nw+1,gt−nw+2, . . . ,gt−(n−1)w 6:            

Q ← gn Φ
Q
i K ← gn Φ

k
i , ← gn Φ

V
i 7:             ,     and V   

h 8:         for each head  in day-level attention network do

headh ← Attention(QΦQ
h ,KΦ

K
h ,VΦ

V
h ) 9:                

10:         end for

yn ← Cat(head1,head2, . . . ,headH)ΦO
11:         Day-level features:

  
12:       end for

yt−6w,yt−5w, . . . ,yt
y ∈ R7×l

13:       Draw the last day-level feature vector 
            of each day to form a matrix  as the input of the
            week-level attention network

Q
′ ← yΘQ

i K
′ ← yΘK

i V
′ ← yΘV

i14:          ,   , and   
h15:      for each head  in week-level attention network do

head′h ← Attention(Q
′
Θ

Q
h ,K

′
ΘK

h ,V
′
ΘV

h )16:            
17:       end for

y′ ← Cat
(
head′1,head′2, . . . ,head′H

)
ΘO

18:       Week-level features:
                

Ot t Ot ←
MLP

([
yt,y′t
])19:       Get the anomaly probability  at timestamp :  

            
LBCE ← −Gtlog(Ot)− (1−Gt)log(1−Ot)20:         

LBCE21:       Update HAN network parameters with 
22:   end for
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prediction error as anomaly score.
● PCA[35]: The  PCA  can  determine  the  hyperplane

of  the  least  squares  error,  that  is,  a  low-dimensional
subspace  having  the  lowest  reconstruction  error  after
projection. The points with a large reconstruction error
are regarded as anomalies.

● KNN[18]: The  KNN  is  a  distance-based
unsupervised method. It calculates the average distance
of the nearest K samples for each sample point, whose
distance  exceeding  the  threshold  is  considered  as  an
anomaly.

● Isolation forest[17]: The isolation forest integrates
a  group  of  decision  trees  and  introduces  a  random
attribute selection method for segmentation. The depth
of branches containing anomalies is small, because the
anomalies are located in sparse areas. And the anomaly
score is calculated using the leaf-to-root distance.

● FNN[19]: The  FNN  is  a  supervised  model  which
can get hidden features of time series from raw datasets
and  then  obtain  the  anomaly  probability  through  a
softmax function.

● LSTM-AD[24]: The  LSTM  networks’ recurrent
hidden layers are able to learn the high level temporal
features.  And  the  prediction  error  is  regarded  as
anomaly score.

● Informer[21]: The  informer  is  designed  for  long
time-series forecasting, which proposes the ProbSparse
self-attention  and  uses  a  distilling  operation  to  solve
the  problems  of  quadratic  time  and  space  complexity.
We  use  the  infomer  to  model  time  series  and  predict
anomaly probability.

● AE[26]: The  AE  maps  the  input  data  into  low-
dimensional  latent  variables  and  uses  them  to
reconstruct  the  input.  The  points  deviating  from  the
normal  mode,  that  is,  the  points  with  high
reconstruction deviation are taken as anomalies.

● Donut[27]: The Donut takes fully connected neural
network  as  the  feedforward  network  of  VAE  to
reconstruct  time  series  and  proposes  the  modied
Evidence  Lower  Bound  (ELBO).  In  addition,  Donut
applies  the  reconstruction  probability  to  measure
anomaly scores.

● LSTM-VAE[28]: The LSTM-VAE takes LSTM as
the  feedforward  network  of  VAE to  learn  the  features
of  input  and  treats  data  difficult  to  recover  as
anomalies.

Metrics. We take  the  Precision  (P),  Recall  (R),  and
F1 score as the evaluation metrics.
 

P =
Ntp

Ntp+Nfp
(14)

 

R =
Ntp

Ntp+Nfn
(15)

 

F1 = 2 · P ·R
P+R

(16)

Ntp

Nfp

Nfn

where  stands  for  the  number  of  accurately
recognized  anomalies,  stands  for  the  amount  of
normal samples incorrectly identified as anomalies, and

 stands  for  the  quantity  of  anomalies  filtered
incorrectly.

l

w

Training settings. We perform all experiments on an
NVIDIA  GeForce  RTX  3090  GPU  using  Pytorch
version 1.10.0 with CUDA 11.1. The number of heads
of  all  multi-head  self-attention  networks  is  8.  The
hidden  layer  dimension  of  the  attention  network  is
128  on  both  datasets.  On  the  ElecPower  dataset,  the
size  of  the  input  window  of  the  day-level  attention
network is  288,  which is  the  amount  of  data  in  a  day,
with  5  min  intervals.  The  model  is  trained  using  the
Adam optimizer for up to 50 iterations with a learning
rate  of  0.0001  and  an  early  stopping  policy  with
patience of 5.

5.3　Performance and analysis

In Table  2,  we  evaluate  the  anomaly  detection
performance  of  our  HAN  on  three  metrics:  precision,
recall, and F1 score, and compare the HAN with other
ten  popular  time series  anomaly  detection  methods  on
the ElecPower and Dodgers datasets. It is obvious that
our  HAN  performs  the  best  compared  with  other  ten
baselines.  Moreover,  we further  observe the  following
phenomenons from Table 2.

● Our HAN has achieved the best result in recall and
F1.  On  the  ElecPower  dataset,  compared  with  the
suboptimal  method,  we  have  achieved  4.00% and
8.12% improvement on recall and F1, respectively. On
the  Dodgers  dataset,  our  HAN’s  precision,  recall,  and
F1  are  5.21%,  1.46%,  and  10.32% higher  than  the
second best methods, respectively.

●  The  performance  of  deep  learning  methods
including RNN or attention mechanism is much better
than  that  of  statistical  methods  such  as  ARIMA  and
traditional  machine  learning  methods  such  as  PCA,
KNN, and isolation forest, which shows the importance
of modeling time dependence. Especially, the F1 of our
HAN  is  105.10% and  122.58% higher  than  that  of
ARIMA, and 64.11% and 328.52% higher than that of
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PCA on the two datasets significantly.
● The models based on attention mechanism, such as

informer  and  our  HAN,  can  perform  more  effectively
than models based on RNN, such as LSTM-AD, which
indicates that attention mechanism has better long-term
time-dependent modeling capability than RNN. This is
because  the  attention  network  can  pay  equal  attention
to any other  position with a  short  network path,  while
LSTM  pays  less  attention  to  the  information  at  a
distance.  In  particular,  the  HAN’s  recall  and F1  are
86.00% and  28.57% higher  than  LSTM-AD  on  the
ElecPower  dataset  and  32.59% and  31.71% higher  on
the Dodgers dataset, respectively.

●  Our  hierarchical  attention  network  considering
high-level  weekly  time  dependence  can  achieve  better
performance  than  informer  that  only  considers  day-
level  time  dependence,  which  proves  the  necessity  of
modeling  periodic  long-term  time  dependence.
Especially,  the  precision,  recall,  and F1  of  our  HAN
are  10.45%,  4.00%,  and  8.12% higher  than  the
informer on the ElecPower dataset and 5.21%, 17.46%,
and  11.93% higher  on  the  Dodgers  dataset,
respectively.

● The models  based on reconstruction,  such as  AE,
Donut,  and  LSTM-VAE,  do  not  achieve  good
performance.  This  is  because  the  number  of  normal
data  in  training  set  is  not  far  greater  than  that  of
anomalies,  so  the  models  can  not  learn  the  normal
mode  of  the  data  and  thus  cannot  accurately  detect
anomalies according to the reconstruction error during
the anomaly detection phase. Especially, the F1 of our
HAN  is  134.99% and  70.45% higher  than  Donut  and
275.77% and  94.26% higher  than  LSTM-VAE  on  the
two datasets significantly.

5.4　Ablation study

To  study  the  efficiency  of  each  part  of  our  HAN,  we
gradually  drop  or  replace  each  component  to  observe
the change of model’s performance, and the results are
shown in Table 3.

HANw/o Attention Network

HANw/o Attention Network

● .  To  study  the  long-term
time-dependent  modeling  effect  of  attention  network,
we  use  the  LSTM  network  to  replace  the  attention
network. As shown in Table 3, the performance of this
variant  declines  compared  with  that  of  HAN.  The
precision,  recall,  and F1  of 

 

Table 2    Experimental results of different methods on ElecPower and Dodgers using precision, recall, and F1 as metrics. The
best performances are in bold and the second are underlined.

(%)

Method
ElecPower Dodgers

P R F1 P R F1
ARIMA 24.82 45.00 31.99 22.49 65.50 33.48

PCA 41.58 38.50 39.98 11.13 39.74 17.39
KNN 28.09 2.22 4.12 23.81 0.79 1.54

Isolation forest 50.04 13.17 20.85 45.19 48.16 46.63
FNN 70.57 49.05 57.87 68.15 66.96 66.75

LSTM-AD 53.29 48.95 51.03 63.17 51.24 56.58
Informer 46.43 87.54 60.68 78.43 57.84 66.58

AE 51.31 40.91 45.52 52.30 38.91 44.62
Donut 60.18 18.18 27.92 34.64 59.27 43.72

LSTM-VAE 59.66 10.22 17.46 53.43 29.92 38.36

HAN (ours) 51.28 91.04 65.61 82.52 67.94 74.52

 

Table 3    Experimental  results  of  ablation studies  on ElecPower and Dodgers  using precision,  recall,  and F1 as  metrics.  The
HAN without removal of any components achieves the best performance.

(%)

Method
ElecPower Dodgers

P R F1 P R F1
HAN (ours) 51.28 91.04 65.61 82.52 67.94 74.52

w/o Attention Network 44.82 59.66 51.19 68.67 56.68 62.10
w/o Hierarchical Mechanism 49.48 82.68 61.91 64.17 65.21 64.69
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decrease  by  12.60%,  34.47%,  and  21.98% on  the
ElecPower  dataset  and  16.78%,  16.57%,  and  16.67%
on the Dodgers dataset, respectively, which proves that
the  attention  network  has  superior  time  dependence
modeling ability and also proves that it is important to
consider the time dependence for univariate time series
anomaly detection.

HANw/o Hierarchical Mechanism

t
HANw/o Hierarchical Mechanism

● . To study the impact of
hierarchical  scheme,  we  do  not  consider  the  time
dependence  at  the  week-level  but  only  the  time
dependence  at  the  day-level.  Specifically,  we  use  the
one-day  long  history  sequence  and  a  day-level  multi-
head self-attention network to get the anomaly label at
current  time .  From Table  3,  we can observe that  the
precision,  recall,  and F1  of 
decrease  by  3.51%,  9.18%,  and  5.64% on  the
ElecPower dataset and 22.24%, 4.02%, and 13.19% on
the  Dodgers  dataset,  respectively,  which  demonstrates
the  importance  of  modeling  periodic  long-term  time
dependence  and  the  effectiveness  of  our  proposed
hierarchical mechanism.

5.5　Parameter analysis

To study the effect of various hyper parameters on the
anomaly detection performance of our model, we carry
out  experiments  under  different  parameter  values  and
analyze the results.

● Window  size. The  long-term  time  dependent
modeling  ability  of  hierarchical  attention  network  is
related  to  the  length  of  the  historical  window  of  the
day-level  attention  networks.  If  the  window  length  is
too  small,  the  attention  network  cannot  learn  the
periodic rule of time series. If the window length is too
large,  the  network  will  be  too  complex  and  reduce
efficiency.  From Fig.  3a,  we  can  see  that  with  the

increase of window length, the precision, recall, and F1
continue  to  increase  and  reach  the  best  when  the
window length is 288, then the F1 decreases. The HAN
is optimal when the window length is 288 because 288
is  the  data  volume  of  one  day.  Using  seven  day-level
attention  networks  and  one  week-level  attention
network,  the  model  can  learn  the  periodicity  of  week-
level long-term time dependence.

l
lk and lv Q, K V

lk = lv = l/H l

● Dimensionality  of self-attention networks. The
dimensions  of , and  in the hierarchical
attention  network  will  affect  the  long-term  time
dependent  modeling  ability  of  the  attention  network.
Since , we focus on the . If the dimension
is  too  small,  it  tends  to  lead  to  insufficient
representation ability of the network, so that it can not
learn  the  complex  nonlinear  time  dependence.  If  the
dimension  is  too  big,  it  will  lead  to  too  complex  and
inefficient  network. Figure  3b shows  the  anomaly
detection  result  of  our  HAN  corresponding  to  the
different  dimensions  of  self-attention  networks.  As
seen  in Fig.  3b,  the  precision,  recall,  and F1  increase
with the increase of dimension and reach peak at  128.
After that, the three metrics decrease as the dimension
increases and then tend to be stable.

6　Conclusion

To support the perception and defense of the operation
risk  of  the  medium  and  low  voltage  distribution
system,  we  proposed  an  end-to-end  hierarchical
attention network anomaly detection framework, which
can  simultaneously  model  the  fine-grained  short-term
time  dependence  and  periodic  long-term  time
dependence  of  univariate  time  series.  We  introduced
seven day-level multi-head attention networks to model
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Fig. 3    Hyper-parameter analysis on ElecPower dataset.

    1190 Tsinghua Science and Technology, August 2024, 29(4): 1181−1193

 



the day-level time dependence of the first seven days in
the  historical  sequence  and  get  seven  day-level  time
feature  vectors,  and  then  sent  them  into  a  week-level
attention  network  to  model  the  periodic  week-level
time  dependence  and  get  the  week-level  time  feature
vector.  Finally,  the  day-level  time  feature  vector  and
week-level  time  feature  vector  of  the  current  moment
went  through  a  classifier  to  obtain  the  anomaly
probability of this moment, according to which we can
further judge whether the moment is anomalous or not.
Extensive  experiments  on  a  real-world  medium and
low  voltage  distribution  electric  power  dataset  and  a
publicly  traffic  flow  anomaly  detection  dataset
demonstrated  that  our  method  outperforms  other
univariate time series anomaly detection approaches. In
future work, we may further introduce month-level and
season-level  periodicity  to  model  longer  term  time
dependent  patterns,  and  we  hope  to  study  some
effective  strategies  to  improve  the  efficiency  of  the
proposed network.
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