

SnapshotPrune: A Novel Bitcoin-Based Protocol Toward
Efficient Pruning and Fast Node Bootstrapping

Pengfei Huang, Xiaojun Ren*, Teng Huang, Arthur Sandor Voundi Koe, Duncan S Wong, and Hai Jiang

Abstract: Node synchronization is essential for the stability of the Bitcoin network. Critics have raised doubts

about the ability of a new node to quickly and efficiently synchronize with the Bitcoin network and alleviate the

storage pressure from existing full nodes to stockpile new data. Basic pruning and other techniques have been

explored to address these concerns but have been insufficient to reduce node synchronization delay and

effectively suppress the growth of synchronized data. In this study, we propose SnapshotPrune, a novel

pruning and synchronization protocol that achieves fast node bootstrapping in the Bitcoin blockchain. Real

Bitcoin historical data are leveraged to measure the synchronization time and monitor the network traffic during

node bootstrapping. The protocol requires data downloads that are 99.70% less than Bitcoin Core, 81% less

than CoinPrune, and 60% less than SnapshotSave, thereby saving 97.23% of download time. Findings show

that the proposed design enhances the storage efficiency and reduces the node synchronization delay

compared with existing techniques. We hypothesize that the efficiency of this protocol increases with the block

height.

Key words: blockchain; Unspent Transaction Output (UTXO) pruning; snapshot; fast bootstrapping;

synchronization

1　Introduction

The primary motive behind the blockchain is to bypass
a central bank with peer-to-peer transactions[1, 2]. The
extensive research and improvements to such
technology have benefited several fileds, including
information sharing[3], copyright protection[4], Internet

of Things[5–7], smart health[8], social networking[9, 10],
file storage[11], and privacy preservation[12, 13].
Bitcoin[14] and Ethereum[15] are two leading blockchain
platforms that support various nodes and transactions.
The blockchain provides an open, transparent, and
unchangeable bookkeeping model wherein everyone
can participate. However, such a concept is based on a
decentralized and distributed network. Consequently,
the stability of the blockchain network is dependent on
the majority of honest and reliable nodes in a global
distribution. Node synchronization technology is
essential for the integration of new nodes into the
network. Only by synchronizing the on-chain data to
the local, rebuilding the ledger, and maintaining the
same state as the blockchain network can new nodes
participate in daily activities, such as consensus and
transaction verification. The development of
blockchain technology has led to exponential growth in
on-chain data, necessitating existing nodes in the

 Pengfei Huang, Xiaojun Ren, Teng Huang, Duncan S Wong,

and Hai Jiang are with Institute of Artificial Intelligence and
Blockchain, Guangzhou University, Guangzhou 510006, China.
E-mail: sawaxyy@gmail.com; renxiaojun@gzhu.edu.cn;
huangteng1220@buaa.edu.cn; duncanwong_gzhu@163.com;
haijiang_gzhu@163.com.

 Arthur Sandor Voundi Koe is with Institute of Artificial
Intelligence and Blockchain, Guangzhou University,
Guangzhou 510006, China, and also with Pazhou Lab,
Guangzhou 510330, China. E-mail: sandorvoundi@gmail.com.

* To whom correspondence should be addressed.
 Manuscript received: 2023-01-09 ; revised: 2023-03-05;

accepted: 2023-03-12

TSINGHUA SCIENCE AND TECHNOLOGY
ISSN 1007-0214 08/21 pp1037−1052
DOI: 10 .26599 /TST.2023 .9010014
Volume 29, Number 4, August 2024

© The author(s) 2024. The articles published in this open access journal are distributed under the terms of the

Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

network to store a large amount of ledger data and new
nodes to expend considerable computing and storage
resources to download and verify data. This scenario
has drastically increased the minimum performance
requirements of network nodes. The overwhelmed old
nodes withdrawing from the network cause difficulties
for new nodes with inadequate performance to join,
resulting in a small number of collectives controlling
the nodes and a significant increase in centralization.
This outcome has a substantial detrimental effect on
the network stability and reliability, and is highly
unfavorable for the expanding application scenarios.
Furthermore, in the new global economy, the ability to
complete complex tasks in the shortest amount of time
has become a critical research topic. Critics have raised
doubts about the ability of a new node to quickly and
efficiently synchronize with the blockchain network.

8×108

Most studies on node synchronization focus on basic
pruning techniques, with the relatively straightforward
approach[16, 17] of clipping the original consensus data
that needs synchronization. This technique can reduce
the growth rate to a logarithmic level while reducing
the data volume, but is limited to a specific consensus
algorithm or system, and cannot be widely applied.
Another popular method is to use application data as
the database for synchronization[18–21], which can
significantly reduce the required amount of data.
However, as the block height increases, the application
data are also likely to reach massive volumes, and do
not inhibit the growth rate. The volume, and growth
rate of application data cannot be ignored, given that
the blockchain network has rapidly expanded in the
number of addresses and transactions. For example, the
recent block height in Bitcoin has maintained more
than Unspent Transaction Outputs (UTXOs),
with a volume exceeding 6 GB. However, recent research
has continued using synchronized complete application
data without accounting for aspects, such as its volume
and growth. Thus, this study aims to second-prune the
application data and suppress its expansion in addition
to its use as synchronized data.

In this study, we investigate a novel approach to fast
bootstrapping in the Bitcoin network. The aim is to
reduce the storage and delay that a new Bitcoin node
requires to synchronize with existing full nodes.
Profound reforms are carried out over previous work,
such as CoinPrune[18], and faster synchronization is
achieved during a node’s bootstrapping to enhance the
existing blockchain platforms. This study proposes a

dynamic pruning technique for the set of UTXOs based
on features extracted from the blockchain metadata and
data, rather than a naive approach that solely relies on
consensus data (blocks). The novel protocol reduces
the storage requirement threshold on new network
nodes. Then, the UTXOs that transcend the pruning are
aggregated as snapshots. The security analysis of the
remaining set of UTXOs suggests the validity and the
ability to verify such snapshots.

Real Bitcoin historical data are leveraged to measure
the synchronization time and monitor network traffic
during node bootstrapping. The protocol requires data
downloads that are 99.70% less than Bitcoin Core,
81% less than CoinPrune, and 60% less than
SnapshotSave, thereby saving 97.23% of download
time. Findings show that the design enhances the
storage efficiency and reduces the node
synchronization delay compared with existing
techniques. We hypothesize that the efficiency of this
protocol increases with the block height. The
importance and originality of this study lie in
exploration of Bitcoin node synchronization, which is
now a well-established issue of blockchain point of
entry.

The contributions of this study are as follows:
• A pruning strategy is proposed for UTXO-type

application data, significantly reducing the amount of
data downloaded without weakening security
guarantees.
• The synchronization scheme is improved based on

the existing snapshot mode to adapt to the UTXO
pruning strategy and ensure the integrity of results.
• Experimental evidence shows that UTXO

pruning based snapshot synchronization considerably
reduces storage and bootstrapping costs while
suppressing growth.

2　Background and Related Work

2.1　Background

(1) Bitcoin network structure
Bitcoin adopts a peer-to-peer (P2P) network

architecture based on the Internet. As such, computers
in the same network are equal to the other, and each
node provides network services. Nodes are not
particular, and each connects to the other in a flat
topology in the network. As a result, the P2P network
has are no servers, centralized services, and
hierarchical structures. The nodes of the P2P network

 1038 Tsinghua Science and Technology, August 2024, 29(4): 1037−1052

interact and operate cooperatively, each providing
external services while also utilizing those provided
by other nodes. The P2P network is reliable,
decentralized, and available.

(2) Node type
Although the Bitcoin P2P network nodes are equal,

each node may have a different division of labor
depending on its functions. Each Bitcoin node is an
available collection of routing, blockchain database,
mining, and wallet services. The full node maintains a
complete blockchain with all transaction information.
In the early stage of Bitcoin’s development, all nodes
were full node. The current Bitcoin Core client is also a
full node.

Full nodes preserve a complete and up-to-date
replication of the blockchain containing all transaction
information. These nodes can independently construct
and verify the complete blockchain, from the genesis
block to the latest block. At the same time, full nodes
can independently verify any transaction information
without resorting to other nodes or other sources of
information. Through the Bitcoin network, the full
node obtains and merges a new block update
containing transaction information into the local
replication of the blockchain after verification.

(3) Full nodes synchronization
Once launched, a new node must find and connect to

at least one other in the network to be able to
participate in the cooperative operations. A pre-existing
Bitcoin node in the network may randomly link to a
new node. Generally, new nodes connect to known
ones using Port 8333 and the Transmission Control
Protocol (TCP). While establishing a connection, the
node sends a “version” message with complete
authentication content to initiate the “handshake”
communication. The initial step after connecting a full
node to a peer is to reconstruct a complete blockchain.
Consider a scenario in which an entirely new node only
has the genesis block statically embedded in the client
program. This new full node must download all of the
data from the genesis to the most recent block to
synchronize with the network and reconstruct the
whole blockchain.

The synchronization of the blockchain starts with
sending the “version” message, which the node can
obtain from its peers to determine how many blocks
each party has to compare with that held by its
blockchain. The peers then exchange a “getblocks”
 message containing the hash of the top block of their

local blockchain. If a peer identifies that the hash it
receives does not belong to the top block but to an old
one, then its local blockchain is better than other peer
nodes with longer blockchains. This latter group has
more blocks than other nodes and can identify which
ones need to be supplemented. The first 500 blocks
available for sharing are identified, and the hashes of
these blocks are propagated using the “inv” message.
Nodes that lack these blocks can request the complete
information through the “getdata” message and use the
hash value in the “inv” message to confirm whether it
is the correct requested block, and determine the
missing blocks.

2.2　Related work

How can we implement fast bootstrapping? This
scalability challenge have been addressed mainly from
three different perspectives. Based on the
aforementioned background knowledge, the data
synchronization has three primary phases for a new
node that wishes to join the blockchain network as a
full node: (1) The new node resumes communication
with several established full nodes; (2) The node
downloads block data from the established full node
and verifies its validity; (3) All the transactions from
the genesis to the latest block are determined, and the
validity is confirmed. If any fault occurs, the new node
re-initiates communication with other established
nodes and attempts to download other convincing data.
In this section, we survey the state-of-the-art measures
that reduce storage requirements and improve
bootstrapping from the abovementioned perspectives.

In most cases, reducing the amount of data to be
downloaded also reduces information to be stored and
maintained for newly joined nodes. Classical
blockchain systems have identified this problem during
the initial system design phase with methods to address
the scalability challenge, such as Simple Payment
Verification (SPV)[14, 22] and regular pruning
operations. However, no long-term and satisfactory
solution has been proposed to address the series of
problems caused by the increasing on-chain data
scale.The most attractive approach is sharding, or more
specifically, network sharding, which, however, is
difficult to achieve due to storage and computation[23–30].
This issue can be addressed by parallel and multiple
chains. Inspired by data compression and shared
storage in the distributed database, several researchers
have attempted to reduce storage by encoding the on-

 Pengfei Huang et al.: SnapshotPrune: A Novel Bitcoin-Based Protocol Toward Efficient Pruning and Fast Node... 1039

chain data[31–33]. This approach aims to balance
computation and storage. However, the actual
performance savings are minimal due to the additional
computation and time costs caused by encoding and
decoding. In other words, this approach merely shifts
the problem from one part to another.

Pruning useless or meaningless data[17, 21, 34–37] is
likely the most straightforward and efficient method to
reduce the amount of storage on the chain. At the same
time, the object of pruning varies depending on the
adopted ledger structure, such as the UTXO or
account-balance model. Snapshots, meanwhile, are
used to reduce the amount of data to be downloaded for
synchronization[8, 18, 20]; these data have varying
composition structures. Ensuring that the pruned data
or snapshots can replace the original without
compromising integrity and security, such as the ability
to avoid double spending, is the most critical
component of the two abovementioned approaches.

Overall performance improvements can also be
achieved by optimizing a process within a
bootstrapping strategy. For example, utilizing efficient
resource allocations can improve network transmission
efficiency and reduce latency[38–41], and more efficient
cryptographic algorithms[42–44] or detection can reduce
the time and computational overhead required for the
verification. Additionally, reinforcement learning[45–47]

can help to further optimize existing data
synchronization strategies, and deep learning[48–50] can
enhance the pruning of the current dataset.

3　Pruning Method

This study uses the UTXO model, as represented by
Bitcoin. All nodes in the network maintain a local
dataset called the chain state, which is dynamically
updated in real time as the block height increases.
Bitcoin is the earliest and most classic blockchain
system and has been in existence for 13 years; thus its
accumulated data is immense. This accumulation is
mainly due to the explosive growth in the number of
users and transactions, coupled with the stringent
requirements for security and privacy at the application
layer. The upper layer adopts a transaction and
addresses obfuscation strategy, which generates
considerable address and transaction data. In general,
UTXO production and consumption are currently
accelerating, and the total volume is gradually
increasing. Figure 1 illustrates the approximate growth
of the number and volume of UTXO sets corresponding

to the height of the most recent block from the genesis
block.

Most cryptocurrency websites and other data analysis
organizations carry out statistical analysis on sensitive
and ubiquitous data structures in the blockchain
system, such as block and transaction-related data.
Within the scope of this study, a systematic and in-
depth analysis of the meaning and regulation of UTXO
itself is necessary. Additionally, further correlation
analysis between UTXO and other data in the system is
necessary. This section mainly expounds on the data
analysis on the UTXO set and describes the pruning
strategy based on the findings.

3.1　UTXO set

The Bitcoin-core client is downloaded to collect a
reliable and comprehensive dataset and synchronize the
most current blockchain data. Then, the chain-state
database corresponding to a specific block height is
built based on the local block file using the btcoin-cli-
reindex command, and its file is parsed with the

Fig. 1 Total volume and memory distribution of UTXO sets
corresponding to the height of the most recent block from
the genesis block.

 1040 Tsinghua Science and Technology, August 2024, 29(4): 1037−1052

UTXO-dump script to construct a standardized UTXO
set. Without disrupting the regular website operation,
we then retrieve the gathered spent block heights
corresponding to each UTXO using the external data
query method offered by blockchain.info. Additionally,
btc.com is used to obtain more data for UTXO
characteristics, such as Bitcoin price, block rate, and
transaction fees.

ulife

105

We remove useless and non-integer features, such as
tx_id, script, script_type, and address. Furthermore, we
calculate the lifetime of each UTXO, which is
defined as the difference between the spent and
generated heights. The final UTXO set includes 26
features and approximately pieces of data.

3.2　UTXOs analysis

103

103

5.4×106

700×103−
701×103

8×103 5×104

8×103

103

8×103

UTXO set analysis can determine the distribution
characteristics of its lifetimes and influencing factors.
Based on the qualities of the UTXO set, a preliminary
analysis of the approximate distribution of UTXOs
lifetimes is carried out using clustering algorithms (k-
means, dbscan). Figures 2a and 2b show the results in
the same block height range, which are roughly the
same with a lifetime distribution bound of
approximately blocks for UTXOs. Only a small
fraction of UTXOs remain for an extended period, and
the vast majority of their lifetimes are shorter than
blocks. To obtain a comprehensive distribution, we re-
collect approximately newly generated
UTXOs for the block height range of

. Figure 2c shows that the clustering result
confirms the presence of a dividing line at
approximately and blocks. On this basis,
we divide UTXOs into four groups according to the
distribution of their lifetime, as shown in Table 1.
UTXOs with lifetimes below blocks are spent
with a higher probability, particularly those within
blocks or less, than the other groups. By comparison,
UTXOs with a longer distance are spent with a
negligible probability, which becomes even smaller
when the upper limit of blocks increases.

7×105

8×103

In addition, we collect the UTXO set maintained at
the height of blocks and calculate the difference
between the current and UTXO generation heights.
Data statistics are then finally carried out according to
the abovementioned four categories, as shown in Table 2.
In the UTXO dataset maintained by the current block
height, the number with a distance of over
blocks heights from the generated height accounts for

Generate height of UTXO (×103 block)

Generate height of UTXO (×103 block)

UTXO index (×103 unit)

Fig. 2 Schematic representation of the clustering effect
using different clustering algorithms (k-means and dbscan)
for the UTXO lifetime set. In (b), the dbscan algorithm is
used to generate the largest cluster (the orange part at the
bottom) that differs significantly from other clusters.

 Pengfei Huang et al.: SnapshotPrune: A Novel Bitcoin-Based Protocol Toward Efficient Pruning and Fast Node... 1041

8×103

103

7×105

more than 90%. However, the the nearest
blocks from the current height only generate a
relatively small number of UTXOs, especially in the
last blocks that only account for 2.30%.
Furthermore, we collect the UTXO set at the height
of blocks and calculate the difference between
the current and the UTXO generation heights. We
then carry out data statistics according to the
abovementioned four categories, as shown in Table 2.

8×108

Combining the data distribution in Tables 1 and 2
shows that the update frequency of UTXOs with a
generated height closer to the current one is much
higher than those that are farther away. Moreover, in
the set maintained by the current height, the former
UTXOs have a much smaller proportion than the latter.
Additionally, the number of UTXO sets that need to be
maintained at the current height is as high as ,
most of which are to be spent later, resulting in a
significant waste of storage space.

3.3　Pruning algorithm

The previous series of statistical analyses of the UTXO
set reveal that a UTXO generation height that is close
to the current block height leads to a high probability
of being spent in the near future. In addition, the data to
be maintained is a huge amount. Therefore, the most
direct and effective method is to retain the most
recently generated UTXO and prune those that have
been held for a long time. Thus, this section mainly
analyzes and solves the following problems: (1) how to
determine the nearest and non-nearest boundaries, and
whether the scope of the boundaries needs further
refinement; (2) whether the boundary value is fixed or
dynamic, and for the latter, what is the basis and
strategy for the change; (3) as the block height

increases, how to ensure the safe and reliable
transmission and verification of critical information
such as boundaries; and (4) what is the time point of
pruning, block-by-block or periodic. A feasible pruning
strategy is then designed.

×

The pruning is carried out periodically. The first
block of the epoch inherits the boundary parameters of
the previous epoch and dynamically maintains a spent
UTXO life distribution in the data structure with the
increase of block height. The law of UTXO spending
selects the final division boundary for pruning and
updates the boundary value. We embed the boundary
and UTXO lifetime distribution information into
blocks and construct an integer data structure with a
size of 3 2 byte to store boundary values,

B {B0,B1,B2} (0 < B0 < B1 < B2 < Hc).

B B0, B1

B2

Hc

B0 B1

B2

D
C0, C1, C2,

C3 ×

where denotes the set of boundary values,
and denote three special boundary values from
small to large, respectively, and is the current block
height. The initial settings are = 103, = 8 × 103,
and = 5 × 104. Moreover, we define the four
categories divided by three boundary lines as a
distribution of UTXO lifetime , and the number of
spent UTXO in each category is denoted by
and , respectively. A 4 3 byte integer data structure
is used to store the lifetime distribution information of
UTXO,

D {C0, C1, C2, C3},

C0 = sum(life [0, B0]) ,
C1 = sum(life (B0, B1]) ,
C2 = sum(life (B1, B2]) ,
C3 = sum(life (B2, Hc)) (1)

Table 1 Specific distribution of UTXOs in one epoch of each classification.
Class Block height range (block) Proportion (%) Average (block) Standard deviation (block) Median (block)

1 0−1×103 77.32 105.76 176.85 26.00
2 1×103 −8×103 13.10 3212.65 1843.72 2646.00
3 8×103 −5×104 5.37 19 671.64 10 128.41 16 306.00
4 ⩾ 5×104 4.21 89 229.88 50 852.19 69 065.00

Total ⩾ 0 100.00 5309.59 21 052.20 73.00

Table 2 Statistical distribution of UTXOs at the current block height.
Class Block height range (block) Proportion (%) Average (block) Standard deviation (block) Median (block)

1 0−1×103 2.30 458.31 296.75 437.00
2 1×103 −8×103 7.00 4297.63 2018.94 4319.00
3 8×103 −5×104 19.82 25 149.52 11 711.84 23 543.00
4 ⩾ 5×104 70.88 235 396.16 137 397.20 210 421.00

Total ⩾ 0 100 172 145.00 152 239.47 139 948.00

 1042 Tsinghua Science and Technology, August 2024, 29(4): 1037−1052

where C0 denotes the number of UTXOs with lifetime
between 0 and B0, C1 denotes the number of UTXOs
with lifetime between B0 and B1, and so forth for C2
and C3. sum () is used to calculate the quantity of UTXOs
within a special lifetime range given by life ().

With its unique nature, coinbase transactions do not
require referencing the corresponding UTXO.
Furthermore, there is no need for the unlock script for
the transaction output. As such, the original unlocking
script field can be filled with arbitrary data within a
limited range. We embed the 18 byte boundary and
lifetime distribution information into the coinbase
transaction of each block. Furthermore, the lifetime
distribution dynamic update Algorithm 1 shows how to
maintain and update the above data structure and then
transfer and verify the corresponding information
between blocks to record the UTXO spending in the
entire pruning epoch. The UTXO dynamic pruning
Algorithm 2 demonstrates how to determine and update
the final boundary value based on the critical
information transmitted to the end block of the pruning
epoch according to the UTXO set distribution
regulation spent in the entire epoch.

3.4　Pruning protocol

τ

B

Beginning from the genesis block, we define as the
pruning epoch, which means that UTXO set is to be
pruned at τ-block intervals. The initial value of is

B0 {B0
0, B0

1, B0
2} = {1000, 8000, 50 000} (2)

j BFor the -th epoch, the initial value of is

B j {B j
0, B j

1, B j
2} = B j−1{B j−1

0 , B j−1
1 , B j−1

2 } (3)

D
While for the 0-th block in each epoch, the initial

value of is allways

D j
i {C

0
0, C

0
1, C

0
2, C

0
3} = {0, 0, 0, 0}.

D j
i

B j

D j
i

B j+1

Hc

i j

Table 3 outlines the parameters involved in the
pruning protocol. The basic flow is mainly divided into
two stages, namely, parameters update and UTXOs
pruning. Throughout the pruning period, each block
height verifies and updates according to the
boundary parameter of the current period based on
Algorithm 1. At the end of the period block, according
to the of the entire epoch, the UTXO set is pruned,
and the boundary parameter for the next epoch is
determined based on Algorithm 2. For the current
block height , the nodes in the network compete to
mine the next block, which is the -th block in the -th
epoch,

i = (Hc+1) mod τ,
j = (Hc+1)/τ (4)

Algorithm 1　Dynamic update of UTXO distribution
Hc : current block heightRequire: ;

Txc : previous block coinbase transaction　 ;
Txn : set of current normal transactions to be blocked　 ;
Uc : current UTXO set　 ;
τ : length of pruning epoch　

Bc : current mining blockEnsure:
j = (Hc +1)/τ j 1: ; // denotes serial number of epoch
i = (Hc +1) mod τ i j 2: ; // denotes serial number of block in -

th epoch
i , 0 3: if then

D j
i−1 {C

i−1
0 , C

i−1
1 , C

i−1
2 , C

i−1
3 } ⇐ Txc D j

i−1
(i−1) j

 4: 　 ; // denotes
distirbution of spent UTXO lifetime of -th block in -th
epoch
 5: else

D j
i−1 {C

i−1
0 , C

i−1
1 , C

i−1
2 , C

i−1
3 } ⇐ {0, 0, 0, 0} 6: 　 ;

 7: end if
B j {B j

0, B j
1, B j

2} ⇐ Txc B j j 8: ; // denotes boundaries of -th
epoch

tx ∈ Txn 9: for do
inputs⇐ tx inputs tx10: 　 ; // denotes the set of inputs

input ∈ inputs11: 　for do
inputhash input12: 　　Get transaction hash used in ;

Uc u13: 　　Check hash in UTXO set and get output ;
ulife⇐ Hc +1−uHg ulife

u uHg u
14: 　　 ; // denotes lifetime of spent
UTXO ; denotes block height for generating UTXO

ulife ∈ [0, B j
0]15: 　　if then

Ci−1
0 =Ci−1

0 +116: 　　　 ;

ulife ∈ (B j
0, B j

1]17: 　　else if then
Ci−1

1 =Ci−1
1 +118: 　　　 ;

ulife ∈ (B j
1, B j

2]19: 　　else if then

Ci−1
2 =Ci−1

2 +120: 　　　 ;
21: 　　else

Ci−1
3 =Ci−1

3 +122: 　　　 ;
23: 　　end if
24: 　end for
25: end for
D j

i {C
i
0, C

i
1, C

i
2, C

i
3} =D

j
i−1{C

i−1
0 , C

i−1
1 , C

i−1
2 , C

i−1
3 }26: ;

i = τ−127: if then
B j⇐28: 　 Execute Algorithm 2;

29: end if
Tx
′
c B j D j

i30: Generate coin-based transaction with and ;
Tx
′
c Txn31: Package and ;

Bn32: Create current mining block

 Pengfei Huang et al.: SnapshotPrune: A Novel Bitcoin-Based Protocol Toward Efficient Pruning and Fast Node... 1043

3.4.1　Parameters update

B j {B j
0, B j

1, B j
2}

D j
i−1 {C

i−1
0 , C

i−1
1 , C

i−1
2 , C

i−1
3 }

(1) Mine the acquired critical parameter information to
be updated and stored in the coinbase data segment in
the previous block coinbase transaction
and . Then the information
correctness is verified.

(2) Traverse the transaction input to be packaged on
the chain and acquire the referenced transaction hash
and output sequence. Query the corresponding unspent
transaction output , and calculate the life of the UTXO
based on the currently maintained set,

ulife = Hc+1−uHg (5)

u
B j D j

i

D j
i−1

(3) Determine the lifetime distribution interval of
according to the boundary parameter and update
based on .

B j

D j
i

(4) Fill the boundary parameter and the updated
 into the coinbase data segment of the coinbase

transaction of the mining block, and package the
transaction to consensus.
3.4.2　UTXOs pruning

B j D j
i

(1) At the end of the epoch, according to the boundary
parameter , updated , and the pruning intensity,
the final pruning boundary is determined according to
the phases in Algorithm 2.

B j+1

D j
i

(2) Determine the next epoch boundary parameters
 according to the precondition, and update

function in Algorithm 2 based on ,

B j+1
i = B j

i ×
1±Random

δ,
∣∣∣∣∣∣∣

i∑
n=0

P j
n−η
∣∣∣∣∣∣∣

 (6)

3.5　Pruning security analysis

The pruned UTXO set consists of snapshots to
facilitate rapid node synchronization, which requires
the assurance of fulfilling the same functions and roles
as the full UTXO set. In other words, new nodes can
operate as expected after successful synchronization
with other full nodes. The UTXO set typically serves
two primary purposes. First, forward validation is used
to verify the completeness and legitimacy of the
transaction flow in past blocks. Second, backward
validation confirms the validity and traceability of the
transaction input in future blocks.

The later spent UTXOs may no longer exist in the
pruned set of UTXOs maintained by the current node,
similar to how a Bitcoin node opens a block of memory
locally to store a collection of isolated transactions.
The parent transaction has yet to be packed onto the

Algorithm 2　UTXO set pruning algorithm

B j {B j
0, B j

1, B j
2} : boundaries of jRequire: -th epoch;

D j
i {C

i
0, C

i
1, C

i
2, C

i
3} : j 　 distribution of -th epoch;

Uc : current UTXO set 　 ;
η : pruning strength parameter 　 ;
δ : update threshold of boundaries 　 ;
ε : maximum allowable error 　

U j
p : pruned UTXO set in jEnsure: -th epoch;

B j+1 {B j+1
0 , B j+1

1 , B j+1
2 } : updated boundaries　

Sum =Ci
0 +Ci

1 +Ci
2 +Ci

3 Sum 1: ; // denotes total number of
　 UTXOs

P j {P j
0, P j

1, P j
2, P j

3} =D
j
i {C

i
0, C

i
1, C

i
2, C

i
3}/Sum P j

j

 2: ; //
　 denotes set of UTXO lifetime distribution ratios spent in the
　 -th epoch

P j
0 ⩾ η 3: if

U j
p⇐ Uc [: B j

0] 4: 　 ;

P j
0 −η > δ 5: 　if

B j+1
0 ⇐ B j

0 × (1−Random [δ, P j
0 −η]) Random [] 6: 　　 ; //

　　　 denotes selecting a number from a range randomly

P j
0 −η ⩽ δ and P j

0 +P j
1 −η > ε 7: 　else if

B j+1
1 ⇐ B j

1 × (1−Random [δ, P j
0 +P j

1 −η]) 8: 　　 ;

P j
0 −η ⩽ δ, P j

0 +P j
1 −η ⩽ ε, and P j

0 +P j
1 +P j

2 −η < ε
 9: 　else if
　　

B j+1
2 ⇐ B j

2 × (1−Random [δ, P j
0 +P j

1 +P j
2 −η])10: 　　 ;

11: 　end if

|P j
0 −η| > δ12: else if

B j+1
0 ⇐ B j

0 × (1+Random [δ, |P j
0 −η|])13: 　 ;

P j
0 +P j

1 > δ14: 　if

U j
p⇐ Uc [: B j

1]15: 　　 ;

|P j
0 −η| ⩽ δ and |P j

0 +P j
1 −η| > ε16: 　　if

B j+1
1 ⇐ B j

1 × (1+Random [δ, |P j
0 +P j

1 −η|])17: 　　　 ;
18: 　　end if

P j
0 +P j

1 < δ and P j
0 +P j

1 +P j
2 ⩾ δ19: 　else if

U j
p⇐ Uc [: B j

2]20: 　　 ;

|P j
0 −η| ⩽ δ, |P

j
0 +P j

1 −η| ⩽ ε, and |P j
0+P j

1+P j
2 −η|>ε21: 　　if

B j+1
2 ⇐ B j

2 × (1+Random [δ, |P j
0 +P j

1 +P j
2 −η|])22: 　　　 ;

23: 　　end if
24: 　end if
25: else

U j
p⇐ Uc26: 　 ;

27: end if

 1044 Tsinghua Science and Technology, August 2024, 29(4): 1037−1052

blockchain for validation, and the legitimacy of child
transactions cannot be confirmed. Consequently, a
complementary set operation is required. If the current
node receives a transaction with input that spends
UTXOs that are not in the local set, then the node
places this transaction into the isolated pool.
Simultaneously, the node broadcasts a query request to
other full nodes in the network. The responding nodes
examine the locally maintained UTXOs set based on
the transaction hash and the output sequence number
list in the request and return the relevant packed
UTXOs to the requesting node. By complementing the
difference set operation, the synchronized node can
verify subsequent transactions and act as a full node.

4　Bootstrapping Protocol

This chapter focuses on how to synchronize data when
a new node joins the network using the pruned UTXO
set discussed in the preceding chapter. The concepts of
snapshot synchronization are adapted from
SnapshotSave[20] and CoinPrune[18] with improvements
to suit the present study objectives.

The general idea is to set a certain length of pruning
and snapshot interval as one epoch, where miners
execute the pruning algorithm outlined in Section 3
while generating a block. The final pruned UTXO set
of is obtained and confirmed at the end of the current
epoch. Based on the preceding pruned UTXO set, the
miners create a snapshot at the first block of the
subsequent epoch according to the data structure and
method described in Section 5. Then, the final snapshot
hash is generated and included in the proof of work.

4.1　Synchronization data structure

Data synchronization ensures that new peer nodes can
autonomously reconstruct the system state at the
current block height upon joining the blockchain
network. On the one hand, new nodes can trace past
blocks and transactions forward while having sufficient
evidence to prove their legitimacy. On the other hand,
these nodes can participate in the daily operations of
the system with the same functions and authorizations

as a full node, such as managing requests submitted by
light nodes and linking new blocks locally. Therefore,
functionality, integrity and validity must be ensured
while requiring as little synchronized data content as
possible. We follow CoinPrune’s synchronization data
structure, which comprises three main parts: header
chain, snapshots, and tail blocks (shown in Fig. 3).

Header chain. Chain information refers to the block
header information from the genesis block to the
current snapshot epoch height. The block header
contains information such as version number, previous
block hash, Merkle tree root hash, timestamp, difficulty
target, and nonce value. Combined with the UTXO set
in each snapshot epoch, the above information can be
reconstructed to the past chain state of the current
snapshot epoch. Therefore, this information is
necessary to put into the synchronization data.

1×104 5×104

5×104

Snapshot. Rather than consensus data (block set)
in the blockchain network, we utilize application
data (UTXO set) as the essential components of a
snapshot. CoinPrune and SnapshotSave use periodic
snapshots of UTXO set to reduce the number of data
downloads necessary for synchronization. These
snapshots are stored in multiple chunks with unit sizes
of 1 MB and 3.5 MB, respectively. Furthermore, the
corresponding number of UTXOs is approximately

 and , respectively, constrained by the
block and communication message sizes.
Consequently, considering the order of magnitude of
each snapshot ephemeris after pruning during the
previous experimental analysis, we pack
UTXOs into a single chunk. The overall number of
blocks is maintained at an order of magnitude of no
more than one thousand bits, thus decreasing the
frequency of communication. As in the case of
SnapshotSave, we generate the corresponding Merkle
tree based on the chunk of each UTXO set, and the root
is then hashed with the block header information to
obtain the final snapshot hash and incorporate it into
the proof of work for verification.

Tail block. Tail blocks refer to all blocks’
information from the end height of the most recent

Table 3 Parameters involved in the pruning protocol.
Parameter Detail Implication
P j {P j

0, P j
1, P j

2, P j
3} jCollection of UTXO lifetime distribution ratios spent in the -th epoch

D j
i {Ci

0, C
i
1, C

i
2, C

i
3} i jSet of UTXO lifetime distribution sets for the -th block height spent in the -th epoch

B j {B j
0, B j

1, B j
2} jSet of bounding parameters for the -th epoch

 Pengfei Huang et al.: SnapshotPrune: A Novel Bitcoin-Based Protocol Toward Efficient Pruning and Fast Node... 1045

G
en

es
is

bl
oc

k

H
ea

de
r

H
ea

de
r

H
ea

de
r

H
ea

de
r

H
ea

de
r

H
ea

de
r

Bl
oc

k
Bl

oc
k

N
um

be
r o

f e
po

ch
s

n

Pr
un

ed
 U

TX
O

 s
et

H
ea

de
r c

ha
in

Ta
il

bl
oc

k
Sn

ap
sh

ot

Bl
oc

k
si

ze

0
1

2
00

10
20

30

Bl
oc

k
he

ad
er

Tx
 c

ou
nt

C
oi

nb
as

e
Tx

Tx
0

Tx
1

Tx
 h

as
h

O
ut

pu
t n

C
oi

nb
as

e
da

ta
 s

iz
e

C
oi

nb
as

e
da

ta
In

de
x

0
1

2
01

11
21

31

0
1

2

0
1

2
0
−

1
1
−

1
2
−

1
3
−

1

0
−

2
1
−

2
2
−

2
3
−

2 U
TX

O
0

U
TX

O
1

U
TX

O
2

…

Pr
un

in
g

U
TX

O
 p

ru
ni

ng

C
hu

nk
0

C
hu

nk
1

C
hu

nk
n

H
ea

de
r 0

H
ea

de
r 1

H
ea

de
r n

…
…

…
…

…
…

…
…

…
…

…
…

…
…

…
…

…
…

…
…

…
…

…
…

…
…

…
…

…
…

…
…

…
…

…
…

…
…

…
…

…
…

…
…

…
…

…
Bl

oc
k 0

Bl
oc

k 1
Bl

oc
k n

Sy
nc

hr
on

iz
at

io
n

da
ta

H
ea

de
r 2

Sn
ap

sh
ot

 h
as

h
do

w
nl

oa
d

U
TX

O
 c

hu
nk

s
ga

sh
 d

ow
nl

oa
d

B
lo

ck
 h

ea
de

r d
ow

nl
oa

d

C
hu

nk
s

do
w

nl
oa

d

Ta
il

bl
oc

k
do

w
nl

oa
d

②

③

④

①
(

)

,
,

,

C
hu

nk
0

C
hu

nk
0

H
as

h
H

as
h

H
as

h
C

hu
nk

1
C

hu
nk

n
…

…

……
…

…

…

C
hu

nk
1

C
hu

nk
n

H
ea

de
r 0

H
ea

de
r 1

H
ea

de
r n

Bl
oc

k 0
Bl

oc
k 1

Bl
oc

k n

②

Sy
nc

hr
on

iz
at

io
n

pr
oc

es
s

B
lo

ck
ch

ai
n

Fi

g.
 3

 O

ve
rv

ie
w

 d
es

ig
n

of
 sy

nc
hr

on
iz

at
io

n.

 1046 Tsinghua Science and Technology, August 2024, 29(4): 1037−1052

snapshot epoch to the current block height. Based on
the UTXO set of the current snapshot epoch, the chain
state from the previous snapshot epoch can be
reconstructed by amalgamating the information of the
closest complete blocks to the latest height.

4.2　Synchronization

The synchronization in this study is analogous to
SnapshotSave, albeit with a few modifications. A new
peer node completes the state synchronization in four
steps: snapshot hash retrieval, UTXO chunk hash and
block header download, chunks download, and tail
block download (shown in Algorithm 3).

After establishing a connection with the old nodes,
the new peer node requests the snapshot hash of the
most recent epoch from its neighboring nodes and
selects the most consistent reply. The correctness of the
snapshot hash is then verified by its generation based
on the hashes of the UTXO and block header chunks
that correspond to the request. The chunks
corresponding to the hash of UTXO chunk are
requested, and their validity is checked. The header
chain information is verified according to the original
Bitcoin track, and the pruned UTXO set is obtained
from the UTXO chunks to reconstruct the chain state
prior to the latest snapshot. The tail blocks are then
acquired to achieve a complete chain state
reconstruction. The pruning strategy withdraws
UTXOs that are unlikely to be spent in the future, and
thus, old UTXOs may unavoidably be involved in
subsequent transactions. Nodes must pack messages
regarding these UTXOs and request downloads from
neighboring nodes in the network. Similarly, if the
reconstruction of chain state information is completed,
this approach can also address the issue of unverifiable
future transactions.

5　Security Discusion

For the two main properties—namely, correctness and
verifiability —that need to be satisfied by the pruning
method proposed in CoinPrune, we carry out the
corresponding security analysis based on the proposed
pruning method and synchronization strategy. The
security of the latter can be proven if the following two
sets of conditions are met: (1) Correctness, which
refers to the fact that each new node in the network
must obtain an identical chain state to guarantee the
integrity of accepted transactions; (2) Verifiability,
which refers to the pruning strategy and must ensure

that the new nodes can check the correctness of
synchronization even in a complex network
environment without compromising the security of the
whole blockchain system.

N
U

Np

Up

N Np Up

Correctness. Based on the proposed pruning
strategy, the full nodes in the network can be divided
into two classes. One is the true full node that holds
the entire UTXO state set , and the other is the
slightly lighter full node that contains the pruned
UTXO state set . UTXO updates are synchronized
for and in each snapshot epoch, meaning is

Algorithm 3　Pruning and synchronization
j : serial number of latest snapshot epochRequire: ;

τ : length of pruning epoch　 ;
η : pruning strength parameter 　 ;
δ : update threshold 　 ;
κ : size of each UTXO chunk 　

i ∈ [jτ, jτ+τ−1] 1: for do

D j
i ⇐ Execute Algorithm 1 2: 　 ;
i == jτ+τ−1 3: 　if
Up, B j+1⇐ Execute Algorithm 2 4: 　　 ;

U
′
p⇐ sort (Up) U

′
p Up sort ()

Up

 5: 　　 ; // denotes sorted ;
　　　 denotes function that sorts by generation block
　　　 height

C j⇐ {U ′
p [0 : κ), U

′
p [κ : 2κ), . . . , U

′
p [nκ :]} C j 6: 　　 ; //

　　　 denotes set of UTXO chunks

H j
c ⇐ {Hash (C j

0), Hash (C j
1), . . . , Hash (C j

n)} H j
c 7: 　　 ; //

　　　 denotes set of chunk hash

S j⇐C j {C j
0, C

j
1, . . . , C

j
n} S j

j
 8: 　　 ; // denotes snapshot of
　　　 -th epoch

H j
s ⇐MerkleTreeRoot (C j) H j

s
j MerkleTreeRoot

C j

 9: 　　 ; // denotes snapshot
　　　 hash of -th epoch, denotes taking the
　　　 value of root from merkletree of
10: 　end if
11: end for

N h h ∈ [(j+1)τ, (j+2)τ−1]12: For node at block height , ;

BH j⇐ {BH0, BH1, . . . , BH jτ+τ−1}13: Blockheader ;
BH j BH　 // denotes set of block header from genesis to

　 latest snapshot epoch

B j⇐ {B jτ+τ, B jτ+τ+1, . . . , Bh}14: Tailblock ;
B j B　 // denotes set of block from current snapshot epoch to

　 latest block

H j
s15: Download latest snapshot hash and check validity;

H j
c BH j16: Download chunks hash and blockheader ;

C j17: Request chunks ;
B j18: Request tailblocks .

 Pengfei Huang et al.: SnapshotPrune: A Novel Bitcoin-Based Protocol Toward Efficient Pruning and Fast Node... 1047

U
U Up

Upc Np Up

Up1

Up2

Up

U Upm

Up

Upc

Upc

always a subset of . Additionally, whether based on
 or the result of continuing to perform pruning

operation is equivalent. Thus, each newly joined node,
has a shared core part, which we refer to as the pruned
UTXOs set . However, for , the is not
identical; that is, (the pruned UTXO set that one
lighter full node generates) is not necessarily
equivalent to (the pruned UTXO set another
lighter full node generates). Furthermore, as
transactions arrive, can be further supplemented by

, and converge to (the largest collection of all
). In this process, the integrity of the accepted

transactions is not compromised, and each node has the
core chain state . Meanwhile, UTXOs outside the
intersection with are not as essential for
subsequent transactions.

Verifiability. To ensure the verifiability of the
snapshots, we use the same strategy as in CoinPrune.
The UTXO set can be verified by dividing the UTXO
state set into data blocks and constructing the Merkle
tree of the UTXO chunks. The snapshot hash is
computed by combining the hashes of the Merkle tree
root of the UTXO chunks and the block header. This
snapshot hash is included in the Proof of Work (PoW)
consensus of the coinbase transaction to receive
cumulative confirmation from other nodes in the
network, thus guaranteeing the verifiability of the
snapshot. Nodes joining the network can verify the
snapshot validity based on the reconfirmation of the
most recent snapshot by the trailing block. Malicious
nodes or miners cannot trick new nodes into accepting
a changed or different snapshot, which is also
challenging to construct.

6　Performance Evaluation

This section focuses on simulated experimental
analysis that compares the proposed pruning strategy
and enhanced snapshot approach with those of Bitcoin
Core, CoinPrune, and SnapshotSave. First, we outline
the environment setup for testing. Then, the storage
savings from the different methods are presented.
Finally, we empirically demonstrate that the number of
downloads and synchronization time required for new
nodes are significantly reduced.

6.1　Tested setup

We carry out a preliminary simulation to validate an
implementation based on original Bitcoin data. The
measurements are executed on a server (Intel(R)

Xeon(R) Gold 6240R @2.40 GHz, 32 GB RAM, 60 TB
hard drive) with synchronized data from personal
computers (12th generation Intel(R) Core(TM) i5-
12600KF @3.70 GHz, 32 GB RAM, 1 TB hard disk).
The data are measured from the genesis block to the
latest snapshot height, with 500 tail blocks. Bitcoin
Core, CoinPrune, SnapshotSave, and the proposed
method are monitored for data synchronization. The
blockchain data determine the storage requirements,
but the synchronization time and traffic may vary
depending on the network state.

6.2　Storage savings

The amount of data to be downloaded and maintained
by different node synchronization is obtained through
simulations based on real Bitcoin historical data.
Bitcoin Core necessitates downloading the complete
blockchain, including consensus data such as all blocks
and headers (block folder), and application data such as
UTXO state (chain state folder). CoinPrune requires
downloading a serialized snapshot (including the
complete UTXOs data), a serialized header chain, and a
series of tail blocks. SnapshotSave builds on
CoinPrune and somewhat reduces the required amount
of UTXO data to compose a snapshot. Then, the
synchronization strategy further prunes UTXOs, which
theoretically necessitates an even smaller amount of
data to be synchronized. Experiments show that the
proposed synchronization strategy requires 1.33 GB of
data to be downloaded, as shown in Fig. 4a. In the
overall trend and ignoring detail differences, this
amount is approximately 99.70% less than that of
Bitcoin Core (435.57 GB), 81% less than Coinrune
(6.97 GB), and 60% less than SnapshotSave (3.33 GB).
Moreover, as the blockchain grows, the savings may
even increase at high block heights.

6.3　Evaluation of synchronization performance

Bitcoin Core necessitates downloading and verifying
the block header and blocks, replaying the entire
transaction (see Section 3.1). The other methods only
require downloading and validating snapshots and tail
blocks, except the block header. Depending on the
amount of data to be downloaded for different
synchronization strategies in the previous section,
the corresponding synchronization times follow a
similar trend. As illustrated in Fig. 4b, the average
synchronization times consumed by the proposed
synchronization strategies is approximately 10 minutes

 1048 Tsinghua Science and Technology, August 2024, 29(4): 1037−1052

(latest block height), whereas Bitcoin Core takes
approximately six hours.

6.4　Evaluation of synchronization data accuracy

S j⇐C j {C j
0, C

j
1, . . . , C

j
n}

S j

j

H j
s ⇐MerkleTreeRoot (C j)

H j
s

This study evaluated the accuracy of the pruned UTXO
set using real historical data from Bitcoin. The
accuracy rate was defined as the ratio of the inputs of
future transactions that pruned UTXO sets can
independently verify to the total transaction inputs,
with the exception of UTXOs generated after the
relevant block height at the end of the epoch. The
pruning and snapshot epoch lengths are varied as 500,
1000, and 2000 block heights, and a specific block
height is designated to mark the beginning of an epoch.
We obtained the life distribution
and corresponding proportion of UTXO spent
during each epoch and acquired the UTXO set
maintained by the corresponding block height at the
end of the epoch. By adjusting the pruning strength
parameter, the corresponding pruned UTXO set data

 is obtained. We then traced
block transaction chains backward and counted the
number of old transaction inputs that can
independently verify, computing the corresponding
accuracy rate. The results in Table 4 demonstrate that
the pruned UTXO set has considerable accuracy when
the pruning strength is sufficiently high. Given the
limitations of time and hardware performance, we
choose a small number of future blocks for validation
experiments. Still, the accuracy rate increases with the
block height, eventually approaching an asymptote of
value 1.

Fig. 4 Approximate distribution of storage capacity and
synchronization time required by different synchronization
strategies with the increase of block height.

τ D P B U η

Up

Table 4 Corresponding accuracies of the synchronization data with the effect of different parameter values: Length of each
epoch , UTXO life distribution and proportion , pruning boundaries , complete UTXO set , pruning strength , and
pruned UTXO set .
τ (block) D (UTXO) P B (block) U (UTXO) η Up (UTXO) Proportion (%) Accuracy

500

D0 = 1 817 183 P0 = 0.7673 B0 = 1×103

52 082 148

0.95 24 186 818 46.44 0.956 822 97

D1 = 398 007 P1 = 0.1681 B1 = 8×103 0.90 7 324 361 14.06 0.867 155 33

D2 = 117 589 P2 = 0.0497 B2 = 5×104 0.80 7 324 361 14.06 0.867 155 33

D3 = 35 374 P3 = 0.0149 0.70 1 530 962 2.93 0.675 871 07

1000

D0 = 3 858 222 P0 = 0.7485 B0 = 1×103

51 953 149

0.95 23 439 410 45.15 0.912 630 7

D1 = 845 941 P1 = 0.1641 B1 = 8×103 0.90 6 837 275 13.16 0.807 039 42

D2 = 314 075 P2 = 0.0609 B2 = 5×104 0.80 6 837 275 13.16 0.807 039 42

D3 = 136 665 P3 = 0.0265 0.70 1 283 272 2.47 0.602 953 87

2000

D0 = 9 766 236 P0 = 0.7175 B0 = 1×103

51 978 751

0.95 23 762 962 45.71 0.989 995 83

D1 = 2 215 629 P1 = 0.1629 B1 = 8×103 0.90 7 075 015 13.61 0.931 846 60

D2 = 1 106 942 P2 = 0.0813 B2 = 5×104 0.80 7 075 015 13.61 0.931 846 60
D3 = 521 766 P3 = 0.0383 0.70 1 492 207 2.87 0.447 634 43

 Pengfei Huang et al.: SnapshotPrune: A Novel Bitcoin-Based Protocol Toward Efficient Pruning and Fast Node... 1049

7　Conclusion

Based on the UTXO model of the Bitcoin system, we
propose a pruning strategy and synchronization method
to improve fast bootstrap service. Further pruning is
carried out on the current system state UTXOs, and the
snapshot synchronization strategy is improved to
ensure the validity and verifiability of the pruned data.
Experiments demonstrate that joining nodes can reduce
the data download and storage by approximately
99.70% while saving approximately 97.23% of
download time. At the latest blocks, the data volume
decreases from approximately 435.57 GB to 1.33 GB,
and the synchronization time decreases from
approximately six hours to 10 minutes. Additionally, as
the block height grows, the space savings may be even
more considerable.

In future work, we plan to explore other effective
pruning strategies that do not adhere to simple and
brute-force methods. How to securely apply
synchronization strategies to the Bitcoin system
through velvet forks may also be investigated.

Acknowledgment

This work was supported by the National Key Project of
China (No. 2020YFB1005700), the Natural Science
Foundation of Shandong Province (No. ZR2021MF086),
the National Key Research and Development Program of
China (No. 2021YFA1000600), the National Natural
Science Foundation of China (Nos. 62132018 and
62172117), the National Key Research and Development
Program, the Young Scientist Scheme (No.
2022YFB3102400), and the National Key Research and
Development Program of Guangdong Province (No.
2020B0101090002).

References

 G. W. Peters and E. Panayi, Understanding modern
banking ledgers through blockchain technologies: Future
of transaction processing and smart contracts on the
internet of money, in Banking Beyond Banks and Money,
P. Tasca, T. Aste, L. Pelizzon, and N. Perony, eds. Cham,
Switzerland: Springer, 2016, pp. 239−278.

[1]

 G. W. Peters, E. Panayi, and A. Chapelle, Trends in
crypto-currencies and blockchain technologies: A
monetary theory and regulation perspective, arXiv preprint
arXiv: 1508.04364, 2015.

[2]

 L. Wang, W. Liu, and X. Han, Blockchain-based
government information resource sharing, in Proc. IEEE
23rd Int. Conf. Parallel and Distributed Systems,

[3]

Shenzhen, China, 2017, pp. 804−809.
 X. Zhang and Y. Yin, Research on digital copyright
management system based on blockchain technology, in
Proc. IEEE 3rd Information Technology, Networking,
Electronic and Automation Control Conf., Chengdu,
China, 2019, pp. 2093–2097.

[4]

 R. Casado-Vara, F. de la Prieta, J. Prieto, and J. M.
Corchado, Blockchain framework for IoT data quality via
edge computing, in Proc. 1st Workshop on Blockchain-
Enabled Networked Sensor Systems, Shenzhen, China,
2018, pp. 19–24.

[5]

 X. Wang, X. Zha, W. Ni, R. P. Liu, Y. J. Guo, X. Niu, and
K. Zheng, Survey on blockchain for internet of things,
Comput. Commun., vol. 136, pp. 10–29, 2019.

[6]

 Y. Pu, T. Xiang, C. Hu, A. Alrawais, and H. Yan, An
efficient blockchain-based privacy preserving scheme for
vehicular social networks, Inf. Sci., vol. 540, pp. 308–324,
2020.

[7]

 M. Mettler, Blockchain technology in healthcare: The
revolution starts here, in Proc. IEEE 18th Int. Conf. E-
Health Networking, Applications and Services, Munich,
Germany, 2016, pp. 1–3.

[8]

 C. Li and B. Palanisamy, Incentivized blockchain-based
social media platforms: A case study of steemit, in Proc.
10th ACM Conf. Web Science, Boston, MA, USA, 2019,
pp. 145–154.

[9]

 W. Li, W. Meng, Y. Wang, and J. Li, Enhancing
blackslist-based packet filtration using blockchain in
wireless sensor networks, in Proc. 16th Int. Conf. Wireless
Algorithms, Systems, and Applications, Nanjing, China,
2021, pp. 624–635.

[10]

 Y. Chen, H. Li, K. Li, and J. Zhang, An improved P2P file
system scheme based on IPFS and blockchain, in Proc.
2017 IEEE Int. Conf. Big Data, Boston, MA, USA, 2017,
pp. 2652–2657.

[11]

 A. S. Patil, R. Hamza, A. Hassan, N. Jiang, H. Yan, and J.
Li, Efficient privacy-preserving authentication protocol
using PUFs with blockchain smart contracts, Comput.
Secur., vol. 97, p. 101958, 2020.

[12]

 H. Yuan, X. Chen, J. Wang, J. Yuan, H. Yan, and W.
Susilo, Blockchain-based public auditing and secure
deduplication with fair arbitration, Inf. Sci., vol. 541, pp.
409–425, 2020.

[13]

 Satoshi Nakamot, Bitcoin: A peer-to-peer electronic cash
system. https://bitcoin. org/bitcoin.pdf, 2008.

[14]

 G. Wood, Ethereum: A secure decentralised generalised
transaction ledger, Ethereum Proj. Yellow Paper, vol. 151,
pp. 1–32, 2014.

[15]

 A. Kiayias, N. Leonardos, and D. Zindros, Mining in
logarithmic space, in Proc. 2021 ACM SIGSAC Conf.
Computer and Communications Security, Virtual Event,
2021, pp. 3487–3501.

[16]

 A. Chepurnoy, M. Larangeira, and A. Ojiganov,
Rollerchain, a blockchain with safely pruneable full
blocks, arXiv preprint arXiv: 1603.07926, 2016.

[17]

 R. Matzutt, B. Kalde, J. Pennekamp, A. Drichel, M.[18]

 1050 Tsinghua Science and Technology, August 2024, 29(4): 1037−1052

Henze, and K. Wehrle, How to securely prune bitcoin’s
blockchain, in Proc. 2020 IFIP Networking Conf., Paris,
France, 2020, pp. 298–306.
 R. Matzutt, B. Kalde, J. Pennekamp, A. Drichel, M.
Henze, and K. Wehrl, CoinPrune: Shrinking bitcoin’s
blockchain retrospectively, IEEE Trans. Netw. Serv.
Manage., vol. 18, no. 3, pp. 3064–3078, 2021.

[19]

 L. Ren, W. T. Chen, and P. A. S. Ward, SnapshotSave:
Fast and low storage demand blockchain bootstrapping, in
Proc. 36th Annual ACM Symposium on Applied
Computing, Virtual Event, 2021, pp. 291–300.

[20]

 E. Palm, O. Schelén, and U. Bodin, Selective blockchain
transaction pruning and state derivability, in Proc. 2018
Crypto Valley Conf. Blockchain Technology, Zug,
Switzerland, 2018, pp. 31–40.

[21]

 B. Bünz, L. Kiffer, L. Luu, and M. Zamani, FlyClient:
Super-light clients for cryptocurrencies, in Proc. 2020
IEEE Symp. Security and Privacy, San Francisco, CA,
USA, 2020, pp. 928–946.

[22]

 L. Luu, V. Narayanan, C. Zheng, K. Baweja, S. Gilbert,
and P. Saxena, A secure sharding protocol for open
blockchains, in Proc. 2016 ACM SIGSAC Conf. Computer
and Communications Security, Vienna, Austria, 2016, pp.
17–30.

[23]

 E. Kokoris-Kogias, P. Jovanovic, L. Gasser, N. Gailly, E.
Syta, and B. Ford, OmniLedger: A secure, scale-out,
decentralized ledger via sharding, in Proc. 2018 IEEE
Symp. Security and Privacy, San Francisco, CA, USA,
2018, pp. 583–598.

[24]

 M. Zamani, M. Movahedi, and M. Raykova, RapidChain:
Scaling blockchain via full sharding, in Proc. 2018 ACM
SIGSAC Conf. Computer and Communications Security,
Toronto, Canada, 2018, pp. 931–948.

[25]

 J. Wang and H. Wang, Monoxide: Scale out blockchain
with asynchronous consensus zones, in Proc. 16th USENIX
Conf. Networked Systems Design and Implementation,
Boston, MA, USA, 2019, pp. 95–112.

[26]

 M. J. Amiri, D. Agrawal, and A. El Abbadi, SharPer:
Sharding permissioned blockchains over network clusters,
in Proc. 2021 Int. Conf. Management of Data, Xi’an,
China, 2021, pp. 76–88.

[27]

 Z. Hong, S. Guo, P. Li, and W. Chen, Pyramid: A layered
sharding blockchain system, in Proc. IEEE INFOCOM
2021-IEEE Conf. Computer Communications, Vancouver,
Canada, 2021, pp. 1–10.

[28]

 H. Yu, I. Nikolić, R. Hou, and P. Saxena, OHIE:
Blockchain scaling made simple, in Proc. 2020 IEEE
Symp. Security and Privacy, San Francisco, CA, USA,
2020, pp. 90–105.

[29]

 J. Hellings and M. Sadoghi, ByShard: Sharding in a
byzantine environment, Proc. VLDB Endow., vol. 14, no.
11, pp. 2230–2243, 2021.

[30]

 S. Li, M. Yu, C. S. Yang, A. S. Avestimehr, S. Kannan,
and P. Viswanath, PolyShard: Coded sharding achieves
linearly scaling efficiency and security simultaneously,
IEEE Trans. Inform. Forensics Secur., vol. 16, pp.

[31]

249–261, 2021.
 D. Perard, J. Lacan, Y. Bachy, and J. Detchart, Erasure
code-based low storage blockchain node, in Proc. 2018
IEEE Int. Conf. Internet of Things (iThings) and IEEE
Green Computing and Communications (GreenCom) and
IEEE Cyber, Physical and Social Computing (CPSCom)
and IEEE Smart Data (SmartData), Halifax, Canada,
2018, pp. 1622–1627.

[32]

 D. Mitra and L. Dolecek, Patterned erasure correcting
codes for low storage-overhead blockchain systems, in
Proc. 2019 53rd Asilomar Conf. Signals, Systems, and
Computers, Pacific Grove, CA, USA, 2019, pp.
1734–1738.

[33]

 B. Bitcoin Project, Bitcoin core version 0.11.0 released,
https://github.com/bitcoin/bitcoin/blob/master/doc/release-
notes/release-notes-0.11.0.md, 2015.

[34]

 X. Feng, J. Ma, Y. Miao, Q. Meng, X. Liu, Q. Jiang, and
H. Li, Pruneable sharding-based blockchain protocol,
Peer-to-Peer Netw. Appl., vol. 12, no. 4, pp. 934–950,
2019.

[35]

 H. Schoenfeld and A. Molina, Pascal: An infinitely
scalable cryptocurrency, https://www.pascalcoin.org/
storage/whitepapers/PascalWhitePaperV5.pdf, 2019.

[36]

 B. S. Reddy, securePrune: Secure block pruning in UTXO
based blockchains using accumulators, in Proc. 2021 Int.
Conf. COMmunication Systems & NETworkS, Bangalore,
India, 2021, pp. 174–178.

[37]

 J. Cai, K. Qian, J. Luo, and K. Zhu, SARM: Service
function chain active reconfiguration mechanism based on
load and demand prediction, Int. J. Intell. Syst., vol. 37,
no. 9, pp. 6388–6414, 2022.

[38]

 J. Cai, H. Fu, and Y. Liu, Deep reinforcement learning-
based multitask hybrid computing offloading for
multiaccess edge computing, Int. J. Intell. Syst., vol. 37,
no. 9, pp. 6221–6243, 2022.

[39]

 W. Li, Y. Wang, Z. Jin, K. Yu, J. Li, and Y. Xiang,
Challenge-based collaborative intrusion detection in
software-defined networking: An evaluation, Digital
Commun. Netw., vol. 7, no. 2, pp. 257–263, 2021.

[40]

 T. Li, W. Chen, Y. Tang, and H. Yan, A homomorphic
network coding signature scheme for multiple sources and
its application in IoT, Secur. Commun. Netw., vol. 2018, p.
9641273, 2018.

[41]

 Q. Chen, C. Tang, and Z. Lin, Efficient explicit
constructions of multipartite secret sharing schemes, IEEE
Trans. Inform. Theory, vol. 68, no. 1, pp. 601–631, 2022.

[42]

 Q. Chen, C. Tang, and Z. Lin, Compartmented secret
sharing schemes and locally repairable codes, IEEE Trans.
Commun., vol. 68, no. 10, pp. 5976–5987, 2020.

[43]

 Q. Chen, C. Tang, and Z. Lin, Efficient explicit
constructions of compartmented secret sharing schemes,
Des. Codes Cryptogr., vol. 87, no. 12, pp. 2913–2940,
2019.

[44]

 K. Mo, T. Huang, and X. Xiang, Querying little is enough:
Model inversion attack via latent information, in Proc. 3rd

Int. Conf. on Machine Learning for Cyber Security,

[45]

 Pengfei Huang et al.: SnapshotPrune: A Novel Bitcoin-Based Protocol Toward Efficient Pruning and Fast Node... 1051

Guangzhou, China, 2020, pp. 583–591.
 K. Mo, W. Tang, J. Li, and X. Yuan, Attacking deep
reinforcement learning with decoupled adversarial policy,
IEEE Trans. Dependable Secure Comput., vol. 20, no. 1,
pp. 758–768, 2023.

[46]

 W. X. Liu, J. Cai, Q. C. Chen, and Y. Wang, DRL-R:
Deep reinforcement learning approach for intelligent
routing in software-defined data-center networks, J. Netw.
Comput. Appl., vol. 177, p. 102865, 2021.

[47]

 F. Wang, Y. Li, F. Liao, and H. Yan, An ensemble
learning based prediction strategy for dynamic multi-

[48]

objective optimization, Appl. Soft Comput., vol. 96, p.
106592, 2020.
 L. Hu, H. Yan, L. Li, Z. Pan, X. Liu, and Z. Zhang,
MHAT: An efficient model-heterogenous aggregation
training scheme for federated learning, Inf. Sci., vol. 560,
pp. 493–503, 2021.

[49]

 W. Tang, B. Li, M. Barni, J. Li, and J. Huang, An
automatic cost learning framework for image
steganography using deep reinforcement learning, IEEE
Trans. Inform. Forensics Secur., vol. 16, pp. 952–967,
2021.

[50]

Pengfei Huang received the BEng degree
in computer science and technology from
Harbin Engineering University, China in
2019. He is currently a master student in
cyberspace security at Guangzhou
University, China. His main research
interest is blockchain.

Xiaojun Ren received the BEng and
MEng degrees from Shandong University
of Science and Technology, China in 2007
and 2010, respectively, and the PhD degree
from Dongseo University, Republic of
Korea in 2016. Currently, he is a full-time
doctoral researcher at Institute of Artificial
Intelligence and Blockchain, Guangzhou

University, China. His research interests include blockchain and
machine learning.

Teng Huang received the BEng degree
from Guilin University of Technology,
China in 2009, the MEng degree from
Central South University, China in 2012,
and the PhD degree in electronic and
communication engineering from Beihang
University, China in 2019. He is currently
an associate professor at Institute of

Artificial Intelligence and Blockchain, Guangzhou University,
China. His research focuses on machine learning, adverserial
attacks, and synthetic aperture radar target recognition.

Arthur Sandor Voundi Koe received the
BEng degree in network and computer
maintenance from The African Institute of
Computer Science, Cameroon in 2010, the
second BEng degree in fundamental
computer science from University of
Yaoundé 1, Cameroon in 2011, the MEng
degree in computer and application

technology from Hunan University, China in 2015, and the PhD
degree in computer science and application technology from
Hunan University, China in 2020. He is currently a doctoral
researcher at Guangzhou University, China. His research
interests include security and privacy issues in blockchain
technology, cloud computing security and privacy issues, and
machine learning.

Duncan S Wong received the BEng
degree in electrical & electronic
engineering with first-class honors from
The University of Hong Kong, China in
1994, the M. Phil. degree in information
engineering from The Chinese University
of Hong Kong in 1998, and the PhD
degree in computer science from

Northeastern University, Boston, MA, USA in 2002. He is
currently an off-campus supervisor at Guangzhou University.
His main research interest is cryptography, particularly,
cryptographic protocols, encryption, and signature schemes, and
anonymous systems.

Hai Jiang received the BEng and MEng
degrees from Jilin University in computer
science and technology, China, and the
PhD degree from Institute of Computing
Technology, Chinese Academy of
Sciences, China. He is currently an off-
campus supervisor at Guangzhou
University, China. He has published more

than 10 academic papers. His research interests include
blockchain and distributed computing networks.

 1052 Tsinghua Science and Technology, August 2024, 29(4): 1037−1052

