
 

Deciphering a Million-Plus RSA Integer with Ultralow
Local Field Coefficient h and Coupling Coefficient

J of the Ising Model by D-Wave 2000Q
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Abstract: This  work  is  the  first  to  determine  that  a  real  quantum  computer  (including  generalized  and

specialized)  can  decipher  million-scale  RSA  relying  solely  on  quantum  algorithms,  showing  the  real  attack

potential of D-Wave machines. The influence of different column widths on RSA factorization results is studied

on the basis of a multiplication table, and the optimal column method is determined by traversal experiments.

The  traversal  experiment  of  integer  factorization  within  10  000  shows  that  the  local  field  and  coupling

coefficients  are 75%–93% lower  than the research of  Shanghai  University  in  2020 and more than 85% lower

than  that  of  Purdue  University  in  2018.  Extremely  low  Ising  model  parameters  are  crucial  to  reducing  the

hardware requirements, prompting factoring 1 245 407 on the D-Wave 2000Q real machine. D-Wave advantage

already has more than 5000 qubits  and will  be expanded to  7000 qubits  during 2023–2024,  with  remarkable

improvements in decoherence and topology. This machine is expected to promote the solution of  large-scale

combinatorial  optimization problems. One of  the contributions of  this paper is  the discussion of  the long-term

impact of D-Wave on the development of post-quantum cryptography standards.
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1　Introduction

The  security  of  RSA  encryption  system  generally
depends  on  the  computational  difficulty  of  the  prime
factorization  problem[1].  However,  since  Shor[2]

presented his outstanding work in 1994, which claimed
that  his  algorithm can  perform integer  factorization  in
polynomial time if a scalable quantum computer can be
built, the confidence of the industry in RSA encryption
algorithms  has  considerably  decreased.  Building  a

scalable quantum computer generally means the end of
RSA-type  classical  cryptosystems.  Unfortunately,  this
“if” condition has not been met thus far.

A  set  of  prime  factorization  schemes  has  been
experimentally  proposed  due  to  the  practical
importance  of  prime  factorization  and  the  stimulation
of  Shor’s  algorithm.  As  shown  in Table  1,  the  prime
factorization  scale  based  on  Shor’s  algorithm  remains
in  the  hundreds  of  digits[3−5] due  to  the  limited
development of generalized quantum computers[6−8].

In  2014,  the  Netherlands  Quantum  Research  Center
planned  to  develop  a  100-qubit  general  quantum
computer in 10 years[9]. IBM Q System One, which has
27  qubits,  emerged  in  2019.  IBM  also  released  a
hardware roadmap, which planed to develop a quantum
computer  with  over  1000  qubits;  however,  a
considerable  gap  still  exists  between  this  planned
computer  and the  2000-plus  qubits  required  by Shor’s
algorithm to decipher 1024-bit  RSA[10].  Moreover,  the

 
  Chao Wang, Qiaoyun Hu, Haonan Yao, Sumin Wang, and Zhi

Pei are  with Joint  International  Research  Laboratory  of
Specialty  Fiber  Optics  and  Advanced  Communication,
Shanghai  University,  Shanghai  200444,  China. E-mail:
wangchao@shu.edu.cn; hqy2020@foxmail.com; yaohn1996@
foxmail.com; 25970264@qq.com; peizhiiii@163.com.

* To whom correspondence should be addressed.
    Manuscript  received: 2023-03-26;  revised: 2023-05-12;

accepted: 2023-06-13 

TSINGHUA  SCIENCE  AND  TECHNOLOGY
ISSN  1007-0214    17/20   pp874−882
DOI:  10 .26599 /TST.2023 .9010059
Volume 29 ,  Number 3 ,  June   2024

 
©  The author(s) 2024. The articles published in this open access journal are distributed under the terms of the

Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).



1000-bit machine is still under work.
Scholars  in  the  industry  have  long  believed  that

Shor’s  algorithm  is  the  only  effective  quantum
algorithm  for  RSA  attacks[11].  They  also  often  ignore
the  potential  of  the  D-Wave  quantum  annealing
algorithm,  which  was  originally  used  to  solve
optimization  problems[12] in  cryptanalysis.  The
development of the D-Wave quantum computer and the
comparison  of  qubits  between  D-Wave  and  other
remarkable  generalized  quantum  computers  are
illustrated  in Fig.  1.  However,  regardless  of  their
remarkable  performance,  IBM  quantum  computer
devices  have  not  yet  been  used  to  realize  Shor’s
algorithm for factorization.

The  development  of  D-Wave  has  advantages  over
general-purpose  quantum  computers.  In  addition,  the
integer factorization based on quantum annealing has a
relatively  mature  theoretical  basis  supported  by
numerous studies.

Adiabatic  quantum  computation  (AQC),  which  has
been proposed by Farhi et al.[13], is designed for a large
class  of  optimization  problems.  Thus  far,  two  main
approaches  have  been  used  to  transfer  the  factoring
problem into the optimization problem (Table 2).

Since  Wang  and  Zhang[20] analyzed  the  application
potential  of  D-Wave  in  the  field  of  cryptography  in

2012,  studies  on  Method  B  using  quantum  annealing
have been conducted.  Except  for  the studies presented
in Table  2,  various  optimization  schemes  have
continued to emerge.

Reference  [21]  used  a  multiplication  table  to
factorize 56 153 using  only  4  qubits.  However,  as
stated  in  the  article, “unless  we  know in  advance  that
the factors will differ at two bits, this reduction will not
allow  us  to  crack  big  RSA  codes.” Hegade  et  al.[22]

proposed  a  digitized  AQC  paradigm  for  factorization
enhanced by shortcuts to adiabaticity techniques, which
decreased  the  required  circuit  depth  in  quantum
computers,  and  factored  235  with  4  qubits  in  an  IBM
quantum computer with up to 6 qubits. In March 2020,
Wang  et  al.[23] proposed  a  distributed  quantum
annealing  integer  factorization  scheme.  Compared  to
Ref.  [18],  the  range  of  the  local  field  coefficient  and
the coupling term coefficient was further reduced, and
a 20-bit integer 1 001 677 was factored[23, 24].

Numerous  methods  based  on  binary  multiplication
tables  are  available,  but  none  of  these  methods  fully
consider  the  influence  of  column  width  on  the
resources required for quantum annealing. The current
study analyze the influence of column width on integer
factorization  and  find  the  optimal  column  width
through  traversal  experiments.  The  local  coefficient h
and the coupling term coefficient J (hereinafter referred
to  as h and J)  of  the  Ising  model  were  improved  by
75%–93% compared  with  those  in  the  study  of  Wang
et  al.[23] by  adopting  the  optimal  block  division
method.  Notably,  a  21-bit  large  number, 1 245 407,  is
factored  on  the  real  D-Wave  machine,  indicating  that
the proposed scheme and D-Wave work well.

 

Table 1    Integer factorization based on Shor’s algorithm.
Scheme Device Year Author Factored integer Qubit

Shor Photonic 2012 Martín-López et al.[3] 21 6
Shor CNOT gate 2013 Geller and Zhou[4] 51, 85 8
Shor Ion trap 2016 Monz et al.[5] 15 6
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Fig. 1    Representative  development  of  D-Wave  and
universal quantum computer.
 

Table 2    Two methods transferring integer factorization to an optimization problem.
Method Author Year Device Factored integer

Mathematic formula Peng et al.[14] 2008 NMR 21
Burges[15] 2002 — —

Schaller and Schutzhold[16] 2010 — 217
Binary product table Xu et al.[17] 2012 NMR 143

Jiang et al.[18] 2018 D-Wave 2000Q 376 284
Peng et al.[19] 2019 qbsolv 1 005 973
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Some forecasting researches[25−27] have presented an
optimistic  view  on  cracking  RSA-2048,  but  their
predictions  are  mostly  based  on  Shor’s  algorithm.
Before the expected prototype mentioned in their paper
emerges, their research is still far from cracking RSA-
2048.  Overall,  D-Wave  is  currently  the  quantum
machine  with  the  most  (theoretical  and  practical)
advantages  in  deciphering  RSA.  The  chip  topology  of
D-Wave  and  the  performance  of  qubit  interaction  are
further improved. Meanwhile,  the core principle of D-
Wave, that is, quantum annealing, is unique and can be
regarded  as  an  unsupervised  machine  learning
algorithm. The advantage of quantum annealing lies in
its  capability  to  solve  mathematical  problems  with  an
unclear  solution  space  (or  regularity).  Integer
factorization  is  exactly  one  such  problem.  Origin
quantum,  guided  by  the  academician  Guangcan  Guo,
also  recently  wrote  that  D-Wave  quantum  computers
have  a  better  technical  route  for  public  key
cryptanalysis  than general  quantum computers[28].  The
complexity  analysis  of  quantum  annealing  has  been
controversial.  Without  an  explicit  formulation  to
describe  the  search  speed,  quantum  annealing  has  the
advantage  of  jumping  out  of  the  local  suboptimal  by
applying the quantum tunneling effect and reaching or
approaching  the  optimal  solution,  which  cannot  be
achieved by ordinary algorithms solving problems with
a  well-distributed  solution  space.  Compared  with
traditional  algorithms,  quantum  annealing  has
exponential acceleration potential[29].

Yan  et  al.[30] recently  proposed  a  scheme  to
accelerate  the  classical  mathematical  method  of
attacking  RSA  with  the  quantum  approximate
optimization  algorithm.  Although  there  are  still  some
unsolved  issues  in  the  article,  this  is  a  new  idea  to
attack  classical  cryptography  in  addition  to  pure
quantum  methods  such  as  Shor’s  algorithm  and
quantum  annealing  algorithm.  All  kinds  of  methods
(quantum only and quantum mathematical) should still
be developed.

Considering  the  three  aforementioned  kinds  of
algorithms,  the  current  study  is  the  first  to  factorize
integers  exceeding  1  million  on  a  D-Wave  real
machine  relying  on  quantum  algorithms  only.
Moreover, this study illustrates the real threat from D-
Wave in deciphering RSA and discusses the impact of
D-Wave  in  the  post-quantum  era  considering  the
capability  of  D-Wave  to  maintain  pace  with  Moore’s
Law and its current capabilities.

2　Experiment

2.1　Quantum annealing

Quantum annealing is derived from adiabatic annealing
theory[31, 32].  The  theory  indicates  that  if  the  quantum
system  is  under  adiabatic  conditions  and  the  time-
varying  Hamiltonian  of  the  system  slowly  changes
sufficiently,  then  the  time-varying  (instantaneous)
Hamiltonian  always  remains  in  its  ground  state  (with
the  lowest  energy).  Unlike  traditional  algorithms,  a
solution  worse  than  the  current  state  is  temporarily
ignored when searching the solution space considering
the  quantum  tunneling  effect.  Instead,  the  energy
barrier is directly crossed through quantum tunneling to
reach  the  energy  ground  state,  which  is  the  global
optimal  solution.  The  search  efficiency  of  quantum
annealing has also been exponentially improved due to
the  wave–particle  dualism  of  quantum[33].  Using
quantum  annealing  to  decipher  the  RSA  can  be
summarized as solving the following two problems:

●  Mapping  the  integer  factorization  problem  to  the
Ising model.

● Mapping the Ising model to D-Wave hardware and
performing  quantum  annealing  to  obtain  the  ground
state.

This contribution mainly optimizes the first problem,
reduces  the  hardware  requirements  of  the  quantum
annealing  machine,  and  improves  the  probability  of
successful factorization and the upper bound of integer
factorization.

2.2　Multiplication table

A  modified  binary  multiplication  table  is  used  to
construct  objective  functions  to  map  integer
factorization  into  the  optimization  problem.  Given
integer N,  to  find  its  prime factors p and q,  subject  to
N = p × q and  assuming  that p ≤ q, p and q can  be
written in binary as follows:
 

p =
(
1pl1−1 pl1−2 · · · p11

)
2

(1)
 

q =
(
1ql2−1ql2−2 · · ·q11

)
2

(2)
 

N =
(
1nl3−1nl3−2 · · ·n11

)
2

(3)

l1 =
⌊
log2 p

⌋
l2 =
⌊
log2q

⌋
l3 =
⌊
log2N

⌋
pi, q j ∈ {0,1} i ⩽ l1, j ⩽ l2, i, j ∈ Z+
where , , ,  and

, .
The  binary  multiplication  table  is  shown  in Fig.  2.

This  method  avoids  calculating  the  equations  of  each
column.  Each  block  of  the  multiplication  table
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becomes  equal  to  the  corresponding  block  of  the
number  to  be  factored  by  dividing  the  columns  into
blocks,  which  markedly  reduces  the  computing
resources.

2.3　Distributed factorization algorithm

Jiang  et  al.[18] proposed  a  prime  factorization
framework  based  on  quantum  annealing  using  the
modified  binary  multiplication  table.  The  maximum
factored  integer  is  376  289.  This  framework  differs
from  traditional  algorithms  in  that  it  transforms  the
integer  factorization  problem  into  an  optimization
problem  and  maps  it  to  D-Wave  2000Q  for  quantum
annealing  to  conduct  prime  factorization.  Under  the
above  framework,  the  distributed  integer  factorization
algorithm proposed  by  Wang et  al.[23] uses  distributed
ideas to construct cost functions independently for each
block  of  the  multiplication  table  and  perform
independent  annealing.  Each  block  is  independent.
Thus, the coefficient superposition in the cost function
is markedly reduced, and the number of qubits required
for  a  single  block  is  also  decreased,  which  can
effectively  reduce  the  hardware  requirements.  This
section  takes  143  as  an  example  to  introduce  the
algorithm briefly.

As shown in Fig.  3,  the column division method [2,
2, 3]  is  applied  to  the  multiplication table  of  143.  The
first  column  has  no  variables  and  generally  does  not
participate in column calculations.

According  to  the  relationship  between  the  sum  of
product  terms  in  each  column  and  the  target  value  of
the corresponding block, the objective function of each
column can be constructed as follows:
 

f1 = (2p2+2p1q1+2q2−8c1+ p1+q1−3)2 = 0 (4)
 

f2 =(2q1+2p2q2+2p1+2c2−8c4−
4c3+ p2q1+ p1q2+ c1+1)2 = 0

(5)

 

f3 = (q2+ p2+ c3+2c4−2)2 = 0 (6)

pi
2 = pi qi

2 = qi

The formula is simplified, and variable substitutions,
such  as , ,  are  created.  The  objective
function containing only constants, primary terms, and
quadratic terms can be obtained in the form as follows:
 

f =
N∑

i=1

hisi+
∑
i, j∈ f

Ji, jsis j (7)

hi

Ji

si

where  is the primary term coefficient, corresponding
to the local field coefficient in the Ising model;  is the
quadratic  term  coefficient,  corresponding  to  the
coupling  term  coefficient  in  the  Ising  model;  and 
represents  logical  qubits.  The  local  field  and  coupling
term  coefficients  for  the  objective  function  of  each
column  are  extracted  and  embedded  into  D-Wave  for
solutions,  respectively.  Each  column  solution  is  not
unique, and the final solution is obtained by finding the
intersection of the set of solutions in each column.

2.4　Algorithm analysis

⌈ log2N
2

⌉

The quantum annealing integer factorization algorithm
is  executed  on  the  basis  of  the  binary  multiplication
table,  and  bit  width  determination  of  the  factor  is
crucial  for  certain  multiplication tables.  Consequently,
the  objective  function  also  depends  on  the
aforementioned condition, which will  ultimately affect
the  factorization  result.  The  bit  widths  of  the  two
factors (p, q) are generally similar by default; both are

 bits.  Two  factors  with  relatively  different  bit
widths will undeniably exist. However, the difficulty of
deciphering is relatively low.

Table 3 shows a comparison of three 20-bit  integers
to be factored. The factors are all 10 bits. No difference
is  observed  in  the  coupling  term coefficient J and  the
number of variables used, which is inevitably related to

 

 
Fig. 2    Modified binary multiplication table.

 

 
Fig. 3    Binary multiplication table of 143 = 11 × 13.
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the same bit  width of the factors.  Accurately factoring
the prime number 688 027 is impossible. However, the
algorithm performs smoothly when the 10-bit factor is
determined,  and  the  obtained  data  still  have  a  certain
reference value.

For  some  large  integers  whose  factorization  results
cannot be obtained theoretically, the algorithm can still
run  even  if  the  factorization  is  unsuccessful  (i.e.,
quantum  annealing  cannot  reach  the  ground  state)
according  to  the  above  analysis.  The  involved
parameters in the process play a supplementary role in
the  completeness  and  universality  of  algorithm
research.

Each  block  constructs  the  objective  function
independently.  Therefore,  the  target  value  of  each
block  as  an  independent  whole  will  affect  the
coefficient of the final cost function, which is reflected
in  the  difference  in  local  field  coefficients  in Table  3.
This  result  shows  that  the  choice  of  the  column
division  method  is  also  a  crucial  step.  Therefore,
further  optimization  experiments  are  expanded  on  the
block division method.

A variety  of  column methods  were  proposed  on  the
basis of the distributed quantum annealing factorization
algorithm. All the integers were factored within 10 000
vertically, and various column methods were traversed
horizontally  to  demonstrate  the  impact  of  column
methods on factorization.

2.5　Experimental setup

First,  the  software  package  qbsolv  provided  by  D-
Wave  company  is  used  to  solve  the  Ising  model  on  a
traditional computer. Tabu search is then implemented
in this package to find the optimal solution. Additional
details  regarding qbsolv package can be found in  Ref.
[34].  Moreover,  the  D-Wave  2000Q  is  remotely
connected by using the D-Wave Leap hybrid platform,
and 1 245 407 = 1109 × 1123 is factored on a D-Wave
machine using the proposed scheme. The performance
and principles of  multiple samplers provided by Leap,
such  as  DWaveSampler,  LeapHybridSampler,  and
ExactSolver,  are  fully  investigated  and  compared

before using D-Wave. The D-Wave Leap hybrid open-
source platform is used to program the system, and the
final  problem  is  submitted  as  representing  a  series  of
values  corresponding  to  the  quantum  ratio  privilege
and  coupling  strength.  The  system  uses  these  values
with  the  specified  parameters  to  find  the  best
configuration  of  the  qubits  and  finally  obtains  the
solution to the problem, which is the lowest point in the
energy landscape. To this extent, the program is run on
a real quantum computer.

3　Result and Discussion

The  maximum  decomposition  result  in  this  paper  is  a
21-bit integer 1 245 407 = 1109 × 1123, demonstrating
a  75%–93% parameter  improvement  of  the  Ising
model.  This  finding  is  better  than  the  maximum
decomposition  result  of  the  public  literature  of
Warren[35],  which  is  7781.  It  is  also  better  than  the
prime  factorization  experiment  result  (376 289)
of  Purdue  University[18],  and  also  exceeds  the
theoretical  value  (factor  up  to  10-bit  integers),  which
can be obtained by the IBM Q System One if it can run
Shor’s  algorithm.  In  addition,  all  integers  are  factored
within 10 000,  and  all  available  column  methods  are
applied to determine the optimal one.

3.1　Impacts of different column methods

Considering  the  column  method,  some  rules  are
obtained  from  abundant  experiment  data.  The
factorization of 2419 = 41 × 59 is taken as an example.

As shown in Fig. 4, the number of variables used will
be  reduced  with  the  increasing  width  of  the  column,
but  the  local  coefficient h and  the  coupling  term
coefficient J will  be  expanded  accordingly.  If  the
column  is  too  wide  (such  as  5,  6,  7),  then  the
corresponding h and J parameters  will  drastically
increase.

As  shown  in Fig.  5,  the  selection  of  the  maximum
column width has an effect on reducing the number of
variables, but this effect is not distinct. Meanwhile, the
impact  on  the h and J parameters  is  substantial.
Appropriate  columns  can  improve  the  order  of
magnitude  of  the h and J parameters  from 104 to  102.
The  position  of  the  widest  column  also  has  a
considerable influence on each parameter under uneven
columns. Figure  5 shows  that  the h and J parameters
performed well when the widest column moved toward
the  high  bit,  but  the  number  of  required  variables
slightly increased.

 

Table 3    Comparison  of  three  20-bit  integer  factorizations.
688 027 is a prime; thus, it cannot have two prime factors.

Integer Column Qubit h J
1 001 677 = 983 × 1019 4, 4, 4, 4, 3 88 7744 4594

682 267 = 823 × 829 4, 4, 4, 4, 3 88 8000 4594
688 027 = ? × ? 4, 4, 4, 4, 3 88 8768 4594
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In addition,  some extreme column methods (such as
1)  without  experimental  data  exist.  This  condition
exists  because  when  the  block  has  only  one  column,
the block may not contain any variables. Thus, the cost
function will  not  work.  For some large integers,  when
the column width is too small, the original information
transmission  channel  between  the  columns  is  cut  off.
Therefore,  the  correlation  between  the  front  and  the
rear is intricate, and the corresponding parameters may
lose  regularity,  even  contributing  to  the  unavailability
of a small number of column methods.

Overall,  the  column  method  has  a  considerable
influence  on  integer  factorization.  Properly  increasing
the number of columns will help reduce the number of
required  variables  and  further  minimize  the  hardware
requirements  for  D-Wave.  However,  an  excessively
large  column  width  will  also  drastically  increase  the
local  field  coefficient h and  the  coupling  term
coefficient J.  This  condition  results  in  inter-quantum
interference  problems,  such  as  excessive  coupling

strength,  which  affect  the  successful  execution  of
quantum  annealing.  Furthermore,  uneven  column
methods  should  be  intentionally  avoided  despite  the
acceptable  maximum  column  width  at  the  high
position. The most suitable column width is 2 for most
integers.  The  largest  column  width  in  the  upper
position  rule  is  employed  despite  the  unavoidable
appearance of uneven column width.

3.2　Comparison of experimental results

The  comparison  of  the  three  parameters  between  the
two methods (Wang et al.’s[23] and ours) is depicted by
Fig.  6.  Qubits  required  subtle  changes.  However,  a
considerable  reduction  is  still  observed  for  integers
above  100,  and h and J are  improved  exactly  by
75%–93%,  which  can  directly  reduce  the  coupling
strength  between  qubits.  The  phenomena  further
improve  the  stability  of  qubit  chains  and,  finally,
enhance the upper bound of integer factorization.

Table  4 shows  a  comparison  of  the  parameter
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Fig. 4    Average  parameter  values  of  different  column
method groups for factorization of 2419.
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Fig. 5    Parameters  under  extreme  column  method  for
factorization on 2419.
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conditions  required  by  different  algorithms  for
factorizing  7781.  Warren[35] factored  7781  as  the
maximum  integer;  therefore,  7781  is  taken  as  an
example. Table 4 shows that the experimental results in
this  paper  significantly  reduce  the  local  field  and
coupling  coefficients,  and  the  number  of  qubits  is
markedly  decreased  compared  to  the  study  by
Warren[35].  Compared  with  the  results  of  Wang

et  al.[23],  although  the  number  of  qubits  only  slightly
varies,  the  optimal  column  method  with  each
independent  column  annealing  considerably  decreases
the  local  field  and  coupling  term  coefficients,
improving  the  possibility  of  successful  quantum
annealing. This superiority cannot be ignored.

The  number  of  variables  and  the  ranges  of h and J
parameters  determine  the  feasibility  of  a  dedicated  D-
Wave  quantum  computer  performing  quantum
annealing  to  factor  integers.  The  experiment  has  only
single  digits  for  the  reduction  of  required  variables.
However, it can also guide the correct column method
to  a  certain  extent.  Most  importantly,  the  significant
improvement of h and J parameters is prominent.

4　Conclusion and Prospect

Factorization  of  21-bit  integer 1 245 407 using  an
optimal  column  method  is  realized  in  this  study.
Ergodic  factorization  within 10 000 is  presented  to
demonstrate  universality,  while  some  papers[21]

claiming to factor large-scale integers with only a few
qubits  reveal  that  only  a  few  special  integers  can  be
factored.  The  experimental  data  show  that  the  most
suitable column width is 2, and the columns should be
evenly divided.

This  study  not  only  focuses  on  the  increase  in
decomposition  scale  but  also  achieves  considerable
improvements  in  parameter  optimization.  The  local
field coefficient h < 144.0 and the coupling coefficient
J < 150.0 in the Ising model of integer decomposition
within 10 000,  which  is  far  superior  to  Warren’s[35]

order  of  10 to the 6 power,  are  75%–93% higher  than
those  of  Wang  et  al.[23] and  85% higher  than  that  of
Ref. [18]. This study also successfully factored 1 001 677
with  85  qubits  (Wang  et  al.[23] factored  the  same
integer  with  87  qubits).  This  contribution  provides  a
new  clue  for  the  improvement  of  the  quantum
annealing integer factorization algorithm and shows the
capability and superiority of D-Wave to attack RSA.

Moreover,  quantum  annealing  is  analog  quantum
computing,  which  is  limited  by  error  correction.

 

Table 4    Comparison  of  different  algorithms  for
factorization of 7781.

Algorithm h J Qubit
Warren[35] 106 106 419

Jiang et al.[18] 2462 1292 35
Wang et al.[23] 496 530 29

Proposed 131.25 142 29
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Fig. 6    Comparison of parameters between our method and
Wang et al.’s[23]. The pink represents the overlap.
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Notably, the solution space distribution, starting search
point,  quantum  annealing  schedule[36],  and  even  the
temperature of D-Wave machines will affect the search
efficiency  of  quantum annealing.  With  the  continuous
evolution of D-Wave machines, the scale of integers to
be  factored  will  expand  rapidly  in  the  near  future  as
long as the above aspects are optimized.

Shor’s  and  other  quantum  algorithms  pose  a
subversive threat to public key cryptography, which is
also  the  main  reason  for  the  development  of  post-
quantum  cryptography  standards.  However,  quantum
computation  is  generally  believed  to  have  no  harmful
effect on symmetric cryptography. Therefore, quantum
computing  attacks  on  symmetric  cryptography  must
find new technical  routes.  D-Wave may be able to fill
this  role.  The  post-quantum  cryptography  standard
currently  mainly  comprises  asymmetric  encryption
schemes.  If  the  above  assumption  is  successful,  then
the  post-quantum  cryptography  standard  may  absorb
post-quantum  symmetric  cryptography.  Further  more,
the  American  National  Institute  of  Standards  and
Technology (NIST) should consider the threat from D-
Wave  when  calling  for  post-quantum  ciphers  in  the
future.

The  race  to  use  quantum  computers  to  attack
cryptographic algorithms is ongoing, and D-Wave will
surely be a strong competitor. In addition to using pure
quantum  algorithms,  using  quantum  methods  to
accelerate  traditional  mathematical  methods[30] may
also be an option.
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