
 

Self-Aligning Multi-Modal Transformer for
Oropharyngeal Swab Point Localization
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Abstract: The oropharyngeal swabbing is a pre-diagnostic procedure used to test various respiratory diseases,

including COVID and Influenza A (H1N1). To improve the testing efficiency of testing, a real-time, accurate, and

robust  sampling  point  localization  algorithm  is  needed  for  robots.  However,  current  solutions  rely  heavily  on

visual  input,  which  is  not  reliable  enough  for  large-scale  deployment.  The  transformer  has  significantly

improved  the  performance  of  image-related  tasks  and  challenged  the  dominance  of  traditional  convolutional

neural  networks  (CNNs)  in  the  image  field.  Inspired  by  its  success,  we  propose  a  novel  self-aligning  multi-

modal  transformer  (SAMMT)  to  dynamically  attend  to  different  parts  of  unaligned  feature  maps,  preventing

information  loss  caused  by  perspective  disparity  and  simplifying  overall  implementation.  Unlike  preexisting

multi-modal  transformers,  our  attention  mechanism  works  in  image  space  instead  of  embedding  space,

rendering the need for the sensor registration process obsolete. To facilitate the multi-modal task, we collected

and  annotate  an  oropharynx  localization/segmentation  dataset  by  trained  medical  personnel.  This  dataset  is

open-sourced and can be used for future multi-modal research. Our experiments show that our model improves

the performance of the localization task by 4.2% compared to the pure visual model, and reduces the pixel-wise

error rate of the segmentation task by 16.7% compared to the CNN baseline.
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1　Introduction

The oropharyngeal swab (OP-swab) procedure is a pre-
diagnostic  measure  for  testing  respiratory  infectious
diseases  such  as  rhinovirus,  adenovirus,  influenza,
respiratory  syncytial  virus  (RSV),  and  others.
However,  it  poses  a  risk  of  medical  worker  exposure
and  cross-infection  between  subjects.  As  a  result,  the
COVID-19  pandemic  and  the  surge  of  Influenza  A
(H1N1) have led  to  significant  research interest  in  the
field  of  oropharyngeal  swab  robots[1, 2].  While  most

existing  robot  systems  use  a  semi-automatic  or
teleoperation  approach[3],  the  semi-invasive  sampling
procedure  requires  a  highly  accurate,  real-time,  and
robust  localization  method.  However,  the  current
oropharynx  localization  algorithm  in  these  systems
typically uses existing CNN architecture or pre-trained
facial landmark detection algorithms designed only for
RGB  images.  Depth  information  is  either  used  for
look-up  only  or  directly  dropped[4].  However,  these
practices  are  usually  inaccurate  when  facing  motion
blur or lens glare.

Multi-modal  sensory  input  has  the  potential  to
enhance reliability and accuracy but is hindered by the
fact  that  most  multi-modal  cameras  are  primarily
designed  for  long-distance  tasks[5].  Aligning  different
sensors  for  close-up  tasks  results  in  significant
disparities  between  sensors[6],  and  the  registration
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process  can  cause  significant  information  loss  due  to
clipping caused by the wall of the oral cavity, as shown
in Fig. 1.

To  avoid  performance  loss  due  to  alignment,  we
explored  the  use  of  transformers.  Recent  patch-based
visual  transformers have achieved comparable or even
better  performance  than  state-of-the-art  convolutional
neural  networks  (CNNs)  in  multiple  computer  vision
tasks[7].  The  transformer  architecture  has  already  been
widely  adopted  in  various  multi-modal  tasks  when
processing sequence data.  This  inspired us to leverage
the  dynamic  weighting  potential  of  the  transformer
architecture  in  camera  space.  To  address  this,  we
proposed a novel self-aligning multi-modal transformer
(SAMMT)  that  can  dynamically  attend  to  different
modalities without the need for explicit alignment.

We  evaluated  the  performance  of  our  network  by
creating  a  dataset  with  segmentation  and  key-point
localization  labels  and  making  it  open-source.  Our
experiments on this dataset show that our model is able
to  effectively  combine  different  modalities,  producing
reliable  and  accurate  localization  results.  When
compared to a vision-only model,  our proposed model
achieved  a  4.22% improvement  in  performance
(reducing  the  localization  error  from  3.89  mm  to
3.72 mm). Additionally, for the segmentation task, our
model  achieved  a  16.7% decrease  in  error  rate  (from

4.44% to 3.70%) compared to CNN solutions that only
rely on vision.

This  paper  presents  the  following  main  innovations
and contributions:

● SAMMT. The  proposed  novel  multi-modal
transformer  can  automatically  attend  to  different
fractions  of  every  sensory  input.  It  can  work  on
unaligned  2D  feature  maps  without  the  need  for
explicit sensor registration.

● First  open-access  OP-swab  point  localization
dataset. The dataset includes both the sampling region
and  the  optimal  sampling  point,  which  have  been
annotated  by  trained  medical  personnel.  This  multi-
modal  dataset  can  also  be  utilized  for  future  research
on multi-modal algorithms.

The  paper  is  organized  as  follows:  Section  2  covers
recent  works  in  related  fields,  including  visual
transformers,  multi-modal  transformers,  and  existing
oropharynx  detection  and  localization  methods.  In
Section  3,  we  propose  our  self-aligning  multi-modal
transformer  and  provide  a  formal  description.  The
dataset and the data collection process are described in
Section  4.  In  Section  5,  we  report  a  series  of
experiments  conducted  to  evaluate  the  localization/
segmentation  performance  of  our  proposed  model.
Finally,  the  conclusion  and  possible  future  work  are
presented in Section 6.
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Fig. 1    Traditional  alignment  and  localization  paradigms  suffering  from  information  loss  caused  by  perspective  clipping
(indicated  by  black  areas  in  the  depth  image  and  red  areas  in  the  IR  image).  Our  proposed  self-aligning  multi-modal
transformer  can  dynamically  attend  to  different  parts  of  each  modality  and  generate  localization  results  without  requiring
alignment.
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2　Related Work

2.1　Visual transformer

Transformers  were  initially  proposed  for  natural
language  processing  (NLP)  tasks  such  as  machine
translation in 2017[8]. They have gradually become the
state-of-the-art  architecture  for  most  NLP  tasks.  Both
bidirectional encoder representations from transformers
(BERT)[9] and  generative  pre-trained  transformer
(GPTs)[10] are different variants of transformers trained
on large corpora with different pre-training tasks.

Transformer  application  in  computer  vision  has
recently gained extraordinary progress, achieving state-
of-the-art performance in various computer vision tasks
and  outperforming  convolution-based  neural
networks[11].  The  naive  application  of  self-attention
transformer  works  in  the  pixel  space  with  a
meticulously  designed  sliding  window[12].  The
architecture  achieved  acceptable  performance  with
small  images.  However,  the  limited  sliding  window
compared  with  the  gradually  growing  image  size
causes  the  quadratic  cost  in  the  number  of  pixels  to
quickly become a problem.

Extracting  fixed-size  patches  and  applying  self-
attention  on  patch  space  has  recently  become  a
common  practice[13],  achieving  competitive
performance  compared  to  state-of-the-art  CNNs.
Combined  with  effective  pre-training  tasks,  this
approach  yields  better  performance  than  CNNs  in
various  computer  vision  tasks  such  as  image
classification[13–15],  object  detection[16, 17],  video
processing[18],  image  segmentation[19],  and  image
generation[20, 21].

Recent  research  has  explored  the  performance  of
models  on  extensive  datasets  using  unsupervised  or
self-supervised  methods[22, 23].  While  the  pyramid
vision  transformer  (PVT)[24] was  the  first  to  use  a
pyramid  structure  for  dense  prediction  tasks  like
semantic  segmentation,  subsequent  methods  like
Swin[21],  CvT[25],  Twins[23],  and  SegFormer[19] have
introduced tailored changes to the pyramid structure to
further  improve  segmentation  performance.  Our  work
extends  the  capabilities  of  the  visual  transformer  to
other  modalities,  such  as  depth  and  infrared  (IR)
information,  to  improve  the  model’s  robustness.
Inspired  by  all  patch-based  visual  transformers,  we
focus  on  improving  localization  and  segmentation
accuracy  with  a  transformer-based  multi-modal

transformer.  Previous  research  has  already
demonstrated  the  potential  of  transformer  architecture
in sequence modeling.

2.2　Transformers in multi-modal tasks

The transformer has been extensively used for various
multi-modal  tasks,  with  a  primary  focus  on  sequence
modeling  and  alignment.  These  tasks  include  visual
question  answering  (VQA)[26, 27],  image  captioning[28],
vision-and-language navigation[29], and joint video and
language  modeling[30].  Most  of  the  aforementioned
work  concentrates  on  aligning  a  sequence  to  another
sequence  or  a  2D  image  to  an  existing  sequence.
However,  few  of  them  concentrate  on  different  2D
image-like sensory inputs.

Most approaches to multi-modal localization rely on
constructing  a  multi-head  attention  layer  on  top  of
different  extracted  embedding  features/tokens,
constituting  an  attention  mechanism  in  feature  space.
This  is  similar  to  the  native  application  of  the
transformer  in  the  field  of  NLP,  where  the  vanilla
multi-layer  transformer  can  be  applied  without
introducing  too  much  architectural  change.  However,
such  an  implementation  relies  on  a  feature  extraction
network to extract spatial information, which is usually
not meticulous and accurate. A related model is cross-
model  attention[31],  which  constructs  pair-wise  cross-
modal  attention  blocks  on  top  of  each  extracted
embedding pair and applies full self-attention on top.

In  contrast,  our  model  is  fundamentally  different
from these  multi-modal  transformers.  Our  model  goes
further  than  constructing  a  transformer  on  top  of
embedding  space  to  facilitate  a  more  accurate
segmentation  head  in  the  original  camera  space.
Additionally,  we  discard  the  pair-wise  design  to
simplify  the  overall  architecture  and  reduce  model
complexity.

Another  challenge  for  multi-modal  applications  is
registration  and  alignment.  Traditionally,  multi-modal
segmentation  tasks  in  the  field  of  CNN  are  done  by
aggregating multiple feature maps, including low-level
high-res ones, which require different sensory inputs to
be registered in the same camera space. The alignment
accuracy can significantly affect the final segmentation
performance.  Our  model  utilizes  the  dynamic
weighting  potential  of  the  transformer  to  allow  the
model to attend to the relevant part of different models
dynamically,  eliminating  the  need  for  sensor
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registration and hence reducing information loss in the
process.

2.3　OP-swab localization/segmentation methods

Traditionally,  OP-swab  robots  have  used  a
teleoperation  approach,  which  requires  extensive
operator training, and is therefore not suitable for large-
scale  deployment[3].  Other  robots  with  sampling  point
localization  potential[32] use  only  RGB  images,  and
depth data are either dropped or clipped for locomotion
purposes[4],  which  could  have  been  used  to  improve
performance and even robot safety.

As  shown  in Fig.  1,  the  cone-like  structure  of  the
human  oral  cavity  and  the  limited  camera  distance
make  the  clipping  caused  by  the  parallax  of  different
sensors  particularly  unacceptable.  Additionally,  mist
due to breathing and lens glare on the RGB camera can
further impact localization accuracy.

3　Method

In  this  section,  we  propose  a  multi-modal  transformer
that  can  dynamically  attend  to  a  2D  feature  map  of
different  modalities  without  the  need  for  specific
registration  or  alignment.  The  architecture  of  the
proposed  transformer  is  shown  in Fig.  2. Inspired  by
the success of the vision transformer (ViT)[13], we split
each  sensory  input  into  patches  to  attain  a  more  fine-
grained  spatial  structure  framework.  On  top  of  the
extracted  patch  embedding,  we  can  construct  our
transformer in sensor space instead of feature space to
attain a more precise spatial feature representation and
dynamically  attend  to  different  parts  of  different
sensory  input,  eliminating  the  need  for  complicated

sensor registration processes.
Details of the self-aligned multi-modal transformer’s

backbone  are  introduced  in  Section  3.1.  The  self-
attention building block used in our backbone is further
elaborated  in  Section  3.2.  We  construct  both
segmentation and regression heads to train our network
and  evaluate  the  sampling  point  accuracy,  which  is
shown in Section 3.3.

3.1　Self-aligned multi-modal vision transformer

x1, x2, . . . , xM ∈ RHiWiCi

xi, j ∈ RN×(P2Ċ)

i ∈ [1,2, . . . ,M] j ∈ [1,2, . . . ,N] C
N = HW/P2

(H,W)
M×N

Our  model  closely  follows  the  original  transformer
design[8] and  the  original  visual  transformer[13],
enabling us  to  use  existing efficient  and scalable  NLP
transformer  architectures  directly  off  the  shelf.  An
overview of the model is shown in Fig. 3. Each sensory
input  is reshaped into a sequence
of  fixed-sized,  flattened  2D  patches ,
where  and , with  as the
number of modalities and  as the number of
patches. N represents the number of patches into which
an image is divided. H and W are the height and width
of  the  image,  respectively,  representing  the  image’s
dimensions. P is the side length of a square patch. The
resolution  of  each  modality  is  uniformly  denoted  by

 for  ease  of  explanation.  Therefore,  the  input
sequence  length  is .  Since  the  transformer  can
naturally  accept  varying  length  input  sequences,  our
trained  model  can  work  on  different  sizes  of  input
images from different modalities, provided that the mix
of modalities remains unchanged.

Due  to  the  relatively  small  size  of  each  patch,  a
trainable linear projection layer is used to extract patch
embeddings in our practice:
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Fig. 2    Our proposed self-aligning multi-modal transformer (SAMMT) for OP-swab sampling region localization.
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z0 = [xcls; x1
pU; x2

pU; . . . ; xM×N
p U]+Upos (1)

U ∈ R(P2Ċ)D Upos ∈ R(NM+1)×D

z0
0 = xcls

z0
L

where  and  represent
trainable  weights  for  linear  projection  and  positional
encoding, respectively. We use standard learnable 1-D
embeddings  since  limited  modalities  do  not  require
more advanced 2D embeddings. Additionally, we add a
standalone  learnable  embedding  ( )  into  the
pool  of  patch  embeddings,  similar  to  BERT’s  [class]
token[9].  The  corresponding  output  ( )  serves  as  the
input of the sampling point localization head.

3.2　Transformer encoder

The embedding and positional encoding pairs are then
fed  into  a  transformer  encoder[8],  which  consists  of
different attention blocks composed of multi-head self-
attention  (MSA)  and  MLP layers.  Furthermore,  layer
normalization  is  applied  before  each  block,  and
residual links after every block[33, 34].

The  specific  transformer  encoder  is  also  shown  in
Fig. 3. The encoder consists of MSA and MLP layers.
Residual  connections  are  connected  between  each
block to allow a more direct gradient flow.
 

z′l =MSA(LN(zl−1))+ zl−1 (2)
 

zl =MLP(LN(z′l ))+ z′l (3)
 

yi = LN(zi
L), i ∈ [0,M×N +1) (4)

z′l zl

yi
where  and  both  represent  an  intermediate  or
updated hidden state in the transformer model, and  is
generated hidden states after layer normalization.

qkvThe multi-head self attention layers use standard 

z ∈ RN×D

N = 3×W ×H+1
q k v

self-attention  block[8].  For  easier  understanding,  we
first introduce single-headed self-attention, where each
pair  of  embedding  and  positional  encoding 
(  for  the first  layer)  generates  a  tuple
of query ( ), key ( ), and value ( ) are computed by
 

[q, k,v] = zUqkv (5)

Uqkv ∈ RD×3Dh

Dh

qkv A

k j q j

where  is  a  trainable  weight  matrix  used
to  generate  the  tuple,  is  the  dimension  of  each
hidden  value.  And  the  attention  weight  matrix 
are  obtained  by  calculating  the  pairwise  similarity
between  key-value  and  query  value  each  two
elements of the patch pool
 

A = softmax(qkT/
√

Dh) ∈ RN×N (6)

The final  self-attention result  is  then easily obtained
by
 

SA(z) = Av (7)

h

h

We employed a multi-head self-attention mechanism
in  our  model,  consisting  of  self-attention  operations
in  each  layer,  which  run  in  parallel.  This  approach
allows  for  a  more  diverse  attention  flow  to  pass
through.  The  results  of  each  single-headed  self-
attention are then concatenated and projected, resulting
in a constant output dimension, regardless of the value
of .
 

MSA(z) = [SA1(z),SA2(z), . . . , SAh(z)]Umsa (8)
Umsa ∈ Rh×Dh×Dwhere .

3.3　Regression head and localization head

Our  transformer  backbone  is  augmented  by  two
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Fig. 3    Our collected multi-modal oropharynx localization dataset and annotation example.
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prediction  heads  that  simultaneously  output  optimal
sampling  points  and  segmentation  results,  improving
accuracy and safety.

z0
L

A  three-layer  MLP  with  ReLU  activation  is
responsible  for  localizing  the  sampling  points.  The
head  takes  as  input  and  outputs  keypoint
coordinates. To handle small localization errors, we use
wing loss during training, as shown in Eq. (9)[35].
 

L =
{

w× ln(1+ |x|/ϵ), if |x| < w;
|x| −C, otherwise (9)

ϵ

where w is  a  parameter  used to  adjust  the  behavior  of
the  loss  function. x typically  represents  the  actual
prediction  error,  which  is  the  difference  between  the
model’s  predicted  value  and  the  true  value.  In  the
context of Wing Loss, x signifies the measure of error.

 is a parameter used to normalize the error x. Its role is
to scale the error value to an appropriate range, aiding
in the computation of the loss function.

y1−N

For the segmentation head, an all-MLP head is used
to  reduce  computation  costs.  Since  our  data  are
unaligned, we only need the segmentation mask results
in  our  annotated  modality.  Hence  only  are  fed
into the segmentation head. And the network is trained
with cross-entropy loss.

4　Dataset

To  the  best  of  our  knowledge,  our  dataset  is  the  first
oropharynx  localization/segmentation  dataset  for  OP-
swab  robot  systems.  This  open-source  dataset  can  be
used  for  future  oropharynx  sampling  point
localization/segmentation  tasks.  Additionally,  our
multi-modal sensory input supports future multi-modal
perception research.

During the swab sampling process, the perspective of
each  sensor  changes  dramatically.  The  RGB  camera
captures images that are noticeably affected by motion
blur  and  lens  glare.  This  poses  a  new  challenge  for
existing  deep-learning  models,  which  must  leverage
information gathered by other sensors.

Our  data  were  collected  using  a  Kinect  Azure
mounted  on  the  end  actuator  of  an  OP-swab  robot.
Trained  personnel  operated  the  robot  to  collect  OP-
swab  samples  while  recording  sensory  inputs.  The
dataset includes RGB data collected in 4K format, and
IR and depth data in WFOV format. After cleaning and
reprocessing  the  data,  trained  medical  personnel
annotated it. Both the valid sampling areasegmentation
(posterior  wall  of  the  pharynx)  and  optimal  sampling

points  are  labeled.  The  sampling  area  can  be  used  for
semantic  segmentation,  while  the  optimal  sampling
points can be used for localization.

The dataset consists of 844 instances of sensory input
from  various  sampling  stages,  aimed  at  ensuring  the
stability and accuracy of our trained model’s guidance
ability.  Our  robot  collected  647  of  these  data  from an
external  perspective  of  the  oral  cavity  across  13
participants.  Furthermore,  197  instances  provide  fine-
grained  support  from  an  intraoral  perspective.
Additionally,  there  is  a  set  of  1000  data  where  the
posterior  wall  of  the  pharynx  is  not  sufficiently
exposed, which can be used as a negative set.

The  dataset  can  be  accessed  through  https://
github.com/Acce1erat0rS/MMSWAB.

5　Experiment

5.1　Experimental setup

8×8×3 = 192

The  image  is  fed  into  a  self-aligning  multi-modal
transformer  model  trained  by  PyTorch  1.8  using  one
NVIDIA  RTX  3090  GPU.  Model  inputs  are  reshaped
to 256 × 256 to ensure fast inference speed; each patch
size  is  32  ×  32,  making  a  total  of 
patches.  The  transformer  has  16  attention  heads  with
dimensions of 128. The final  MLP width is  set  to 128
with a dropout of 0.1.

Since the innate difference between depth/IR images
and RGB images, concatenating these images into a big
image and using a ViT pre-trained on Image-Net does
not  give  us  much  performance  gain.  During  training,
the image is augmented with mean subtraction, random
resizing,  shearing,  shifting,  and  zooming  with  a  ratio
between 0.5  and 2.0,  and,  as  a  final  step, random left-
right flipping.

5.2　Sampling point localization result

According  to  the  anatomical  characteristics  of  the
human  body,  the  average  width  of  the  pharynx  is
around 10 mm, and the height is no more than 20 mm.
Both  annotated  location  and  localized  position  are
converted  to  camera  space  through  application
programming  interface (API)  provided  by  the  Kinect
camera.  After  evaluating  on  100  samples,  sampling
point  localization  results  on  different  modalities  are
shown in Table 1. The overall sampling point deviation
based on visual input is 3.89 mm. Even though IR and
depth  themselves  contain  limited  information
(achieving an accuracy of around 10 mm),by adding IR
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and  depth  information,  the  mean  deviation  still
improved to 3.726 mm (+0.164, 4.2%), which indicates
that  the  self-aligning  multi-modal  transformer  can
leverage unregistered multi-modal sensory inputs.

Also,  other  losses  are  used  for  training;  the  results
show that wing loss is significantly better for fine-scale
localization tasks than traditional L1 and L2 losses.

S L S R

In  order  to  gain  a  more  direct  image  of  the
performance  of  our  model,  The  kernel  density
estimation  (KDE)  of  localization  error  is  shown  in
Fig. 4, which is the localization error of  and . As
we can see in these estimations, compared with the size
of  the  pharynx  wall,  the  final  localization  accuracy  is
enough  for  OP-swab  sampling.  This  particular  setup
results in an inference speed on a single NVIDIA 3090
of  around 19 ms,  enough for  real-time sampling robot
guidance.

5.3　Segmentation result

The  segmentation  results  are  shown  in Fig.  5.  The
results shown here consist of two parts. The first seven
images  were  captured  as  the  robot  gradually  moved
closer  to  the  subject,  and  the  last  seven  are
segmentation results of intraoral images.

The  first  row shows the  RGB input,  and  the  second
row  shows  the  ground  truth  annotated  by  trained
medical personnel. The third and fourth rows show the
segmentation  results  attained  by  a  UNet++  structure
with  ResNet34  as  the  backbone.  The  last  two  rows
show the segmentation results  generated by our multi-
modal transformer.

Based on our observations, depth information plays a
vital  role  in  semantic  segmentation.  Due  to  poor
lighting  conditions  and  lack  of  depth  information,  the
UNet++  baseline  achieved  a  pixel-wise  accuracy  of
95.65%.  Our  proposed  transformer  achieved  a  pixel-
wise  accuracy  of  96.30%,  which  is  a  16.7% reduction

in error rate. The mean intersection over union (mIOU)
of our model is shown in Table 2. Our model achieved
a  mean  IoU  of  63.29% with  a  manually  adjusted
threshold  of  0.27.  It  can  also  be  noticed  that  the
accuracy  on  intraoral  images  is  significantly  higher
than  on  the  external  perspective.  We  assume  that  the
relatively  small  segmentation  area  of  the  external
perspective  and  unbalanced  dataset  pose  a  challenge
for existing models, which could be researched further.

6　Conclusion

Aiming  to  address  typical  problems  of  multi-modal
perception,  which  are  particularly  prominent  in  the

 

Table 1    Result about average displacement error (ADE) of
OP-swab  point  generated  from  different  modalities  and
trained with different losses.

Modality
ADE (cm)

L2 loss L1 loss Wing loss
V (RGB) 0.7264 0.5615 0.3890

I (IR) 1.1323 1.0296 0.9802
D (depth) 1.0763 0.9710 0.9049

V+I 0.7022 0.5359 0.3833
V+D 0.6897 0.5235 0.3770

V+I+D 0.7134 0.5224 0.3726
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Fig. 4    KDE result of localization error.
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field of oropharynx localization, this paper introduces a
pure transformer-based multi-modal backbone for both
segmentation  and localization  tasks.  We observed that
the  transformer  can  dynamically  capture  different
patches  from  different  modalities.  Therefore,  we
deployed  a  transformer  on  top  of  extracted  patch
embeddings  of  different  modalities.  We  have  also
constructed  both  localization  heads  for  key-point
localization  and  a  segmentation  head  for  semantic
segmentation.  The  constructed  model  was  trained  on
our  collected  oropharynx  localization  dataset  and
performed  better  than  pure  visual  and  CNN-based
methods.

In  future  research,  we  can  consider  substituting  our
backbone  with  a  pyramid-like  structure  such  as
SwinTransformer  and  Segformer  to  acquire  better
segmentation results  and study the imbalance problem
of small target segmentation. Our dataset also provides
a foundation for various future multi-modal research.

We believe that our proposed SAMMT is the first step
towards an end-to-end multi-modal system without the
need for explicit  registration and alignment,  and could
bring about more exciting advancements.
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