
 

Spatially Coupled Codes via Bidirectional Block
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Abstract: In this paper, we present a new class of spatially coupled codes obtained by using both non-recursive

and  recursive  block-oriented  superposition.  The  resulting  codes  are  termed  as  bidirectional  block  Markov

superposition  transmission  (BiBMST)  codes.  Firstly,  we  perform  an  iterative  decoding  threshold  analysis

according  to  protograph-based  extrinsic  information  transfer  (PEXIT)  charts  for  the  BiBMST  codes  over  the

binary erasure channels (BECs). Secondly, we derive the generator and parity-check matrices of the BiBMST

codes.  Thirdly,  extensive  numerical  results  are  presented  to  show  the  advantages  of  the  proposed  BiBMST

codes.  Particularly,  our  numerical  results  show  that,  under  the  constraint  of  an  equal  decoding  latency,  the

BiBMST codes perform better than the recursive BMST (rBMST) codes. However, the simulation results show

that,  in  finite-length regime, negligible performance gain is  obtained by increasing the encoding memory.  We

solve  this  limitation  by  introducing  partial  superposition,  and  the  resulting  codes  are  termed  as  partially-

connected BiBMST (PC-BiBMST) code.  Analytical  results  have confirmed the advantages of  the PC-BiBMST

codes over the original BiBMST codes. We also present extensive simulation results to show the performance

advantages  of  the  PC-BiBMST  codes  over  the  spatially  coupled  low-density  parity-check  (SC-LDPC)  codes,

spatially  coupled  generalized  LDPC  (SC-GLDPC)  codes,  and  the  original  BiBMST  codes  in  the  finite-length

regime.

Key words:  block  Markov  superposition  transmission  (BMST); protograph-based  extrinsic  information  transfer

(PEXIT); capacity-approaching codes; spatial coupling

1　Introduction

Error  correction  codes  are  indispensable  for
communication  systems,  including  wireless

communication,  maritime  information  networks[1],
vehicular  communication  networks[2],  and  helicopter-
satellite  communication  system[3].  In  the  fifth-
generation  (5G)  mobile  communications,  polar
codes[4, 5] and  low-density  parity-check  (LDPC)
codes[6–8] are employed for error correction. However,
polar codes and LDPC block codes are not suitable for
streaming  applications.  In  1999,  Felstrom  and
Zigangirov[9] proposed the convolutional LDPC codes,
which  may  find  applications  in  streaming.  The
convolutional  LDPC  codes  were  constructed  by
combining  convolutional  codes  with  LDPC  block
codes. The idea of convolutional LDPC codes was then
generalized  as  spatially  coupled  LDPC  (SC-LDPC)
codes[10]. The SC-LDPC codes can be generated from a
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series of LDPC block codes by reconnecting the edges
of  their  Tanner  graphs[11].  The  SC-LDPC  codes  were
proved  to  have  the  threshold  saturation
phenomenon[10–14],  which  means  that  the  iterative
decoding  threshold  of  an  SC-LDPC  ensemble  can
achieve  the  maximum  a  posteriori  (MAP)[15, 16]

threshold  of  the  underlying  uncoupled  code  ensemble
over  binary-input  memoryless  output-symmetric
channels. Spatially coupling can also be applied to the
low-density generator matrix (LDGM) codes[17–19] and
turbo-like codes[20–24].

Recently,  a  class  of  big  convolutional  codes  called
block  Markov  superposition  transmission  (BMST)
which  is  constructed  by  spatial  coupling  of  the
generator  matrices  of  the  short  codes  was  proposed in
Refs.  [25, 26].  A  BMST  code  can  be  viewed  as  a
serially  concatenated  code  that  consists  of  an  inner
code and an outer code. The outer code is referred to as
the basic code. For BMST construction, any short code
(linear  or  non-linear)  with  efficient  encoding  and
decoding  algorithms  can  be  employed  as  the  basic
code[25].  For  example,  BMST  codes  based  on  short
Hadamard  transform  (HT)  codes[27],  Bose-Chaudhuri-
Hocquenghem (BCH) codes[28],  repetition codes (RC),
and  single-parity-check  (SPC)  codes[29] had  been
investigated in  the  literature.  The inner  code is  a  rate-
one  block-oriented  feedforward  (non-recursive)
convolutional  code.  To  achieve  enhanced  flexibility,
the  systematic  BMST  of  repetition  (BMST-R)  codes
were proposed in Ref.  [30].  Existing numerical  results
showed  that  BMST-R  code  performs  well  in  a  wide
range  of  coding  rates.  The  technique  of  superposition
transmission  is  used  in  LDPC  coded  links  with
feedback to enhance the spectral efficiency[31].

When  compared  with  SC-LDPC  codes,  the  BMST
code  performs  well  in  the  waterfall  region  but  has  a
higher error  floor and a large decoding complexity[26].
To reduce the decoding complexity, the recursive block
Markov  superposition  transmission  (rBMST)  was
proposed  in  Ref.  [32].  The  rBMST  codes  were
obtained  by  replacing  the  block-oriented  feedforward
convolutional  encoder  in  BMST with a  block-oriented
recursive  convolutional  encoder.  Numerical  results
showed that  rBMST codes  perform better  than  BMST
codes  even with  a  much smaller  coupling  memory.  In
addition,  under  the  constraint  of  an  equal  decoding
latency, rBMST codes admit better performance in the
waterfall  region and lower implementation costs when
compared with the SC-LDPC codes.

Decoding  complexity  and  decoding  latency  are  key
considerations  when  selecting  channel  codes[33].  For
BMST  and  rBMST  codes,  the  decoding  latency  is
determined  by  the  product  of  the  length  of  the  basic
code  and  the  decoding  window  size.  In  practice,  both
BMST  codes  and  rBMST  codes  require  a  large
encoding memory and hence a large decoding window
size to achieve near-capacity performance. As a result,
for  a  fixed  decoding  latency,  basic  codes  of  short
length  should  be  used,  which  may  weaken  the
performance  gain  of  BMST  and  rBMST  codes.  The
study  in  Ref.  [33]  confirmed  the  huge  impact  of  the
length of the basic code on the decoding performance.
In addition, the decoding complexity of a BMST code
or  an  rBMST  code  grows  quadratically  with  the
encoding memory. Based on the above observations, in
this  paper,  we  are  intended  to  construct  BMST-like
codes  with  enhanced  performance  and  reduced
decoding complexity.

In  this  paper,  we  extend the  BMST and the  rBMST
constructions to present the bidirectional block Markov
superposition  transmission  (BiBMST)  codes,  in  which
a  rate-one  block-oriented  convolutional  encoder  with
both  non-recursive  and  recursive  connections  is  taken
as  the  inner  encoder.  The  main  contributions  of  this
paper are summarized as follows:

(1)  We  have  presented  the  encoder  and  decoder  of
the  BiBMST  codes  and  derived  their  generator  and
parity-check matrices.

(2)  We  have  derived  the  protograph-based  extrinsic
information  transfer  (PEXIT)  charts  for  BiBMST
codes,  which  can  be  used  to  predict  their  iterative
decoding threshold.

(3)  We  have  investigated  the  impact  of  various
parameters on the performance of  the BiBMST codes.
We have  also  carried  out  performance  comparisons  to
show  the  advantages  of  the  BiBMST  codes  over  the
rBMST  codes  in  terms  of  decoding  performance  and
computational complexity.

(4)  To further  enhance the performance of  BiBMST
codes,  we introduced the partially connected BiBMST
(PC-BiBMST)  codes,  in  which  a  portion  of  the
connection  coefficients  of  the  inner  block-oriented
convolutional  encoder  is  set  to  be  zero.  We  use  the
PEXIT  to  optimize  the  connection  pattern  of  the  PC-
BiBMST  codes  under  a  given  maximum  allowable
encoding memory. Our numerical results show that the
optimized  PC-BiBMST  codes  perform  better  than  the
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original BiBMST codes, SC-LDPC codes, and spatially
coupling generalized LDPC (SC-GLDPC) codes.

The  rest  of  the  paper  is  structured  as  follows.  In
Section  2,  we  introduce  the  encoding  and  decoding
algorithms  for  the  BiBMST  codes.  The  derivation  of
the  generator  and  parity-check  matrices  is  given  in
Section  3.  In  Section  4,  we  derive  the  PEXIT  charts.
The impacts of various parameters on the performance
of  BiBMST  codes  are  investigated  in  Section  5.
Performance  and  complexity  comparisons  are  also
presented  in  Section  5.  In  Section  6,  we introduce  the
PC-BiBMST  codes  and  their  optimization.  Section  7
concludes the paper.

2　Bidirectional  Block  Markov
Superposition Transmission

The  encoding  and  decoding  algorithms  for  BiBMST
codes are presented in this section.

2.1　Encoding of BiBMST

u Lk
L k

u = (u(0),u(1), . . . ,u(L−1)) L

C
n k

C[n,k]
C[n,k] m

i = 1,2, . . . ,2m Πi

n×n

An information sequence  of length  is divided into
 data blocks, each of which is of length . That is, we

have .  The  parameter  is
referred  to  as  the  coupling  length.  The  encoding
diagram  of  a  BiBMST  code  is  shown  in Fig.  1,  in
which  denotes  the  basic  code.  Assume that  a  linear
block code of length  and dimension  is used as the
basic code. For convenience, the basic code is denoted
as .  The encoding algorithm of a BiBMST code
with  basic  code  and  encoding  memory  is
described in Algorithm 1, where, for , 
is a binary  permutation matrix.

C [n,k]Let  be  the  basic  code.  The  code  rate  of  a
BiBMST code is
 

RBiBMST =
Lk

(L+T )n
=

L
L+T

R (1)

Twhere  is the termination length. Similar to SC-LDPC
codes,  the  BiBMST  code  has  a  rate  loss  due  to

L
L k

T T ⩾ m
k

termination.  This  rate  loss  is  negligible  for  large .
When all  pieces of length  are input to the encoder,
we simply input  ( ) all-zero sequences of length

 into  the  encoder  during  the  termination  process  to
ensure  the  transmission  performance  of  the  last  few
data blocks.

2.2　Decoding algorithm

t c(t)

y(t)

d
u(t)

For the -th transmitted block , the correspondingly
received signal  is  denoted as .  We use the iterative
sliding-window decoder with a decoding delay of  to
recover .  The  iterative  sliding-window  decoder
operates  on  a  subgraph  of  the  normal  graph  of  the
BiBMST code.

C =
+ 2m Πi

C

C[n,k] +
F2 =

Πi

i m
+ = m+2 2m+2

For completeness,  we present  the normal  graph of  a
BiBMST code.  The  normal  graph  can  be  divided  into
layers,  where  each  layer  consists  of  a  node,  a 
node,  two  nodes,  and   nodes.  Please  refer  to
Fig.  2 for  reference.  Node  represents  the  constraint
that the sequence must be a codeword of the basic code

.  Node  represents  the  constraint  that  the  sum
of  all  connecting  variables  is  zero  over .  Node 
represents  the  constraint  that  all  connecting  variables
take the same value. Node  represents the constraint
of the -th interleaver.  For an encoding memory of ,
the degrees of the node  and  are  and ,
respectively.

d = 3

W = d+1

Similar  to  SC-LDPC  and  rBMST  codes[32],  an
iterative  sliding-window  decoder  can  be  used  for
decoding.  An  example  of  the  sliding-window  decoder
with a decoding delay of  is shown in Fig. 2. The
decoder  operates  on  a  subgraph  of  the  normal  graph
consisting  of  layers.  The  first  layer  in  the
decoding  window  is  called  the  target  layer.  The

 

 
Fig. 1    Encoding structure of a BiBMST code with encoding
memory m.

 

Algorithm 1　Encoding of a BiBMST code

t < 0 c(t) = 0 ∈ Fn
2 .(1) Initialization: For , set 

t = 0,1, ...,L−1,(2) Loop: For 
t u(t)

v(t) ∈ Fn
2 .

● Encoding: Encoding the -th data block  by the encoder of
the basic code, resulting in 

1 ⩽ i ⩽ m z(t−i)

Πi Πm+i

w(t−i)
1 = (z(t−i))Πi w(t−i)

2 = (z(t−i))Πm+i

● Interleaving: For , interleave  by the
interleaver  and , resulting in the sequences

 and .

z(t) = v(t) +Σm
i=1w(t−i)

1
c(t) = v(t) +Σm

i=1(w(t−i)
1 +w(t−i)

2 ) c(t) t

● Superposition: Compute  and
; take  as the -th transmitted

block.

t = L,L+1, . . . ,L+T −1 u(t)
t = 0 ∈ Fn

2
ct

(3) Termination: For , set 
and compute  following Step (2).
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+→ =→ +→C→ +→ =→ +
message  updating  rule  in  a  decoding  layer  is

.  In  our  simulations,  we
use  the  entropy-based  stopping  criterion  to  reduce
unnecessary  iterations.  For  a  decoding  window,  the
decoding  process  of  the  target  layer  stops  and  the
decoding  window  slides  down  when  the  stopping
criterion is  satisfied or  when the maximum number of
iterations is reached.

3　Matrix Representation of BiBMST Codes

G
H C[n,k] Πi

i n×n

In this section, we first derive the parity-check matrices
of  BiBMST  codes  and  then  derive  their  generator
matrices. We use  to denote the generator matrix and

 to denote the parity-check matrix of .  Let 
represent -th  permutation  matrix  of  size .  Based
on the Step superposition in Algorithm 1, we have
 

c(t) =v(t)+

m∑
i=1

w(t−i)
1 +

m∑
i=1

w(t−i)
2 =

v(t)+

m∑
i=1

z(t−i)Πi+

m∑
i=1

z(t−i)Πm+i

(2)

 

z(t) = v(t)+

m∑
i=1

z(t−i)Πi (3)

From Eq. (3), we have
 

v(t) = z(t)+

m∑
i=1

z(t−i)Πi (4)

Then we have
  (

v(0),v(1), . . . ,v(L+T−1)
)
=
(
z(0), z(1), . . . , z(L+T−1)

)
Π (1) (5)

Π (1)

(L+T ) (L+T )
where  is  an  upper  bounded  block  matrix  with

 row  blocks  and  column  blocks,  and  is

given as
 

Π (1) =



I Π1 . . . Πm
I Π1 . . . Πm
. . .

. . .
. . .

. . .

I Π1 . . . Πm
. . .

. . .
...

I Π1
I


.

where I is the identity matrix of order L+T.
Similarly, from Eqs. (2) and (3), we have
 

c(t) = z(t)+

m∑
i=1

z(t−i)Πm+i.

z(t) c(t)

Pt P P0 = I
t > 0 Pt Pt =

∑
1⩽i⩽m Pt−iΠm+i

t < 0 Pt n×n
z(t)

c(t)

To  derive  the  relationship  between  and ,  we
first  define  the  matrices  and .  Firstly,  let .
For , define  as , where, for

,  is  the  all-zero  matrix  of  size .  Based  on
the above definitions, the relationship between  and

 is given as
  (

z(0), z(1), . . . , z(L+T−1)
)
=
(
c(0), c(1), . . . , c(L+T−1)

)
P (6)

P (L+T )
(L+T )

where  is an upper bounded block matrix with 
row blocks and  column blocks and is given as
 

P =



I P1 P2 · · · PL+T−1
I P1 · · · PL+T−2
. . .

. . .
...

I P1
I


.

From Eqs. (5) and (6), we have
 

(v(0),v(1), . . . ,v(L+T−1)) = (c(0), c(1), . . . , c(L+T−1))PΠ (1)

(7)
v(t)

v(t) = 0 ∈ Fn
2 t ⩾ L

Since  is  a  codeword  of  the  basic  code  and
 for , we have

 

(c(0), c(1), . . . , c(L+T−1))PΠ (1)·
diag(HT, . . . ,HT︸       ︷︷       ︸

L

, I, . . . , I︸ ︷︷ ︸
T

) = 0 (8)

diag(HT, . . . ,HT, I, . . . , I)
HT I

where  the  superscript  T  denotes  matrix  transposition,
and  is  the  block  diagonal
matrix  with  and  on  the  diagonal.  Therefore,  the
parity-check matrix of the BiBMST code is shown as
 

HBiBMST = diag(HT, . . . ,HT︸       ︷︷       ︸
L

, I, . . . , I︸ ︷︷ ︸
T

)(Π (1))T PT
(9)

w
LSC

A protograph-based SC-GLDPC code with  coupling
width  (syndrome  former  memory)  and  coupling
length  can be described as

 

C

+

+

=

C

+

+

=

C

+

+

=

C

+

+

=

C

+

+

=

Π1 Π2

Π3 Π4

Π1 Π2

Π3 Π4

Π1 Π2

Π3 Π4

Π1 Π2

Π3 Π4

Π1 Π2

Π3 Π4

 
Fig. 2    Normal  graphical  representation:  A  BiBMST  code
with encoding memory m = 2 and decoding delay d = 3.

  Gaoyan Li et al.:  Spatially Coupled Codes via Bidirectional Block Markov Superposition Transmission 659

 



 

BSC−GLDPC =



B0
B1 B0
... B1

. . .

Bw
...
. . . B0

Bw
. . . B1
. . .

...
Bw


,

Bi (0 ⩽ i ⩽ w)
bc×bv

(n,k)

Bi j BSC−GLDPC Bi j

M×M
Bi j

M×M
(L+w)Mbc×LMbv

where  component  base  matrices  of  size
 represent  the  edge  connections  from  variable

nodes  to  generalized  constraint  (GC)  nodes
corresponding  to  an  linear  block  code.  This
protograph  is  then  subjected  to  a  graph  lifting
operation, which is done by replacing all nonzero entry

 in  with  a  sum  of  nonoverlapping
randomly  selected  permutation  matrices  and
replacing all-zero entry  with the all-zero matrix of
size , thereby creating the parity-check matrix of
size .

Similarly, the parity-check matrix of BiBMST code is
 

HBiBMST =



HS0
... HS0

HSL−1
. . .

. . .

SL SL−1
. . .

. . .
...

. . .
. . .

. . . S0
SL+T−1 SL+T−2 · · · · · · S1 S0


,

S j = Σ
m
i=0Π

T
i PT

j−i Π0where  and  default  is  the  all-zero
matrix.  Noting  that  both  BiBMST  codes  and  SC-
GLDPC codes  are  constructed  with  basic  codes.  They
are different in the following aspects.

(1)  Firstly,  a  BiBMST  code  is  defined  by  its
encoding process.  Instead,  the  GLDPC codes  and SC-
GLDPC codes are defined by Tanner graphs.

(2)  Secondly,  the  parity-check  matrices  of  BiBMST
codes are always dense. On the other hand, the parity-
check  matrices  of  GLDPC  and  SC-GLDPC  codes  are
typically  sparse.  Furthermore,  the  parity-check
matrices of BiBMST codes are not used for decoding.

Qt

For  completeness,  we  derive  the  generator  matrices
of BiBMST codes. We complete the derivation in two
steps. We first define the matrices  as follows:
 

Qt =


0, if t < 0;
I, if t = 0;∑

1⩽i⩽m
Qt−iΠi, if t > 0;

0 n×n I n×nwhere  is  the  all-zero  matrix  and  is  the 

identity matrix. From Eqs. (2) and (3), we have
 

c(t) = z(t)+

m∑
i=1

z(t−i)Πm+i (10)

Therefore, we obtain the generator matrix as
 

GBiBMST = diag(G, . . . ,G︸   ︷︷   ︸
L

)QΠ (2)
(11)

Q L L+T
Π (2)

L+T L+T
Q

where  is a block matrix with  row blocks and 
column  blocks,  and  is  an  upper  bounded  block
matrix with  row blocks and  column blocks.
The matrix  is given as
 

Q =


I Q1 Q2 · · · · · · · · · QL+T−1

I Q1 · · · · · · · · · QL+T−2
. . .

. . .
. . .

. . .
...

I Q1 · · · QT

 .
(GBiBMST) = kL G

k QΠ (2)
Apparently, Rank  since the rank of  is

, and  is of full rank.
m > 1

HBiBMST GBiBMST

H G

Remarks: When ,  the  parity-check  matrix
 and  the  generator  matrix  of  a

BiBMST code  are  both  dense  matrices  irrespective  of
the  densities  of  and .  This  is  different  from  SC-
LDPC  codes,  SC-LDGM  codes,  BMST  codes,  and
rBMST codes. The parity-check matrices of SC-LDPC
codes  are  sparse,  and  the  generator  matrices  of  SC-
LDGM  codes  are  sparse.  Furthermore,  the  BMST
codes  admit  sparse  generator  matrices  and  dense
parity-check  matrices,  while  the  rBMST  codes  admit
sparse  parity-check  matrices  and  dense  generator
matrices.

Crc[4,2]
Crc[4,2]

Example  1: Consider  the  BiBMST  with  the  basic
code .  The  generator  matrix  and  parity-check
matrix of  are
 

G = H =
[

1 0 1 0
0 1 0 1

]
.

m = 2 T = 2

Π1 Π2 Π3 Π4

Let  and .  Similarly,  We assume that  the
four  interleavers  used  for  encoding  are  defined  by  the
permutation matrices , , , and  as follows:
 

Π1 =


0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 0

andΠ2 =


0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1

 .
 

Π3 =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

andΠ4 =


0 0 1 0
0 1 0 0
0 0 0 1
1 0 0 0

 .
L = 1

G1

Based  on  our  derivation,  when ,  the  generator
matrix  is
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G1 = G ·
[

I Q1 Q2
]
·

 I Π3 Π4
0 I Π3
0 0 I

 =[
1 0 1 0 0 1 1 0 1 1 1 1
0 1 0 1 0 1 1 0 1 1 1 1

]
,

H1and the parity-check matrix  is
 

H1 =



1 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
1 0 0 1 0 1 0 0 0 0 0 0
1 0 0 1 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 1 1 0 0 0 0 1 0 0 0
0 1 1 0 1 0 0 1 0 1 0 0
0 1 1 0 1 0 0 1 0 0 1 0
0 0 1 1 0 0 0 0 0 0 0 1



.

G1HT
1It can be checked that  is a zero matrix.

L = 2 G2When , the generator matrix  is given as
 

G2 =

[
G F1 F2 F3
0 G F1 F2

]
,

F1 = G(Π3+Q1) F2 = G(Π4+Π3Q1+Q2)
F3 = G(Π4Q1+Π3Q2+Q3)
H2

where , ,  and
, and the parity-check matrix

 is
 

H2 =


H 0 0 0

HS1 H 0 0
S2 S1 I 0
S3 S2 S1 I

 ,
S1 =Π

T
1 + PT

1 S2 =Π
T
2 +Π

T
1 PT

1 + PT
2

S3 =Π
T
2 PT

1 +Π
T
1 PT

2 + PT
3

where , ,  and
.

4　Iterative Decoding Thresholds Analysis of
BiBMST

In  this  section,  we  drive  the  PEXIT[34] functions  to
predict  the  iterative  decoding  thresholds  of  the
BiBMST  codes  over  the  binary  erasure  channels
(BECs).

4.1　Transfer function of the component decoder

m = 2

+
G

L
t

= t
= t+ k 0 ⩽ t ⩽ L−1

A  BiBMST  code  can  be  constructed  based  on
protograph. Figure  3a  illustrates  the  protograph  of  an
uncoupled  BiBMST  code  with .  In  this
protograph,  the  information  nodes  and  the  signal
parity-check  nodes  are  connected  by  the  generator
matrix  of  basic  code.  The  protograph  of  an
uncoupled  BiBMST  code  is  replicated  times,  with
each  protograph  labeled  by  its  corresponding  time .
The edges of the nodes  at time  are then reconnected
to  the  nodes  at  time ,  for  and

1 ⩽ k ⩽ m

m = 2

= +

,  resulting  in  a  couple  of  chains  that
correspond  to  a  BiBMST  code.  An  example  of  a
BiBMST code with encoding memory  is  shown
in Fig.  3b.  Similar  to  the  protograph-based  LDPC
codes, PEXIT charts can be used to predict the iterative
decoding thresholds for BiBMST codes when the sizes
of  the  interleavers  are  infinite.  To  derive  the  PEXIT
functions  for  BiBMST  codes,  we  need  the  transfer
functions for all nodes in the protograph, including the
node , the node , and the basic decoder node.

j +
= j+1

xi

j+1
1 ⩽ i ⩽ j Pplu Peq

+ =

When  the  input  message  number  is ,  both  node 
and  node  have  a  degree  of .  In  BEC,  the
extrinsic  mutual  information  (MI)  between  a  node’s
message  transmission  and  its  corresponding  codeword
bit is equal to its erasure probability. Let  be the input
erasure  probability  to  a  node  of  degree ,  where

.  We  use  and  to  denote  the  extrinsic
output  erasure  probability  of  a  node  and  a  node ,
respectively. Then we have
 

Pplu = fplu(x1, x2, . . . , x j) = 1− (1− x1)(1− x2) · · · (1− x j)
(12)

and
 

Peq = feq(x1, x2, . . . , x j) = x1x2· · ·x j (13)

fplu +
feq =

where  denotes the transfer function of the node ,
and  denotes the transfer function of the node .

4.2　PEXIT charts

ϵ

C
i p(t,t+ j)

eq,i

Let  denote  the  channel  erasure  probability  of  the
BEC.  For  a  BiBMST  code  with  basic  code ,  in  the
-th  iteration,  we  use  to  denote  the  extrinsic
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=

+
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0 1
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2 …

…

L−1 L L+1

 
Fig. 3    Protograph  corresponding  to  (a)  an  uncoupled
BiBMST code with m = 2 and (b) a BiBMST code with m = 2
and T = 2.
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= t
+ (t+ j)

= t
+ (t+ j)

q(t,t+ j)
eq,i p(t,t+ j)

plu,i q(t,t+ j)
plu,i

+ t +
t = (t+ j)

i
C(t)

in,i C(t)
out,i

t

erasure probability from node  of the -th layer to the
lower  node  of  the -th  layer.  Similarly,  the
extrinsic  erasure  probability  from  node  of  the -th
layer  to  the  upper  node  of  the -th  layer  is
denoted as . In addition, we let  and 
denote  the  extrinsic  erasure  probabilities  from  the
lower node  of the -th layer and the upper node  of
the -th  layer  to  the  node  of  the -th  layer,
respectively.  Meanwhile,  in  the -th  iteration,  we  use

 and  to  denote  the  extrinsic  input  erasure
probability and the extrinsic output erasure probability
of the basic decoder of the -th layer, respectively.

i < 0
t1 < 0 p(t1,t2)

plu,i = q(t1,t2)
plu,i = 1 p(t1,t2)

eq,i = q(t1,t2)
eq,i = 0

For  the  initialization  of  the  extrinsic  information
erasure  probabilities  of  the  above  nodes,  if  or

, we set  and .
We  first  derive  the  PEXIT  functions  for  the  forward
decoding process. The PEXIT functions within a layer
are written as
 

p(t,t)
plu,i = fplu

ϵ,1− m∏
k=1

(1− p(t−k,t)
eq,i )

 ,
q(t,t)

eq,i = feq

p(t,t)
plu,i,

m∏
k=1

p(t+k,t)
plu,i−1,

m∏
k=1

q(t+k,t)
plu,i−1

 ,
C(t)

in,i = fplu

q(t,t)
eq,i ,1−

m∏
k=1

(1−q(t−k,t)
eq,i )


(14)

t (t+ l)
The  PEXIT  functions  for  information  updating  from
the -th layer to the -th layer are written as
 

q(t,t)
plu,i = fplu

C(t)
out,i,1−

m∏
k=0

(1−q(t−k,t)
eq,i )

 ,
q(t,t+l)

eq,i = q(t,t)
plu,i p

(t,t)
plu,i

m∏
k=1,k,l

q(t+k,t)
plu,i−1

m∏
k=1

p(t+k,t)
plu,i−1,

p(t,t+l)
eq,i = q(t,t)

plu,i p
(t,t)
plu,i

m∏
k=1,k,l

p(t+k,t)
plu,i−1

m∏
k=1

q(t+k,t)
plu,i−1

(15)

1 ⩽ l ⩽ mwhere .

t

We  then  derive  the  PEXIT  functions  for  the
backward  decoding  process.  The  PEXIT  functions
within the -th layer are written as
 

p(t,t)
plu,i = fplu

ϵ,1− m∏
k=1

(1− p(t−k,t)
eq,i )

 ,
q(t,t)

eq,i = feq

 m∏
k=0

p(t+k,t)
plu,i ,

m∏
k=1

q(t+k,t)
plu,i

 ,
C(t)

in,i = fplu

q(t,t)
eq,i ,1−

m∏
k=1

(1−q(t−k,t)
eq,i )


(16)

t
(t− l)

The  updating  functions  from  the -th  layer  to  the
-th layer are written as

 

q(t,t−h)
plu,i = fplu

C(t)
out,i,1−

m∏
k=0,k,h

(1−q(t−k,t)
eq,i )

 ,
p(t,t)

eq,i = feq

 m∏
k=0

q(t+k,t)
plu,i ,

m∏
k=1

p(t+k,t)
plu,i

 ,
p(t,t−l)

plu,i = fplu

ϵ, p(t,t)
eq,i ,1−

m∏
k=1,k,l

(1−q(t−k,t)
eq,i )


(17)

1 ⩽ l ⩽ m 0 ⩽ h ⩽ mwhere  and .
Crc frc(·)

t

For  the  basic  code ,  we  let  denote  the
transfer  function  of  the  information  bits  of  the
repetition  decoder.  Therefore,  for  the -th  layer,  the  a
posteriori  erasure  probability  of  its  information  bits  is
computed as
 

Papp = frc(C(t)
in,i)C

(t)
in,i (18)

ϵ(m)
BP ϵ

Papp < Pb Imax

We  can  use  Eqs.  (14)−(17)  iteratively  to  compute  the
iterative  decoding  threshold  of  a  BiBMST  code
ensemble  over  the  BECs.  The  iterative  decoding
threshold  is the maximal erasure probability  such
that  when  iterations are executed.

Crc[2B,B]
Crc[3B,B] Crc[4B,B]

Cspc[4B,3B] Cspc[3B,2B]

Imax = 1000 Pb = 10−10

We investigate the effect of encoding memory on the
iterative  decoding  thresholds  of  BiBMST  codes.  The
B-fold Cartesian product of repetition codes ,

,  and  and  the  single  parity-check
codes  and  are  selected as  the
basic codes. We list the iterative decoding thresholds of
the considered BiBMST code ensembles in Table 1. At
the  same  time,  for  comparison,  we  list  the  iterative
decoding  thresholds  of  the  comparable  rBMST  code
ensembles with the same basic codes. When computing
the thresholds, we set  and .

m

From Table  1,  we  have  following  observations.
Firstly,  the  iterative  decoding  thresholds  of  BiBMST
codes  and rBMST codes  improve with  the  increase  of
the encoding memory , and the gain is marginal when
 

Table 1    Iterative  decoding  thresholds  of  BiBMST  codes
and rBMST codes.

Rate
BiBMST rBMST

ϵ
(m=1)
BP ϵ

(m=2)
BP ϵ

(m=3)
BP ϵ

(m=2)
BP ϵ

(m=3)
BP

3/4 0.2495 0.2497 0.2497 0.2372 0.2468
2/3 0.3327 0.3330 0.3330 0.3195 0.3301
1/2 0.4989 0.4996 0.4996 0.4880 0.4975
1/3 0.6660 0.6663 0.6663 0.6649 0.6663
1/4 0.7494 0.7496 0.7496 0.7494 0.7498
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0.0004 m = 3

the  encoding  memory  is  large  enough.  Secondly,  the
thresholds  of  the  BiBMST  codes  approach  the  BEC
capacities  for  all  considered  rates.  Particularly,  we
observe  that  the  thresholds  of  the  BiBMST  code
ensemble  based  on  the  rate  half  repetition  code  are
within  of  the  BEC  capacity  when .
Thirdly,  the  iterative  decoding  thresholds  of  BiBMST
codes are higher than those of  the rBMST codes for  a
given encoding memory.

5　Analytical Result and Performance

d m

Imax = 18
L = 1000

Crc[2B,B]

In  this  section,  we  firstly  investigate  the  impact  of
various  parameters  on  BiBMST  codes,  including
decoding delay  and encoding memory .  Secondly,
we  compare  the  performances  of  BiBMST  codes  and
rBMST  codes  under  the  constraint  of  an  equal
decoding  latency.  The  simulation  results  are  obtained
under  the  additive  white  Gaussian  noise  (AWGN)
channels  and  binary  phase-shift  keying  (BPSK)
modulation.  In  addition,  the  interleavers  are  randomly
generated  but  fixed.  In  all  following  examples,  the
iterative  sliding  window  decoding  algorithm  with  a
maximum  number  of  iterations  is  used  for
decoding. The coupling length is selected as .
The  rate  half  length  repetition  code  is
selected  as  the  basic  code.  The  entropy  stopping
criterion is employed.

5.1　Fixed B, increasing m (and hence d)

m

m = 1, 2, 3, 4

B = 1000 B = 1666

Example 2: In order to study the impacts of encoding
memory  on the performances of BiBMST codes, we
consider  a  family  of  BiBMST  codes  with  encoding
memories  and .  Notice  that,  to  obtain
optimal  performance,  the  decoding  delay  should
increase with the increase of the encoding memory. We
give  the  bit  error  rate  (BER)  of  the  considered
BiBMST  codes  for  and  in Fig.  4,
where Eb/N0 denotes  the  received  bits  signal-to-noise
ratio (SNR) on the AWGN channel in dB.

1 2

m = 2

m ⩾ 2

m

From Fig.  4,  we  can  find  that  when  the  encoding
memory  increases  from  to ,  the  performance
improvement  is  significant.  From  the  performance
point  of  view,  for  finite-length  BiBMST  codes,
preferred encoding memory is .  We also observe
that  the  performance  gain  obtained  by  increasing  the
encoding  memory  is  negligible  when .
Conversely,  simulation  results  show  that  performance
degrades  as  encoding  memory  increases.  This  is
partially  explained  as  follows.  When  is  large,  a

mdecoding error in the current layer will contaminate 
consecutive  layers.  This  phenomenon  is  severe  when
the SNR is low.

5.2　Fixed m, increasing d

2
m

d

d = 4, 5, 6 7
B = 1000 B = 2500

Example 3: In the previous subsection, the simulation
results  showed  that  when  the  encoding  memory  of
BiBMST codes exceeds , negligible performance gain
is  obtained  by  increasing  under  the  finite-length
regime.  We  study  the  effects  of  decoding  delay  on
the  performances  of  BiBMST  codes.  The  simulated
decoding  delays  are ,  and .  The  repetition
codes with  and  are selected as basic
codes. We show the performances in Fig. 5, where we
observe that

d

d ⩾ 6
d ⩾ 2m−3m

(1)  In  the  waterfall  region,  the  performance  of
BiBMST  codes  improves  as  the  decoding  delay 
increases.  However,  the  performance  gain  saturates
when . It is known that in the literature, in finite-
length  regime,  the  decoding  delay  is  near
optimal for iterative sliding window decoder.

d(2) The error floor improves as the decoding delay 
increases.

 

m=1, d=3, B=1000
m=2, d=5, B=1000
m=3, d=8, B=1000
m=4, d=11, B=1000
m=1, d=3, B=1666
m=2, d=5, B=1666
m=3, d=8, B=1666
m=4, d=11, B=1666
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Fig. 4    Simulated  decoding  performance  of  BiBMST  codes
with different encoding memory m.

 

m=2, d=4, B=1000
m=2, d=5, B=1000
m=2, d=6, B=1000
m=2, d=7, B=1000
m=2, d=4, B=2500
m=2, d=5, B=2500
m=2, d=6, B=2500
m=2, d=7, B=2500
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Fig. 5    Simulated  decoding  performance  of  BiBMST  codes
decoded with different decoding delay d.
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m d

B

(3)  For  a  given  and  a  given ,  performance
improvement  can  be  obtained  by  increasing  the  code
length of the basic code (increasing ).

5.3　Performance and complexity comparison with
rBMST codes

m = 2

m = 2

6

m = 2 d = 6

The  results  of  Examples  2  and  3  have  shown  that  for
the  BiBMST codes  based  on  rate  half  repetition  code,
the  best  performance  is  obtained  with .  This  is
consistent  with the iterative decoding thresholds given
in Table  1.  Furthermore,  for  BiBMST  codes  with
encoding  memory ,  performance  gain  in  the
waterfall  region  is  marginal  when  the  decoding  delay
exceeds .  Hence,  for  performance  comparison  in  the
finite-length regime, we select the BiBMST codes with

 and .

C[n,k]
Example 4: For a BiBMST code with the basic code

,  its  decoding latency under  the  iterative  sliding
window decoder is given as
 

TBiBMST = n(d+1).

d = 4, 5, 6, 7 8

We give the performances of the BiBMST codes based
on  rate  half  repetition  code  for  a  decoding  latency  of
20 000 bits  in Fig.  6a.  The simulated decoding delays
are ,  and .  From Fig.  6a,  we  have  the
following observations.

TBiBMST

(1) Under the constraint of a given decoding latency
,  the  BERs  of  the  BiBMST  codes  in  the

waterfall  region  degrade  when  we  increase  the
decoding delay.

TBiBMST

d

(2) Under the constraint of a given decoding latency
, the error floor improves as the decoding delay

 increases.  Similar observation has been obtained for
rBMST codes in Ref. [32].

TBiBMST = 20 000

For  further  illustration,  we  also  present  the
performances of the BiBMST codes based on rate half
repetition  code  for  a  given  decoding  latency  of
30  000  bits.  Observations  similar  to  the  case  with

 have been obtained for this case.

m = 3

d = 9
d = 11

B = 1428

In  the  following,  we  compare  the  performances  of
BiBMST codes and rBMST codes under the constraints
of an equal decoding latency. The numerical results in
Ref.  [32]  showed  that,  in  the  finite-length  regime,  the
rBMST  codes  with  have  superior  performance.
In our simulations, the decoding delays for the rBMST
codes  are  chosen  as  for  the  decoding  latency  of
20 000 bits  and  for  the  decoding  latency  of
30 000 bits. The simulation results are shown in Fig. 6.
We observe that the BiBMST code with  and

d = 6 B = 1000
d = 9

B = 2142 d = 6
B = 1250

d = 11

 outperforms the rBMST code with  and
.  Similarly,  for  the  decoding  latency  of 30 000

bits,  the  BiBMST  code  with  and 
outperforms  the  rBMST  code  with  and

.

52mn(d+1)IrBMST n
IrBMST

In  the  following,  we  compare  the  decoding
complexities  of  the  BiBMST  code  and  the  rBMST
code.  As  described  in  Ref.  [32],  the  average
computational  complexity  of  rBMST  code  within  a
decoding  window  is ,  where 
denotes the length of basic code and  denotes the
average number of  iterations needed to obtain a  target
performance.

Opt(A)
A

d
W = d+1

IBiBMST

(d+1)(2nOpt(+)+nOpt( = )+
Opt(C))IBiBMST

Let  denote  the  number  of  computation  of
node  in the normal graph (see Fig.  2 for reference).
For a decoding delay , the numbers of decoding layers
in  a  decoding  window  is  fixed  as .  Let

 denote  the  average  number  of  iterations
required  to  obtain  a  target  performance.  Hence,  the
average  computational  complexity  within  a  decoding
window  is  computed  as 

.  Specifically,  the  average
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BiBMST, m=2, d=6, B=1428
BiBMST, m=2, d=7, B=1250
BiBMST, m=2, d=8, B=1111
rBMST, m=3, d=9, B=1000

BiBMST, m=2, d=4, B=3000
BiBMST, m=2, d=5, B=2500
BiBMST, m=2, d=6, B=2142
BiBMST, m=2, d=7, B=1875
BiBMST, m=2, d=8, B=1666
rBMST, m=3, d=11, B=1240

 
Fig. 6    Error  performances  of  the  BiBMST  codes  with
encoding  memory m =  2  and  the  rBMST  codes  with
encoding memory m = 3: (a) a decoding latency of 20 000 bits
and (b) a decoding latency of 30 000 bits.
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104mn(d+1)IBiBMST

computational complexity of a BiBMST code based on
rate  half  repetition  code  of  length  is  given  as

.

10−6

B IBiBMST IrBMST Eb/N0

IBiBMST

IrBMST

Table 2 shows the average computational complexity
for  the  BiBMST  code  and  the  rBMST  code  used  in
Fig.  6b.  The  target  BER  is .  We  also  give  the
values of the parameters , , , and 
in Table  2.  We  observe  that  the  average  number  of
iteration  of  the  BiBMST  code  is  greater  than

.  However,  since  decoding  delay  used  for
BiBMST  code  is  smaller  than  that  used  for  rBMST
code,  the  computational  complexity  per  coded  bit  for
the  BiBMST  code  is  lower  than  that  of  the  rBMST
code.

6　Partially-Connected BiBMST Codes

6.1　Encoding of PC-BiBMST codes

The  analytical  and  numerical  results  have  illustrated
the superiority of BiBMST codes over rBMST codes in
computational  complexity  and  performance.  However,
in  finite-length regime,  we observe that  increasing the
encoding memory may incur performance degradation.
In  addition,  we  also  observe  that,  under  the  constraint
of  a  fixed  decoding  latency,  BiBMST  codes  cannot
perform well in the waterfall and the error floor regions
simultaneously.  That  is,  for  the  BiBMST  codes,  good
performance in the waterfall region is accompanied by
high  error  floor.  To  address  this  issue,  we  further
present the class of PC-BiBMST codes.

Πi n×n

Bi(E1,E2)
1× (m+1) E1 1× (m+1)

E2

i = 1,2, . . . ,m Πi = 0 i e1,i E1

0 e1,i = 1 E2

The  PC-BiBMST  code  has  a  similar  encoding
structure  as  that  of  the  original  BiBMST  code.  The
difference  is  that,  in  the  encoding  of  PC-BiBMST
code, the matrix  can be an  all-zero matrix. To
make  the  encoding  structure  clear,  we  define  the
connection  pattern  for  PC-BiBMST  codes,
where  the  matrix  and  the 
matrix  denote the non-recursive connection pattern
and the recursive connection pattern,  respectively.  For

,  if ,  the -th  element  of  is
equal to ; otherwise, . We define the matrix 

i = m+1,m+2, . . . ,2m Πm+i = 0
i e2,i E2 0 e2,i = 1

e2,0 = e1,0 = 1

Bi(E1,E2)

m m

Bi(E1,E2)
D

m = 3
Bi(1101,1011)

D = 6

similarly.  For ,  if ,  the
-th element  of  is equal to ; otherwise, .

Please  note  that  we  have .  We  point  out
that  there  is  a  one-to-one  correspondence  between  the
connection  pattern  and  a  PC-BiBMST
encoder. Since the encoding memory of a PC-BiBMST
code may be smaller  than ,  we call  the parameter 
the  maximum  allowable  encoding  memory.  The
number of nonzero elements in  is referred to
as  the  superposition  degree  and  is  denoted  as .  The
encoding  diagram  of  a  PC-BiBMST  code  with 
and  is  shown in Fig.  7,  where  we have

.
m

Bi(E1,E2) 22m

5
Bi(E1,E2) 1024 m

22m

For a  maximum allowable encoding memory ,  the
number  of  possible  choices  of  is .  For
example,  when  the  maximum  allowable  encoding
memory  is ,  the  number  of  possible  choices  of

 is . For a given , it is time-consuming
to  simulate  all  of  the  possible  PC-BiBMST codes
for  code  optimization.  In  this  paper,  we  use  the
iterative  decoding  thresholds  analysis  to  optimize  the
structure  of  PC-BiBMST  code.  The  PEXIT  functions
derived in Section 4 can be easily modified for such a
purpose.

6.2　Optimization of PC-BiBMST codes

Crc[2B,B]
Crc[3B,B] Cspc[3B,2B] Cspc[3B,2B]

3B ϵ∗

m
D

Bi(E1,E2)

Consider the PC-BiBMST codes built upon ,
, and , where  denotes

the  single  parity-check  code  of  length .  We  let 
denote  the  optimal  iterative  decoding  threshold  for  a
given maximum allowable  encoding memory  and a
given  superposition  degree .  The  optimized  iterative
decoding  thresholds  and  corresponding  connection
patterns  are reported in Fig. 8 and Table 3.

The  results  in Fig.  8 show  that,  for  all  considered
basic  codes  and  all  considered  maximum  allowable
encoding  memories,  the  optimal  iterative  decoding

 

Table 2    Decoding  complexity  per  coded  bit  of  BiBMST
code  and  rBMST  code  that  achieve  the  BER=10−6 with  a
decoding latency of 30 000 bits.

Code B d IBiBMST
IrBMST

 or Eb/N0 Complexity

BiBMST 2142 6 2.41 0.96 3508
rBMST 1250 9 2.01 1.05 3762
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Fig. 7    Encoding  structures  of  PC-BiBMST  code  with
maximum allowable encoding memory m = 3 and connection
pattern Bi(1011, 1101).
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D

D = 5

m ⩾ 5

thresholds  first  increase  and  then  decrease  with  the
increase  of  the  superposition  degree .  We  point  out
that,  for  all  cases,  the  optimal  iterative  decoding
thresholds  are  always  obtained  when ,  and  the
optimal thresholds are very close to the BEC capacities
when .  This  shows  that  the  PC-BiBMST  codes
have near-capacity performance under low complexity
decoding.

m
D

D

E1

From Table  3,  we  find  that,  for  a  given  maximum
allowable  encoding  memory  and  a  given
superposition  degree ,  the  connection  pattern  with
optimal  threshold  is  not  necessarily  the  same  for
different basic codes. When the superposition degree 
is  small,  it  is  preferred  to  use  sparse  connection  for
non-recursive  connection  pattern .  The  results  also
show  that,  in  the  proposed  bidirectional  encoding
structure,  the  recursive  connection  and  the  non-

recursive  connection  are  both  indispensable  for
performance enhancement.

Crc[2B,B]
m = 4

D = 5, 6, 8, and 10

Bi(10001,11001) Bi(10001,11011) Bi(10011,11111)
Bi(11111,11111)

Imax = 18
W = 17

Example  5: To  verify  the  results  of  iterative
decoding thresholds analysis in Fig. 8, we simulate the
PC-BiBMST codes  over  the  BEC channels.  The  basic
code  is ,  and  the  maximum  allowable
encoding  memory  is .  The  simulated
superposition  degrees  include .  The
corresponding  optimal  connection  patterns  are

, , ,
and . We set the maximum number of
iterations as  and the decoding window size as

.  It  can  be  seen  that  the  best  performance  is

 

Table 3    Optimal  thresholds  and  the  corresponding
connection  patterns  for  PC-BiBMST  codes  under  different
maximum allowable encoding memories.

Rate m D (E1,E2)Bi ϵ∗

2/3

4

5 Bi(10001,11010) 0.333 201

6 Bi(10001,11011) 0.333 194

7 Bi(10001,11111) 0.333 180

5

5 Bi(100001,110100) 0.333 217

6 Bi(100001,110101) 0.333 210

7 Bi(100001,110111) 0.333 201

6

5 Bi(1000001,1100100) 0.333 227

6 Bi(1000001,1101001) 0.333 221

7 Bi(1000001,1101011) 0.333 214

1/2

4

5 Bi(10001,11001) 0.499 828

6 Bi(10001,11011) 0.499 820

7 Bi(10001,11111) 0.499 803

5

5 Bi(100001,110001) 0.499 847

6 Bi(100001,110011) 0.499 842

7 Bi(100001,110111) 0.499 831

6

5 Bi(1000001,1101000) 0.499 861

6 Bi(1000010,1100101) 0.499 845

7 Bi(1000001,1101101) 0.499 843

1/3

4

5 Bi(10001,11001) 0.666 516

6 Bi(10001,11011) 0.666 511

7 Bi(10001,11111) 0.666 491

5

5 Bi(100001,110001) 0.666 534

6 Bi(100001,110011) 0.666 533

7 Bi(100001,110111) 0.666 522

6

5 Bi(1000001,1100010) 0.666 546

6 Bi(1000001,1100011) 0.666 546

7 Bi(1000001,1100111) 0.666 541
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Fig. 8    Optimal  iterative  decoding  thresholds  of  the
BiBMST codes with different  maximum allowable encoding
memory m.  (a)  The  repetition  code [3B, B],  (b)  the
repetition  code [2B, B],  and  (c)  the  single  parity-check
code [3B, 2B] are selected as the basic codes.
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(10001,11001)achieved  with  Bi ,  which  is  consistent
with the analytical results in Fig. 8b.

6.3　Simulation result and analysis

6.3.1　Performance  and  complexity  comparison
with SC-LDPC codes

m = 4

D = 5
D = 6

Imax = 18
L = 1000
Crc[2B,B]

Cspc[3B,2B]

Crc[2B,B]
Cspc[3B,2B]

(3,6)
(4,8)

m = 2 (3,6)

B0 = [2,1] B1 = [1,2] (4,8)

B0 = [3,1] B1 = [1,3]
20 000 30 000

M

In  the  following,  we will  compare  the  performance  of
BiBMST  codes,  regular  SC-LDPC  codes,  and  PC-
BiBMST  codes  under  the  assumptions  of  BPSK
modulation  and  AWGN  channels.  For  PC-BiBMST
codes,  we choose  for  comparison.  According to
the  results  in Fig.  7 and Table  3,  the  optimal
connection  patterns  for  superposition  degrees 
and  are chosen for our simulations. The iterative
sliding  window  decoder  with  is  used  for
decoding. In our simulations, we choose . The
simulated basic codes are the repetition code 
and  the  single  parity-check  code .  For
convenience,  the  PC-BiBMST  codes  based  on

 are  denoted as  PC-BiBMST-R,  and the PC-
BiBMST  codes  based  on  are  denoted  as
PC-BiBMST-SPC.  We  show  the  performances  of  the
considered  codes  in Fig.  9.  For  comparison,  we  also
show  the  performances  of  a -regular  SC-LDPC
code and a -regular SC-LDPC code in Fig. 9a, and
the  performances  of  the  comparable  BiBMST  codes
with  in Fig. 9b. Noting that for -regular SC-
LDPC  codes,  the  two  component  submatrices  are

 and , and for the -regular SC-
LDPC  codes,  the  two  component  submatrices  are

 and .  The  decoding  latencies
 and  bits  are  considered,  and  the  lifting

factors  of  the  considered  SC-LDPC  codes  are
selected  accordingly.  From Fig.  9a,  we  have  the
following observations.

Bi(10001,11011)
d = 11

m = 2 d = 6

20 000
m = 2 d = 11

m = 2 d = 6

(1)  The  PC-BiBMST-R  code  with 
and  decoding  delay  performs  better  than  the
BiBMST  code  with  and  in  both  the
waterfall  and  the  error  floor  region.  Noting  that  for  a
given  decoding  latency  of  bits,  the  BiBMST
code  with  and  performs  worse  than  the
BiBMST code with  and .

Bi(10001,11001)

Bi(10001,11011)

Bi(10001,11001)

(2)  The  PC-BiBMST-R  code  with 
performs  better  than  the  PC-BiBMST-R  codes  with

 in  the  waterfall  region  but  performs
worse  in  the  error  floor  region.  The  performance
advantage  of  the  PC-BiBMST-R  code  with

 is consistent with the analytical result
in Fig. 10.

In addition,  similar  observations have been obtained
for  PC-BiBMST-SPC  codes.  The  above  results  have
shown  that  optimized  PC-BiBMST  codes  outperform
the  BiBMST codes  in  both  the  waterfall  and  the  error
floor region.

We  continue  to  compare  the  computational
complexities  of  BiBMST  codes,  PC-BiBMST  codes,
and  regular  SC-LDPC codes  under  an  equal  decoding
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Fig. 9    Performance comparison among PC-BiBMST codes,
the BiBMST codes,  and SC-LDPC codes.  (a)  The repetition
code [2B, B]  is  selected as  the  basic  code.  (b)  The single
parity-check code [3B, 2B] is selected as the basic code.
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Fig. 10    Error  performances  of  four  PC-BiBMST  codes
with  different  superposition  degrees.  The  maximum
allowable encoding memory is m = 4.
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D 52n(D−2)(d+1)IPC−BiBMST

(J,2J)
ISC T SC

24JTSCISC

TSC = vcM(dSC+1)
vcM

24JdSCISC

latency.  For  BiBMST  codes,  its  computational
complexity  per  coded  bit  is  given  as

.  The computational complexity of
the  BiBMST  codes  is  related  to  the  superposition
degree  and  is  given  as .
For  a -regular  SC-LDPC  code  with  the  average
number of iterations  and decoding latency , the
average  computational  complexity  in  each  window  is

.  Since  the  decoding  latency  of  the  sliding
window  decoder  is  and  each
window  contains  bits  to  be  decoded,  the
computational  complexity  per  coded  bit  of  a  regular
SC-LDPC code is .

30 000
10−5

Bi(10001,11011)
(3,6) (4,8)

Table  4 shows  the  average  computational
complexities per coded bit  of the BiBMST codes, SC-
LDPC  codes,  and  the  PC-BiBMST  codes  used  in
Fig.  9a  with  a  decoding  latency  of  bits.  The
target  BER  is .  It  can  be  seen  that,  the  PC-
BiBMST  code  with  outperforms  the
considered -regular  SC-LDPC  code  and -
regular  SC-LDPC  code,  while  admiting  a  slightly
lower  computational  complexity.  In  addition,  the
computational  complexity  per  coded  bit  of  the  PC-
BiBMST code is higher than that of the BiBMST code,
which means that the performance gain is obtained at a
cost  of  increased  decoding  complexity.  However,  we
point  out  that,  for  the  original  BiBMST  codes,
performance  improvement  cannot  be  obtained  by
increasing the decoding complexity when the decoding
latency is fixed. According to Fig. 9b and Table 4, we
also observe that  the PC-BiBMST-SPC codes perform
better than the BiBMST-SPC codes.
6.3.2　Performance  comparison  with  SC-GLDPC

codes
In  the  following,  we compare  the  performance  of  PC-
BiBMST codes  and SC-GLDPC codes  over  the  BECs
under the constraint of a comparable decoding latency.
We  select  a  terminated  SC-GLDPC  code  in  Ref.  [35]

1/7

Bi(10001,11001)

1/7 Crc[7B,B]

T T = 6

Bi(10001,11011)

M = 500 L = 50
B = 500 L = 50

with design rate  for comparison. This SC-GLDPC
code  is  constructed  by  coupling  a  (2,  7)-regular
GLDPC  code  with  (7,  4)-Hamming  code  as  the
generalized constraint. Following Ref. [35], we employ
the  generalized  peeling  decoding  (GPD)  algorithm[35]

for  decoding.  In  the  GPD  algorithm,  the  generalized
constraint  nodes  are  decoded  with  the  maximum
likelihood  (ML)  decoding  algorithm  of  the  Hamming
code. For comparison, we consider a PC-BiBMST code
with  connection  pattern  decoded  by
the  peeling  decoding  algorithm.  To  achieve  a  design
rate of ,  the repetition code  is  chosen as
the  basic  code  of  the  considered  PC-BiBMST  code.
The  termination  length  is  selected  as .  The
simulations results are shown in Fig. 11. It can be seen
that  the  PC-BiBMST  code  with 
outperforms  the  SC-GLDPC  code.  We  point  out  that
the SC-GLDPC code with  and , and the
PC-BiBMST  code  with  and  admit
almost the same decoding latencies.

7　Conclusion

In this paper, we have introduced the BiBMST of short
codes.  Firstly,  we  derive  the  generator  and  the  parity-
check  matrices  for  BiBMST  codes.  Secondly,  we
derive the PEXIT functions for BiBMST codes, which
can  be  used  to  compute  the  iterative  decoding
thresholds of the BiBMST code over the BEC. Thirdly,
we  investigate  the  impacts  of  the  parameters  on  the
performance  of  BiBMST  codes,  and  carry  out
extensive  performance  and  complexity  comparisons.
To further enhance the performance of BiBMST codes,
we  introduce  the  PC-BiBMST  codes.  We  use  the
iterative  decoding  thresholds  analysis  to  optimize  the
PC-BiBMST codes.  We also give extensive numerical
results  to  show  the  performance  advantages  of  PC-
BiBMST codes  over  the  original  BiBMST codes,  SC-
LDPC codes, and SC-GLDPC codes.

 

Table 4    Decoding complexities per coded bit of BiBMST code and SC-LDPC code that achieve a BER of 10−5.
Code (E1,E2)Bi B or M dBiBMST or dSC IBiBMST or ISC Eb/N0 Latency Complexity

BiBMST-R
Bi(11100,11100) 2142 6 2.559 0.89 30 000 3725.9
Bi(10001,11001) 1250 11 2.111 0.81 30 000 3951.8
Bi(10001,11011) 1250 11 2.004 0.85 30 000 5002.0

(3, 6) SC-LDPC − 2500 5 9.650 1.05 30 000 4168.8
(4, 8) SC-LDPC − 3750 3 10.510 0.97 30 000 4035.8

BiBMST-SPC
Bi(11100,11100) 1904 6 2.008 1.88 20 000 2923.6
Bi(10001,11010) 1110 11 2.004 1.75 20 000 3751.5
Bi(10001,11011) 1110 11 2.003 1.80 20 000 4999.5
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Fig. 11    Finite-length  performances  of  a  PC-BiBMST  code
with Bi(10001, 11001) and a (2,  7)-regular SC-GLDPC code
with (7, 4) Hamming constraint codes.
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