

Federated Meta Reinforcement Learning for Personalized Tasks

Wentao Liu, Xiaolong Xu*, Jintao Wu, and Jielin Jiang

Abstract: As an emerging privacy-preservation machine learning framework, Federated Learning (FL) facilitates

different clients to train a shared model collaboratively through exchanging and aggregating model parameters

while raw data are kept local and private. When this learning framework is applied to Deep Reinforcement

Learning (DRL), the resultant Federated Reinforcement Learning (FRL) can circumvent the heavy data

sampling required in conventional DRL and benefit from diversified training data, besides privacy preservation

offered by FL. Existing FRL implementations presuppose that clients have compatible tasks which a single

global model can cover. In practice, however, clients usually have incompatible (different but still similar)

personalized tasks, which we called task shift. It may severely hinder the implementation of FRL for practical

applications. In this paper, we propose a Federated Meta Reinforcement Learning (FMRL) framework by

integrating Model-Agnostic Meta-Learning (MAML) and FRL. Specifically, we innovatively utilize Proximal

Policy Optimization (PPO) to fulfil multi-step local training with a single round of sampling. Moreover,

considering the sensitivity of learning rate selection in FRL, we reconstruct the aggregation optimizer with the

Federated version of Adam (Fed-Adam) on the server side. The experiments demonstrate that, in different

environments, FMRL outperforms other FL methods with high training efficiency brought by Fed-Adam.

Key words: federated learning; reinforcement learning; meta-learning; personalization

1　Introduction

In recent years, applications based on machine learning
have achieved great success in various areas, which is
inseparable from the sustentation of abundant data. To
deal with the sheer volume of data, sufficient
computing power is essential for model training and is
usually realized by the distributed system[1–5].
Meanwhile, the development of end devices
(smartphones, laptops, Internet of Things (IoT)

devices, etc.) further expands the scope of distributed
model training. For the public, large-scale data
collection is a double-edged sword. While providing
more accurate services, data also portray users’
behavior habits, leaking personal information, etc. The
data privacy laws such as General Data Protection
Regulation (GDPR)[6] also reflect governments’
concerns about the risk of data breaches. In this
context, data privacy for distributed learning is
becoming the spotlight. To tackle the privacy problem,
Federated Learning (FL)[7] is proposed as a new
paradigm that let different devices collaboratively train
a shared global model without exchanging any raw
data with each other. The most commonly used method
is FedAvg[7] which averages the collected models to
obtain the new global model. As a universal
framework, FL can be adapted to most machine
learning methods, including supervised learning and
reinforcement learning, that is, Federated

 Wentao Liu is with School of Computer Science, Nanjing

University of Information Science and Technology, Nanjing
210044, China. E-mail: liuwentao728@gmail.com.

 Xiaolong Xu, Jintao Wu, and Jielin Jiang are with School of
Software, Nanjing University of Information Science and
Technology, Nanjing 210044, China. E-mail: xlxu@nuist.
edu.cn; wjt@nuist.edu.cn; jiangjielin2008@nuist.edu.cn.

* To whom correspondence should be addressed.
 Manuscript received: 2023-04-03; revised: 2023-06-26;

accepted: 2023-06-27

TSINGHUA SCIENCE AND TECHNOLOGY
ISSN 1007-0214 20/20 pp911−926
DOI: 10 .26599 /TST.2023 .9010066
Volume 29 , Number 3 , June 2024

© The author(s) 2024. The articles published in this open access journal are distributed under the terms of the

Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

Reinforcement Learning (FRL)[8].
Due to the feature extraction ability on different

levels, especially in high-dimensional space[9, 10], Deep
Reinforcement Learning (DRL) becomes increasingly
popular and shows its power in various domains that
involve decision-making issues such as network
control[11], robotics[12], and autonomous driving[13]. As
the price for good performance, DRL requires a long
time and colossal amounts of records for policy
training. The poor training and sampling efficiency
hinders the implementation of DRL in some real-world
scenarios, for example, in healthcare, where data
trajectories cannot be generated synthetically or
exchanged due to privacy preservation[14, 15]. For these
privacy-sensitive scenarios, FRL provides a credible
solution that collaborates with multiple data sources to
improve the training efficiency of DRL policy while
avoiding the exposure of data trajectories. Due to the
distributed nature of FRL, the participating clients are
able to construct a high-performance global policy in
their local environments without heavy sampling and
training overhead.

However, given the various requirements in reality,
clients involved in FRL usually have similar but
different personalized tasks, which we call task shift.
For example, for resource management in edge
computing[16–18], depending on the location of the edge
server, service hotspots conform to different
distributions, which directly influences the computing
offloading or service caching decision of the policy.
The existing works of FRL[19–21] aim to obtain a shared
global model as the policy for decision making, and the
differences in tasks are explicitly presented in some
observation dimensions. There is no doubt when the
differences are implicit such as service hotspots, it is
hard for a single policy to cover all these hidden
distributions. For those tasks with implicit differences,
the same policy may polarize on different tasks. The
phenomenon is rooted in the Non-Identically and
Independently Distributed (Non-IID) setting of FL[22],
which is one of the main research branches in FL[23, 24].
And it also derives a concept, Personalized Federated
Learning (PFL)[25, 26], which calls on each client to
develop their personalized local models. At present,
most of the works on PFL focused on supervised
learning, but there is little on reinforcement learning.
Different from supervised learning, the Non-IID
problem in reinforcement learning is mainly presented
on the discrepancy of tasks instead of the distribution

of data inputs or labels, which limits the direct
immigration of those PFL works in supervised learning
to FRL.

In this paper, we propose a Federated Meta
Reinforcement Learning method, named FMRL, to
explore the possibility of PFL in reinforcement
learning. The method builds on the Model-Agnostic
Meta-Learning (MAML)[27] and we reformulate the
FRL problem to fit our goal which is to find an easy-
trained global model for different personalized tasks. It
can quickly align with the task of the current client
through a few interactions with the environment. At
each step of the local training, the client needs to
sample data with the current policy, which brings a
large sampling overhead for the multi-step local
training. For sampling and training efficiency, we
utilize importance sampling and update clipping in
Proximal Policy Optimization (PPO)[28] to achieve
multi-step local training with a single round of
sampling. Considering the characteristics of FRL
(sensitive local learning rate and high variance of the
model aggregation), we adopt the Federated version of
Adam[29, 30] (Fed-Adam) as the aggregation optimizer
to adaptively adjust the update rate of the global model,
to accelerate the training process. Meanwhile, we
extract the general form of the aggregation optimizer
and compare its difference in FedAvg, FMRL, and
other PFL methods.

Our contributions:
● We expand PFL to the field of reinforcement

learning and reformulate the problem with MAML to
fit the personalized task problem.

● Due to the requirements of multi-batch sampling
in MAML, we integrate importance sampling to greatly
reduce the sampling rounds of MAML. In addition,
update clipping is adopted to improve the training
efficiency of multi-step local training on the client side.

● To accelerate the convergence of the global model,
we replace the conventional aggregation optimizer in
FedAvg with Fed-Adam. It will adjust the global
update rate according to the uploaded client model,
which is more suitable for FRL scenarios. The related
experiments show that Fed-Adam greatly improves
training efficiency.

● We empirically evaluate the performance of
FMRL in various environments in which each client
has different personalized tasks. The experiments attest
that FMRL achieves higher rewards than other methods
with the local model after 1, 2, and 3 inner adaptions.

 912 Tsinghua Science and Technology, June 2024, 29(3): 911−926

Besides, the adaptive experiment shows that FMRL
also performs well on those new clients who have not
participated in federated learning before.

The paper is organized as follows. Section 2
summarizes current related works on FRL and PFL.
Section 3 describes the details of our model. Section 4
presents the experiment results on the performance and
training efficiency. Section 5 concludes our work and
proposes future work. The acronyms and main
notations in this paper are listed in Tables A1 and A2
in Appendix A.

2　Related Work

2.1　Federated reinforcement learning

In Ref. [8], the concept of FRL is first defined and the
corresponding application scenarios are discussed. It
constructs the private Q-network for each client and
uploads the clients’ Q-values with Gaussian noise for
the inference of the global policy. The approach
enables those clients who lack complete data
trajectories to generate their own strategies still. Liu
et al.[19] proposed a lifelong FRL architecture for
navigation in cloud robotic systems. The robots learn
their policies in local environments and the server fuses
them to the shared policies on the cloud for
downloading and training by new robots. Liang
et al.[20] studied federated transfer reinforcement
learning in autonomous driving. It transfers the
knowledge from the simulation environments to the
real world, allowing clients in different kinds of
environments to participate in the federation process.
Nadiger et al.[21] employed FRL to realize fast
personalization of non-player characters in games.
Similar clients are classified into the same group and
share data to train the global policy collaboratively.
Compared to the others, this work considers the
personalization of FRL and utilized multiple global
models for different user groups.

The aforementioned works except Ref. [21] consider
the difference in client tasks and expect the global
policy to perform well in a new environment. But they
assume tasks are compatible with each other, which
means the global policy can accumulate knowledge
continuously and handle all tasks simultaneously. For
incompatible tasks, approaching one task must lead to a
deviation from another for a single policy. The
conventional methods of FRL which try to find the best
global policy would fail in this scene. And for Ref.

[21], it avoids the above-mentioned problems by
constructing corresponding policies for different
clusters, which have a similar idea to a part of PFL
methods[31–33]. However, the idea is based on clustering
which needs to collect users’ information and this step
may bring privacy concerns.

2.2　Personalized federated learning

Multiple approaches have been proposed for PFL and
the comprehensive survey for PFL can be found in Ref.
[34]. Overall, there are several popular directions for
the current works: mixtures of the global and local
models[35–37], learning between relevant clients
(clustering)[31–33], model regularization[38–40], and meta-
learning[41–43]. Hanzely and Richtárik[35] proposed
L2GD algorithm to realize the mixture optimization of
the global and local models. Mansour et al.[32]

presented three PFL methods: user clustering, data
interpolation, and model interpolation. Thereinto, the
user clustering method supposes the potential
relationship of clients and trains the global model per
client group. To render the clients for pursuing their
personalized model while not deviating far from the
global model, Dinh et al.[38] proposed pFedMe
algorithm which attaches a new regularization with
Moreau envelopes, controlling the personalization
degree. Fallah et al.[42] introduced MAML into the FL
process and proposed the personalized version of
FedAvg, Per-FedAvg, which reformulates the FL goal
to obtain a high-adaptive global model. Due to the high
cost of computing Hessian matrix in MAML, several
works investigated the approximate estimates[27, 44].

Considering the characteristics of reinforcement
learning, it is hard to migrate existing PFL works
directly. The main problem is that the collected data
trajectories depend on the current policy, rather than
the fixed prior distribution in supervised learning. Also,
the privacy of users’ tasks is another point that needs to
consider. It means the PFL methods based on
clustering may be more difficult to be adopted in FRL.

3　Federated Meta Reinforcement Learning
with MAML

In the general FL scenario, numerous clients participate
the federation process under the orchestration of a
central server for the common goal:

min
θ∈Rd

f (θ) :=
1
|C|

∑
i∈C

fi(θ) (1)

 Wentao Liu et al.: Federated Meta Reinforcement Learning for Personalized Tasks 913

θ C

θ∗ f (θ)

where represents the global model parameters and
is the client set. The process aims to find an optimal
model to minimize the objective function .

Compared with the above objective, MAML pays
more attention to the optimizability of the model,
which is defined as the model performance after one-
step gradient descent. The final goal of MAML is to
find a set of parameters that can quickly converge to an
approximate optimal solution. Switch to the FL scene
with MAML, we need to get an appropriate global
model, the clients can train their personalized models
after a few rounds of local training based on this global
model. The goal can be reformulated as

min
θ∈Rd

F(θ) :=
1
|C|

∑
i∈C

Fi(θ) (2)

Fi(θ)where is denoted as

Fi(θ) := fi(θ−α∇ fi(θ)) (3)

α

Fi(θ) i
θ

fi(θ)

Thereinto, is the learning rate of inner adaption
and presents the objective function of client
with model after one-step inner adaption. In this
section, we first compare the specific form of in
supervised learning and reinforcement learning. Then,
we formulate the personalization problem in FRL. In
the end, we propose the FMRL algorithm to solve the
problem raised in Eq. (2) and discuss the
implementation of different federated optimizers.

3.1　Problem formulation

fi(θ)
i

Under the setting of supervised learning,
represents the expected loss on the dataset of client
which is defined as

fi(θ) := E(x,y)∼pi [l(θ; x,y)] (4)

pi i li(θ; x,y)
θ

where is the data distribution of client and
is the loss function of model . In Non-IID scenarios,
the data distribution for each client is usually different
and fixed.

i Mi := (Si,Ai,Pi,ρi,ri) Si

Ai

ρi(s) s ∈ Si

Pi(s′|s,a) s
s′ a ∈ Ai

a s ri(s,a)

τ := (s0,a0, s1,a1, ...,

sH ,aH) H H

For reinforcement leaning, it can be modelled as a
Markov Decision Process (MDP)[45]. The MDP of
client is defined as .
represents the state space and represents the action
space. is the probability of initial state , and

 indicates the transfer probability from state
to when the agent executes action . The
reward of action under state is defined as .
The interaction of the agent with the environment can
be described as the trajectory

 where is the time horizon, we suppose is

πi(·|·;θ)
πi(a|s;θ)

a s
τ πi(θ)

fixed. The agent follows the policy to interact
with the environment, and is the probability of
taking action under state . The sampling probability
of depends on the policy § and is given by

qi(τ;θ) := ρi(s0)
H∏

i=0
πi(ah|sh;θ)

H−1∏
h=0

Pi(sh+1|sh,ah) (5)

τThe discounted total reward of a single trajectory is
defined as

Ri(τ) :=
H∑

h=0

γhri(sh,ah) (6)

γ

fi(θ)
where is the discount factor. At this point, the
specific form of in reinforcement learning is given
as

fi(θ) := −Eτ∼qi(·|θ)[Ri(τ)]︸ ︷︷ ︸
Ji(θ)

(7)

fi(θ) Ji(θ)

pi qi(·|θ)
θ

Ji(θ)

Note that the problem defined in Eq. (1) is a
minimization issue but the goal in reinforcement
learning is to maximize the reward. To align with
Eq. (1), is defined as the opposite of .
Comparing Eqs. (4) and (7), the significant difference
in the two settings derives from the data distributions

 and . The former is a fixed probability, while
the latter is affected by model . It requires clients to
sample trajectories before each local training, which
brings a large sampling overhead and restricts the
rounds of multi-step training. To improve the training
efficiency, we introduce PPO and institute in
Eq. (7) with

Jθ̂i (θ) := E(sh,ah)∼πi(θ̂)[min(uθ̂i (sh,ah; θ),uclip,θ̂
i (sh,ah; θ))]

(8)

uθ̂i (sh,ah;θ)where is defined as

uθ̂i (sh,ah;θ) =
πi(ah|sh;θ)
πi(ah|sh; θ̂)

Ai(sh,ah; θ̂) (9)

uclip,θ̂
i (sh,ah; θ)and is defined as

uclip,θ̂
i (sh,ah; θ) =clip

(
πi(ah|sh; θ)
πi(ah|sh; θ̂)

,1− ϵ,1+ ϵ
)
·

Ai(sh,ah; θ̂)
(10)

(sh,ah)
πi(θ̂) πi(θ̂)
πi(θ)

In Eq. (8), the basic unit of data is no longer a whole
trajectory, but a tuple of the state and the action
which sampled by . is the old policy which
sampled data and is the current policy to be
optimized. For the first condition of choosing

πi(·|·;θ) πi(θ)
πi(θ) θ

§To simplify the notation, we suppress policy as .
Meanwhile, we call policy and call model to differentiate.

 914 Tsinghua Science and Technology, June 2024, 29(3): 911−926

uθ̂i (sh,ah;θ)
πi(θ)

πi(θ̂)
(sh,ah) πi(ah|sh;θ)/πi(ah|sh; θ̂)

Ri(τ) Ai(sh,ah; θ̂)
ah sh

uclip,θ̂
i (sh,ah; θ)

ϵ ∈ (0,1)

πi(θ) πi(θ̂)
uθ̂i (sh,ah;θ)

uclip,θ̂
i (sh,ah; θ)

Jθ̂i (θ)

 defined in Eq. (9), importance sampling[46]

enables current policy to be trained on the history
data sampled by . The importance weight of tuple

 is calculated by the rate .
Different with , the advantage function
estimates the advantage of action under state .
Here we use the Generalized Advantage Estimator
(GAE) and for more details see Ref. [47]. Then, the
second condition of choosing defined in
Eq. (10) is just adding the clipping operation and

 is the parameter to control the clipping range.
The operation avoids the extreme importance weight
when and are quite different. Intuitively,
taking the minimum between and

 prevents the new policy from deviating
the old one too much, in order to stabilize the training
process on .

Jθ̂i (θ)Based on Eq. (8), the gradient of is given by

∇Jθ̂i (θ) = E(sh,ah)∼πi(θ̂)[g
θ̂
i (sh,ah;θ)] (11)

gθ̂i (sh,ah;θ)where is defined as

gθ̂i (sh,ah; θ) :=


∇πi(ah|sh; θ)
πi(ah|sh; θ̂)

Ai(sh,ah; θ̂), uθ̂i ⩽ uclip;θ̂
i ;

Zero, uθ̂i > uclip,θ̂
i

(12)

uθ̂i (sh,ah;θ)

uclip,θ̂
i (sh,ah; θ)

uθ̂i ⩽ uclip,θ̂
i

uθ̂i (sh,ah;θ)

θ uclip,θ̂
i (sh,ah; θ)

(1− ϵ)Ai(sh,ah; θ̂) (1+ ϵ)Ai(sh,ah; θ̂)
∇Jθ̂i (θ) ∇2Jθ̂i (θ)

In the above formula, the variable parts of
and are omitted to simplify the notation.
When , Formula (12) calculates the actual
gradient of . Otherwise, it equals zero
because is excluded from , in this case,
which equals or .
Similar with , the Hessian is given by

∇2Jθ̂i (θ) = E(sh,ah)∼πi(θ̂)[v
θ̂
i (sh,ah;θ)] (13)

vθ̂i (sh,ah;θ)where is defined as

vθ̂i (sh,ah; θ) :=


∇2πi(ah|sh; θ)
πi(ah|sh; θ̂)

Ai(sh,ah; θ̂), uθ̂i ⩽ uclip,θ̂
i ;

Zero, uθ̂i > uclip,θ̂
i

(14)

Jθ̂i (θ)
Fi(θ)

Take the new definition of into Eqs. (7) and
(3), can be written as

Fi(θ) := −JΨi(θ)
i (Ψi(θ)) (15)

Ψi(θ)where represents the model parameters after one-
step inner adaption which is defined as

Ψi(θ) := θ+α∇Jθi (θ) (16)

α

∇Jθi (θ) πi(θ) JΨi(θ)
i (Ψi(θ))

Jθi (θ)
Ψi(θ) θ

πi(ah|sh;θ)/πi(ah|sh; θ̂) = 1

where is the learning rate of inner adaption and
 is the gradient of policy . Both

and are calculated on the data sampled by the
current policy and , which means the
importance weight . When it
comes to multi-step local training, the weight will no
longer be constant. We will discuss this situation in
Section 3.2.

Fi(θ)

∇Fi(θ)

To minimize the local objective function , the
gradient is necessary to perform gradient descent.
Based on Eq. (15), is given by

∇Fi(θ) = −(I+α∇2Jθi (θ))∇JΨi(θ)
i (Ψi(θ)) (17)

∇JΨi(θ)
i (Ψi(θ))
∇2Jθi (θ)

where the gradient are calculated by
Eq. (11) and the Hessian is calculated by
Eq. (13).

3.2　Algorithm

∇Jθ̂i (θ)

Dθ̂i = {τ1, τ2, ..., τn} θ̂

Considering the computation of actual is
intractable, we sample a batch of trajectories

 with policy to obtain the estimate
of gradient

∇̃Jθ̂i (θ,Dθ̂i) :=
1

|Dθ̂i |H

∑
τ∈Dθ̂i

H∑
h=0

gθ̂i (sτh,a
τ
h;θ) (18)

(sτh,a
τ
h) h

τ H
Jθ̂i (θ)

Dθ̂i

where the tuple represents the -th step of agent
in trajectory and is the fixed time horizon. The
estimate of Hessian can be similarly calculated on

 as

∇̃2Jθ̂i (θ,Dθ̂i) :=
1

|Dθ̂i |H

∑
τ∈Dθ̂i

H∑
h=0

vθ̂i (sτh,a
τ
h;θ) (19)

k
θk

θk,ti (t ⩾ 0) i t
Fi(θ

k,t
i)

For the conventional FL process (e.g., FedAvg), at
the -th aggregation round, the server will distribute
the global policy to all clients. Then, before
uploading models for the aggregation, these clients
usually perform multi-step training locally to reduce
communication overhead. In this situation, we define

 as the model of client after local steps. So
the stochastic gradient of is calculated as

∇̃Fi(θ
k,t
i) := −(I+α∇̃2Jθ

k

i (θk,ti ,D
θk

i))·

∇̃JΨi(θk)
i (θk,ti +α∇̃Jθ

k

i (θk,ti ,D
θk

i),DΨi(θk)
i)

(20)

i
Dθki

DΨi(θk)
i θk

Note that no matter how many steps client performs,
there are always only two sampled batches: and

. The former is sampled by the global policy

 Wentao Liu et al.: Federated Meta Reinforcement Learning for Personalized Tasks 915

t θk,ti = θ
k

θk

t ⩾ 1

πi(ah|sh;θ)/πi(ah|sh; θ̂) , 1

and the latter is sampled by the policy after one-step
inner adaption. When equals zero, . It
corresponds to the situation where the client loads the
global policy and has not performed any local steps.
When , the policy to be optimized and the policy
sampled data are no longer the same, which means the
importance weight .
According to the stochastic gradient in Eq. (20), the
local model is updated as

θk,t+1
i = θk,ti −β∇̃Fi(θ

k,t
i) (21)

βwhere is the learning rate of the local model.

k

λ ∈ (0,1) Ck ⊂ C
|Ck | = λ|C|

θk Ck i
θk,0i = θ

k

The whole process of FMRL is described in
Algorithm 1. At the -th aggregation round, the server
selects a subset of clients in a certain proportion

 (Line 2). The subset is defined as and
. Then, the server distributes the global

model to the clients in (Line 3). For client , it
firstly load the global model and samples the

Dθki DΨi(θk)
i T

i

batch and (Lines 5−8). After steps of
local update (Lines 9−12), the client uploads the
model change given by

∆θki := θk,Ti − θk (22)

∑
i∈Ck
∆θki

θk θk

β1 β2

∆θ−1 = 0 z−1 = 0

to the server (Lines 13 and 14). In the aggregation
phase (Lines 16−18), we utilize the Fed-Adam[29, 30] as
the aggregation optimizer. Specifically, the server
treats the mean changes of clients as the
pseudo-gradient of . Then optimize with Adam
where and are the decay parameters. We define

 and . The details of the aggregator
optimizer are discussed in Section 3.3.

3.3　Aggregation optimizer

In this section, we give the general form of the
aggregation optimizer and compare the difference in
aggregation optimizers between FedAvg, FMRL, and
other PFL methods.

{θki },∀i ∈ Ck

θk+1
In FedAvg, the uploaded models are

simply averaged to obtain the new global model .
The aggregation is given by

θk+1 =
1
|Ck |

∑
i∈Ck

θk,Ti (23)

θk,Ti T
i

θk,Ti = θk +∆θki

where represents the local model after local
steps of training in client . To apply different
aggregation optimizers on the server, we reformulate
the updated local model . So, the
aggregation can be re-written as

θk+1 = θk +
1
|Ck |

∑
i∈Ck

∆θki (24)

The above aggregation form is common in the PFL
methods which maintain the single global model[36, 42].

To accelerate the model convergence, some PFL
methods[38] used another aggregation form given by

θk+1 = (1−η)θk + η
|Ck |

∑
i∈Ck

θk,Ti (25)

which can be re-written as

θk+1 = θk +
η

|Ck |
∑
i∈Ck

∆θki (26)

η = 1 η

Obviously, Eq. (24) is included in Eq. (26) when
learning rate and can be larger to accelerate the
aggregation. The above form can be seen as the
federated version of the Stochastic Gradient Descent
(Fed-SGD) optimizer.

Algorithm 1　Federated meta reinforcement learning
θ0Require: Initial global policy parameters ;

k = 0 K −11: for aggregation round to do
Ck2: 　Select a subset of clients at random;
θk Ck3:　 Distribute the global model to all clients in ;

i ∈ Ck4: 　for each client do

θk,0i = θ
k5: 　　Load the global policy ;

Dθki6:　　 Sample the batch of trajectories ;

Ψi(θk)7:　　 Perform the inner adaption to compute ;

DΨi(θk)
i8: 　　Sample the batch of trajectories ;

t = 0 T −19: 　　for local step to do

∇Fi(θ
k,t
i)10: 　　　Compute the stochastic gradient based on

　　 　　 Eq. (20);

θk,ti11:　　　 Update the model based on Eq. (21)
12:　　 end for

∆θki := θk,Ti − θ
k13: 　　Compute the model change ;

∆θki14:　　 Upload to the server;
15: 　end for

∆θk = β1∆θ
k−1 +β1(

1
|Ck |

∑
i∈Ck
∆θki)16: 　 ;

zk = β2zk−1 + (1−β2)(∆θk)217: 　 ;

θk+1 = θk +η
∆θk√
zk + κ

18: 　Update the global model ;

19: end for
θK20: return ;

 916 Tsinghua Science and Technology, June 2024, 29(3): 911−926

For FMRL, Fed-Adam is utilized as the aggregate
optimizer which is given by

θk+1 = θk +η
∆θk
√

zk + κ
(27)

∆θkwhere the first moment is calculated as

∆θk = β1∆θ
k−1+ (1−β1)

 1
|Ck |

∑
i∈Ck

∆θki

 (28)

zkand the second raw moment is calculated as

zk = β2zk−1+ (1−β2)(∆θk)2 (29)

β1 β2

∆θk zk

η

κ

In the above formulas, and are the exponential
decay rates of the moving averages and ,
respectively. is the learning rate of the aggregation
optimizer and is a small value that controls the
degree of adaptability.

η = 1

η

∆θk

zk

In most circumstances, Fed-SGD is an ideal
aggregation optimizer when (i.e., FedAvg).
However, for reinforcement learning, the model
training is sensitive to the value of the learning rate,
and finding an appropriate learning rate is laborious.
The utilization of Fed-SGD with fixed may cause the
global model to converge slowly. The recent
reinforcement learning methods usually use different
optimizers (momentum, Adam, etc.) for better
performance[28]. However, applying Adam on the client
side directly has two problems. (1) Due to different
personalized tasks, the update directions and degrees of
different local models may diverge a lot, which means
the convergence of the global model may not be
guaranteed. In contrast, the convergence of Fed-Adam
on the server side is theoretically guaranteed[30].
(2) Adam needs to record additional optimizer
parameters (first moment and second raw moment

), which brings the extra communication overhead
for the aggregation of these optimizer parameters.
Therefore, we use Fed-Adam on the service side
instead of using Adam on the client side.

4　Numerical Experiment

In this section, we validate the effectiveness of FMRL
in the personalized setting with extensive experiments.
Firstly, we evaluate the overall performance of FMRL
under different environments with personalized tasks.
Then, we analyze the effect of the involving
hyperparameters in FMRL. Afterwards, we compare
the efficiency improvement brought by different
federated optimizers: Fed-Adam and Fed-SGD.

Finally, we explore the adaptability of FMRL for
clients with new tasks.

4.1　Experimental setup

We consider a locomotion problem (including four
environments) with the MuJoCo simulator[48]. Details
of the four environments are as follows:

d ∈ {1,−1}

● Half-cheetah random direction: The simulated
planar cheetah needs to run faster in a target direction

 (forward or backward). The reward is the
velocity in the target direction minus the control cost.

v ∈ [0,2]
● Half-cheetah random velocity: The same cheetah

needs to run at the target velocity which is
sampled in the uniform distribution. The reward is the
negative of the absolute difference between its current
and the target velocity minus the control cost.

d ∈ {1,−1}

● Ant random direction: The simulated 3D
quadruped (the “ant”) needs to run faster in a target
direction (forward or backward). The reward
is the velocity in the target direction. The reward is
similar to half-cheetah random direction.

v ∈ [0,3]
● Ant random velocity: The same ant needs to run

at the target velocity which is sampled in the
uniform distribution. The reward is similar to half-
cheetah random velocity.

The parameter settings of the above four
environments and the subsequent settings of
reinforcement learning refer to Ref. [27]. These
environments can be divided into two categories:
direction environments and velocity environments,
corresponding to discrete personalized tasks with
limited types but large variations and continuous
personalized tasks with infinite types but minor
variations.

H = 200
H = 100

|Dθki | = |D
Ψi(θk)
i | = 20

α = 0.1
β = 0.001

∇Jθ̂i (θ) ∇Fi(θ)

|C| = 200
K = 500

λ|C| λ = 0.2 T = 5

We set for two half-cheetah environments
and for ant environments. In each sampling,
we sample episodes for both inner
adaption and local training. Besides, we set as
the learning rate of the inner adaption and as
the learning rate of the local training. In particular, to
avoid the high computation overhead of Hessian

, we use the first-order approximation of
which is similar to the First-Order MAML (FO-
MAML) proposed in Ref. [27]. For the setting of FL,
we set clients with different personalized
tasks and aggregation rounds. In each round,

 clients are selected with to run steps
of local training. The optimizer on the client side is

 Wentao Liu et al.: Federated Meta Reinforcement Learning for Personalized Tasks 917

β = 0.001
η = 0.001 β1 = 0.9 β2 = 0.999

κ = 1×10−8

SGD with and the aggregation optimizer is
Fed-Adam with , , , and

.

4.2　Overall performance

To evaluate the empirical performance of FMRL, We
consider:

● FedAvg[7], the standard method in the federated
setting. It averages the local models of the clients
during the model aggregation and distributes the
aggregated model to all clients for next-step training.

● pFedMe[38], one of the PFL methods based on the
model regularization. It attaches a new regularization
with Moreau envelopes, controlling the degree to
which the local model deviates from the global model
during the training.

● FedRep[37], one of the PFL methods based on the
mixtures of the global and local models. It keeps high-
level model layers local and only shares the low-
dimensional representation layers of model
aggregation.

● Ditto[40], one of the PFL methods based on model
regularization, which trains global and local models
separately. The global model is trained just like
FedAvg and its parameters instruct the training of the
local model.

The episode rewards over 5 random seeds along with
95% confidence intervals are reported in Table 1. For
FedRep and Ditto, since each client has its own local

model, the first line of each environment
(global/personalized model) in Table 1 represents the
local model performance after 0 training step.
Meanwhile, all the above methods are equipped with
Fed-Adam instead of Fed-SGD for a fair comparison.

η = 0.0005
η = 0.001

α = 0.01 α = 0.001

In the performance comparison, we set for
half-cheetah random direction and for others.
In particular, to accelerate the training of Ditto which
needs to train the local model independently, we set the
local learning rate for it and for the
others. The remaining settings are the same as those in
Section 4.1. Since the objective of FMRL is to obtain
the personalized model after single or multiple steps of
local training, the performance of its global model is
lower than other methods in three environments. In all
four environments, the local model of FMRL after 1, 2,
and 3 steps outperforms the others on the gained
rewards. For the global model, due to the existence of
personalized tasks, five methods perform similarly
except Ditto which has the personalized model. It is
worth mentioning that FMRL achieves great rewards in
direction environments: half-cheetah random direction
and ant random direction. In contrast, there is almost
no improvement from the global model to the
optimized local model for FedAvg and pFedMe, which
indicates they are limited when the personalized tasks
of clients are quite different or even the opposite. In ant
random direction, pFedMe even underperforms
FedAvg. We believe that the additional model

Table 1 Mean episode rewards of the global model and local models after 1, 2, and 3 steps of inner adaption on all clients.

Environment Model
Mean episode reward

FMRL pFedMe FedAvg FedRep Ditto

Half-cheetah
random direction

Global/personalized model ±−14.59 5.44 ±−6.33 5.06 ±−2.49 1.43 ±5.53 7.76 ±161.13 4.14
Local model after 1 step ±457.02 30.82 ±−5.07 2.88 ±0.10 1.33 ±24.06 25.88 ±163.94 4.02
Local model after 2 steps ±480.96 23.73 ±−2.15 1.04 ±2.76 1.98 ±38.60 33.21 ±166.72 3.82
Local model after 3 steps ±484.26 29.51 ±−0.85 2.63 ±5.68 3.58 ±51.67 34.17 ±169.52 3.90

Half-cheetah
random velocity

Global/personalized model ±−112.86 4.87 ±−113.47 2.40 ±−113.46 1.84 ±−117.62 5.49 ±−195.29 24.19
Local model after 1 step ±−94.35 10.37 ±−107.12 3.59 ±−109.73 2.21 ±−112.74 5.56 ±−195.26 24.22
Local model after 2 steps ±−82.43 13.35 ±−101.10 4.74 ±−106.15 2.43 ±−107.96 6.16 ±−195.14 24.33
Local model after 3 steps ±−74.53 14.81 ±−95.91 5.67 ±−102.59 2.37 ±−103.76 6.29 ±−195.05 24.22

Ant random
direction

Global/personalized model ±2.08 2.53 ±4.84 0.19 ±4.65 0.21 ±5.53 0.36 ±43.42 0.60
Local model after 1 step ±123.17 9.65 ±5.30 0.30 ±5.05 0.25 ±7.54 0.88 ±43.93 0.89
Local model after 2 steps ±127.50 10.22 ±5.64 0.41 ±5.26 0.44 ±8.41 0.69 ±44.43 0.56
Local model after 3 steps ±126.82 11.32 ±6.32 0.78 ±5.57 0.82 ±8.91 0.55 ±44.79 0.66

Ant random
velocity

Global/personalized model ±19.48 3.51 ±20.56 2.28 ±19.42 2.08 ±12.34 3.97 ±−28.86 16.62
Local model after 1 step ±44.30 5.42 ±24.64 3.48 ±23.91 2.88 ±14.51 3.80 ±−28.72 16.48
Local model after 2 steps ±44.85 5.56 ±27.20 4.11 ±27.14 4.56 ±16.63 3.96 ±−28.30 16.57
Local model after 3 steps ±45.18 5.50 ±28.59 5.50 ±29.63 5.72 ±18.29 3.65 ±−28.08 16.29

 918 Tsinghua Science and Technology, June 2024, 29(3): 911−926

regularization could fail and hurt the model
performance instead when the personalized tasks
diverge a lot. And for FedRep and Ditto, their
personalized models reach a higher performance than
FedAvg and pFedMe, which implies that the models
indeed capture the personalized tasks of clients.
However, the improvement brought by the subsequent
optimization of these models is far less than FMRL. In
velocity environments (i.e., half-cheetah random
velocity and ant random velocity), with the increase of
local optimization steps, the gap between FMRL and
other methods is gradually widening. It shows that
FMRL learns the generalized policy and finds more
favorable parameters for further fine-tuning
simultaneously.

The detailed training curves are depicted in Fig. 1
where the upper row represents the performance of the

global model and the lower one represents the
performance of the local model after 1 step. Except for
FedRep, for those methods which fully or partially
share the model, the global model has a large
oscillation on the gained rewards during the training,
especially in half-cheetah random direction. One of the
reasons is that the task distributions of the selected
clients are different at each round, which makes the
global model may not match the current personalized
tasks, performing unsteadily. Besides, the
tendentiousness of the model is affected by the degree
of task deviations, reflected in the wider error bands of
direction environments than velocity environments. For
the local model after 1 step inner adaption, matched to
Table 1, FMRL far surpasses other methods in
direction environments. The rewards of the local
models of FedAvg and pFedMe hover around the x-

(b) Half-cheetah random velocity (global)
Number of steps

(e) Half-cheetah random directory (after 1 step)
Number of steps

Number of steps

R
ew

ar
d

(a) Half-cheetah random directory (global)
Number of steps

(c) Ant random directory (global)
Number of steps

(d) Ant random velocity (global)
Number of steps

(f) Half-cheetah random velocity (after 1 step)
Number of steps

(g) Ant random directory (after 1 step)
Number of steps

(h) Ant random velocity (after 1 step)
Number of steps

Number of steps

R
ew

ar
d

Number of steps

R
ew

ar
d

Number of steps

R
ew

ar
d

Number of steps

R
ew

ar
d

Number of steps

R
ew

ar
d

Number of steps

R
ew

ar
d

Number of steps

R
ew

ar
d

pFedMe
Fig. 1 Performance comparison of FedAvg, pFedMe, and FMRL on the randomly selected clients.

 Wentao Liu et al.: Federated Meta Reinforcement Learning for Personalized Tasks 919

axis throughout the training, similar to the performance
of the global model. And FedRep and Ditto gain
varying improvements after 1 step optimization. In
velocity environments, FMRL obtains a relatively
higher reward than other methods. It seems that
FedAvg, pFedMe, and FedRep grasp the average goal
for continuous personalized tasks. However, the model
only embeds knowledge of robot controlling
(generalized policy) but no oriented task representation
(personalized policy). Specially, Ditto has barely
improved after 500 epochs of training. Considering
FedRep, which is also underperforming, it seems that
the personalization impedes the convergence of the
model and its degree is directly proportional to the
degree of personalization. Due to the random selection
in the federated learning, the sampling and training
rounds of each client cannot support it to train their
personalized model independently, resulting in slow
convergence or even no convergence of the local
model.

4.3　Effect of hyperparameters

η β

λ

In this section, we investigate the effect of some
hyperparameters (learning rates , , and client
selection rate) to the performance of FMRL.
4.3.1　Learning rate

η β

Figures 2 and 3 illustrate the effect of aggregation
learning rate and local learning rate to the local

model with one inner adaption, respectively.
β

η

η = 0.001

η = 0.001

In Fig. 2, is fixed to 0.001 to observe the impact of
 changing. According to Fig. 2, similar with Adam,

the default value reaches higher rewards
except in half-cheetah random direction. In fact, the
performance of in two direction
environments are both unstable. It is beneficial to
choose a smaller aggregation learning rate for discrete
personalized tasks and the value can be appropriately
increased for the continuous personalized tasks in the
early stages to accelerate the FL process.

β

η

η = 0.0003 η = 0.001

β = 0.001
β

η

η

Under the appropriate aggregation learning rate, the
effect of local learning rate is relatively small, which
is verified in Fig. 3. We select that performs the best
in Fig. 2 (i.e., for the first and for
the other environments). Setting local learning rate

 is still a good choice in most cases. Note that
the changes of bring a large difference in ant random
directory, which is caused by the large aggregation
learning . This is consistent with the above conclusion
that smaller is more suitable for discrete personalized
tasks.

η βIn general, and should be adjusted in inverse
proportion to reach the balance of the convergence
speed and the training stability.
4.3.2　Client selection rate
In FL, the presence of stragglers is non-negligible

(a) Half-cheetah random directory (after 1 step) (b) Half-cheetah random velocity (after 1 step) (c) Ant random directory (after 1 step) (d) Ant random velocity (after 1 step)
Number of steps Number of steps Number of steps Number of steps

Fig. 2 Effect of aggregation learning rates on the local model.

(a) Half-cheetah random directory (after 1 step) (b) Half-cheetah random velocity (after 1 step) (c) Ant random directory (after 1 step) (d) Ant random velocity (after 1 step)
Number of steps Number of steps Number of steps Number of steps

Fig. 3 Effect of local learning rates on the local model.

 920 Tsinghua Science and Technology, June 2024, 29(3): 911−926

λ

λ λ

λ = 0.1

λ

λ = 0.3

which causes the number of clients actually
participating in the aggregation to be lower than
expected. On this level, the degree of the effect of
client selection rate indirectly reflects the method
robustness in FL. Figure 4 shows the rewards of the
clients selected for aggregation each round (upper) and
the rewards of all clients each 100 rounds (lower) with
different values of . Changes in have different
effects on direction and velocity environments.
Compared to velocity environments, the low selection
rate () is more destructive to the convergence of
the model in direction environments. It reduces the
final rewards and makes the training process unstable.
Since the subset of clients for the aggregation at each
round is randomly selected, the task distribution of the
subset may be greatly different from the overall task
distribution, which is reflected in high variances,
especially when the selection rate of clients is small.
For the velocity environments where personalized tasks
are continuous, the differences in task distribution are
alleviated to a certain extent. Besides, although the
final reward boost is less, a high selection rate ()
accelerates the aggregation in more complicated
environments (ant random direction and ant random
velocity).

4.4　Effect of aggregation optimizers

η β

η = 1

To evaluate the improvement of training efficiency
brought by Fed-Adam, we compare Fed-Adam with
Fed-SGD under different and in Fig. 5. When

, the Fed-SGD behaves the same with FedAvg.
Here we use the single combination of the learning rate
for Fed-Adam. When the local learning rate is small

β = 0.001
η

β

η

β = 0.01 η = 5

β

η

(), the rewards of Fed-SGD almost do not
improve. Even the aggregation learning rate is
increased, there are few changes in the rewards. Under
the same , the rewards of Fed-Adam grow rapidly in
the early stages of training. To highlight the influence
of , we study the performance of Fed-SGD with a
larger local learning rate as well. When ,
the rewards of Fed-SGD presents a large improvement
during the training. However, as the training
progresses, the rewards become unstable and back
down to the low in half-cheetah random direction and
ant random direction. Though the large accelerates
the federation process, it also causes huge deviations
between different local models. In this case, the
aggregated global model may deviate from the
optimization goal of all clients, and the deviation is
amplified by the large aggregation learning rate .
Compared with the continuous tasks, the discrete tasks
with high variations are more affected by the model
deviation, which explains the poorer performance of
Fed-SGD in direction environments.

In summary, the utilization of Fed-Adam greatly
improves the efficiency and performance of FMRL
compared to Fed-SGD. Meanwhile, the above analysis
shows that it is difficult to find an appropriate
combination of the local and aggregation learning rates
for Fed-SGD. Compared with Fed-SGD, Fed-Adam
does not require much effort to adjust the learning
rates.

4.5　Scalability

In addition to the clients involved, we also study the
performance of FMRL on the clients that never

(e) Half-cheetah random directory (selected clients) (f) Half-cheetah random velocity (selected clients) (g) Ant random directory (selected clients) (h) Ant random velocity (selected clients)

Number of steps Number of steps Number of steps Number of steps

Number of steps Number of steps Number of steps Number of steps

(a) Half-cheetah random directory (all clients) (b) Half-cheetah random velocity (all clients) (c) Ant random directory (all clients) (d) Ant random velocity (all clients)

Fig. 4 Effect of client selection rates on the local model of selected and all clients.

 Wentao Liu et al.: Federated Meta Reinforcement Learning for Personalized Tasks 921

α = 0.1
α = 0.05

participate in the federation process before. The result
in Fig. 6 shows that FMRL can adapt to new
personalized tasks without additional rounds of
federation training. Thereinto, we set in the first
step and in the subsequent steps. In direction
environments, FMRL also performs well on new
clients. And other methods have little improvement in
the first five steps. Compared to discrete personalized
tasks, the continuous tasks in velocity environments
bring more challenges to the model training. Even so,
the reward of FMRL still increases faster and is more
stable than other methods. In fact, the methods based
on personalized models such as FedRep and Ditto
show little scalability on new clients due to the overly
specialized personalized models, especially in complex
environments. Beside, pFedMe performs even worse
than FedAvg in ant random velocity. To obtain the
personalized model, pFedMe executes additional local
updates with customized regularization, which makes
the global model only optimized for the participating
clients, impairing its scalability on new clients.

5　Conclusion and Future Work

In this paper, we propose a method of federated meta

reinforcement learning for personalized tasks, named
FMRL, to solve the task shift problem in FRL.
Considering the conflict between the communication
overhead of aggregations and the sampling overhead of
multi-step local training, FMRL leverages PPO to
achieve the reuse of historical data for gradient and
Hessian computation in MAML. Meanwhile, for better
convergence speed and performance, we replace the
Fed-SGD in FedAvg with Fed-Adam as the new
aggregation optimizer. The results of numerical
experiments corroborate that our approach outperforms
other methods in different environments, including
discrete and continuous personalized tasks, and can
easily adapt to new clients. Future work is to analyze
the effectiveness and efficiency of FMRL when various
privacy mechanisms are applied.

Appendix

Acronym and Notation

i i

For convenience, we list all acronyms and main
notations in Tables A1 and A2. All notations with
subscript are related to client , which will not be
emphasized in Table A2 any more.

(a) Half-cheetah random directory (after 1 step) (b) Half-cheetah random velocity (after 1 step)
Number of steps Number of steps

(c) Ant random directory (after 1 step) (d) Ant random velocity (after 1 step)
Number of steps Number of steps

Fig. 5 Effect of aggregation optimizers with different learning rates.

 922 Tsinghua Science and Technology, June 2024, 29(3): 911−926

Acknowledgment

This work was supported by the National Key
Research and Development Program of China (No.
2020YFB1707601), the Major Research Plan of the
National Natural Science Foundation of China (No.
92267104), the Natural Science Foundation of Jiangsu
Province of China (No. BK20211284), and the
Financial and Science Technology Plan Project of
Xinjiang Production and Construction Corps (No.
2020DB005).

References

 T. Ben-Nun and T. Hoefler, Demystifying parallel and
distributed deep learning: An in-depth concurrency
analysis, ACM Comput. Surv., vol. 52, no. 4, p. 65, 2019.

[1]

 M. Langer, Z. He, W. Rahayu, and Y. Xue, Distributed
training of deep learning models: A taxonomic
perspective, IEEE Trans. Parallel Distrib. Syst., vol. 31,
no. 12, pp. 2802–2818, 2020.

[2]

 L. Gu, M. Cui, L. Xu, and X. Xu, Collaborative offloading
method for digital twin empowered cloud edge computing
on Internet of vehicles, Tsinghua Science and Technology,
vol. 28, no. 3, pp. 433–451, 2023.

[3]

 X. Zhou, W. Liang, K. I. K. Wang, and L. T. Yang, Deep
correlation mining based on hierarchical hybrid networks
for heterogeneous big data recommendations, IEEE Trans.
Comput. Soc. Syst., vol. 8, no. 1, pp. 171–178, 2021.

[4]

 Q. He, Z. Dong, F. Chen, S. Deng, W. Liang, and Y.
Yang, Pyramid: Enabling hierarchical neural networks
with edge computing, in Proc. ACM Web Conf. 2022,
Virtual Event, Lyon, France, 2022, pp. 1860–1870.

[5]

 P. Voigt and A. V. D. Bussche, The EU General Data
Protection Regulation (GDPR): A Practical Guide. Cham,
Switzerland: Springer, 2017.

[6]

 H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and
B. A. Y. Arcas, Communication-efficient learning of deep
networks from decentralized data, arXiv preprint arXiv:
1602.05629, 2016.

[7]

 H. H. Zhuo, W. Feng, Y. Lin, Q. Xu, and Q. Yang,
Federated deep reinforcement learning, arXiv preprint

[8]

(a) Half-cheetah random directory (b) Half-cheetah random velocity
Number of steps Number of steps

Number of steps
(c) Ant random directory (d) Ant random velocity

Number of steps

Fig. 6 Performance of the global model after inner adaptions on the new clients.

Table A1 Acronyms used in the paper.
Acronym Full name

FL Federated learning
FRL Federated reinforcement learning
DRL Deep reinforcement learning

Non-IID Non-identically and independently distributed
PFL Personalized federated learning

MAML Model-agnostic meta-learning
PPO Proximal policy optimization

Fed-Adam Federated version of Adam
Fed-SGD Federated version of stochastic gradient descent

MDP Markov decision process

 Wentao Liu et al.: Federated Meta Reinforcement Learning for Personalized Tasks 923

arXiv: 1901.08277, 2019.
 V. François-Lavet, P. Henderson, R. Islam, M. G.
Bellemare, and J. Pineau, An introduction to deep
reinforcement learning, Found. Trends® Mach. Learn.,
vol. 11, nos. 3&4, pp. 219–354, 2018.

[9]

 X. Zhou, W. Liang, K. Yan, W. Li, K. I. K. Wang, J. Ma,[10]

and Q. Jin, Edge-enabled two-stage scheduling based on
deep reinforcement learning for Internet of everything,
IEEE Internet Things J., vol. 10, no. 4, pp. 3295–3304,
2022.
 N. C. Luong, D. T. Hoang, S. Gong, D. Niyato, P. Wang,
Y. C. Liang, and D. I. Kim, Applications of deep

[11]

Table A2 Main notations used in the paper.
Notation Description
τ Trajectory consisting of the couples of states and actions
H τTime horizon of trajectory
γ Discount factor for the calculation of trajectory reward

qi(τ;θ) τ πi(θ)Probability of trajectory with policy
πi(θ) θPolicy with model
ρi(s) sProbability of initial state

πi(ah|sh;θ) ah sh πi(θ)Probability of taking action under state with policy
ri(sh,ah) ah shSingle step reward of taking action under state

Pi(sh+1|sh,ah) sh sh+1 aTransfer probability from state to when action is taken
qi(τ;θ) τ πi(θ)Sampling probability of trajectory with policy
Ri(τ) τDiscounted total reward of trajectory
Ji(θ) πi(θ) qi(·;θ)Expected trajectory reward pf policy with sampling probability
Jθ̂i (θ) πi(θ) πi(θ̂)Expected trajectory reward of policy with PPO which utilizes the data sampled by policy

Ai(sh,ah; θ̂) ah shAdvantage function which estimates the advantage of action under state

uθ̂i (sh,ah;θ) πi(θ) πi(θ̂)Weighted advantage function whose weight is the rate of and

uclip,θ̂
i (sh,ah;θ) uθ̂i (sh,ah;θ) (1− ϵ,1+ ϵ)Clipped with the clipping rage

∇Jθ̂i (θ) Jθ̂i (θ)Gradient of

∇2Jθ̂i (θ) Jθ̂i (θ)Hessian of
Fi(θ) Objective function
α Learning rate of inner adaption
Ψi(θ) θModel parameter after one step inner adaption

∇̃Jθ̂i (θ,Dθ̂i) Dθ̂iEstimate of gradient with the batch of trajectories

∇̃2Jθ̂i (θ,Dθ̂i) Dθ̂iEstimate of Hessian with the batch of trajectories

∇̃Fi(θ
k,t
i) Fi(θ

k,t
i)Stochastic gradient of

T Steps of local training at a single aggregation round

θk θ kGlobal model at the -th aggregation round

θk,ti θi t kLocal model after step local training at the -th aggregation round

∆θk kChange of the global model at the -th aggregation round
∆θki kChange of the local model at the -th aggregation round
β Learning rate of local training
λ Selection proportion of the clients for aggregation
C Total client set

Ck kSelected client set at the -th aggregation round
η Learning rate of the aggregation optimizer

zk ∆θkRaw moment similar to
β1 ∆θkExponential decay rates of the moving averages
β2 zkExponential decay rates of the moving averages
κ Small value that controls the degree of adaptability

 924 Tsinghua Science and Technology, June 2024, 29(3): 911−926

reinforcement learning in communications and
networking: A survey, IEEE Commun. Surv. Tutor., vol.
21, no. 4, pp. 3133–3174, 2019.
 D. Kalashnikov, A. Irpan, P. Pastor, J. Ibarz, A. Herzog, E.
Jang, D. Quillen, E. Holly, M. Kalakrishnan, V.
Vanhoucke, et al., QT-Opt: Scalable deep reinforcement
learning for vision-based robotic manipulation, arXiv
preprint arXiv:1806.10293v3, 2018.

[12]

 B. R. Kiran, I. Sobh, V. Talpaert, P. Mannion, A. A. Al
Sallab, S. Yogamani, and P. Pérez, Deep reinforcement
learning for autonomous driving: A survey, IEEE Trans.
Intell. Transp. Syst., vol. 23, no. 6, pp. 4909–4926, 2022.

[13]

 F. X. Fan, Y. Ma, Z. Dai, W. Jing, C. Tan, and B. K. H.
Low, Fault-tolerant federated reinforcement learning with
theoretical guarantee, arXiv preprint arXiv: 2110.14074,
2021.

[14]

 S. Liu, K. C. See, K. Y. Ngiam, L. A. Celi, X. Sun, and M.
Feng, Reinforcement learning for clinical decision support
in critical care: Comprehensive review, J. Med. Internet
Res., vol. 22, no. 7, p. e18477, 2020.

[15]

 S. Yu, X. Chen, Z. Zhou, X. Gong, and D. Wu, When
deep reinforcement learning meets federated learning:
Intelligent multitimescale resource management for
multiaccess edge computing in 5G ultradense network,
IEEE Internet Things J., vol. 8, no. 4, pp. 2238–2251,
2021.

[16]

 X. Xia, F. Chen, Q. He, J. Grundy, M. Abdelrazek, and H.
Jin, Online collaborative data caching in edge computing,
IEEE Trans. Parallel Distrib. Syst., vol. 32, no. 2, pp.
281–294, 2021.

[17]

 L. Yuan, Q. He, F. Chen, J. Zhang, L. Qi, X. Xu, Y.
Xiang, and Y. Yang, CSEdge: Enabling collaborative edge
storage for multi-access edge computing based on
blockchain, IEEE Trans. Parallel Distrib. Syst., vol. 33,
no. 8, pp. 1873–1887, 2022.

[18]

 B. Liu, L. Wang, and M. Liu, Lifelong federated
reinforcement learning: A learning architecture for
navigation in cloud robotic systems, IEEE Robot. Autom.
Lett., vol. 4, no. 4, pp. 4555–4562, 2019.

[19]

 X. Liang, Y. Liu, T. Chen, M. Liu, and Q. Yang,
Federated transfer reinforcement learning for autonomous
driving, in Federated and Transfer Learning, R. Razavi-
Far, B. Wang, M. E. Taylor, and Q. Yang, eds. Cham,
Switzerland: Springer, 2023, pp. 357–371.

[20]

 C. Nadiger, A. Kumar, and S. Abdelhak, Federated
reinforcement learning for fast personalization, in Proc.
2019 IEEE Second Int. Conf. Artificial Intelligence and
Knowledge Engineering (AIKE), Sardinia, Italy, 2019, pp.
123–127.

[21]

 P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, M.
Bennis, A. N. Bhagoji, K. Bonawitz, Z. Charles, G.
Cormode, R. Cummings, et al., Advances and open
problems in federated learning, Found. Trends® Mach.
Learn., vol. 14, nos. 1&2, pp. 1–210, 2021.

[22]

 T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar,
and V. Smith, Federated optimization in heterogeneous
networks, arXiv preprint arXiv: 1812.06127, 2018.

[23]

 Q. Li, Y. Diao, Q. Chen, and B. He, Federated learning on[24]

non-IID data silos: An experimental study, in Proc. 2022
IEEE 38th Int. Conf. Data Engineering (ICDE), Kuala
Lumpur, Malaysia, 2022, pp. 965–978.
 V. Smith, C. K. Chiang, M. Sanjabi, and A. Talwalkar,
Federated multi-task learning, in Proc. 31st Int. Conf.
Neural Information Processing Systems, Long Beach, CA,
USA, 2017, pp. 4427–4437.

[25]

 J. Mills, J. Hu, and G. Min, Multi-task federated learning
for personalised deep neural networks in edge computing,
IEEE Trans. Parallel Distrib. Syst., vol. 33, no. 3, pp.
630–641, 2022.

[26]

 C. Finn, P. Abbeel, and S. Levine, Model-agnostic meta-
learning for fast adaptation of deep networks, in Proc.
34th Int. Conf. Machine Learning - Volume 70, Sydney,
Australia, 2017, pp. 1126–1135.

[27]

 J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O.
Klimov, Proximal policy optimization algorithms, arXiv
preprint arXiv: 1707.06347, 2017.

[28]

 D. P. Kingma and J. Ba, Adam: A method for stochastic
optimization, arXiv preprint arXiv: 1412.6980, 2014.

[29]

 S. Reddi, Z. Charles, M. Zaheer, Z. Garrett, K. Rush, J.
Konečný, S. Kumar, and H. B. McMahan, Adaptive
federated optimization, arXiv preprint arXiv: 2003.00295,
2020.

[30]

 C. Y. Chen, J. Ni, S. Lu, X. Cui, P. Y. Chen, X. Sun, N.
Wang, S. Venkataramani, V. Srinivasan, W. Zhang, et al.,
ScaleCom: Scalable sparsified gradient compression for
communication-efficient distributed training, in Proc. 34th
Int. Conf. Neural Information Processing Systems,
Vancouver, Canada, 2020, pp. 13551–13563.

[31]

 Y. Mansour, M. Mohri, J. Ro, and A. T. Suresh, Three
approaches for personalization with applications to
federated learning, arXiv preprint arXiv: 2002.10619,
2020.

[32]

 M. Zhang, K. Sapra, S. Fidler, S. Yeung, and J. M.
Alvarez, Personalized federated learning with first order
model optimization, arXiv preprint arXiv: 2012.08565,
2020.

[33]

 A. Z. Tan, H. Yu, L. Cui, and Q. Yang, Towards
personalized federated learning, IEEE Trans. Neural Netw.
Learn. Syst., doi: 10.1109/TNNLS.2022.3160699.

[34]

 F. Hanzely and P. Richtárik, Federated learning of a
mixture of global and local models, arXiv preprint arXiv:
2002.05516, 2020.

[35]

 Y. Deng, M. M. Kamani, and M. Mahdavi, Adaptive
personalized federated learning, arXiv preprint arXiv:
2003.13461, 2020.

[36]

 L. Collins, H. Hassani, A. Mokhtari, and S. Shakkottai,
Exploiting shared representations for personalized
federated learning, arXiv preprint arXiv: 2102.07078,
2021.

[37]

 C. T. Dinh, N. H. Tran, and T. D. Nguyen, Personalized
federated learning with Moreau envelopes, in Proc. 34th
Int. Conf. Neural Information Processing Systems,
Vancouver, Canada, 2020, pp. 21394–21405.

[38]

 Y. T. Huang, L. Y. Chu, Z. R. Zhou, L. J. Wang, J. C. Liu,
J. Pei, and Y. Zhang, Personalized cross-silo federated
learning on non-IID data, Proc. AAAI Conf. Artif. Intell.,

[39]

 Wentao Liu et al.: Federated Meta Reinforcement Learning for Personalized Tasks 925

vol. 35, no. 9, pp. 7865–7873, 2021.
 T. Li, S. Hu, A. Beirami, and V. Smith, Ditto: Fair and
robust federated learning through personalization, arXiv
preprint arXiv: 2012.04221, 2020.

[40]

 M. Khodak, M. F. Balcan, and A. Talwalkar, Adaptive
gradient-based meta-learning methods, arXiv preprint
arXiv: 1906.02717, 2019.

[41]

 A. Fallah, A. Mokhtari, and A. Ozdaglar, Personalized
federated learning with theoretical guarantees: A model-
agnostic meta-learning approach, in Proc. 34th Int. Conf.
Neural Information Processing Systems, Vancouver,
Canada, 2020, pp. 3557–3568.

[42]

 D. A. E. Acar, Y. Zhao, R. Zhu, R. Matas, M. Mattina, P.
Whatmough, and V. Saligrama, Debiasing model updates
for improving personalized federated training, presented at
38th Int. Conf. Machine Learning, Virtual Event, 2021.

[43]

 A. Fallah, A. Mokhtari, and A. Ozdaglar, On the[44]

convergence theory of gradient-based model-agnostic
meta-learning algorithms, arXiv preprint arXiv:
1908.10400, 2019.
 R. S. Sutton and A. G. Barto, Reinforcement Learning: An
Introduction. Cambridge, MA, USA: MIT Press, 2018.

[45]

 S. T. Tokdar and R. E. Kass, Importance sampling: A
review, Wires Comput. Stat., vol. 2, no. 1, pp. 54–60,
2010.

[46]

 J. Schulman, P. Moritz, S. Levine, M. Jordan, and P.
Abbeel, High-dimensional continuous control using
generalized advantage estimation, arXiv preprint arXiv:
1506.02438, 2015.

[47]

 E. Todorov, T. Erez, and Y. Tassa, MuJoCo: A physics
engine for model-based control, in Proc. 2012 IEEE/RSJ
Int. Conf. Intelligent Robots and Systems, Vilamoura-
Algarve, Portugal, 2012, pp. 5026–5033.

[48]

Wentao Liu is currently pursuing the
MEng degree in computer science and
technology at School of Computer
Science, Nanjing University of
Information Science and Technology,
China. His research interests include
federated learning and edge computing.

Xiaolong Xu received the PhD degree in
computer science and technology from
Nanjing University, Nanjing, China, in
2016. He was a research scholar with
Michigan State University, East Lansing,
MI, USA, from 2017 to 2018. He is
currently a full professor at School of
Software, Nanjing University of

Information Science and Technology, Nanjing, China. He has
authored or co-authored more than 100 peer-review articles in
international journals and conferences, including IEEE TITS,
IEEE TII, ACM TOIT, ACM TOMM, IEEE IOT, IEEE TCC,
IEEE TBD, IEEE TCSS, IEEE TETCI, IEEE ICWS, ICSOC, etc.
Among them, 10 papers are selected as the ESI highly cited
papers and 8 of them are selected as the Essential Science
Indicators (ESI) hot paper. His research interests include edge
computing, the Internet of Things (IoT), cloud computing, and
big data. He is a fellow of European Alliance for Innovation
(EAI). He was the recipient of the Best Paper Award from the
CBD 2016, IEEE CPSCom 2020, and SPDE 2020, the
distinguish paper award from EAI Cloudcomp 2019, the best
student paper award from EAI Cloudcomp 2019, and the Best
Session Paper Award from IEEE DSAA 2020.

Jintao Wu received the PhD degree in
computer science and technology from
Anhui University, China, in 2020. He is
currently a lecturer at School of Software,
Nanjing University of Information Science
and Technology, China. His research
interests include service computing, edge
computing, and computer vision.

Jielin Jiang received the PhD degree in
pattern recognition and intelligence system
from Nanjing University of Science and
Technology, Nanjing, China in 2015. From
February 2013 to August 2013, he was an
exchange student with the Department of
Computing, Hong Kong Polytechnic
University, Hong Kong, China. From July

2014 to July 2017, he was a research associate with Institute of
Textiles and Clothing, Hong Kong Polytechnic University, Hong
Kong, China. Now, he is an associate professor at School of
Software, Nanjing University of Information Science and
Technology, China. His current research interests include
anomaly detection, image denoising, and edge computing.

 926 Tsinghua Science and Technology, June 2024, 29(3): 911−926

