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Abstract: Lithological  facies  classification  is  a  pivotal  task  in  petroleum  geology,  underpinning  reservoir

characterization  and  influencing  decision-making  in  exploration  and  production  operations.  Traditional

classification methods, such as support vector machines and Gaussian process classifiers, often struggle with

the  complexity  and  nonlinearity  of  geological  data,  leading  to  suboptimal  performance.  Moreover,  numerous

prevalent approaches fail to adequately consider the inherent dependencies in the sequence of measurements

from adjacent  depths in a well.  A novel  approach leveraging an attention-based gated recurrent  unit  (AGRU)

model  is  introduced  in  this  paper  to  address  these  challenges.  The  AGRU  model  excels  by  exploiting  the

sequential  nature  of  well-log  data  and  capturing  long-range  dependencies  through  an  attention  mechanism.

This model enables a flexible and context-dependent weighting of different parts of  the sequence, enhancing

the discernment of key features for classification. The proposed method was validated on two publicly available

datasets.  Results  demonstrate  a  considerably  improvement  over  traditional  methods.  Specifically,  the  AGRU

model achieved superior performance metrics considering precision, recall, and F1-score.
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1　Introduction

Lithological  facies  classification  constitutes  a
fundamental  component  of  petroleum  geology,
sedimentology,  and  reservoir  engineering.  This
classification refers to the systematic categorization of
rocks  based  on  observable  physical  attributes,

geophysical  log  measurements,  and  other  related
properties.  Effective  classification  is  pivotal  for
interpreting  subsurface  geological  structures,
demarcating  reservoir  zones,  assessing  hydrocarbon
potential,  and  optimizing  the  process  of  oil  and  gas
exploration and production[1].

Traditionally,  lithological  facies  classification  is 
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primarily  a  manual  process  involving  meticulous
scrutiny  of  well  logs  and  core  descriptions  by
geologists  and  petrophysicists.  However,  with  the
advancement  of  data  collection  technologies,  the
volume,  velocity,  and  variety  of  data  have  increased
significantly[2, 3],  resulting  in  increasingly  challenging
and  error-prone  manual  analysis.  Additionally,
traditional  interpretive  methods  often  fail  to  capture
subtle  yet  crucial  patterns  within  high-dimensional
geophysical datasets.

In response to these challenges, machine learning has
been  progressively  adopted  as  a  powerful  tool  for
lithofacies classification, demonstrating its aptitude for
handling  complex,  multidimensional  datasets  and  its
capacity  to  discern  nuanced  patterns  unobservable
through  manual  analysis[4].  Established  machine
learning  models,  such  as  support  vector  machine
(SVM)[5],  k-nearest  neighbor  (KNN)[6],  random  forest
classifier  (RFC)[7],  and  Gaussian  process  classifier
(GPC)[8],  have  all  been  used  with  varying  degrees  of
success  in  the  domain  of  lithological  facies
classification.  However,  these  models  have limitations
that  constrain  their  effectiveness  in  lithological  facies
classification.  Despite  its  efficiency  for  binary
classification  problems,  the  SVM  model  suffers  from
reduced  effectiveness  in  multiclass  classification
scenarios  and  requires  considerable  computational
power  for  large  datasets.  Regardless  of  its  simplicity,
the  KNN  algorithm  exhibits  sensitivity  to  the
dimensionality  and  quality  of  data,  often  leading  to
suboptimal  performance  in  the  presence  of  irrelevant
features  or  noise.  RFC  is  powerful  and  robust;
however,  this  model  is  prone to  data  overfitting  if  not
carefully  tuned  and  fails  to  capture  temporal
dependencies  between  data  points,  a  characteristic
often  crucial  for  effective  classification[9, 10, 11].  The
GPC, while versatile, is computationally expensive for
large  datasets  due  to  the  necessity  of  inverting  large
covariance matrices.

An  Attention-based  Gated  Recurrent  Unit  (AGRU)
model  is  proposed  for  lithological  facies  classification
to  address  these  limitations.  Gated  recurrent  unit
(GRU)[12] networks  have  a  unique  memory  cell
structure  that  allows  learning  and  remembering  long-
term dependencies in sequence data. This characteristic
is  particularly  beneficial  for  classification  due  to  the
inherently  sequential  nature  of  the  data  obtained  from
well  logs.  Further  enhancing  the  capabilities  of  GRU
networks, the attention mechanism allows the model to

learn  and  focus  on  the  most  relevant  classification
features.  This  mechanism  is  inspired  by  the  human
attention  process  and  enables  the  GRU  to  assign
different  weights  to  various  inputs  at  each  time  step,
focusing on the features that are crucial for the task. By
combining the strength of GRU in managing sequence
data  with  the  capability  of  the  attention mechanism to
discern the most important features, an attention-based
GRU  model  can  potentially  provide  superior  facies
classification. Overall, the summary of this paper is as
follows.

● An innovative  approach that  employs  a  two-layer
GRU  is  proposed  to  capture  the  influence  of  multiple
features  on  lithofacies,  thereby  enhancing  the
performance of the classifier.

●  The  influence  exerted  by  different  features  on
lithofacies categories is also investigated. The attention
mechanism is employed for assigning weights to these
features to distinguish the varying degrees of influence
among them effectively.

● Experiments on two public datasets are conducted,
and the proposed model is compared with other widely
used  classification  models.  The  experimental  results
confirm  that  the  proposed  model  indeed  outperforms
the other models.

The remainder of this paper is organized as follows.
Section  2  reviews  work  related  to  facies  analysis.
Section  3  presents  the  features  and  definitions  widely
used for facies classification, articulates the motivation
for  this  study  with  specific  examples,  and  introduces
the problem definition and the GRU model used in this
paper.  Section 4 provides  a  detailed description of  the
proposed  model,  demonstrating  its  performance.
Section 5 presents the experiments conducted using the
proposed model on two datasets and the comparison of
its performance with several classification models. The
final section provides a brief summary of our work.

2　Related Work

Considering early lithofacies classification, the process
was  traditionally  handled  manually  by  specialists,
which  was  prone  to  potential  biases.  Moreover,  this
manual classification approach is a considerably labor-
intensive  and  time-consuming  task  when  confronted
with  extensive  datasets.  Hence,  the  utilization  of
machine  learning  for  lithofacies  classification  can
result  in  substantial  time  savings  and  enhance
classification efficiency[13].

Halotel  et  al.[14] successively  applied  the  SVM  and
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the  random  forest  (RF)  classifiers  for  lithofacies
classification  and  compared  the  performances  of  the
two models. The experimental results demonstrate that
the  RF  classifier  outperforms  the  SVM  when
considering classification performance. Ferreira et al.[15]

applied k-means clustering to draw rock facies maps in
unsupervised  seismic  facies  classification  methods  for
multi-attribute  analysis.  Mandal  and  Rezaee[16]

implemented  four  distinct  machine  learning  (ML)
classification  algorithms  to  predict  lithofacies  on  the
open  dataset  of  the  Panoma  field  located  in  the
southwestern  part  of  Kansas,  USA.  The  four
classification algorithms employed in this research are
as  follows:  artificial  neural  networks  (ANNs),  SVM,
decision  trees,  and  GPC.  Comparative  experimental
evidence  reveals  that  ANN  performs  better  on  the
validation dataset than the other classifiers. In addition,
Son  et  al.[17] trained  an  ANN  for  lithofacies
classification  based  on  the  relationship  between
lithofacies and other physical properties of rocks using
core  porosity  data  and  partial  interpretation  results  of
lithofacies. This method also proves the high reliability
of ANN.

The high dimensionality,  nonlinear  correlations,  and
overlapping  feature  spaces  of  lithofacies  increase  the
suitability  of  nonparametric  methods  for  handling
complex  datasets[18–22].  With  the  widespread
application  of  deep  learning[23–28],  Imamverdiyev  and
Sukhostat[25] began to explore the use of deep learning
for  geological  lithofacies  classification  in  wells.  They
employed  convolutional  neural  networks  (CNNs)  for
feature  extraction  from multiple  variables,  resulting  in
improved  classification  results.  Kakouei  et  al.[29]

analyzed  and  compared  the  performance  of  five  ANN
methods to identify various structures in lithofacies and
evaluated  their  capability  compared  to  labor-intensive
traditional  methods.  Numerous  experiments  proved
that backpropagation neural networks can generate the
most accurate results but failed to account for the cost
required  for  the  model.  However,  these  methods
mainly  focus  on  feature  extraction  from  variables,
overlooking  the  internal  associations  among  different
features. Feng et al.[26] used a CNN within a Bayesian
framework  for  lithofacies  classification  and  applied
variational  methods  to  approximate  the  posterior
distributions  of  the  neural  parameters,  which  are
mathematically difficult to handle. dos Santos et al.[19]

used  bidirectional  long  short–term  memory  to
recognize  lithofacies  types  from  well-logging  curves

automatically,  thus  enhancing  lithology  identification
performance.  Saleem  et  al.[21] used  semi-supervised
learning with pseudo-labeling for lithofacies analysis to
leverage  unlabeled  data  and  overcome  the  scarcity  of
labeled  data.  Puzyrev  and  Elders[30] developed  a  deep
convolutional  autoencoder  for  unsupervised  seismic
lithofacies  classification,  eliminating  the  need  for
manually labeled examples. Considering the significant
challenges  that  persist  in  3D  multiclass  seismic
lithofacies  classification,  Liu  et  al.[31] developed  a
supervised  CNN  and  a  semi-supervised  generative
adversarial  network  for  3D  seismic  lithofacies
classification  under  abundant  and  limited  well  data
conditions.  Ippolito  et  al.[32] also  used  the  method  of
combining  supervised  and  unsupervised  learning  to
improve phase prediction.

Numerous  works  have  currently  investigated
lithofacies classification. However, the aforementioned
studies  have  overlooked  the  influence  of  different
features on lithofacies classification. Consequently, the
use of the attention mechanism is proposed for weight
distribution  among  different  features,  allocating
relatively  high  weights  to  features  with  large
influences. The GRU is employed to capture nonlinear
features for lithofacies classification.

3　Preliminary

3.1　Feature definition

Several  characteristics  affect  facies  classification.
Herein,  the  relevant  features  used  in  this  paper  are
introduced, and a brief definition is provided.

●  AC  (Acoustic  Travel  Time):  This  feature  is  the
time required for sound waves to pass through the rock,
which  can  be  used  to  evaluate  its  compactness  and
porosity.

● CAL (Caliper): This feature is the diameter of the
wellbore recorded during well logging and is typically
used to identify irregularities in the wellbore.

● GR (Gamma Ray): This characteristic is a measure
of the gamma rays emitted by the rock and is typically
used  to  assess  its  radioactivity.  Thus,  GR  can  be
utilized  to  distinguish  between  clay  rocks  and  other
types of rocks.

● K (Conductivity):  This  feature is  the conductivity
of  the  rock  and  can  be  used  to  evaluate  the  water
content and mineral composition of the rock.

● RD (Resistivity):  This  feature  is  the  resistance  of
the  rock  to  the  passage  of  an  electric  current  and  is
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typically  used  to  assess  rock  porosity  and  water
content.

●  SP  (Spontaneous  Potential):  This  feature  is  the
potential  difference  produced  by  chemical  reactions
between the rock and the surrounding fluid, which can
be used to identify the presence of certain minerals and
fluids.

●  ILD_log10  (Log  of  Deep  Induction  Resistivity):
This feature is a measure of resistivity at a considerable
depth  and  can  provide  information  regarding  rock
properties, such as porosity and water content.

●  DeltaPHI  (Difference  between  Neutron  and
Density  Porosity):  This  feature  is  the  difference  in
porosity  calculated  from  neutron  and  density  logs,
which  can  assist  in  determining  rock  type  and  pore
fluid.

●  PHIND  (Density  Porosity):  This  characteristic
involves  the  porosity  evaluated  by  density  logging,
which  can  be  used  to  assess  the  pore  structure  and
water content of the rock.

●  PE  (Photoelectric  Absorption):  This  feature
measures  the  capability  of  rocks  to  absorb  photon
energy, which can be used to identify different mineral
components.

●  NM_M  (Nonmarine  or  Marine  Indicator):  This
indicator  is  used  to  label  whether  the  rock  originates
from a nonmarine or marine environment.

●  RELPOS  (Relative  Position):  This  feature
represents the relative position of the sedimentary layer
within its  depositional cycle.  Typically,  1 signifies the
top  of  the  depositional  cycle,  while  0  designates  the
base.  RELPOS  provides  valuable  insights  into  the
formation processes of the strata.

Numerous  parameters  could  influence  lithological
facies classification. The features utilized in the current
study  were  not  chosen  randomly  but  on  the  basis  of
measurable  real-world  characteristics.  For  instance,  in
the Panoma field, the accessible features include “GR”,
“ILD_log10”, “DeltaPHI”, “PHIND”, “PE”, “NM_M”,
and “RELPOS”.  By  contrast,  the  Yanan  field  allows
for features such as “AC”, “CAL”, “GR”, “K”, “RD”,
and “SP”. The feature sets vary depending on the field,
thereby  highlighting  the  universality  of  the  AGRU
model.  Specifically,  this  approach  showcases  the
capability  of  the  model  to  capture  these  nonlinear
features  comprehensively  without  restrictions  imposed
by the specifics of the feature selection.

Regarding rock categories, two distinct datasets have
been selected, namely, those obtained specifically from

the  Panoma  Field  and  the  Yanan  Oil  Field.  More
precisely, the Panoma Field comprises nine facies: SS,
CSiS,  FSiS,  SiSH,  MS,  WS,  D,  PS,  and  BS.
Meanwhile,  the  Yan’an  oil  field  encompasses  seven
facies:  CS,  ME,  FI,  SI,  DO,  LI,  and  MU.  The
abbreviations  for  each  facies  and  their  corresponding
full names have been summarized in Table 1.

3.2　Motivation

A  specific  instance  derived  from  a  dataset  of  the
Panoma  field,  North  America[33].  The  dataset
comprises  well-logging  data  from  nine  wells.  Facies
classification  necessitates  the  selection  of  pertinent
features.  Therefore,  GR,  ILD_log10,  PE,  DeltaPHI,
PHIND,  NM_M,  and  RELPOS  are  selected  in  this
study. In Fig. 1, four out of the nine wells are randomly
selected,  demonstrating  a  schematic  representation  of
the  aforementioned  feature  variations  with  depth.
Additionally,  the  corresponding  facies  categories  (i.e.,
SS,  CSiS,  FSiS,  SiSH,  MS,  WS,  D,  PS,  and  BS)  of
different features are depicted in Fig. 1.

First,  the well  is  named “SHRIMPLIN”.  The results
revealed that the seven feature data points of this well
exhibit  irregular  variations  with  depth,  increasing  the
difficulty  of  capturing  the  change  patterns  of
corresponding  facies.  Simple  classification  models
often  struggle  to  achieve  effective  classification  from
multidimensional  features.  The  second  well,
“SHANKLE”,  shows  variation  patterns  relatively
similar to the first well. However, the multidimensional
feature  changes  still  present  nonlinear  variations.  The
 

Table 1    Features and their abbreviations.
Dataset Class of rocks Abbreviation

Panoma

Nonmarine sandstone SS
Nonmarine coarse siltstone CSiS
Nonmarine fine siltstone FSiS

Marine siltstone and shale SiSH
Mudstone (limestone) MS

Wackestone (limestone) WS
Dolomite D

Packstone-grainstone (limestone) PS
Phylloid-algal bafflestone (limestone) BS

Yanan

Coarse sandstone CS
Medium sandstone ME

Fine sandstone FI
Siltstone SI
Dolomite DO
Limestone LI
Mudstone MU
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(a) Well: SHRIMPLIN (b) Well: SHANKLE

(c) Well: NEWBY (d) Well: CHURCHMAN BIBLE 
Fig. 1    Variation of rock features with depth in different wells.
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variation patterns of the third and fourth wells may not
resemble  those  of  the  first  well  but  still  remain
irregular. Hence, identifying the degree of influence of
different  features  on  facies  categories  from
multidimensional  features,  thereby  achieving  high-
precision facies classification, is crucial.

3.3　Problem definition

cd = (SSd,CSiSd,FSiSd,SiSHd,

MSd,WSd,Dd,PSd,BSd)

cd = (CSd,MEd,FId,SId,DOd,LId,MUd)

C = {c1,c2, ...,cd}

For the Panoma field, each core sample in well logging
is  defined  as  a  9-tuple 

,  which  represents  the  overall
characteristics  of  that  core.  For  the  Yanan  oil  field,
each  core  sample  in  well  logging  is  defined  as  a
7-tuple .  With
the  variation in  depth,  the  changes  in  the  cores  within
each  oil  field  can  be  expressed  as  a  sequence

. Finally, this study aims to predict the
types of lithofacies based on the obtainable features of
rocks.

3.4　Gated recurrent unit

The  GRU[34] is  a  type  of  recurrent  neural  network
(RNN) unit designed for processing sequence data, and
the  basic  framework  of  the  GRU  is  shown  in Fig.  2.
Allowing the network to learn long-term dependencies
effectively helps alleviate the vanishing and exploding
gradient  problems  in  RNNs.  Compared  to  long  short-
term memory (LSTM), which is another popular RNN
unit,  the  GRU has  a  simple  structure.  LSTM has  only
two gates: the update gate and the reset gate.

Update gate: This gate determines which information
will  be  carried  forward  to  the  new  hidden  state.  The
function  of  the  update  gate  is  similar  to  the  combined
role  of  the  forget  and  input  gates  in  the  LSTM.
Specifically, the operations of a GRU can be described
with the following formulas:
 

zd = σ (wz · x+bz) (1)
x wzWhere  is  denoted  as  the  input  of  GRU,  is  the

bz

σ

weight  matrix  corresponding  to  the  update  gate,  is
the  bias  of  the  update  gate,  and  is  the  sigmoid
activation function.

Reset gate: This gate determines how to combine the
combination of the new input with the past hidden state
to produce a candidate hidden state.
 

rd = σ (wr · x+br) (2)
wr

br

Similarly,  is  the  weight  matrix  corresponding  to
the reset gate, and  is the bias of the reset gate.

The  candidate  hidden  state  can  be  expressed  as
follows:
 

h̃d = tanh
(
wh̃ · [rd ⊙ x]

)
(3)

tanh
⊙

[rd ⊙ x] rd x

where  represents  the hyperbolic  tangent  function,
 represents  element-wise  multiplication  (Hadamard

product), and  represents concatenating  and 
along a particular axis.

The final hidden state can be expressed as
 

hd = (1− zd)⊙hd−1+ zd ⊙ h̃d (4)
Overall,  by  introducing  gating  mechanisms,  GRUs

allow models  to  decide when to  update  or  forget  their
hidden  states,  thus  effectively  capturing  long-term
dependencies when processing sequence data.

4　Proposed Model

X

This  paper  aims  to  present  an  innovative  approach  to
lithofacies classification using an attention-based GRU
model.  The  capability  of  the  model  to  address  the
limitations  of  traditional  ML  techniques  while
providing  precise  and  reliable  results  will  be
demonstrated.  The  framework  of  AGRU  is  shown  in
Fig.  3.  First,  the  detectable  features  of  rocks  are
extracted, and then feature vectors can be obtained. The
feature  vectors  are  inputted  into  the  two-layer  GRU
model in depth order for training, and then the attention
layer is used to assign their weights. Finally, the output
results  of  the  attention  layer  are  fed  into  the  MLP for
training  to  obtain  the  final  classification  results.  The
specific  details  are  introduced  below.  First,  the
lithology  changes  across  depths  in  different  wells  are
treated  as  separate  sequences.  Each  sequence  of
lithology  changes  is  then  fed  into  the  GRU  model.
Herein, the input  of the model is defined as
 

X =
[

hd−1
cd

]
(5)

hd−1

d−1 cd

where  is  the  hidden  layer  state  corresponding  to
 depth, and  is the current rock feature sequence.

 

×
1-

sigmoid tanhsigmoid

cd

hd- od

rt zt

+

×
hd
⁓hd
⁓

×

+

×
1-

sigmoid tanhsigmoid

cd

1 od

rt zt

+

×
hd
⁓

×

+

 
Fig. 2    Architecture of GRU.
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Given  the  sequential  order  of  the  rock  features,  the
GRU is  highly  efficient  in  capturing  the  the  nonlinear
dependencies  within  the  data.  Thus,  the  GRU  can
understand  and  learn  from  the  dynamic  interactions
among  rock  characteristics  that  occur  at  different
depths,  which  are  often  overlooked  by  traditional  ML
models.

The  update  gate  performs  the  initial  analysis  of  the
input feature sequence. This gate learns to discern and
filter out the unimportant rock features in the sequence
while  selectively  memorizing  the  crucial  rock
information.  This  critical  information  is  then
transferred  to  the  new  hidden  state  of  the  GRU  after
processing  by  the  update  gate.  This  gate  effectively
provides the model  with a  mechanism for  focusing on
significant  information  and  ignoring  redundant  or  less
relevant details.
 

zd = σ (Wz ·X+Bz) (6)
X Wz

Bz

where  is the input of AGRU,  is the weight matrix
corresponding  to  the  update  gate  of  AGRU,  and  is
the bias of the update gate.

By contrast, the reset gate decides the combination of
the  newly  memorized  information  with  the  previous
hidden state  to  generate  a  new candidate  hidden state.
The  reset  gate  serves  to  balance  the  influence  of  the
new input and the historical information carried by the
hidden  state.  The  operation  of  this  gate  provides  the
GRU model with its extraordinary capability to capture
long-term dependencies within the sequence.
 

rd = σ (Wr ·X+Br) (7)

Wr

Br

h̃d

Similarly,  as the weight matrix corresponds to the
reset  gate,  as  the  bias  of  the  reset  gate.  Candidate
hidden layer states  and the final output can then be
generated as follows:
 

h̃d = tanh
(
Wh̃ · [rd ⊙X]

)
(8)

 

hd = (1− zd)⊙hd−1+ zd ⊙ h̃d (9)
Currently,  the  output  of  GRU  can  be  denoted  as

follows:
 

od+1,cd = (Whhd)T (WXcd) (10)

Thus, the proposed approach can effectively analyze
the depth-ordered sequence of rock features from each
well  by  employing  a  GRU  model.  This  approach
leverages the unique capabilities of the GRU model to
focus on important details, filter out noise, and capture
long-term  dependencies  within  the  sequence.  This
phenomenon  results  in  a  powerful  model  that  can
accurately  predict  lithology  classes  from  depthwise
rock feature sequences.

Coupling  the  GRU  model  with  an  attention
mechanism  is  proposed  to  focus  on  the  sequence
information  in  the  changes  in  lithological
characteristics. This enhanced model aims to provide a
means for the GRU to focus selectively on crucial rock
information during the classification task. The attention
mechanism  is  an  advanced  technique  that  assigns
different weights to various parts of the input sequence.
The  model  can  focus  on  the  most  relevant  pieces  of
information and less on the slightly relevant ones. This
selective attention capability significantly enhances the
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Fig. 3    Architecture of AGRU.
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capability  of  the  model  to  extract  useful  information
from sequences of rock features.

In  the  AGRU  model,  the  attention  mechanism  is
incorporated as an additional layer on top of the GRU
layers.  Considering  lithology  classification,  the
attention  mechanism  allows  the  model  to  assign
varying  degrees  of  relevance  to  different  parts  of  the
input  sequence  when  making  predictions.  Such  an
assignment  is  performed  by  applying  weights  to
different parts of the input,  which are calculated using
the  attention  formula.  This  attention  layer  is
responsible  for  generating  attention  weights  for  each
feature  in  the  sequence.  The  GRU  layer  outputs  a
sequence  of  hidden  states,  each  corresponding  to  a
specific  feature  in  the  sequence.  The  attention  layer
takes  these  hidden  states  as  input  and  computes  an
attention weight for each state:
 

pd =

S∑
d=1

αdhd (11)

αdwhere  denotes  the  attention  weight,  which  is
calculated as follows:
 

αd = softmax(Cd) =
exp(Cd)∑D

d=1 Cd
(12)

These  attention  weights  are  then  used  to  form  a
weighted  sum  of  the  hidden  states,  resulting  in  a
context  vector  that  effectively  summarizes  the  input
sequence with a focus on the most crucial features.
 

od+1,cd =
(
Wp pd

)T
(WCcd) (13)

The attention layer uses a neural network to compute
the attention weights. The inputs to this network are the
hidden states of the GRU, and the output is a score for
each  state.  These  scores  are  then  passed  through  a
softmax  function  to  convert  them  into  attention
weights,  demonstrating  a  sum of  1  and allowing them
to  be  interpreted  as  probabilities.  The  model  provides
additional “attention” to  the  corresponding  feature
when the attention weight of a hidden state is high. The
model  can  concentrate  on  the  features  that  are  most
indicative  of  the  lithology  class  by  using  the  attention
mechanism  while  providing  minimal  attention  to  the
less  important  or  irrelevant  features.  This  condition
results  in  a  highly  accurate  and  robust  classification.
Overall,  the  enhanced  model  can  selectively  focus  on
the most crucial rock information, resulting in a highly
accurate lithological facies classification.

Finally, the MLP network is used to obtain the final

result  of  the  lithofacies  classification.  MLPs  are
generally widely used in machine learning models due
to  their  capability  to  learn  and  model  nonlinear  and
complex  relationships.  An  MLP  comprises  at  least
three  layers  of  nodes:  an  input  layer,  a  hidden  layer,
and  an  output  layer.  Each  node  in  one  layer  connects
with  a  certain  weight  to  every  node  in  the  following
layer.  An  MLP  is  employed  in  the  final  stage  of
prediction  after  the  attention-based  GRU  layer.  The
MLP  is  instrumental  in  further  refining  the  learned
feature  representations  by  the  GRU,  adding  depth  to
the  model,  and  enhancing  prediction  accuracy.
Moreover,  MLP  helps  learn  high-level  features  based
on  the  sequences  processed  by  GRU,  which  are
essential for the subsequent lithology classification.

5　Experiment

5.1　Datasets

In  the  experiments,  two  publicly  available  datasets,
namely  the  Panoma  field  dataset  from North  America
and the Yanan oil field dataset from China, are utilized.
The Panoma field dataset includes information such as
the  types  of  facies,  well  names,  well  depth,  and
features (including GR, ILD_log10, DeltaPHI, PHIND,
PE, NM_M, and RELPOS). The Yanan oil field dataset
includes  information  such  as  the  types  of  facies  and
features (AC, CAL, GR, K, RD, and SP). A scatter plot
is  used to  visualize  the  relationships  between multiple
variables  in  the  Panoma  dataset  effectively,  as  shown
in each row and column in Fig. 4 represents a variable,
while  the  horizontal  and  vertical  coordinates  of  each
small graph correspond to the variables of its columns
and rows,  respectively.  Thus,  the relationship between
multiple  variables  can  be  simultaneously  observed  in
Fig. 4.

5.2　Baselines

This  section  provides  brief  introductions  to  four
commonly  utilized  baseline  models  in  facies
classification: SVM[5], GPC[7], RNN[35], and LSTM[36].
SVMs  excel  in  high-dimensional  spaces  by
constructing  an  optimal  hyperplane  for  classification.
They  are  used  in  facies  classification  for  handling
complex  geological  data  with  numerous  features.
However,  the  primary  drawback  of  SVM  lies  in  its
sensitivity to noise and its  tendency to perform poorly
when the classes are heavily overlapping. GPC models
nonlinear  relationships  effectively  and  provides  a
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measure  of  uncertainty  for  risk  assessment  in  facies
classification.  However,  GPCs can be computationally
expensive  and  might  be  unsuitable  for  very  large
datasets. The functions of RNN and LSTM are similar
to  those  of  GRU,  but  RNN  is  prone  to  problems  of
gradient  vanishing  and  explosion.  LSTM has  a  longer
training  time  than  GRU  due  to  the  complex  gate
structure.

5.3　Evaluation metrics

In  the  study  of  facies  classification,  evaluating  the
performance  of  the  proposed  models  comprehensively
is crucial. Therefore, several widely recognized metrics
have  been  adopted  to  assess  the  effectiveness  of  the
models.  These  metrics  include  precision,  recall,  and
F1-score.

Precision  gauges  the  accuracy  of  the  predictions.
Precision measures the proportion of ture positives out
of all the positive predictions. High precision indicates
that the model makes few false-positive errors.

Recall,  also  known  as  sensitivity,  measures  the
proportion  of  actual  positives  that  are  correctly
identified.  High  recall  rate  implies  implies  the  model
has a low false-negative rate.

The  F1-score  is  a  harmonic  mean  of  precision  and
recall.  This metric is  particularly useful  when the data
distribution  is  uneven  because  it  considers  false
positives and negatives. The F1-score offers a balanced
perspective  on  the  model’s  performance,  particularly
when  the  cost  of  false  positives  and  negatives  is
significantly different.

These metrics were computed in the experiments for
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Fig. 4    Relationship between multiple variables in Panoma.
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all the models to provide a comprehensive view of their
performance.  Therefore,  well-informed  conclusions
regarding  the  suitability  of  these  models  for  facies
classification were drawn.

5.4　Performance comparison

A  comparative  analysis  of  multiple  models  aimed  at
rock  phase  classification  (Fig.  5),  specifically  SVM,
GPC,  RNN,  LSTM,  and  AGRU,  is  conducted  in  this
paper. The performance of the model is evaluated using
precision, recall, and F1-score on two datasets, Panoma
and Yanan.

The  analysis  revealed  the  superiority  of  the  AGRU
model  across  all  evaluation  metrics  in  both  datasets,
emphasizing  its  robustness  and  applicability  to  rock
phase  classification.  The  model  provided  precision,
recall,  and  F1-score  of  0.77,  0.76,  and  0.76,
respectively, for the Yanan dataset and 0.85, 0.81, and
0.81,  respectively,  for  the  Panoma  dataset.  These
results  highlight  the  benefits  of  applying  attention
mechanisms  to  GRUs,  which  effectively  handle  the
temporal dependencies in the data.

Comparatively,  SVM  achieved  commendable
performance  on  the  Yanan  dataset,  with  precision,
recall,  and  F1-score  of  0.75,  0.74,  and  0.75,
respectively,  but  struggled  on  the  Panoma  dataset
(0.66,  0.65,  and  0.63,  respectively).  Despite
demonstrating  improvement  over  RNN  and  being
comparable to AGRU on the Yanan dataset (0.84, 0.81,
and 0.80), the LSTM model was not as efficient on the
Panoma dataset. This variance in performance could be
attributed to  the  capacity  of  the  LSTM model  to  learn
and  remember  over  long  sequences,  which  may  have
been highly suited to the Yanan dataset.

The  attention  mechanism  in  the  AGRU  model
enables it to focus on the most important aspects of the
input  sequence,  reducing  the  effect  of  noise  and  less

relevant  features.  This  adaptability  endows  it  with  an
advantage  over  traditional  LSTM  and  RNN
architectures,  as  shown  in  the  high  scores  across  the
datasets.

Overall,  the  results  indicate  that  attention
mechanisms,  particularly  when  applied  to  GRUs,  can
significantly  enhance  rock  phase  classification.  Future
work  could  investigate  further  improvements,  such  as
combining attention mechanisms with other models or
applying  advanced  regularization  techniques.  Despite
the  challenges  involved  in  this  classification  task,  the
proposed  AGRU  model  exhibits  extensive  application
potential  in  the  field  of  geology  and  related
applications.

5.5　Parameter selection

GRU layer: The model was tested with GRU layers set
to  1,  2,  and  3.  The  impact  of  varying  the  number  of
GRU layers  on model  performance is  demonstrated in
Fig. 6. The results indicated that a single layer might be
insufficient for the model to express the complexity of
the  problem  adequately,  leading  to  suboptimal
performance.  The  performance  of  the  model
significantly improved with two layers. However, three
layers  led  to  a  decrease  in  performance.  Overly  deep
GRU layers  can  overcomplicate  the  model,  increasing
its  susceptibility  not  only  to  overfitting  but  also  to
gradient vanishing or exploding issues, which results in
an unstable training process.

Embedding dimension: Experiments were conducted
with  embedding  dimensions  set  to  32,  64,  and  128.
Considering  precision,  recall,  and  F1-score,  the
resulting  model  performances  on  the  Panoma  and
Yanan  datasets  are  displayed  in Fig.  7.  Observations
revealed  optimal  model  performance  when  the
embedding dimension was set to 64. A large dimension
size can potentially increase the capability of the model

 

 
Fig. 5    Classification results of AGRU.
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to represent features; however, this condition may also
introduce redundancy. Hence, 64 was determined to be
a suitable dimension size.

Other  Parameters:  The epoch was set  to  300,  with a
dropout  rate  of  0.5  and  a  batch  size  of  32.  An  early
stopping strategy, where training would be halted if the
model performance did not improve for 10 consecutive
epochs (patience = 10), was used to prevent overfitting
and unnecessary long training times.

6　Conclusion

Overall,  this  paper  presents  a  novel  and  effective
method  for  facies  classification  utilizing  an  AGRU
model.  The  AGRU  model  effectively  captured  the
inherent sequential nature and existing dependencies in
well  log  data  by  leveraging  the  power  of  RNN  and
attention  mechanisms.  This  approach  considerably
enhanced  the  discernment  of  key  features,  yielding
higher  accuracy  in  facies  classification  compared  to
traditional  methods.  The  proposed  method  was
rigorously validated on two publicly available datasets,
Panoma  and  Yanan,  where  it  significantly
outperformed  traditional  and  contemporary  methods

such  as  SVM,  GPC,  RNN,  and  LSTM.  The  method
also  delivered  superior  results  considering  precision,
recall,  and  F1-score,  demonstrating  its  effectiveness
and  robustness.  Furthermore,  the  performance
improvement  introduced  by  the  proposed  model  can
lead  to  precise  and  reliable  subsurface  reservoir
modeling,  facilitating  highly  informed  and  effective
decision-making  processes  in  oil  and  gas  exploration
and  production.  This  phenomenon  could  potentially
have a substantial impact on operational efficiency and
profitability within the industry.

Future  work  could  extend  the  applicability  of  the
AGRU  model  to  other  geological  classification  tasks,
such  as  lithology  or  depositional  environment
classification. Additionally, integration with other data
types, such as seismic or production data, could further
enhance the performance of the model. This study aims
to  contribute  to  the  broad  adoption  of  advanced  ML
techniques considering petroleum geology and beyond.
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