
 

Federated Meta Reinforcement Learning for Personalized Tasks

Wentao Liu, Xiaolong Xu*, Jintao Wu, and Jielin Jiang

Abstract: As an emerging privacy-preservation machine learning framework, Federated Learning (FL) facilitates

different clients to train a shared model collaboratively through exchanging and aggregating model parameters

while  raw  data  are  kept  local  and  private.  When  this  learning  framework  is  applied  to  Deep  Reinforcement

Learning  (DRL),  the  resultant  Federated  Reinforcement  Learning  (FRL)  can  circumvent  the  heavy  data

sampling required in conventional DRL and benefit from diversified training data, besides privacy preservation

offered  by  FL.  Existing  FRL  implementations  presuppose  that  clients  have  compatible  tasks  which  a  single

global  model  can  cover.  In  practice,  however,  clients  usually  have  incompatible  (different  but  still  similar)

personalized tasks, which we called task shift.  It  may severely hinder the implementation of FRL for practical

applications.  In  this  paper,  we  propose  a  Federated  Meta  Reinforcement  Learning  (FMRL)  framework  by

integrating  Model-Agnostic  Meta-Learning  (MAML)  and  FRL.  Specifically,  we  innovatively  utilize  Proximal

Policy  Optimization  (PPO)  to  fulfil  multi-step  local  training  with  a  single  round  of  sampling.  Moreover,

considering the sensitivity of learning rate selection in FRL, we reconstruct the aggregation optimizer with the

Federated  version  of  Adam  (Fed-Adam)  on  the  server  side.  The  experiments  demonstrate  that,  in  different

environments, FMRL outperforms other FL methods with high training efficiency brought by Fed-Adam.
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1　Introduction

In recent years, applications based on machine learning
have achieved great  success in various areas,  which is
inseparable from the sustentation of abundant data. To
deal  with  the  sheer  volume  of  data,  sufficient
computing power is essential for model training and is
usually  realized  by  the  distributed  system[1–5].
Meanwhile,  the  development  of  end  devices
(smartphones,  laptops,  Internet  of  Things  (IoT)

devices,  etc.)  further  expands  the  scope  of  distributed
model  training.  For  the  public,  large-scale  data
collection  is  a  double-edged  sword.  While  providing
more  accurate  services,  data  also  portray  users’
behavior habits, leaking personal information, etc. The
data  privacy  laws  such  as  General  Data  Protection
Regulation  (GDPR)[6] also  reflect  governments’
concerns  about  the  risk  of  data  breaches.  In  this
context,  data  privacy  for  distributed  learning  is
becoming the spotlight. To tackle the privacy problem,
Federated  Learning  (FL)[7] is  proposed  as  a  new
paradigm that let different devices collaboratively train
a  shared  global  model  without  exchanging  any  raw
data with each other. The most commonly used method
is  FedAvg[7] which  averages  the  collected  models  to
obtain  the  new  global  model.  As  a  universal
framework,  FL  can  be  adapted  to  most  machine
learning  methods,  including  supervised  learning  and
reinforcement  learning,  that  is,  Federated
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Reinforcement Learning (FRL)[8].
Due  to  the  feature  extraction  ability  on  different

levels, especially in high-dimensional space[9, 10], Deep
Reinforcement  Learning  (DRL)  becomes  increasingly
popular  and  shows  its  power  in  various  domains  that
involve  decision-making  issues  such  as  network
control[11],  robotics[12],  and autonomous driving[13].  As
the  price  for  good  performance,  DRL  requires  a  long
time  and  colossal  amounts  of  records  for  policy
training.  The  poor  training  and  sampling  efficiency
hinders the implementation of DRL in some real-world
scenarios,  for  example,  in  healthcare,  where  data
trajectories  cannot  be  generated  synthetically  or
exchanged due to privacy preservation[14, 15].  For these
privacy-sensitive  scenarios,  FRL  provides  a  credible
solution that collaborates with multiple data sources to
improve  the  training  efficiency  of  DRL  policy  while
avoiding  the  exposure  of  data  trajectories.  Due  to  the
distributed  nature  of  FRL,  the  participating  clients  are
able  to  construct  a  high-performance  global  policy  in
their  local  environments  without  heavy  sampling  and
training overhead.

However,  given  the  various  requirements  in  reality,
clients  involved  in  FRL  usually  have  similar  but
different  personalized  tasks,  which  we  call  task  shift.
For  example,  for  resource  management  in  edge
computing[16–18], depending on the location of the edge
server,  service  hotspots  conform  to  different
distributions,  which  directly  influences  the  computing
offloading  or  service  caching  decision  of  the  policy.
The existing works of FRL[19–21] aim to obtain a shared
global model as the policy for decision making, and the
differences  in  tasks  are  explicitly  presented  in  some
observation  dimensions.  There  is  no  doubt  when  the
differences  are  implicit  such  as  service  hotspots,  it  is
hard  for  a  single  policy  to  cover  all  these  hidden
distributions. For those tasks with implicit differences,
the  same  policy  may  polarize  on  different  tasks.  The
phenomenon  is  rooted  in  the  Non-Identically  and
Independently  Distributed  (Non-IID)  setting  of  FL[22],
which is one of the main research branches in FL[23, 24].
And  it  also  derives  a  concept,  Personalized  Federated
Learning  (PFL)[25, 26],  which  calls  on  each  client  to
develop  their  personalized  local  models.  At  present,
most  of  the  works  on  PFL  focused  on  supervised
learning,  but  there  is  little  on  reinforcement  learning.
Different  from  supervised  learning,  the  Non-IID
problem in reinforcement learning is  mainly presented
on  the  discrepancy  of  tasks  instead  of  the  distribution

of  data  inputs  or  labels,  which  limits  the  direct
immigration of those PFL works in supervised learning
to FRL.

In  this  paper,  we  propose  a  Federated  Meta
Reinforcement  Learning  method,  named  FMRL,  to
explore  the  possibility  of  PFL  in  reinforcement
learning.  The  method  builds  on  the  Model-Agnostic
Meta-Learning  (MAML)[27] and  we  reformulate  the
FRL problem to  fit  our  goal  which is  to  find an easy-
trained global model for different personalized tasks. It
can  quickly  align  with  the  task  of  the  current  client
through  a  few  interactions  with  the  environment.  At
each  step  of  the  local  training,  the  client  needs  to
sample  data  with  the  current  policy,  which  brings  a
large  sampling  overhead  for  the  multi-step  local
training.  For  sampling  and  training  efficiency,  we
utilize  importance  sampling  and  update  clipping  in
Proximal  Policy  Optimization  (PPO)[28] to  achieve
multi-step  local  training  with  a  single  round  of
sampling.  Considering  the  characteristics  of  FRL
(sensitive  local  learning  rate  and  high  variance  of  the
model aggregation), we adopt the Federated version of
Adam[29, 30] (Fed-Adam)  as  the  aggregation  optimizer
to adaptively adjust the update rate of the global model,
to  accelerate  the  training  process.  Meanwhile,  we
extract  the  general  form  of  the  aggregation  optimizer
and  compare  its  difference  in  FedAvg,  FMRL,  and
other PFL methods.

Our contributions:
●  We  expand  PFL  to  the  field  of  reinforcement

learning  and  reformulate  the  problem  with  MAML  to
fit the personalized task problem.

●  Due  to  the  requirements  of  multi-batch  sampling
in MAML, we integrate importance sampling to greatly
reduce  the  sampling  rounds  of  MAML.  In  addition,
update  clipping  is  adopted  to  improve  the  training
efficiency of multi-step local training on the client side.

● To accelerate the convergence of the global model,
we  replace  the  conventional  aggregation  optimizer  in
FedAvg  with  Fed-Adam.  It  will  adjust  the  global
update  rate  according  to  the  uploaded  client  model,
which is  more suitable  for  FRL scenarios.  The related
experiments  show  that  Fed-Adam  greatly  improves
training efficiency.

●  We  empirically  evaluate  the  performance  of
FMRL  in  various  environments  in  which  each  client
has different personalized tasks. The experiments attest
that FMRL achieves higher rewards than other methods
with the local  model  after  1,  2,  and 3 inner  adaptions.
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Besides,  the  adaptive  experiment  shows  that  FMRL
also performs well  on those new clients  who have not
participated in federated learning before.

The  paper  is  organized  as  follows.  Section  2
summarizes  current  related  works  on  FRL  and  PFL.
Section 3 describes the details of our model. Section 4
presents the experiment results on the performance and
training  efficiency.  Section  5  concludes  our  work  and
proposes  future  work.  The  acronyms  and  main
notations in  this  paper  are  listed in  Tables  A1 and A2
in Appendix A.

2　Related Work

2.1　Federated reinforcement learning

In Ref. [8], the concept of FRL is first defined and the
corresponding  application  scenarios  are  discussed.  It
constructs  the  private  Q-network  for  each  client  and
uploads  the  clients’ Q-values  with  Gaussian  noise  for
the  inference  of  the  global  policy.  The  approach
enables  those  clients  who  lack  complete  data
trajectories  to  generate  their  own  strategies  still.  Liu
et  al.[19] proposed  a  lifelong  FRL  architecture  for
navigation  in  cloud  robotic  systems.  The  robots  learn
their policies in local environments and the server fuses
them  to  the  shared  policies  on  the  cloud  for
downloading  and  training  by  new  robots.  Liang
et  al.[20] studied  federated  transfer  reinforcement
learning  in  autonomous  driving.  It  transfers  the
knowledge  from  the  simulation  environments  to  the
real  world,  allowing  clients  in  different  kinds  of
environments  to  participate  in  the  federation  process.
Nadiger  et  al.[21] employed  FRL  to  realize  fast
personalization  of  non-player  characters  in  games.
Similar  clients  are  classified  into  the  same  group  and
share  data  to  train  the  global  policy  collaboratively.
Compared  to  the  others,  this  work  considers  the
personalization  of  FRL  and  utilized  multiple  global
models for different user groups.

The aforementioned works except Ref. [21] consider
the  difference  in  client  tasks  and  expect  the  global
policy to perform well in a new environment. But they
assume  tasks  are  compatible  with  each  other,  which
means  the  global  policy  can  accumulate  knowledge
continuously  and  handle  all  tasks  simultaneously.  For
incompatible tasks, approaching one task must lead to a
deviation  from  another  for  a  single  policy.  The
conventional methods of FRL which try to find the best
global  policy  would  fail  in  this  scene.  And  for  Ref.

[21],  it  avoids  the  above-mentioned  problems  by
constructing  corresponding  policies  for  different
clusters,  which  have  a  similar  idea  to  a  part  of  PFL
methods[31–33]. However, the idea is based on clustering
which needs to collect users’ information and this step
may bring privacy concerns.

2.2　Personalized federated learning

Multiple  approaches  have  been  proposed  for  PFL  and
the comprehensive survey for PFL can be found in Ref.
[34].  Overall,  there  are  several  popular  directions  for
the  current  works:  mixtures  of  the  global  and  local
models[35–37],  learning  between  relevant  clients
(clustering)[31–33], model regularization[38–40], and meta-
learning[41–43].  Hanzely  and  Richtárik[35] proposed
L2GD algorithm to realize the mixture optimization of
the  global  and  local  models.  Mansour  et  al.[32]

presented  three  PFL  methods:  user  clustering,  data
interpolation,  and  model  interpolation.  Thereinto,  the
user  clustering  method  supposes  the  potential
relationship  of  clients  and  trains  the  global  model  per
client  group.  To  render  the  clients  for  pursuing  their
personalized  model  while  not  deviating  far  from  the
global  model,  Dinh  et  al.[38] proposed  pFedMe
algorithm  which  attaches  a  new  regularization  with
Moreau  envelopes,  controlling  the  personalization
degree.  Fallah et  al.[42] introduced MAML into the FL
process  and  proposed  the  personalized  version  of
FedAvg,  Per-FedAvg,  which reformulates  the  FL goal
to obtain a high-adaptive global model. Due to the high
cost  of  computing  Hessian  matrix  in  MAML,  several
works investigated the approximate estimates[27, 44].

Considering  the  characteristics  of  reinforcement
learning,  it  is  hard  to  migrate  existing  PFL  works
directly.  The  main  problem  is  that  the  collected  data
trajectories  depend  on  the  current  policy,  rather  than
the fixed prior distribution in supervised learning. Also,
the privacy of users’ tasks is another point that needs to
consider.  It  means  the  PFL  methods  based  on
clustering may be more difficult to be adopted in FRL.

3　Federated  Meta  Reinforcement  Learning
with MAML

In the general FL scenario, numerous clients participate
the  federation  process  under  the  orchestration  of  a
central server for the common goal:
 

min
θ∈Rd

f (θ) :=
1
|C|

∑
i∈C

fi(θ) (1)
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θ C

θ∗ f (θ)

where  represents the global model parameters and 
is  the  client  set.  The  process  aims  to  find  an  optimal
model  to minimize the objective function .

Compared  with  the  above  objective,  MAML  pays
more  attention  to  the  optimizability  of  the  model,
which  is  defined  as  the  model  performance  after  one-
step  gradient  descent.  The  final  goal  of  MAML  is  to
find a set of parameters that can quickly converge to an
approximate  optimal  solution.  Switch  to  the  FL  scene
with  MAML,  we  need  to  get  an  appropriate  global
model,  the  clients  can  train  their  personalized  models
after a few rounds of local training based on this global
model. The goal can be reformulated as
 

min
θ∈Rd

F(θ) :=
1
|C|

∑
i∈C

Fi(θ) (2)

Fi(θ)where  is denoted as
 

Fi(θ) := fi(θ−α∇ fi(θ)) (3)

α

Fi(θ) i
θ

fi(θ)

Thereinto,  is  the  learning  rate  of  inner  adaption
and  presents  the  objective  function  of  client 
with  model  after  one-step  inner  adaption.  In  this
section,  we  first  compare  the  specific  form of  in
supervised  learning  and  reinforcement  learning.  Then,
we  formulate  the  personalization  problem  in  FRL.  In
the end,  we propose the FMRL algorithm to solve the
problem  raised  in  Eq.  (2)  and  discuss  the
implementation of different federated optimizers.

3.1　Problem formulation

fi(θ)
i

Under  the  setting  of  supervised  learning, 
represents  the  expected  loss  on  the  dataset  of  client 
which is defined as
 

fi(θ) := E(x,y)∼pi [l(θ; x,y)] (4)

pi i li(θ; x,y)
θ

where  is the data distribution of client  and 
is  the  loss  function of  model .  In  Non-IID scenarios,
the data distribution for each client is usually different
and fixed.

i Mi := (Si,Ai,Pi,ρi,ri) Si

Ai

ρi(s) s ∈ Si

Pi(s′|s,a) s
s′ a ∈ Ai

a s ri(s,a)

τ := (s0,a0, s1,a1, ...,

sH ,aH) H H

For  reinforcement  leaning,  it  can  be  modelled  as  a
Markov  Decision  Process  (MDP)[45].  The  MDP  of
client  is  defined  as . 
represents the state space and  represents the action
space.  is the probability of initial state , and

 indicates the transfer probability from state 
to  when  the  agent  executes  action .  The
reward  of  action  under  state  is  defined  as .
The interaction of  the  agent  with  the  environment  can
be  described  as  the  trajectory 

 where  is the time horizon, we suppose  is

πi(·|·;θ)
πi(a|s;θ)

a s
τ πi(θ)

fixed.  The  agent  follows the  policy  to  interact
with the environment, and  is the probability of
taking action  under state . The sampling probability
of  depends on the policy § and is given by
 

qi(τ;θ) := ρi(s0)
H∏

i=0
πi(ah|sh;θ)

H−1∏
h=0

Pi(sh+1|sh,ah) (5)

τThe discounted total reward of a single trajectory  is
defined as
 

Ri(τ) :=
H∑

h=0

γhri(sh,ah) (6)

γ

fi(θ)
where  is  the  discount  factor.  At  this  point,  the
specific form of  in reinforcement learning is given
as
 

fi(θ) := −Eτ∼qi(·|θ)[Ri(τ)]︸            ︷︷            ︸
Ji(θ)

(7)

fi(θ) Ji(θ)

pi qi(·|θ)
θ

Ji(θ)

Note  that  the  problem  defined  in  Eq.  (1)  is  a
minimization  issue  but  the  goal  in  reinforcement
learning  is  to  maximize  the  reward.  To  align  with
Eq.  (1),  is  defined  as  the  opposite  of .
Comparing  Eqs.  (4)  and  (7),  the  significant  difference
in  the  two  settings  derives  from  the  data  distributions

 and .  The former is  a  fixed probability,  while
the  latter  is  affected  by  model .  It  requires  clients  to
sample  trajectories  before  each  local  training,  which
brings  a  large  sampling  overhead  and  restricts  the
rounds  of  multi-step  training.  To  improve  the  training
efficiency,  we  introduce  PPO  and  institute  in
Eq. (7) with
 

Jθ̂i (θ) := E(sh,ah)∼πi(θ̂)[min(uθ̂i (sh,ah; θ),uclip,θ̂
i (sh,ah; θ))]

(8)

uθ̂i (sh,ah;θ)where  is defined as
 

uθ̂i (sh,ah;θ) =
πi(ah|sh;θ)
πi(ah|sh; θ̂)

Ai(sh,ah; θ̂) (9)

uclip,θ̂
i (sh,ah; θ)and  is defined as

 

uclip,θ̂
i (sh,ah; θ) =clip

(
πi(ah|sh; θ)
πi(ah|sh; θ̂)

,1− ϵ,1+ ϵ
)
·

Ai(sh,ah; θ̂)
(10)

(sh,ah)
πi(θ̂) πi(θ̂)
πi(θ)

In Eq. (8), the basic unit of data is no longer a whole
trajectory, but a tuple of the state and the action 
which  sampled  by .  is  the  old  policy  which
sampled  data  and  is  the  current  policy  to  be
optimized.  For  the  first  condition  of  choosing 
 

πi(·|·;θ) πi(θ)
πi(θ) θ

§To  simplify  the  notation,  we  suppress  policy  as .
Meanwhile, we call  policy and call  model to differentiate.
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uθ̂i (sh,ah;θ)
πi(θ)

πi(θ̂)
(sh,ah) πi(ah|sh;θ)/πi(ah|sh; θ̂)

Ri(τ) Ai(sh,ah; θ̂)
ah sh

uclip,θ̂
i (sh,ah; θ)

ϵ ∈ (0,1)

πi(θ) πi(θ̂)
uθ̂i (sh,ah;θ)

uclip,θ̂
i (sh,ah; θ)

Jθ̂i (θ)

 defined in Eq. (9),  importance sampling[46]

enables current policy  to be trained on the history
data sampled by . The importance weight of tuple

 is  calculated  by  the  rate .
Different with , the advantage function 
estimates  the  advantage  of  action  under  state .
Here  we  use  the  Generalized  Advantage  Estimator
(GAE)  and  for  more  details  see  Ref.  [47].  Then,  the
second condition of choosing  defined in
Eq.  (10)  is  just  adding  the  clipping  operation  and

 is the parameter to control the clipping range.
The  operation  avoids  the  extreme  importance  weight
when  and  are  quite  different.  Intuitively,
taking  the  minimum  between  and

 prevents the new policy from deviating
the old one too much, in order to stabilize the training
process on .

Jθ̂i (θ)Based on Eq. (8), the gradient of  is given by
 

∇Jθ̂i (θ) = E(sh,ah)∼πi(θ̂)[g
θ̂
i (sh,ah;θ)] (11)

gθ̂i (sh,ah;θ)where  is defined as
 

gθ̂i (sh,ah; θ) :=


∇πi(ah|sh; θ)
πi(ah|sh; θ̂)

Ai(sh,ah; θ̂), uθ̂i ⩽ uclip;θ̂
i ;

Zero, uθ̂i > uclip,θ̂
i

(12)

uθ̂i (sh,ah;θ)

uclip,θ̂
i (sh,ah; θ)

uθ̂i ⩽ uclip,θ̂
i

uθ̂i (sh,ah;θ)

θ uclip,θ̂
i (sh,ah; θ)

(1− ϵ)Ai(sh,ah; θ̂) (1+ ϵ)Ai(sh,ah; θ̂)
∇Jθ̂i (θ) ∇2Jθ̂i (θ)

In the above formula, the variable parts of 
and  are omitted to simplify the notation.
When ,  Formula  (12)  calculates  the  actual
gradient  of .  Otherwise,  it  equals  zero
because  is excluded from , in this case,
which  equals  or .
Similar with , the Hessian  is given by
 

∇2Jθ̂i (θ) = E(sh,ah)∼πi(θ̂)[v
θ̂
i (sh,ah;θ)] (13)

vθ̂i (sh,ah;θ)where  is defined as
 

vθ̂i (sh,ah; θ) :=


∇2πi(ah|sh; θ)
πi(ah|sh; θ̂)

Ai(sh,ah; θ̂), uθ̂i ⩽ uclip,θ̂
i ;

Zero, uθ̂i > uclip,θ̂
i

(14)

Jθ̂i (θ)
Fi(θ)

Take  the  new  definition  of  into  Eqs.  (7)  and
(3),  can be written as
 

Fi(θ) := −JΨi(θ)
i (Ψi(θ)) (15)

Ψi(θ)where  represents the model parameters after one-
step inner adaption which is defined as
 

Ψi(θ) := θ+α∇Jθi (θ) (16)

α

∇Jθi (θ) πi(θ) JΨi(θ)
i (Ψi(θ))

Jθi (θ)
Ψi(θ) θ

πi(ah|sh;θ)/πi(ah|sh; θ̂) = 1

where  is  the  learning  rate  of  inner  adaption  and
 is the gradient of policy . Both 

and  are  calculated  on  the  data  sampled  by  the
current  policy  and ,  which  means  the
importance  weight .  When  it
comes  to  multi-step  local  training,  the  weight  will  no
longer  be  constant.  We  will  discuss  this  situation  in
Section 3.2.

Fi(θ)

∇Fi(θ)

To  minimize  the  local  objective  function ,  the
gradient  is  necessary  to  perform  gradient  descent.
Based on Eq. (15),  is given by
 

∇Fi(θ) = −(I+α∇2Jθi (θ))∇JΨi(θ)
i (Ψi(θ)) (17)

∇JΨi(θ)
i (Ψi(θ))
∇2Jθi (θ)

where  the  gradient  are  calculated  by
Eq.  (11)  and  the  Hessian  is  calculated  by
Eq. (13).

3.2　Algorithm

∇Jθ̂i (θ)

Dθ̂i = {τ1, τ2, ..., τn} θ̂

Considering  the  computation  of  actual  is
intractable,  we  sample  a  batch  of  trajectories

 with  policy  to  obtain  the  estimate
of gradient
 

∇̃Jθ̂i (θ,Dθ̂i ) :=
1

|Dθ̂i |H

∑
τ∈Dθ̂i

H∑
h=0

gθ̂i (sτh,a
τ
h;θ) (18)

(sτh,a
τ
h) h

τ H
Jθ̂i (θ)

Dθ̂i

where the tuple  represents the -th step of agent
in  trajectory  and  is  the  fixed  time  horizon.  The
estimate of Hessian  can be similarly calculated on

 as
 

∇̃2Jθ̂i (θ,Dθ̂i ) :=
1

|Dθ̂i |H

∑
τ∈Dθ̂i

H∑
h=0

vθ̂i (sτh,a
τ
h;θ) (19)

k
θk

θk,ti (t ⩾ 0) i t
Fi(θ

k,t
i )

For  the  conventional  FL  process  (e.g.,  FedAvg),  at
the -th  aggregation  round,  the  server  will  distribute
the  global  policy  to  all  clients.  Then,  before
uploading  models  for  the  aggregation,  these  clients
usually  perform  multi-step  training  locally  to  reduce
communication  overhead.  In  this  situation,  we  define

 as the model of client  after  local steps. So
the stochastic gradient of  is calculated as
 

∇̃Fi(θ
k,t
i ) := −(I+α∇̃2Jθ

k

i (θk,ti ,D
θk

i ))·

∇̃JΨi(θk)
i (θk,ti +α∇̃Jθ

k

i (θk,ti ,D
θk

i ),DΨi(θk)
i )

(20)

i
Dθki

DΨi(θk)
i θk

Note that no matter how many steps client  performs,
there  are  always  only  two  sampled  batches:  and

. The former is sampled by the global policy 
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t θk,ti = θ
k

θk

t ⩾ 1

πi(ah|sh;θ)/πi(ah|sh; θ̂) , 1

and  the  latter  is  sampled  by  the  policy  after  one-step
inner  adaption.  When  equals  zero, .  It
corresponds  to  the  situation where  the  client  loads  the
global policy  and has not performed any local steps.
When ,  the  policy  to  be  optimized and the  policy
sampled data are no longer the same, which means the
importance  weight .
According  to  the  stochastic  gradient  in  Eq.  (20),  the
local model is updated as
 

θk,t+1
i = θk,ti −β∇̃Fi(θ

k,t
i ) (21)

βwhere  is the learning rate of the local model.

k

λ ∈ (0,1) Ck ⊂ C
|Ck | = λ|C|

θk Ck i
θk,0i = θ

k

The  whole  process  of  FMRL  is  described  in
Algorithm 1. At the -th aggregation round, the server
selects  a  subset  of  clients  in  a  certain  proportion

 (Line 2). The subset is defined as  and
.  Then,  the  server  distributes  the  global

model  to  the  clients  in  (Line  3).  For  client ,  it
firstly  load  the  global  model  and samples  the

Dθki DΨi(θk)
i T

i

batch  and  (Lines  5−8).  After  steps  of
local  update  (Lines  9−12),  the  client  uploads  the
model change given by
 

∆θki := θk,Ti − θk (22)

∑
i∈Ck
∆θki

θk θk

β1 β2

∆θ−1 = 0 z−1 = 0

to  the  server  (Lines  13  and  14).  In  the  aggregation
phase (Lines 16−18), we utilize the Fed-Adam[29, 30] as
the  aggregation  optimizer.  Specifically,  the  server
treats  the  mean  changes  of  clients  as  the
pseudo-gradient  of .  Then  optimize  with  Adam
where  and  are  the  decay parameters.  We define

 and .  The  details  of  the  aggregator
optimizer are discussed in Section 3.3.

3.3　Aggregation optimizer

In  this  section,  we  give  the  general  form  of  the
aggregation  optimizer  and  compare  the  difference  in
aggregation  optimizers  between  FedAvg,  FMRL,  and
other PFL methods.

{θki },∀i ∈ Ck

θk+1
In  FedAvg,  the  uploaded  models  are

simply  averaged  to  obtain  the  new global  model .
The aggregation is given by
 

θk+1 =
1
|Ck |

∑
i∈Ck

θk,Ti (23)

θk,Ti T
i

θk,Ti = θk +∆θki

where  represents  the  local  model  after  local
steps  of  training  in  client .  To  apply  different
aggregation  optimizers  on  the  server,  we  reformulate
the  updated  local  model .  So,  the
aggregation can be re-written as
 

θk+1 = θk +
1
|Ck |

∑
i∈Ck

∆θki (24)

The  above  aggregation  form  is  common  in  the  PFL
methods which maintain the single global model[36, 42].

To  accelerate  the  model  convergence,  some  PFL
methods[38] used another aggregation form given by
 

θk+1 = (1−η)θk + η
|Ck |

∑
i∈Ck

θk,Ti (25)

which can be re-written as
 

θk+1 = θk +
η

|Ck |
∑
i∈Ck

∆θki (26)

η = 1 η

Obviously,  Eq.  (24)  is  included  in  Eq.  (26)  when
learning rate  and  can be larger to accelerate the
aggregation.  The  above  form  can  be  seen  as  the
federated  version  of  the  Stochastic  Gradient  Descent
(Fed-SGD) optimizer.

 

Algorithm 1　Federated meta reinforcement learning
θ0Require: Initial global policy parameters ;

k = 0 K −11: for aggregation round  to  do
Ck2: 　Select a subset of clients  at random;
θk Ck3:　 Distribute the global model  to all clients in ;

i ∈ Ck4: 　for each client  do

θk,0i = θ
k5: 　　Load the global policy ;

Dθki6:　　 Sample the batch of trajectories ;

Ψi(θk)7:　　 Perform the inner adaption to compute ;

DΨi(θk)
i8: 　　Sample the batch of trajectories ;

t = 0 T −19: 　　for local step  to  do

∇Fi(θ
k,t
i )10: 　　　Compute the stochastic gradient  based on

　　 　　 Eq. (20);

θk,ti11:　　　 Update the model  based on Eq. (21)
12:　　 end for

∆θki := θk,Ti − θ
k13: 　　Compute the model change ;

∆θki14:　　 Upload  to the server;
15: 　end for

∆θk = β1∆θ
k−1 +β1(

1
|Ck |

∑
i∈Ck
∆θki )16: 　 ;

zk = β2zk−1 + (1−β2)(∆θk)217: 　 ;

θk+1 = θk +η
∆θk√
zk + κ

18: 　Update the global model ;

19: end for
θK20: return ;
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For  FMRL,  Fed-Adam  is  utilized  as  the  aggregate
optimizer which is given by
 

θk+1 = θk +η
∆θk
√

zk + κ
(27)

∆θkwhere the first moment  is calculated as
 

∆θk = β1∆θ
k−1+ (1−β1)

 1
|Ck |

∑
i∈Ck

∆θki

 (28)

zkand the second raw moment  is calculated as
 

zk = β2zk−1+ (1−β2)(∆θk)2 (29)

β1 β2

∆θk zk

η

κ

In  the  above  formulas,  and  are  the  exponential
decay  rates  of  the  moving  averages  and ,
respectively.  is  the  learning  rate  of  the  aggregation
optimizer  and  is  a  small  value  that  controls  the
degree of adaptability.

η = 1

η

∆θk

zk

In  most  circumstances,  Fed-SGD  is  an  ideal
aggregation  optimizer  when  (i.e.,  FedAvg).
However,  for  reinforcement  learning,  the  model
training  is  sensitive  to  the  value  of  the  learning  rate,
and  finding  an  appropriate  learning  rate  is  laborious.
The utilization of Fed-SGD with fixed  may cause the
global  model  to  converge  slowly.  The  recent
reinforcement  learning  methods  usually  use  different
optimizers  (momentum,  Adam,  etc.)  for  better
performance[28]. However, applying Adam on the client
side  directly  has  two  problems.  (1)  Due  to  different
personalized tasks, the update directions and degrees of
different local models may diverge a lot, which means
the  convergence  of  the  global  model  may  not  be
guaranteed.  In contrast,  the convergence of Fed-Adam
on  the  server  side  is  theoretically  guaranteed[30].
(2)  Adam  needs  to  record  additional  optimizer
parameters (first moment  and second raw moment

),  which  brings  the  extra  communication  overhead
for  the  aggregation  of  these  optimizer  parameters.
Therefore,  we  use  Fed-Adam  on  the  service  side
instead of using Adam on the client side.

4　Numerical Experiment

In this section, we validate the effectiveness of FMRL
in the personalized setting with extensive experiments.
Firstly,  we evaluate the overall  performance of FMRL
under  different  environments  with  personalized  tasks.
Then,  we  analyze  the  effect  of  the  involving
hyperparameters  in  FMRL.  Afterwards,  we  compare
the  efficiency  improvement  brought  by  different
federated  optimizers:  Fed-Adam  and  Fed-SGD.

Finally,  we  explore  the  adaptability  of  FMRL  for
clients with new tasks.

4.1　Experimental setup

We  consider  a  locomotion  problem  (including  four
environments)  with  the  MuJoCo  simulator[48].  Details
of the four environments are as follows:

d ∈ {1,−1}

● Half-cheetah  random  direction:  The  simulated
planar cheetah needs to run faster  in a  target  direction

 (forward  or  backward).  The  reward  is  the
velocity in the target direction minus the control cost.

v ∈ [0,2]
● Half-cheetah random velocity: The same cheetah

needs  to  run  at  the  target  velocity  which  is
sampled in the uniform distribution. The reward is the
negative of the absolute difference between its  current
and the target velocity minus the control cost.

d ∈ {1,−1}

● Ant  random  direction:  The  simulated  3D
quadruped  (the “ant”)  needs  to  run  faster  in  a  target
direction  (forward or backward). The reward
is  the  velocity  in  the  target  direction.  The  reward  is
similar to half-cheetah random direction.

v ∈ [0,3]
● Ant random velocity:  The same ant needs to run

at the target  velocity  which is  sampled in the
uniform  distribution.  The  reward  is  similar  to  half-
cheetah random velocity.

The  parameter  settings  of  the  above  four
environments  and  the  subsequent  settings  of
reinforcement  learning  refer  to  Ref.  [27].  These
environments  can  be  divided  into  two  categories:
direction  environments  and  velocity  environments,
corresponding  to  discrete  personalized  tasks  with
limited  types  but  large  variations  and  continuous
personalized  tasks  with  infinite  types  but  minor
variations.

H = 200
H = 100

|Dθki | = |D
Ψi(θk)
i | = 20

α = 0.1
β = 0.001

∇Jθ̂i (θ) ∇Fi(θ)

|C| = 200
K = 500

λ|C| λ = 0.2 T = 5

We  set  for  two  half-cheetah  environments
and  for  ant  environments.  In  each  sampling,
we sample  episodes for both inner
adaption and local  training.  Besides,  we set  as
the learning rate of the inner adaption and  as
the  learning  rate  of  the  local  training.  In  particular,  to
avoid  the  high  computation  overhead  of  Hessian

, we use the first-order approximation of 
which  is  similar  to  the  First-Order  MAML  (FO-
MAML)  proposed  in  Ref.  [27].  For  the  setting  of  FL,
we  set  clients  with  different  personalized
tasks  and  aggregation  rounds.  In  each  round,

 clients are selected with  to run  steps
of  local  training.  The  optimizer  on  the  client  side  is
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β = 0.001
η = 0.001 β1 = 0.9 β2 = 0.999

κ = 1×10−8

SGD  with  and  the  aggregation  optimizer  is
Fed-Adam  with , , ,  and

.

4.2　Overall performance

To  evaluate  the  empirical  performance  of  FMRL,  We
consider:

● FedAvg[7],  the  standard  method  in  the  federated
setting.  It  averages  the  local  models  of  the  clients
during  the  model  aggregation  and  distributes  the
aggregated model to all clients for next-step training.

● pFedMe[38], one of the PFL methods based on the
model  regularization.  It  attaches  a  new  regularization
with  Moreau  envelopes,  controlling  the  degree  to
which the local  model  deviates  from the global  model
during the training.

● FedRep[37], one of the PFL methods based on the
mixtures of the global and local models. It keeps high-
level  model  layers  local  and  only  shares  the  low-
dimensional  representation  layers  of  model
aggregation.

● Ditto[40], one of the PFL methods based on model
regularization,  which  trains  global  and  local  models
separately.  The  global  model  is  trained  just  like
FedAvg  and  its  parameters  instruct  the  training  of  the
local model.

The episode rewards over 5 random seeds along with
95% confidence  intervals  are  reported  in Table  1.  For
FedRep  and  Ditto,  since  each  client  has  its  own  local

model,  the  first  line  of  each  environment
(global/personalized  model)  in Table  1 represents  the
local  model  performance  after  0  training  step.
Meanwhile,  all  the  above  methods  are  equipped  with
Fed-Adam instead of Fed-SGD for a fair comparison.

η = 0.0005
η = 0.001

α = 0.01 α = 0.001

In the performance comparison, we set  for
half-cheetah random direction and  for others.
In  particular,  to  accelerate  the  training  of  Ditto  which
needs to train the local model independently, we set the
local learning rate  for it and  for the
others. The remaining settings are the same as those in
Section  4.1.  Since  the  objective  of  FMRL is  to  obtain
the personalized model after single or multiple steps of
local  training,  the  performance  of  its  global  model  is
lower than other methods in three environments. In all
four environments, the local model of FMRL after 1, 2,
and  3  steps  outperforms  the  others  on  the  gained
rewards.  For the global model,  due to the existence of
personalized  tasks,  five  methods  perform  similarly
except  Ditto  which  has  the  personalized  model.  It  is
worth mentioning that FMRL achieves great rewards in
direction  environments:  half-cheetah  random direction
and  ant  random  direction.  In  contrast,  there  is  almost
no  improvement  from  the  global  model  to  the
optimized local model for FedAvg and pFedMe, which
indicates  they  are  limited  when  the  personalized  tasks
of clients are quite different or even the opposite. In ant
random  direction,  pFedMe  even  underperforms
FedAvg.  We  believe  that  the  additional  model

 

Table 1    Mean episode rewards of the global model and local models after 1, 2, and 3 steps of inner adaption on all clients.

Environment Model
Mean episode reward

FMRL pFedMe FedAvg FedRep Ditto

Half-cheetah
random direction

Global/personalized model ±−14.59  5.44 ±−6.33  5.06 ±−2.49  1.43 ±5.53  7.76 ±161.13  4.14
Local model after 1 step ±457.02  30.82 ±−5.07  2.88 ±0.10  1.33 ±24.06  25.88 ±163.94  4.02
Local model after 2 steps ±480.96  23.73 ±−2.15  1.04 ±2.76  1.98 ±38.60  33.21 ±166.72  3.82
Local model after 3 steps ±484.26  29.51 ±−0.85  2.63 ±5.68  3.58 ±51.67  34.17 ±169.52  3.90

Half-cheetah
random velocity

Global/personalized model ±−112.86  4.87 ±−113.47  2.40 ±−113.46  1.84 ±−117.62  5.49 ±−195.29  24.19
Local model after 1 step ±−94.35  10.37 ±−107.12  3.59 ±−109.73  2.21 ±−112.74  5.56 ±−195.26  24.22
Local model after 2 steps ±−82.43  13.35 ±−101.10  4.74 ±−106.15  2.43 ±−107.96  6.16 ±−195.14  24.33
Local model after 3 steps ±−74.53  14.81 ±−95.91  5.67 ±−102.59  2.37 ±−103.76  6.29 ±−195.05  24.22

Ant random
direction

Global/personalized model ±2.08  2.53 ±4.84  0.19 ±4.65  0.21 ±5.53  0.36 ±43.42  0.60
Local model after 1 step ±123.17  9.65 ±5.30  0.30 ±5.05  0.25 ±7.54  0.88 ±43.93  0.89
Local model after 2 steps ±127.50  10.22 ±5.64  0.41 ±5.26  0.44 ±8.41  0.69 ±44.43  0.56
Local model after 3 steps ±126.82  11.32 ±6.32  0.78 ±5.57  0.82 ±8.91  0.55 ±44.79  0.66

Ant random
velocity

Global/personalized model ±19.48  3.51 ±20.56  2.28 ±19.42  2.08 ±12.34  3.97 ±−28.86  16.62
Local model after 1 step ±44.30  5.42 ±24.64  3.48 ±23.91  2.88 ±14.51  3.80 ±−28.72  16.48
Local model after 2 steps ±44.85  5.56 ±27.20  4.11 ±27.14  4.56 ±16.63  3.96 ±−28.30  16.57
Local model after 3 steps ±45.18  5.50 ±28.59  5.50 ±29.63  5.72 ±18.29  3.65 ±−28.08  16.29
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regularization  could  fail  and  hurt  the  model
performance  instead  when  the  personalized  tasks
diverge  a  lot.  And  for  FedRep  and  Ditto,  their
personalized  models  reach  a  higher  performance  than
FedAvg  and  pFedMe,  which  implies  that  the  models
indeed  capture  the  personalized  tasks  of  clients.
However,  the improvement brought  by the subsequent
optimization of these models is far less than FMRL. In
velocity  environments  (i.e.,  half-cheetah  random
velocity and ant random velocity), with the increase of
local  optimization  steps,  the  gap  between  FMRL  and
other  methods  is  gradually  widening.  It  shows  that
FMRL  learns  the  generalized  policy  and  finds  more
favorable  parameters  for  further  fine-tuning
simultaneously.

The  detailed  training  curves  are  depicted  in Fig.  1
where the upper row represents the performance of the

global  model  and  the  lower  one  represents  the
performance of the local model after 1 step. Except for
FedRep,  for  those  methods  which  fully  or  partially
share  the  model,  the  global  model  has  a  large
oscillation  on  the  gained  rewards  during  the  training,
especially in half-cheetah random direction. One of the
reasons  is  that  the  task  distributions  of  the  selected
clients  are  different  at  each  round,  which  makes  the
global  model  may  not  match  the  current  personalized
tasks,  performing  unsteadily.  Besides,  the
tendentiousness of the model is affected by the degree
of task deviations, reflected in the wider error bands of
direction environments than velocity environments. For
the local model after 1 step inner adaption, matched to
Table  1,  FMRL  far  surpasses  other  methods  in
direction  environments.  The  rewards  of  the  local
models  of  FedAvg  and  pFedMe  hover  around  the x-
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Fig. 1    Performance comparison of FedAvg, pFedMe, and FMRL on the randomly selected clients.
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axis throughout the training, similar to the performance
of  the  global  model.  And  FedRep  and  Ditto  gain
varying  improvements  after  1  step  optimization.  In
velocity  environments,  FMRL  obtains  a  relatively
higher  reward  than  other  methods.  It  seems  that
FedAvg,  pFedMe,  and FedRep grasp  the  average  goal
for continuous personalized tasks. However, the model
only  embeds  knowledge  of  robot  controlling
(generalized policy) but no oriented task representation
(personalized  policy).  Specially,  Ditto  has  barely
improved  after  500  epochs  of  training.  Considering
FedRep,  which  is  also  underperforming,  it  seems  that
the  personalization  impedes  the  convergence  of  the
model  and  its  degree  is  directly  proportional  to  the
degree of personalization. Due to the random selection
in  the  federated  learning,  the  sampling  and  training
rounds  of  each  client  cannot  support  it  to  train  their
personalized  model  independently,  resulting  in  slow
convergence  or  even  no  convergence  of  the  local
model.

4.3　Effect of hyperparameters

η β

λ

In  this  section,  we  investigate  the  effect  of  some
hyperparameters  (learning  rates , ,  and  client
selection rate ) to the performance of FMRL.
4.3.1　Learning rate

η β

Figures  2 and 3 illustrate  the  effect  of  aggregation
learning  rate  and  local  learning  rate  to  the  local

model with one inner adaption, respectively.
β

η

η = 0.001

η = 0.001

In Fig. 2,  is fixed to 0.001 to observe the impact of
 changing.  According  to Fig.  2,  similar  with  Adam,

the  default  value  reaches  higher  rewards
except  in  half-cheetah  random  direction.  In  fact,  the
performance  of  in  two  direction
environments  are  both  unstable.  It  is  beneficial  to
choose a smaller aggregation learning rate for discrete
personalized  tasks  and  the  value  can  be  appropriately
increased  for  the  continuous  personalized  tasks  in  the
early stages to accelerate the FL process.

β

η

η = 0.0003 η = 0.001

β = 0.001
β

η

η

Under  the  appropriate  aggregation  learning  rate,  the
effect of local learning rate  is relatively small, which
is verified in Fig. 3. We select  that performs the best
in Fig. 2 (i.e.,  for the first and  for
the  other  environments).  Setting  local  learning  rate

 is still a good choice in most cases. Note that
the changes of  bring a large difference in ant random
directory,  which  is  caused  by  the  large  aggregation
learning . This is consistent with the above conclusion
that smaller  is more suitable for discrete personalized
tasks.

η βIn  general,  and  should  be  adjusted  in  inverse
proportion  to  reach  the  balance  of  the  convergence
speed and the training stability.
4.3.2　Client selection rate
In  FL,  the  presence  of  stragglers  is  non-negligible

 

(a) Half-cheetah random directory (after 1 step) (b) Half-cheetah random velocity (after 1 step) (c) Ant random directory (after 1 step) (d) Ant random velocity (after 1 step)
Number of steps Number of steps Number of steps Number of steps

 
Fig. 2    Effect of aggregation learning rates on the local model.

 

(a) Half-cheetah random directory (after 1 step) (b) Half-cheetah random velocity (after 1 step) (c) Ant random directory (after 1 step) (d) Ant random velocity (after 1 step)
Number of steps Number of steps Number of steps Number of steps

 
Fig. 3    Effect of local learning rates on the local model.

    920 Tsinghua Science and Technology, June 2024, 29(3): 911−926

 



λ

λ λ

λ = 0.1

λ

λ = 0.3

which  causes  the  number  of  clients  actually
participating  in  the  aggregation  to  be  lower  than
expected.  On  this  level,  the  degree  of  the  effect  of
client  selection  rate  indirectly  reflects  the  method
robustness  in  FL. Figure  4 shows  the  rewards  of  the
clients selected for aggregation each round (upper) and
the rewards of all clients each 100 rounds (lower) with
different  values  of .  Changes  in  have  different
effects  on  direction  and  velocity  environments.
Compared  to  velocity  environments,  the  low selection
rate ( ) is more destructive to the convergence of
the  model  in  direction  environments.  It  reduces  the
final  rewards and makes the training process unstable.
Since  the  subset  of  clients  for  the  aggregation  at  each
round is randomly selected, the task distribution of the
subset  may  be  greatly  different  from  the  overall  task
distribution,  which  is  reflected  in  high  variances,
especially when the selection rate of clients  is small.
For the velocity environments where personalized tasks
are  continuous,  the  differences  in  task  distribution  are
alleviated  to  a  certain  extent.  Besides,  although  the
final reward boost is less, a high selection rate ( )
accelerates  the  aggregation  in  more  complicated
environments  (ant  random  direction  and  ant  random
velocity).

4.4　Effect of aggregation optimizers

η β

η = 1

To  evaluate  the  improvement  of  training  efficiency
brought  by  Fed-Adam,  we  compare  Fed-Adam  with
Fed-SGD  under  different  and  in Fig.  5.  When

,  the  Fed-SGD  behaves  the  same  with  FedAvg.
Here we use the single combination of the learning rate
for  Fed-Adam.  When  the  local  learning  rate  is  small

β = 0.001
η

β

η

β = 0.01 η = 5

β

η

( ),  the  rewards  of  Fed-SGD  almost  do  not
improve.  Even  the  aggregation  learning  rate  is
increased, there are few changes in the rewards. Under
the same ,  the rewards of Fed-Adam grow rapidly in
the early  stages  of  training.  To highlight  the influence
of ,  we  study  the  performance  of  Fed-SGD  with  a
larger local learning rate  as well. When ,
the rewards of Fed-SGD presents a large improvement
during  the  training.  However,  as  the  training
progresses,  the  rewards  become  unstable  and  back
down to  the  low in  half-cheetah random direction and
ant  random  direction.  Though  the  large  accelerates
the  federation  process,  it  also  causes  huge  deviations
between  different  local  models.  In  this  case,  the
aggregated  global  model  may  deviate  from  the
optimization  goal  of  all  clients,  and  the  deviation  is
amplified  by  the  large  aggregation  learning  rate .
Compared with the continuous tasks, the discrete tasks
with  high  variations  are  more  affected  by  the  model
deviation,  which  explains  the  poorer  performance  of
Fed-SGD in direction environments.

In  summary,  the  utilization  of  Fed-Adam  greatly
improves  the  efficiency  and  performance  of  FMRL
compared to Fed-SGD. Meanwhile, the above analysis
shows  that  it  is  difficult  to  find  an  appropriate
combination of the local and aggregation learning rates
for  Fed-SGD.  Compared  with  Fed-SGD,  Fed-Adam
does  not  require  much  effort  to  adjust  the  learning
rates.

4.5　Scalability

In  addition  to  the  clients  involved,  we  also  study  the
performance  of  FMRL  on  the  clients  that  never

 

(e) Half-cheetah random directory (selected clients) (f) Half-cheetah random velocity (selected clients) (g) Ant random directory (selected clients) (h) Ant random velocity (selected clients)

Number of steps Number of steps Number of steps Number of steps

Number of steps Number of steps Number of steps Number of steps

(a) Half-cheetah random directory (all clients) (b) Half-cheetah random velocity (all clients) (c) Ant random directory (all clients) (d) Ant random velocity (all clients)

 
Fig. 4    Effect of client selection rates on the local model of selected and all clients.
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α = 0.1
α = 0.05

participate  in  the  federation process  before.  The result
in Fig.  6 shows  that  FMRL  can  adapt  to  new
personalized  tasks  without  additional  rounds  of
federation training. Thereinto, we set  in the first
step  and  in  the  subsequent  steps.  In  direction
environments,  FMRL  also  performs  well  on  new
clients.  And other  methods have little  improvement  in
the  first  five  steps.  Compared  to  discrete  personalized
tasks,  the  continuous  tasks  in  velocity  environments
bring  more  challenges  to  the  model  training.  Even  so,
the  reward  of  FMRL still  increases  faster  and is  more
stable  than  other  methods.  In  fact,  the  methods  based
on  personalized  models  such  as  FedRep  and  Ditto
show little scalability on new clients due to the overly
specialized personalized models, especially in complex
environments.  Beside,  pFedMe  performs  even  worse
than  FedAvg  in  ant  random  velocity.  To  obtain  the
personalized  model,  pFedMe executes  additional  local
updates  with  customized  regularization,  which  makes
the  global  model  only  optimized  for  the  participating
clients, impairing its scalability on new clients.

5　Conclusion and Future Work

In  this  paper,  we  propose  a  method  of  federated  meta

reinforcement  learning  for  personalized  tasks,  named
FMRL,  to  solve  the  task  shift  problem  in  FRL.
Considering  the  conflict  between  the  communication
overhead of aggregations and the sampling overhead of
multi-step  local  training,  FMRL  leverages  PPO  to
achieve  the  reuse  of  historical  data  for  gradient  and
Hessian computation in MAML. Meanwhile, for better
convergence  speed  and  performance,  we  replace  the
Fed-SGD  in  FedAvg  with  Fed-Adam  as  the  new
aggregation  optimizer.  The  results  of  numerical
experiments corroborate that our approach outperforms
other  methods  in  different  environments,  including
discrete  and  continuous  personalized  tasks,  and  can
easily  adapt  to  new clients.  Future  work  is  to  analyze
the effectiveness and efficiency of FMRL when various
privacy mechanisms are applied.

Appendix

Acronym and Notation

i i

For  convenience,  we  list  all  acronyms  and  main
notations  in Tables  A1 and A2.  All  notations  with
subscript  are  related  to  client ,  which  will  not  be
emphasized in Table A2 any more.

 

(a) Half-cheetah random directory (after 1 step) (b) Half-cheetah random velocity (after 1 step)
Number of steps Number of steps

(c) Ant random directory (after 1 step) (d) Ant random velocity (after 1 step)
Number of steps Number of steps

 
Fig. 5    Effect of aggregation optimizers with different learning rates.
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