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Multi-Target Wideband DOA Estimation with Dirichlet Process Prior
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Abstract: When  estimating  the  direction  of  arrival  (DOA)  of  wideband  signals  from  multiple  sources,  the

performance of sparse Bayesian methods is influenced by the frequency bands occupied by signals in different

directions. This is particularly true when multiple signal frequency bands overlap. Message passing algorithms

(MPA) with Dirichlet process (DP) prior can be employed in a sparse Bayesian learning (SBL) framework with

high precision. However, existing methods suffer from either high complexity or low precision. To address this,

we propose a low-complexity DOA estimation algorithm based on a factor graph. This approach introduces two

strong  constraints  via  a  stretching  transformation  of  the  factor  graph.  The  first  constraint  separates  the

observation from the DP prior,  enabling the application of  the unitary approximate message passing (UAMP)

algorithm for simplified inference and mitigation of divergence issues. The second constraint compensates for

the  deviation  in  estimation  angle  caused  by  the  grid  mismatch  problem.  Compared  to  state-of-the-art

algorithms, our proposed method offers higher estimation accuracy and lower complexity.

Key words:  wideband direction of arrival (DOA) estimation; sparse Bayesian learning (SBL); unitary approximate

message passing (UAMP) algorithm; Dirichlet process (DP)

1　Introduction

Wideband  signals,  characterized  by  their  high
information  content  and  interference  resistance,  are
widely employed in technologies  such as  radar,  sonar,
and wireless communication[1, 2]. One important aspect
of  working  with  these  signals  is  determining  their
direction  of  arrival  (DOA)[3].  As  a  result,  the  problem

of  DOA  estimation  for  wideband  signals  has  been
extensively  studied  in  the  literature  for  various
localization  applications[4].  Compared  to  narrowband
DOA  estimation,  the  steering  matrices  for  wideband
DOA  estimation  increase  with  frequency,  making  the
estimation process more complex.

In  order  to  apply  traditional  narrowband  DOA
estimation  methods  to  broadband  scenarios,  the
received  signal  is  first  decomposed  into  narrowband
signals using either a filter bank or the discrete Fourier
transform (DFT). Subsequently, traditional methods for
narrowband  DOA  estimation  can  be  applied  to  each
subband  corresponding  to  different  frequencies.  The
beamforming method estimates the angle accurately by
using  the  weighted  sum  of  array  measurements.
However,  this  method  is  susceptible  to  the  aliasing
effect  and  low  resolution[5].  To  counter  these
shortcomings, various alternatives have been proposed
for  wideband  DOA  estimation,  including  incoherent/
coherent signal subspace methods (ISSMs/CSSMs)[6–8]
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and  variants  of  the  CSSM  such  as  the  two-sided
correlation  transformation  (TCT)  algorithm[9],  the
weighted  average  of  signal  subspaces  (WAVES)
method[10], the signal subspace transformation (SST)[11]

algorithm,  and  the  test  of  orthogonality  of  projected
subspace (TOPS)[12] method. These methods have been
widely  used  in  scenarios  with  multiple  measurements
to  estimate  the  covariance  matrix  of  subband  signals.
The  CSSM  outperforms  the  ISSM  due  to  signal
coherence in different subbands. These subspace-based
methods  and  the  prominent  nonlinear  least  square
methods  based  on  maximum  likelihood  estimation
have limitations in harsh scenarios, for example, when
the  number  of  sources  is  unknown,  there  are  few
snapshots, and the sources are highly correlated. These
methods  require  the  source  number,  which  is  difficult
to  know  in  advance,  and  are  sensitive  to  source
correlations.  Furthermore,  these  methods  require
sufficient  observations  to  yield  accurate  estimations,
which can be difficult to obtain in certain scenarios.

Recent  advances in  compressed sensing (CS) theory
have  introduced  sparse  representation  as  a  promising
technology  for  broadband  DOA  estimation[13–15].
Sparse  representation  leverages  a  limited  number  of
snapshots  to  achieve  higher  resolution  and  reduce
aliasing effects[16–19]. Various methods based on sparse
representation,  including  convex  programming[20],
greedy  algorithms[21, 22],  and  sparse  Bayesian
learning[15, 23–25],  have  been  proposed  to  improve  the
accuracy  of  broadband  DOA  estimation.  However,
these methods have their limitations, such as unreliable
performance under low signal-to-noise ratio (SNR) for
greedy algorithms and additional computational burden
for parameter adjustment in convex optimization based
methods.  Compressed  sensing  techniques  generally
necessitate  a  densely  sampled  spatial  grid  to  enhance
the  estimation  performance  of  sparse  signals.  But  the
representation  of  the  continuous  domain  via  discrete
domains  leads  to  the  problem  of  grid  mismatch[26–28].
Moreover,  the use of excessively dense partitions may
lead  to  column-correlated  overcomplete  dictionaries
that  violates  the  condition  for  the  sparse  signal
recovery.  To  settle  these  problems,  many  Bayesian
algorithms  for  DOA  estimation  based  on  the  off-grid
model  have  been  proposed[29–33].  However,  these
methods  assume  that  different  subband  signals  share
the  same  bandwidth,  which  may  not  hold  true  in
practice.

Many  studies  have  proposed  probabilistic  models

based  on  Dirichlet  process  (DP)  prior  to  cluster
different subbands in order to improve the accuracy of
wideband DOA estimation[34–37]. Wang et al.[34] and Lu
et  al.[35] mainly inferred the hidden variables  on mean
field  (MF)  theory  under  the  Bayesian  networks.  Lu
et  al.[36] proposed a  combined belief  propagation (BP)
and MF message passing algorithm which can compute
exact  marginals  to  improve  the  channel  estimation
performance.  Li  et  al.[37] proposed  a  novel  DOA
estimation  method  based  on  combined  BP  and  MF
message  passing  algorithm  to  address  the  off-grid
problem of wideband DOA estimation. However, these
methods  suffer  from  high  computational  complexity.
Real-valued  transformations  reduce  DOA  estimation
algorithm complexity by approximately a factor of four
by  converting  complex  multiplications  to  real
multiplications[38–42]. However, they do not address the
exponential  complexity  issue  caused  by  sparse
coefficient  matrix  inversion  during  sparse  signal
recovery.  To  improve  estimation  accuracy  and  reduce
computational complexity,  a combined mean field and
approximate message passing (MF-AMP) approach has
been proposed[43]. Nevertheless, the AMP[44] algorithm
may  encounter  difficulties  with  generic  matrices,
leading  to  divergence  and  poor  performance[45].  To
address this issue, variants of the AMP algorithm have
been  proposed,  including  damped  AMP[45],  memory
AMP[46],  and  unitary  approximate  message  passing
(UAMP)[47].  However,  these  methods  are  unable  to
effectively  capture  the  correlation  between  frequency
points  and  angles  of  each  subband,  leading  to  limited
estimation  accuracy.  As  a  result,  it  is  necessary  to
develop  more  efficient  methods  that  can  reduce  the
computational  burden  while  ensuring  high  estimation
accuracy for wideband DOA estimation.

In  this  paper,  we  address  the  challenges  of
representing  the  Bayesian  model  for  wideband  DOA
estimation  by  introducing  the  factor  graph  approach,
which offers a more effective representation compared
to  the  Bayesian  network  model[48, 49].  We  recognize
that  the  complexity  arises  from  the  direct  relationship
between  the  received  signals  and  the  DP  prior  in  the
probability  model.  To  overcome  this  problem,  we
propose  a  novel  factor  graph  that  solves  this  issue  by
utilizing the factor graph transformation method within
the  probability  graph  model[50–52].  Additionally,  we
present a new and efficient method for wideband DOA
estimation  based  on  variational  Bayesian  inference
(VBI) on the proposed factor graph. Our contributions
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can be summarized as follows.
• Factor  graph  representation  of  the  off-grid

model: We have devised a factor graph to represent the
off-grid  model,  incorporating  factor  and  variable
nodes.  This  provides  a  more  intuitive  depiction  of  the
model’s details.
• A  stretched  factor  graph  with  two  additional

hard constraints: We have  stretched the  factor  graph
to  include  two  new  virtual  variable  nodes,  each
corresponding  to  a  stringent  constraint  condition.  One
node facilitates the separation of the DP prior from the
received  signals,  allowing  the  UAMP  messages  to
propagate across the factor graph, while the other node
addresses  the  grid  mismatch  issue,  thereby  enhancing
estimation accuracy.
• A  novel  broadband  DOA  estimation  algorithm

based on UAMP and MF: We have integrated the MF
rule  and  the  UAMP  algorithm  to  update  the  variables
on  the  factor  graph,  leading  to  a  novel  inference
algorithm that we refer to as UAMP-DP. Compared to
variational Bayesian expectation maximization (VBEM)
and  Bayesian  probabilistic  matrix  factorization
(BPMF)[34, 36],  the  proposed  approach  significantly
reduces  complexity  while  maintaining  or  even
surpassing their performance.

The remainder of this paper is organized as follows.
Section 2 presents the system model for off-grid DOA
estimation  after  unitary  transformation,  and  represents
it in the sparse Bayesian framework with the DP prior.
Section 3 addresses  the challenges of  high complexity
and  off-grid  problems  by  introducing  two  strong
constraints through stretching the factor graph. We also
derive  efficient  inferences  for  the  parameters  and
hidden  variables  using  variational  Bayesian  inference.
Section  4  compares  the  proposed  methods  with
previous  approaches  to  demonstrate  the  performance
improvements. Conclusions are drawn in Section 5.

2　Problem Formulation

Notation

(·)T (·)H diag(·)

Tr(·)
q(x)

⟨·⟩q(x) nxi→α(xi)
xi α mα→xi (xi)

: Sets, matrices, and vectors are represented by
flower body, boldface uppercase, and lowercase letters.
Transpose  and  conjugate  transposition  of  a  matrix  are
denoted  as  and .  denotes  a  diagonal
matrix  with  its  vector  argument  on  the  maindiagonal,
and  denotes  the  trace  operator.  The  expectation
operation with respect to a function  is represented
by . Define  as the message from variable
node  to  factor  node ,  as  the  message

α xi b(xi)
xi ˆ(·)

from factor node  to variable node , and  as the
belief of  node. The updated estimate is denoted by .

2.1　System model

U M

d
F

y f ∈ CM×1

We consider  stationary sources impinging on an -
element  uniform  linear  array  (ULA)  with  an  element
spacing  of .  The  DFT of  the  received  signals  can  be
decomposed  into  narrowband  measurements

 as
 

y f = A f x f +w f , f = 1,2, . . . ,F (1)

x f ∈ CN×1

N f w f ∈ CM×1

A f = [aT
f (θ1), aT

f (θ2), . . . , aT
f (θN)]

A f ∈ CM×N N ≫ M

{θ̄u}u=1:U U ≪ N

θ̄u < {θ1}n=1:N u ∈ [1,U] θnu

θ̄u nu ∈ [1,N]

where  is  the  sparse  coefficient  vector  of
length  at  frequency .  is  complex
Gaussian  noise. ,

, , is an overcomplete dictionary. To
mitigate  the  DOA  estimation  error,  a  straightforward
approach  is  to  use  more  dense  grids  to  cover  the
detection  space.  This  method  results  in  a  significant
increase  in  computational  complexity  and  coherence
between adjacent atoms in the overcomplete dictionary,
thereby violating the restricted isometry property (RIP)
and  leading  to  direction  mismatch.  Suppose  the  true
DOA  set  is  with .  Without  loss  of
generality, for some , ,  is the
grid point closest to , where . So we apply
a  linear  approximation  to  derive  the  off-grid  model.
The linear  approximate  of  the  true  steering vector  can
be  obtained  by  the  first-order  Taylor  expansion
method[21] as
 

A f (θ̄u) ≈ A f (θnu )+B f (θnu )β f ,n (2)

where the off-grid deviation is
 

β f ,n =

{
θ̄u− θnu , for n = nu;

0, others (3)

A f (θnu ) θnu A f B f (θnu )
A f (θnu )

ϑnu β f = [β f ,1,β f ,2, . . . ,β f ,N]T ∆ f = diag(β f )

∆ f∏N
n=1 U

([
−∆θ

2
,
∆θ

2

])
∆θ

D f = A f +B f∆ f

where  is  the  column  of ,  and 
represents  the  first-order  derivative  of  with
respect to .   and 
are  the  deviation  vector  and  the  deviation  matrix,
respectively.  follows  the  uniform  distribution

, where  is the grid interval. The
true  dictionary  can  be  given  as .  The
sparse  model  for  each  frequency  point  in  the  off-grid
problem can be expressed as
 

y f = D f x f +w f , f = 1,2, . . . ,F (4)

D f

D f = U fΛ f V f

According  to  Ref.  [47],  as  any  has  a  singular
value  decomposition  (SVD)  to  enable
the use of UAMP, the following unitary model can be
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expressed as
 

r f =Φ f x f + nf (5)

r f = UH
f y f Φ f = UH

f D f nf = UH
f w fwhere , , and .

2.2　Sparse Bayesian learning framework

2.2.1　Noise model
nf

α0

Suppose  that  is  a  complex  Gaussian  noise  with
precision . Then the likelihood function of the signal
model Eq. (5) can be expressed as
 

p(r f |x f ,Φ f ,α0) = CN(r f ;Φ f x f ,α
−1
0 IM) ≜

fr f (Φ f , x f ,α0) (6)

α0  follows a Gamma prior as
 

p(α0|c,d) = Γ(α0;a,b) ≜ fα0 (α0) (7)

a bwhere the parameters  and  are selected to be small
values to yield non-informative priors.
2.2.2　Sparse signal model

x fThe  follows a complex Gaussian distribution as
 

p(x f |α f ) = CN(x f ;0,Λ−1
f ) (8)

αT
f = [α f ,1,α f ,2, . . . ,α f ,N] Λ f = diag(α f )

α f

c d

where  and  are
the  precision  vector  and  the  precision  matrix,
respectively.  follows a Gamma distribution with the
parameters  and  as
 

p(α f |c,d) =
N∏

n=1

Γ(αn|c,d) ≜ fα f (α f ) (9)

x f f = 1,2, . . . ,F
Λk = diag(αk)

All  for  are  independent  and  share
the  same  to  induce  a  joint  sparsity  in
sparse Bayesian learning (SBL)[34].
2.2.3　DP prior on αf

α f {α f }1:F F
G G

DP(γ,G0) γ

G0

DP with excellent classification performance is used as
the  prior.  Assuming  are  random samples
drawn  from ,  where  is  a  random  measure  drawn
from  with  concentration  parameter  and
base  distribution .  We  have  the  following
expressions as
 

α f ∼G, f = 1,2, . . . ,F,G ∼ DP(γ,G0) (10)

G
G

As  it  is  not  possible  to  obtain  directly,  a  stick-
breaking representation is used to express  as
 

G =
+∞∑
k=1

wkδα∗k (11)

with
 

α∗k ∼G0,wk = πk

k−1∏
i=1

(1−πi) (12)

and
 

p(π|γ) =
K∏

k=1

Beta(πk;1,γ) ≜ fπ(π,γ) (13)

{α∗k}1:+∞ G {wk}1:+∞

π = [π1,π2, . . . ,πK]
γ γ

γ

e f

where  are  atoms  of ,  and  are  the
weights  of  each  atom which  are  attained  by  the  stick-
breaking method. In practical applications,  the number
of  atoms  is  usually  set  to  a  larger  number K.

 follows  a  Beta  distribution  with
parameter .  The  parameter  governs  the  number  of
clusters  in  the  DP.  is  assumed  to  follow  a  Gamma
distribution with the parameters  and , which can be
expressed as
 

p(γ|e,h) = Γ(γ;e,h) ≜ fγ(γ) (14)

z f  is  introduced  as  the  assignment  vector  sampled
from a multinomial distribution
 

p(z f |{wk}k=1:K) =Mult({wk}k=1:K) (15)

z fUsing Eq. (12), the conditional distribution of  can
be expressed as
 

p(z f |π) =
K∏

k=1

πk

k−1∏
i=1

(1−πi)


1[z f=k]

≜ fz f (z f ,π) (16)

Φ f ,k ≜ 1[z f = k]
k

x f k

where  is  defined  as  a  structure  where
all  its  elements  are  zero  expect  for  the -th  element,
which is used to allocate  to the cluster .

x fSo the probabilistic model of  can be given as
 

p(x f |z f , {α∗k}k=1:K) =
K∏

k=1

{CN(x f |0,Λ−1
z f

)}1{z f=k} ≜

fx f (x f , z f , {α∗k}k=1:K) (17)

Λz f = diag(α∗z f
)where .

2.2.4　Uniform prior on βf
β f

β f

 follows a uniform prior which is only used to limit
the boundness of  as
 

β f ∼
N∏

n=1

U
([
−∆θ

2
,
∆θ

2

])
(18)

{β f } f=1:F K
{βk}k=1:K {β f } f=1:F

k

Because  can  be  classified  into  clusters,
the  method  of  substituting  for  can
make  full  use  of  the  relevant  information  of  the
measurements  in  the  same  cluster  and  eliminate  the
interference of measurements in other clusters.

So  joint  probability  density  function  (PDF)  of  the
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signal model can be expressed as
 

p({r f } f=1:F ,Θ) =
F∏

f=1

p(r f |x f , z f , {βk}k=1:K ,α0)×

p(x f |z f , {α∗k}k=1:K)p(z f |π)p(π|γ)p(γ)p(α0)
(19)

Θ = {α0,γ,π, {z f , x f } f=1:F , {α∗k,βk}k=1:K}where .

3　Proposed UAMP-DP Method

In  this  part,  combined  message  passing  algorithm  is
applied  to  calculate  the  approximate  posterior  on  the
factor  graph,  update  the  messages  between  the  factor
nodes  and  the  variable  nodes,  and  finally  get  the
UAMP-DP method.

3.1　Factor graph model

h f ≜ Φ f x f Ā f ≜
K∑

k=1

Φ f ,k(A f +B f∆k)

Most  variables  in  this  model  obey  exponential
distribution, and the expected function of these variables
can  be  easily  obtained  by  MF  rules.  But  UAMP
method has higher estimation accuracy than MF rule in
VBI. Therefore, in order to compensate for the error of
MF rules and grid division, we introduce two auxiliary

variables,  and ,

which can be respectively expressed as
 

p(Ā f |z f ,{βk}k=1:K) ≜ fĀ f
(Ā f , {βk}k=1:K , z f ) =

δ(Ā f −
K∑

k=1

Φ f ,k(A f +B f∆k))
(20)

and
 

p(h f |Φ f , x f ) = δ(h f −Φ f x f ) ≜ fh f (h f , x f ,Φ f ) (21)

fr f (h f ,α0) = CN(r f ; h f ,α
−1
0 I)where ,  the  joint  PDF  in

Eq. (19) can be rewritten as
 

p({r f ,h f ,Φ f } f=1:F ,Θ) =
F∏

f=1

fr f (h f ,α0) fh f (h f , x f ,Φ f )×

fΦ f (Ā f , {βk}k=1:K , z f ) fx f (x f , z f , {α∗k}k=1:K)×
fz f (z f ,π) fπ(π,γ) fγ(γ) fα0 (α0) (22)

{z f } f=1:F

{r f } f=1:F

{h f } f=1:F

Ā f

As shown in Fig.  1,  the  variables  And  the
observation  variables  are  separated  by  the
auxiliary  variables ,  which  enables  both
UAMP  and  MF  algorithms  to  be  applied
simultaneously  on  the  factor  graph  to  obtain  an
effective message passing algorithm. And the auxiliary
variables  can well approximate the real dictionary.

The  factor  graph Fig.  1 of  the  probability  model
proposed in this paper can be divided into four function
blocks,  labelled  by  Block(a)−Block(d),  which  are
represented  as  the  estimation  block  of  DP  prior
parameter, DP mixture components, sparse signals and
noise precision, and off-grid deviation, respectively.

3.2　Messages calculation of DP prior block

fx f z f

According  to  Eq.  (17),  we  can  get  the  MF  message
from  to  as
 

mMF
fx f
→z f (z f ) = exp

⟨ln fx f ⟩b(x f ) k∏
k=1

b
(
α∗k

)
 =

exp{Φ f ,k g f ,k} (23)

 

fγ

fα0 hf

hF xF

xfα0

fπ fzf

frf

frF

fzF
fxF

fhf

fxf

fAf
−

fAF

fhF

fα*
K

fα*
k

−

zf

zF

βk

α*
k

α*
K

βK

βK

βk

Af
−

AF
−

…
… …

…

f-th

F-th

γ π

Block(a)

Block(c)

Block(d)

Block(b)

 
p({r f ,h f ,Φ f } f=1:F,Θ)Fig. 1    Factor graph representation of joint probability .
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where
 

g f ,k ≜⟨ln(Λk)⟩b(α∗k)− tr(diag(vx f )⟨Λk⟩b(α∗k))−
xH

f ⟨Λk⟩b(α∗k)x f .

⟨ln(Λk)⟩b(α∗k) ⟨Λk⟩b(α∗k) and  will be given later.
b(π)

fz f (z f ,π) z f

Substituting Eq. (16) and  into the message from
 to  yields

 

ln mMF
fz f→z f

(z f ) =
{
ln⟨ fz f ⟩b(π)

}
=1[z f = k]

⟨lnπk⟩b(π)+

k−1∑
i=1

⟨ln(1−πi)⟩b(π)


 (24)

z f

Φ f ,k

Using  Eqs.  (23),  (24),  and  (31),  the  belief  of 
which  is  the  approximation  PMF  of  can  be
obtained as
 

b(z f ) =mMF
fx f→z f

(z f )mMF
fz f→z f

(z f ) = exp{Φ f ,kε f ,k} (25)

where
 

ε f ,k = ⟨lnπk⟩b(π)+
k−1∑
i=1
⟨ln(1−πi)⟩b(π)+ g f ,k (26)

Φ f ,kAfter normalization,  can be updated by
 

Φ̂ f ,k =
exp{ε f ,k}

K∑
k=1

exp
{
ε f ,k

} (27)

fz f πAccording  to  Eq.  (27),  MF  message  from  to 
can be calculated by
 

mMF
fz f→π

(π) = exp
{
⟨ln fz f (z f )⟩b(z f )

}
=

exp

Φ̂ f ,k lnπk +

K∑
i=k+1

Φ̂ f ,i ln(1−πk)

 (28)

mMF
fπ→π(π)Using Eqs.  (13)  and  (34),  message  can  be

obtained as
 

mMF
fπ→π(π) = exp

{
⟨ln fπ⟩b(γ)

}
=

exp

(γ̂−1)
K∑

k=1

ln(1−πk)

 (29)

πSo the belief of  can be computed by
 

b(π) = mMF
fπ→π(π)

F∏
f=1

mMF
fz f→π

(π) =

exp


 F∑

f=1

K∑
l=k+1

Φ̂ f ,l+γ̂−1

 ln(1−πk)+
F∑

f=1

Φ̂ f ,k lnπk

 (30)

πk

τ1,k ≜
∑F

f=1 Φ̂ f ,k +1

τ2,k ≜
∑F

f=1
∑K

l=k+1 Φ̂ f ,l+ γ̂

Equation  (30)  shows  that  follows  a  Beta
distribution  with  two  parameters 
and . Then the expectations of

lnπk ln(1− πk) and  can be computed by 

⟨lnπk⟩b(π) = Ψ
(
τ1,k

)−Ψ (
τ1,k +τ2,k

)
,

⟨ln (1−πk)⟩b(π) = Ψ
(
τ2,k

)−Ψ (
τ1,k +τ2,k

) (31)

Ψ (·)
fγ γ

where  denotes  the  diagmma  function,  then
message from  to  can be given by
 

mMF
fπ→γ(γ) = exp{⟨ln fπ⟩b(π)} =

γK exp

(γ−1)
K∑

k=1

⟨ln(1−πk)⟩b(π)

 (32)

fγ(γ) γWith the prior , the belief of  is obtained as
 

b(γ) =mMF
fπ→γ(γ) fγ(γ) ∝

γe+K−1 exp

−
h− K∑

k=1

⟨ln(1−πk)⟩b(π)

γ
 (33)

γ̂ γand the update rule  of  is
 

⟨γ⟩b(γ) =
ê

ĥ
≜ γ̂ (34)

ê = e+K −1 ĥ = h−
K∑

k=1

⟨ln(1−πk)⟩where  and .

3.3　Messages  calculation  of  DP  mixture
components block

b(z f ) b(x f )
x f α∗k

With the beliefs  of  and ,  the message from
 to  reads

 

mMF
fx f→α

∗
k
(α∗k) = exp

{⟨
ln fx f (x f , z f )

⟩
b(z f )b(x f )

}
∝

exp

Φ̂ f ,k

N∑
i=1

[
lnα∗k,i−α

∗
k,i(x̂2

f ,i+δ
2
f ,i)

] (35)

fα∗k (α∗k) =
N∏

n=1
Γ(α∗k,i|c,d)

α∗k

With  the  prior  of ,  the  belief
of  is given as
 

b(α∗k) =mMF
fα∗k
→α∗k

(α∗k)
F∏

f=1

mMF
fxk→α

∗
k
(α∗k) ∝

N∏
i=1

α∗
ĉk,i−1

k,i exp
{
−α∗k,id̂k,i

}
(36)

d̂k,i = d+
F∑

f=1

K∑
k=1

Φ̂ f ,k
(
x̂2

f ,i+δ
2
f ,i

) ĉk,i = c+

F∑
f=1

Φ̂ f ,k α∗k,i lnα∗k,i

where  and 

, then the expectations of  and  can be

updated as
 

⟨α∗k,i⟩b(α∗k,i)
=

ĉk,i

d̂k,i
≜ α̂∗k,i (37)

and
 

⟨lnα∗k,i⟩b(α∗k,i)
= Ψ (ĉk,i)− ln(d̂k,i) (38)
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3.4　UAMP  messages  calculation  of  sparse  signals
and noise precision block

z f {α∗k}k=1:K
Ā f fx f x f

With the beliefs of ,  and the true dictionary
, the MF message from  to  can be computed

by
 

mMF
fx f→x f

(x f ) = exp{⟨ln fx f ⟩
b(z f )

K∏
k=1

b(α∗k)
} ∝

exp

 k∑
k=1

Φ̂ f ,k(−xH
f ⟨Λk⟩b(α∗k)x f + ⟨lnΛk⟩)b(α∗k)

 (39)

m fh f→x f (x f )
According  to  the  UAMP  method[47],  message

 can be obtained as
 

q(x f ) = CN(vq f ; q̂ f ,vq f ) (40)

where
 

1./vq f = |ĀH
f |
.2vs (41)

and
 

q̂ f = vq f (ĀH
f ŝ)+ x f (42)

ŝ vswhere  and  are defined as[47]
 

vs = 1./(vp f + vϵ̂ f ) (43)

and
 

ŝ = vs(ϵ̂ f − p̂f ) (44)

p̂f vp f x f and  will  be  given  later.  The  belief  of  is
updated as
 

b(x f ) = mMF
fx f→x f

(x f )q(x f ) ∝ CN(x f ; x̂ f ,vx f ) (45)

where
 

vx f = 1./(
K∑

k=1

(⟨α∗k⟩b(α∗k))diag(Φ̂ f )+1./vq f ) (46)

and
 

x̂ f = vx f ⊙ (q̂ f ./vq f ) (47)

m fh f→h f
= CN(h f ; p̂f ,vp f )Then message  can be found

in Ref. [44] as
 

vp f = |Ā f |.2vx f (48)

and
 

p̂f = Ā f x̂ f − ŝ⊙ vp f (49)

mUAMP
fr f→ĥ f

Then the message  can be updated as
 

mUAMP
fr f→ĥ f

= exp
{
⟨ln fr f ⟩b(α0)

}
≜ CN(h f ; ϵ̂ f ,vϵ̂ f ) (50)

where
 

ϵ̂ f = r̂ f ,vϵ̂ f = 1/α̂0 (51)

h fThe belief of  as
 

b(h f ) = mUAMP
fr f→h f

m fh f→h f
∝ CN(h f ; ĥ f ,vh f ) (52)

where
 

vh f = 1./(1./vp+ α̂0I) (53)

and
 

ĥ f = vh f ⊙ ( p̂f ./vp f + α̂0y f ) (54)

α̂0

m fr f→α0

Noise precision  can be obtained in Eq. (57), then
message  can be computed as
 

m fr f→α0
=exp

{
⟨ln fr f (h f ,α0)⟩b(h f )

}
∝

αM
0 − exp

{
−α0⟨||r f − h f ||2⟩b(h f )

}
(55)

fα0 α0With the prior , the belief of  can be computed
by
 

b(α0) = fα0

F∏
f=1

m fy f→α0
∝

αa+MF−1 exp

−(b+
F∑

f=1

⟨||r f−h f ||2⟩b(h f ))α0

 (56)

α0So the expectation of  can be updated by
 

α̂0 =
a+FM

b+
F∑

f=1
⟨||r f − h f ||2⟩b(h f )

(57)

3.5　Messages  calculation  of  off-grid  deviation
block

{β}k=1:KAccording  to  Ref.  [31],  the  off-grid  deviation 
are computed by
 

{β̂}k=1:K = max
{β̂}k=1:K

⟨
F∏

f=1

fr f (Ā f , x f ,α0)⟩
b(α0)

F∏
f=1

b(z f )b(x f )

(58)
β̂kthen  can be updated by

 

β̂k = Γ
−1
βk

F∑
f=1

Φ f ,kvT
f (59)

where
 

Γβk = α̂0

F∑
f=1

Φ̂ f ,k[BT
f B f ⊙ (x̂ f x̂H

f +diag(vx f )] (60)

 

v f = re{diag(x̂ f )BH
f (y f − A f x̂ f )−

diag(BH
f A f diag(vx f ))}

(61)

  Shanwen Guan et al.:  Combined UAMP and MF Message Passing Algorithm for Multi-Target Wideband DOA... 1075

 



mMF
fh f→Â f

fh f (h f , x f )

Ā f

The  message ,  which  satisfies  the

deterministic constraints of , is always equal
to one. So the belief of  can be computed by
 

b(Â f ) =mMF
fÂ f→ Ā f

mMF
fh f→Ā f

=

exp

⟨ln fĀ f
⟩
b(z f )

K∏
k=1

b(βk)

 =
δ(Ā f −

K∑
k=1

Φ̂ f ,k(A f +B f ∆̂k)) (62)

Ā fThen the expectation of  can be updated as
 

ˆ̄A f =

K∑
k=1

Φ̂ f ,k(A f +B f ∆̂k) (63)

Thr
Itmax

The  proposed  schedule  of  broadband  off-grid  DOA
estimation  is  summarized  in  Algorithm  1.  Variables
and  messages  are  updated  iteratively  until  converging
to the threshold  or reaching the maximum number
of iterations .

3.6　Computational complexity

O(FKN)

O(FMN)
Γβk

{α∗k}k=1:K
βk

Γ−1
βk

O(KFU2)

O(FMN) N ≫ {K,U,F}

According  to  Algorithm  1,  the  computational
complexity of DP process is mainly dominated by Eqs.
(26) and (37),  in Block(a) and Block(b).  The
main cost of Block(c), generated by Eqs. (42) and (47),
is  in  each  iteration.  In  Block(d),  the
maximum cost is from the inverse of . According to
the component of variable , we only calculate
the  on  the  grids  where  users  are  located,  so  the
computational  complexity  of  is .  Thus
the  computational  complexity  of  the  proposed
algorithm is , .

It  can  be  shown  in Table  1 that  the  proposed
algorithm  has  a  lower  complexity  compared  to  other
algorithms.

4　Simulation Result

In  this  section,  we  present  the  results  of  our
simulations,  which  were  conducted  on  a  personal
computer  equipped  with  an  Intel  Core  i5  @  3  GHz
processor  and  8  GB  LPDDR4  @  3200  MHz,  using
MATLAB  R2021a.  Our  experiments  adhere  to  the
settings described in Ref. [34]. The incident signals are
formulated as the superposition of several harmonics:
 

s(t) =
U∑

u=1

Fu∑
i=1

Au,iexp(−j2πi fut) (64)

U Au,i = 1
u i

f1 = 114 Hz, f2 = 159 Hz,and f3 = 197 Hz
F1 = F2 = F3 = 10

freq = 500 Hz
N = 91
T = 526 F = 35
K = 35

We consider an ULA serving  users, where ,
for each user-sensor pair ( , ). The frequencies of the
subbands  are ,
with .  The ULA operates at  a design
frequency  of .  The  dictionary  grid  size  is

,  and  the  number  of  snapshots  observed  is
. We use  subbands with high energy and

 classes  for  the  DP  prior.  The  performance  of
our proposed algorithm is then compared with various
existing techniques, including beamforming[5], multiple
signal  classification  (MUSIC)[7],  OMP[17],  OGSBI[31],

 

Algorithm 1　Combined UAMP and MF message passing
algorithm of broadband off-grid DOA estimation

{y} f=1:FInput: Received broadband signals ;
{A} f=1:F　　Dictionary matrix ;

{B} f=1:F　　Derivative matrix of dictionary 
Thr Itmax1: Set:  and ;

a,b,c,d,e,h Θ x̂ f vx f ŝ2: Initialize: , , , , and 

||x̂t
f − x̂t−1||22 ⩾ Thr t ⩽ Itmax3: while  or  do

∀ f p̂ f vpf4:　 : update  and  by Eqs. (48) and (49);

∀ f ĥ f vh f5:　 : update  and  by Eqs. (53) and (54);
ŝ v̂s6:　Update  and  by Eqs. (43) and (44);

∀ f q̂ f vq f7:　 : update  and  by Eqs. (41) and (42);
∀ f x̂ f vx f8:　 : update  and  by Eqs. (46) and (47);

∀k, i ⟨α∗k,i⟩b(α∗k,i) ⟨lnα∗k,i⟩b(α∗k,i)9:　 : update  and  by Eqs. (37) and
(38);

∀ f ,k Φ̂ f ,k10:　 : update  by Eq. (27);
∀k ⟨lnπk⟩b(π) ⟨ln (1−πk)⟩b(π)11:　 : update  and  by Eq. (31);

γ̂12:　Update  by Eq. (34);
α̂013:　Update  by Eq. (57);

∀k β̂k14:　 : update  by Eq. (59);

∀ f ˆ̄A f15:　 : update  by Eq. (63);

∀ f Φ̂ f16:　 : update  by Eq. (5);

∀ f ϵ̂ f and vϵ̂ f17:　 : update  by Eq. (51);
t = t+118:　 ;

19: end while

 

Table 1    Computational complexity of different algorithms.
Algorithm Computational complexity

OMP O(UMN)
OGSBI O(MN2)
VBEM O(N3)
BPMF O(N3)

Note: OMP: orthogonal matching pursuit; OGSBI: off-grid
sparse Bayesian inference.
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VBEM[34], and BPMF[37].

4.1　Joint  space-frequency  information
reconstruction

U = 3
θ̄1 = 121.99◦ θ̄2 = 89.75◦ θ̄3 = 34.28◦

SNR = 2.5 dB

To evaluate the performance of our proposed algorithm
for  incident  signal  reconstruction,  we  assume  the
incidence  of  three  broadband  signals  from  the
directions of , ,  and 
with . Figure  2 displays  the  angular
domain  frequency  information  and  spatial  spectrum
recovered by different algorithms, which contributes to
more  accurate  DOA  estimation  and  user
discrimination.

Figure  2a  presents  the  ground  truth  of  the  signal.
Figures  2b  and 2c  depict  the  estimation  results  from
classical  beamforming  and  MUSIC,  respectively,  both
of which suffer from serious spatial aliasing leading to
extremely  low  angular  resolution. Figures  2d  and 2e
show the  results  from OMP and  OGSBI,  displaying  a
relatively  clear  sparse  structure.  But  there  are  still
instances of false peaks that lead to discrepancies with
the  true  DOA.  Clearer  frequency  points  are  produced
by  VBEM  and  BPMF,  as  seen  in Figs.  2f  and 2g.
Figure  2h  demonstrates  that  our  proposed  method
yields  an  extremely  accurate  result,  comparing  to
VBEM  and  BPMF.  The  spatial  spectrum  of  the
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Fig. 2    Estimation results of different algorithms.
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◦ ◦ ◦

UAMP-DP  method  in Fig.  2k  has  more  concentrated
and smoother peaks than those of VBEM in Fig. 2i and
BPMF  in Fig.  2j. Figure  2l  shows  that  our  proposed
method  achieves  lower  DOA  estimation  errors  than
both  VBEM  and  BPMF.  The  root  mean  square  errors
(RMSEs)  of  the  UAMP-DP,  VBEM,  and  BPMF
methods  are  0.0674 ,  0.0758 ,  and  0.0716 ,
respectively.

4.2　RMSE  performance  versus  number  of
subbands

SNR =
2.5 dB

This  experiment  employs  30  sets  of  random angles  to
explore  the  impact  of  subband  selection  on  the
accuracy  of  the  DOA  estimation  under  an 

. Figure 3 shows the variations in  the RMSE of
DOA  estimation  across  different  algorithms  with
respect to the number of subbands. We observe that our
proposed method provides the most accurate estimation
results with a limited number of subbands. However, as
the number of subbands increases,  an excess of  noise-
only subbands comes into play, leading to a decline in
performance and significant consumption of computing
resources.  For  practical  applications,  it  is  beneficial  to
select  an appropriate  number  of  high-energy subbands
that  the  signals  occupy  for  DOA  estimation,  thereby
enhancing  the  accuracy  of  the  estimation  while
minimizing  computational  time.  Therefore,  this  paper
selects 35 high-energy subbands for DOA estimation.

4.3　RMSE performance versus grid interval

The grid interval of the dictionary directly impacts the
accuracy  of  the  DOA  estimation,  with  finer  grids
yielding  higher  estimation  accuracy.  Nonetheless,  the
high  dimensionality  of  the  dictionary  leads  to  an
exponential increase in computational complexity.

To  assess  the  performance  of  our  proposed  method,

SNR = 2.5 dB

◦ ◦

we replicate the scenario from Section 4.2 and conduct
30  Monte  Carlo  experiments  under  varying  grid
intervals  with .  We  then  compare  the
RMSE  of  various  algorithms.  As  illustrated  in Fig.  4,
we  observe  that  (1)  the  estimation  accuracy  of  all
algorithms diminishes as the number of grids increases;
(2)  when  the  grid  spacing  ranges  between  5 −7 ,  our
proposed  method  aligns  closely  with  the  BPMF
method.  Yet,  as  the  grid  interval  continues  to  expand,
the RMSE of our proposed method proves smaller than
that of other methods. Our proposed method continues
to  deliver  robust  DOA  estimation  performance,  even
with increased grid intervals.

4.4　RMSE performance versus computational time

In this  instance,  we compared the proposed method to
the  VBEM  and  BPMF  in  terms  of  RMSE  versus
running  time  to  further  illustrate  its  performance.  We
consider  the  same  scenario  as  outlined  in  Section  4.1.
As depicted in Fig. 5,  we observed that:  (1) the single
iteration  time  of  the  VBEM  and  BPMF  algorithms  is
similar but significantly longer than that of the UAMP-
DP  algorithm,  due  to  the  high-dimensional  variance
matrix  inversion  required  in  each  iteration  of  the
VBEM  and  BPMF  methods;  (2)  the  UAMP-DP
algorithm  converges  to  the  optimal  value  in  roughly
20 s, while the BP method and MF method converge to
the  optimal  solution  in  about  38  s  and  72  s,
respectively,  as  shown  in Fig.  5a;  (3)  once  all  the
algorithms  have  fully  converged,  the  RMSE  of  the
proposed algorithm is smaller than those of the VBEM
and  BPMF  methods,  as  indicated  in Fig.  5b.  These
findings  suggest  that  our  proposed  method  boasts  the
advantages  of  low  complexity  and  high  estimation
accuracy.
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Fig. 3    RMSE versus number of subbands.
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4.5　RMSE performance versus SNR

In  this  study,  we  examine  the  impact  of  SNR  on  the
RMSE  performance.  This  analysis  involves  the  same
scenario  as  discussed  in  Section  4.2  and  includes  30
Monte  Carlo  simulations  conducted  under  varying
SNR  conditions.  The  results,  as  displayed  in Fig.  6,
suggest that: (1) the VBI-based method nearly delivers
the  best  DOA  estimation  performance;  and  (2)  the
UAMP-DP  method  is  significantly  closer  to  the
Cramer-Rao  lower  bound  (CRLB)[53] than  the  other
methods under comparison.

5　Conclusion

In this study, we have undertaken an exploration of off-
grid  based  algorithms  for  wideband  DOA  estimation
using the DP prior. The existing sparse Bayesian model
presents a high degree of coupling between observation
and  DP  prior,  which  escalates  the  complexity  of  the
algorithm.

To  address  this  issue,  we  have  introduced  a  novel
factor  graph  by  employing  the  stretching  factor  graph

approach,  incorporating  two  hard  constraints  into  the
design.  This  approach  has  enabled  us  to  derive  a
unified  UAMP-MF  message  passing  algorithm  to  be
executed  on  the  factor  graph.  Simulation  results
validate that our proposed algorithm surpasses existing
wideband  DOA  estimators  employing  DP  prior,  in
terms  of  complexity.  Remarkably,  it  achieves  this
while maintaining estimation accuracy on par with the
state-of-the-art.
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