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Abstract: With  the  rapid  development  of  mobile  communication  technology  and  intelligent  applications,  the

quantity of mobile devices and data traffic in networks have been growing exponentially, which poses a great

burden  to  networks  and  brings  huge  challenge  to  servicing  user  demand.  Edge  caching,  which  utilizes  the

storage and computation resources of the edge to bring resources closer to end users, is a promising way to

relieve  network  burden  and  enhance  user  experience.  In  this  paper,  we  aim  to  survey  the  edge  caching

techniques from a comprehensive and systematic perspective. We first present an overview of edge caching,

summarizing  the  three  key  issues  regarding  edge  caching,  i.e.,  where,  what,  and  how  to  cache,  and  then

introducing several significant caching metrics. We then carry out a detailed and in-depth elaboration on these

three issues, which correspond to caching locations, caching objects, and caching strategies, respectively. In

particular, we innovate on the issue “what to cache”, interpreting it as the classification of the “caching objects”,

which can be further classified into content cache, data cache, and service cache. Finally, we discuss several

open issues and challenges of edge caching to inspire future investigations in this research area.
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1　Introduction

In  recent  years,  with  the  rapid  development  of  mobile
communication technology and intelligent devices,  the
quantity  of  mobile  devices  and  data  traffic  have  been
growing  explosively.  According  to  the  latest  report  of
Cisco[1],  by  2023,  there  will  be  5.3  billion  Internet
users  in  total,  accounting  for  66% of  the  world
population.  Meanwhile,  the  number  of  IP-connected

devices is expected to reach 29.3 billion, which is more
than three times the world population.

The  arrival  of  the  5G  era  not  only  brings  better
experience  to  users,  but  also  injects  a  flow  of  fresh
vitality  into  the  implementation  of  the  Internet  of
Everything (IoE)[2, 3]. According to Metcalfe’s Law[4, 5],
as  more things,  people,  and data become connected to
the Internet, the power of the Internet (i.e., the network
of  networks)  is  growing exponentially.  In  the  IoE era, 
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Internet  of  Vehicles  (IoV),  intelligent  health  care,
Augmented  Reality  (AR),  Virtual  Reality  (VR),  and
many  other  new  Internet  of  Things  (IoT)  applications
are  generating,  while  simultaneously  requesting  and
consuming data and traffic  every minute.  The demand
of  mobile  users  for  data  transmission  rate  and  service
quality  is  also  growing.  Despite  the  rising  computing
capacity  of  smart  mobile  devices,  they  may  still  be
incapable  of  processing  computationally  intensive
applications, such as VR, AR, facial recognition, etc. in
a  short  amount  of  time.  Additionally,  the  battery
consumption  associated  with  operating  apps  involving
high computational power needs remains a key barrier
which prevents  mobile  consumers  from fully  enjoying
these services[6].

Under  this  background,  Edge  Computing  (EC),  as  a
decentralized  computing  architecture,  transfers  the
computation  tasks  from  the  center  of  the  network  to
edge  nodes  closer  to  users,  thus  providing  users  with
computing  services  with  lower  latency  and  higher
security[7].  Edge  caching,  which  integrates  traditional
caching  methods  and  mechanisms  into  the  EC
infrastructure,  refers  to  the  practice  of  employing
intermediary  storage  between  traditional  large-scale
data  centers  and  ultimate  users  who  access  resources.
By  moving  memory  storage  nearer  to  end  users,  edge
caching  relieves  stress  on  the  network  and  improves
content  delivery  performance,  which  is  an  essential
research topic in EC.

Cache, in its original sense, refers to a type of high-
speed  memory  which  exists  in  CPU  and  can  be
accessed faster than ordinary Random Access Memory
(RAM).  The  data  and  instructions  in  memory  that  are
most  frequently  accessed  by  the  CPU  are  duplicated
into the cache, so that the speed difference between the
CPU and the memory can be bridged. The cache is one
of the most important factors for all  modern computer
systems  to  achieve  high  performance.  Nowadays,  the
meaning  of “cache” has  transformed  from  one  of
necessary computer components to describing the idea
and process of storing data for later access[8], which has
become  an  indispensable  technique  for  storing
temporary data or files for speedy search by users for a
long  term.  Meanwhile,  the  cache  idea  has  been
expanded to  many other  fields,  including network and
EC[9].  Edge  caching  can  be  regarded  as  the
combination  of  the  caching  idea  and  mechanism  with
the  technology  and  architecture  of  EC,  as  shown  in

Fig. 1, which is not only one of the key technologies in
EC, but also an important application of EC technique
per se.

As presented in Ref. [10], in fact, despite the variety
of  demands  for  different  types  of  contents  in  the
network, only a tiny percentage of them are frequently
required.  In  other  words,  the  great  majority  of
requested  contents  are  redundant,  and  the  repeated
transmission  of  these  popular  ones  will  cause  a
significant  amount  of  duplicate  traffic  loads,  thus
leading  to  low  transmission  efficiency  and  excessive
energy  consumption.  Therefore,  by  caching  popular
contents on edge devices,  users’ requests  for  the same
content  can  be  accommodated  easily  without  the  need
for  superfluous  transmissions  from  remote  servers[11].
By  putting  the  resource  closer  to  end  users,  edge
caching  can  reduce  transmission  and  calculation
latency, improving users’ Quality of Experience (QoE)
dramatically.

So why does edge caching have such capability? To
illustrate,  consider  two  different  scenarios  of  the
international  newspaper  publication,  as  shown  in
Figs. 2a and 2b. In Scenario 1, all the printing is done
in  one  place,  which  is  called  the  headquarters.  Then,
the printed papers are sent all over the world. However,
in  Scenario  2,  the  headquarters  first  sends  a  master
copy  to  presses  around  the  world.  Then  the  presses
worldwide will make copies of the papers based on the
master  copy and deliver  them locally.  Considering the
cost  and efficiency,  the latter  method is  more sensible
than  the  former  one.  In  former  scenario,  since  all  the
publishing work is accomplished in just one place, the
shipping costs per subscriber will offset profits greatly,
 

Cache

CPU cache

Client cache

APP cache

Database cache

Web proxy cache

Edge computing

Computing migration

Service offloading

Mobile edge computing

Edge privacy

Technology & architecture

Edge caching

Idea  & mechanism

 
Fig. 1    Relationship between cache, EC, and edge caching.
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and the delays in receiving paper may cause customers
to  cancel  their  subscriptions.  Therefore,  in  practice,
most  wise  publishers  will  choose  the  latter  method,
because in this way, those local presses can print many
newspapers  every  day  and  deliver  them  timely,  thus
maximizing  the  use  of  their  facilities  to  improve
profits. The caching can be thought of as a business for
publishing  international  newspapers.  As  to  edge
caching,  edge  devices  can  be  seen  as  those  local
presses,  which  deliver  newspapers  (e.g.,  web  content)
from  popular  publishers  (content  producers)  to  many
end  users.  The  simple  comparison  between  traditional
caching and edge caching is shown in Figs. 2c and 2d.
In  fact,  edge  caching  has  played  a  critical  role  in
assisting  modern  Content  Delivery  Networks  (CDN)
and  telecoms  carriers,  who  provide  web  services  to
billions of users[12].

As to related surveys on edge caching, we have made
a collection of them, and the summary and comparison
of these works are concluded in Table 1. As shown in
Table  1,  although  many  works  have  attempted  to
survey various issues  in  edge caching,  they have been
limited to specific domains. From this point of view, a

more  comprehensive  review  of  edge  caching  is
necessary,  in  order  to  elaborate  this  topic  in  a  more
general  sense,  which  is  what  this  paper  attempts  to
achieve.  Moreover,  regarding  the  definition  of  edge
caching  and  the  summary  and  specific  content  of  key
issues,  different  surveys  have  given  different
statements,  without  reaching  consensus  on  many
issues.

In this case, the purpose of this survey is to provide a
clear  picture  of  edge  caching  from  a  comprehensive
and systematic perspective, with the hope that it will be
a  useful  guide  to  those  wishing  to  pursue  research
within  this  exciting  field.  To  that  end,  in  this  section,
the definition of edge caching in general sense has been
given,  while  its  advantages  have  been  illustrated,  and
the  rest  of  this  paper  will  be  organized  as  follows.
Section  2  provides  an  overview  of  edge  caching,
summarizing  the  three  key  issues  regarding  edge
caching  and  introducing  some  important  metrics.
Section  3  introduces  the  possible  edge  caching
locations  where  cache  storage  can  be  located,  along
with existing researches concerned. In Section 4,  edge
caching objects are classified into three categories and
elaborated  respectively.  The  comparison  of  two  pairs
of  edge  caching  strategies  is  discussed  in  Section  5.
Section 6 discusses several challenges and open issues
of edge caching. Section 7 concludes the survey.

2　Edge Caching: The Overview

In  comparison  to  traditional  centralized  web  caching,
edge  caching  techniques  are  more  advanced,  yet
complex. When conducting research into this area, it is
important to identify its key questions first.  Therefore,
in  this  section,  we  will  discuss  and  conclude  the  key
issues  regarding  edge  caching  at  first.  Furthermore,
when  designing  edge  caching  and  considering  its
application  into  specific  scenarios,  the  performance
metrics  are  the  primary  reference,  which  will  be
mentioned repeatedly throughout the rest of this paper.
Hence,  after  the  key  issues,  we  will  attempt  to  define
and  introduce  those  most  vital  and  commonly  used
performance  metrics  of  edge  caching  from  various
aspects briefly.

2.1　Key issues regarding edge caching

As  to  relative  surveys  mentioned  in Table  1,  we  find
that  almost  every  one  of  them  has  discussed  edge
caching  in  detail  from  the  following  three  aspects,  or
some of  them, as  shown in Table 2.  Therefore,  in  this

 

(a) Publication Scenario 1 (b) Publication Scenario 2

(c) Traditional caching (d) Edge caching 
Fig. 2    Comparison  between  publication  Scenario  1  and
publication  Scenario  2,  and  traditional  caching  and  edge
caching.
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paper,  we  will  follow  this  main  classification  pattern,
where  the  key  issues  regarding  edge  caching
technology  can  be  mainly  summarized  into  three
aspects:  (1)  where  to  cache;  (2)  what  to  cache;  and
(3)  how  to  cache,  which  correspond  to  the  caching
locations,  caching  objects,  and  caching  strategies,
respectively, as shown in Fig. 3.
2.1.1　Where to cache
Where  to  cache  refers  to  the  selection  of  caching
locations, namely the places where caches are deployed
or  where  caching  behavior  occurs.  Researches  on  this
issue  have  been  very  sufficient,  and  it  is  generally
accepted  that  the  edge  caching  locations  can  be

classified  into  two  broad  categories[15, 16, 18]:  (a)
caching  at  Base  Stations  (BSs);  (b)  caching  at  end
devices.  Caching  at  various  locations  have  distinct
characteristics,  and  we  will  provide  a  detailed
discussion about this in Section 3.
2.1.2　What to cache
From existing  studies,  different  authors  have  different
interpretations  of “what  to  cache” is.  Some think of  it
as  the  selection  strategy  for  caching  content,  namely
cache  content  placement  strategy[16],  while  others
interpret it as the classification of the types of caching
content[15, 18].  In  this  paper,  we  prefer  the  latter
interpretation. Nevertheless, we will not refer to “what

 

Table 1    Summary and comparison of relative surveys.
Reference Year Domain Issue

[13] 2016 Wireless networks

Content popularity and user preference;
content placement and delivery;
key differences between wired and wireless caching;
differences among different caching locations

[14] 2018 Cellular networks

Caching techniques in different cellular networks;
caching algorithms from three aspects: content placement,
content delivery, and joint placement and delivery;
performance metrics

[15] 2019 Mobile edge caching

Caching locations;
caching criteria;
caching schemes;
caching process

[16] 2019 Radio Access Networks
(RAN) for IoT

Deployment location;
content placement strategy;
coded caching;
hierarchical edge cache structure

[17] 2020 Mobile edge caching

Caching locations;
cache replacement strategies;
caching system behavior/performance;
wireless networks caching optimization

[18] 2020 Edge intelligence
Preliminary of caching;
cache deployment;
cache replacement

[19] 2021 Mobile edge caching

Total process of edge caching:
caching placement optimization;
caching policy design;
caching content delivery process

[20] 2021 5G and beyond 5G
edge networks

Application of Machine Learning (ML) techniques for edge caching;
caching strategy (policy, location, and replacement);
edge network (type and delivery strategy)

[21] 2022 Edge caching in IoT smart
environments

In-network caching solutions based on Named Data Networking
(NDN) paradigm;
possible interplay of NDN-based edge caching policies with
Software-Defined Networking (SDN)

[22] 2023 Mobile edge caching

Social-aware edge caching mechanisms;
users’ social and behavioral characteristics effective in caching
strategies;
taxonomy of social-aware edge caching approaches
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to cache” as the classification of the types of “caching
content”,  but  rather “caching  objects”.  A  novel
classification pattern is proposed, and according to this
pattern,  the  content  cache  is  merely  seen  as  one
category  of  the  classification.  More  specifically,  the
caching  objects  can  be  divided  into  three  categories:
(1) content cache; (2) data cache; and (3) service cache,
about  which  we  will  provide  a  detailed  elaboration  in
Section 4.
2.1.3　How to cache
How to cache refers to the design of caching strategies.
From different perspectives, the edge caching strategies
can  be  summarized  into  different  categories.
Conventional  web  caching  usually  adopts  a  reactive
and  centralized  caching  strategy,  which  is  simpler  but
not  enough  to  cope  with  the  complex  network
environment where edge caching system is located. To
deal  with this  problem, many existing researches have
attempted  to  innovate  on  the  traditional  caching
strategies,  or  to  propose  novel  caching  strategies,
namely  proactive  caching  and  distributed  caching.  In
this  paper,  the  edge  caching  strategies  issue  will  be
formulated from two different perspectives: (1) reactive

caching  vs.  proactive  caching;  (2)  centralized  caching
vs.  distributed  caching,  which  will  be  introduced  in
Section 5.

2.2　Performance metrics

Due  to  the  integration  of  caching  mechanism into  EC
infrastructure, and the fact that edge caching is mainly
deployed in network environment, performance metrics
of  edge  caching  can  be  categorized  into:  (1)  cached-
based  metrics  and  (2)  system  metrics,  from  the
perspective of the cache itself and the system where the
edge  caching  resides  severally.  The  summary  of  these
significant performance metrics is shown in Table 3.
2.2.1　Cached-based metrics
Cache-based  metrics  are  standard  metrics  used  to
measure the efficiency and the performance of caching
techniques by measuring whether a caching strategy is
able  to  store  and  hold  the  required  content.  Cache-
based metrics are typically calculated on a node basis.

(1) Cache hit ratio: A cache hit occurs when an end
user  submits  a  request  to  the  network  while  the
required content  exists  in  the  cache exactly.  Then,  the
desired  content  will  be  sent  from  the  cache  that  hits
directly  to  the  user.  CHR is  defined  as  the  percentage
of  requests  that  can  be  served  by  the  cache,  which
reflects  the  load  reduction  of  a  server  due  to
caching[93]. On the other hand, if the cache does not hit,
namely the desired content does not exist in the cache,
we  call  this  situation  a  cache  miss.  In  this  case,  the
desired content will be transmitted to the user from the
server,  and  generally  the  corresponding  data  will  be
loaded into the cache for future access.

Since  the  edge  cache  is  closer  to  the  user  in
comparison  with  servers,  the  overhead  of  transferring
content from the former to end users is much less than

 

Table 2    Key issues covered by relative surveys.
Reference Where to cache What to cache How to cache

[13] ✓ ✓
[14] ✓ ✓
[15] ✓ ✓ ✓
[16] ✓ ✓ ✓
[17] ✓ ✓
[18] ✓ ✓ ✓
[19] ✓ ✓
[20] ✓ ✓
[21] ✓ ✓
[22] ✓ ✓

 

Caching locations
(where)

Key issues regarding
edge caching

Caching at BSs

Caching at end devices[44−49]

Caching at MBSs[23−30]

Caching at PBSs[36−38]

Caching at FBSs[39−43]
Caching at SBSs[31−35]

Cooperative BS/D2D caching[50−53]

Content cache[45, 54−61]

Result cache[62−65]

Self-data cache[66−68]
Data cache

Service cache[69−72]

Reactive caching vs. proactive caching
Reactive caching[73−77]

Proactive caching[78−85]

Centralized caching[86−88]

Distributed caching[89−92]
Centralized caching vs. distributed caching

Caching objects
(what)

Caching strategies
(how)

 
Fig. 3    Key issues regarding edge caching.
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that  of  the  latter.  Therefore,  preferable  edge  caching
policies  should  correlate  to  an  increase  in  the  metric
CHR,  because  it  represents  that  more  demands  from
users  can  be  handled  by  the  edge  cache  without
duplicate transmissions from remote servers[94], so that
the  transmission  efficiency  and  users’ QoE  can  be
improved.

(2) Cache  replacements  rate: Since  the  storage
resource  of  edge  devices  is  limited,  when  the  cache
capacity  is  full,  the  caching  replacement  algorithm
must  decide  which  items  to  discard  to  make  room for
the new ones. CRR is defined as the ratio of the size of
replaced  content  to  the  total  cache  capacity  over  a
period of time.

The more frequently content is replaced in the cache,
the  shorter  the  cache  lifespan  of  popular  content  on
nodes,  resulting  in  a  lower  CHR  and  higher  latency.
Under  the  condition  of  fixed  resources,  more  efficient
caching  replacement  strategy  with  lower  CRR  is  a
necessity,  which will  track more usage information so
that the contents of the cache can be fully exploited to
improve the CHR for a given cache size.

(3) Popularity  and  request  probability: When
designing a caching strategy, the popularity of content
needs  to  be  considered.  If  contents  with  higher
popularity  are  cached,  they  will  be  hit  with  a  higher
probability, thus increasing CHR and decreasing CRR.
There are various ways to measure the popularity, and
usually a ratio or a certain probability is calculated. In
this way, popularity of an item is defined as the ratio of

the times it has been fed back by different users to the
total  number  of  users,  which  can  also  be  referred  to
click-through  rate,  viewing  rate  and  completion  rate
depending on the form of feedback.

i
1/iα α

Having quantified the item popularity, it can be taken
into  account  as  to  caching  strategy  design.  In  general,
just a few popular files will be requested frequently by
a  large  number  of  users  at  various  periods  on  the
network.  In  Ref.  [95],  it  is  confirmed  that  the
distribution  of  web  requests  generally  follows  a  Zipf-
like  distribution,  where  the  relative  probability  of  a
request for the -th most popular page is proportional to

, with  denoting the Zipf exponent that describes
the  likelihood  of  content  repetition.  Many  aspects  of
the  Internet  are  governed  by  Zipf’s  law,  and
observations  of  Zipf  distributions  have  significant
meaning for the design and function of the Internet[96].
In many other studies, like Ref. [97], it is verified that
the popularity distribution of files, such as videos, also
follows the same Zipf-like distribution.
2.2.2　System metrics
Since  edge  caching  is  often  applied  in  systems  like
network  environments,  when  designing  a  system  with
edge caching, in addition to measuring the cache-based
metrics,  it  is  necessary  to  consider  the  performance
metrics of the whole system, namely system metrics.

(1) Network delay: Network  delay,  also  referred  to
as  Round-Trip  Time  (RTT)  or  latency,  represents  the
time  duration  experienced  by  users  between  the  time
when the request is sent until delivery. Specifically, the

 

Table 3    Summary of significant performance metrics in edge caching.
Category Metric Definition

Cached-based metrics

Cache Hit Ratio (CHR) Percentage of requests that can be satisfied by the cache.
Cache Replacements

Rate (CRR)
Ratio of the size of replaced content to the total cache capacity over a
period of time.

Popularity Ratio of the times a certain item has been fed back by different users to
the total number of users.

Request probability Probability that a certain item is requested.

System metrics

Network delay Time duration experienced by consumers between the time when the file
is requested until delivery.

System throughput Amount of data that a system successfully transmits per unit time.

Backhaul cost
Cost incurred by introducing the backhaul link, which refers to the
communication link connecting the BSs to each other or to the core
network aimed at saving transmission time or reducing costs.

Energy Efficiency (EE)

Ratio of the effective information transmission rate to the signal transmit
power. (For the communication)
Ratio of the total network throughput to the overall energy consumption.
(For the network)

Spectral Efficiency (SE) Ratio of the effective information transmission rate to the channel
bandwidth.
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network delay can generally be divided into four parts:
(1)  processing  delay:  the  time  it  takes  for  routers  to
process data; (2) queuing delay: the time spent by data
in  routing  queues;  (3)  transmission  delay:  the  time
required  for  a  data  block  to  enter  the  transmission
medium  from  the  node  when  sending  data;  (4)
propagation delay: the time required for a signal to its
destination.  In  this  way,  the  network  delay  can  be
defined as the sum of these four types of delay.

Network  delay  has  a  significant  impact  on  the  user
experience  and  is  crucial  for  delay-sensitive  services
(e.g.,  interactive  entertainment,  online  education,  and
media  creation).  For  this  reason,  delay  and  traffic
reduction  comprise  the  primary  objectives  of  in-
network caching.

(2) System  throughput: System  throughput  is
defined  as  the  amount  of  data  that  a  system
successfully transmits  per  unit  time.  In other  words,  it
represents  the  actual  transmission  rate  of  the  system.
Throughput is one of important metrics to analyze and
measure  the  network  performance,  which  is  critical  in
the  design  of  a  system  with  edge  caching.  To  take
video  files,  the  most  requested  content  in  cellular
networks  as  an  example,  users’ QoE  in  video  service
mainly depends on throughput particularly.

When  addressing  equity  across  various  users,  an
important  metric  utilized  in  designing  caching
strategies  is  the  minimum  average  user  throughput
under  the  constraint  of  a  network  fault  probability,
which implies the possibility that a user demand cannot
be fulfilled[98].

(3) Backhaul  cost: In  wireless  communication,
backhaul  refers  to  the  use  of  long-distance  routing  to
transfer data from the network, the purpose of which is
to save transmission time or reduce costs. For network
architecture,  backhaul  is  an  important  part  of  the
network,  referring  to  the  links  that  connects  BSs  to
each  other  or  to  the  center  network,  usually  made  of
pricey  optical  fiber,  responsible  for  gathering  data
traffic  from  BSs  and  transmitting  it  to  the
metro/aggregation network[99].

Future  wireless  services  with  high  data  rate  require
extremely  high  backhaul  bandwidth,  which  will  result
in high backhaul costs, thereby limiting the benefits of
small  cell  installations  otherwise.  Therefore,  it  is
critical  that  systems  be  designed  with  cost-efficient
backhaul  architecture.  In  an  effort  to  alleviate  the
backhaul  cost  and  capacity  bottleneck,  demand  for
lifting backhaul cost efficiency is becoming as vital as

investment in radio infrastructure[100].
(4) Energy efficiency: In 5G wireless networks, with

the addition of millions of BSs and billions of connected
devices,  the  need  for  energy-efficient  system  design
and  operation  will  be  even  more  compelling[101, 102].
Therefore, when designing a system with edge caching,
it  is  important  to  take  the  system  power  consumption
into  consideration.  In  general,  the  power  consumption
from  BSs  and  user  devices  is  dominant.  The  former
determines the energy cost for the operators, while the
latter affects the battery life of user devices, which will
affects users’ QoE indirectly.

Nevertheless,  in  order  to  measure  the  energy  metric
of a system, besides power consumption, which shows
the absolute value of the energy consumed and with the
unit of Joule, another more effective measure is the EE.
EE describes  the  number  of  transmission  bits  that  can
be  obtained  when  the  system  consumes  unit  energy,
representing  system’s  utilization  efficiency  of  energy
resources. In the communication field, EE is defined as
the ratio  of  the effective information transmission rate
to the signal transmit power, with the unit of bit/J. For
the network, EE can also be defined as the ratio of the
total  network  throughput  to  the  overall  energy
consumption[103].

(5) Spectral  efficiency: In  addition  to  EE,  another
important metric to measure the efficiency of a system
is  SE.  SE  is  used  to  measure  the  effectiveness  of  the
system,  and  describes  how  much  capacity  can  be
provided,  representing  the  system’s  utilization
efficiency  of  spectrum  resources.  It  is  defined  as  the
ratio  of  the  effective  information  transmission  rate  to
the channel bandwidth, which can be viewed as the bits
per  second  per  hertz  (bit·s−1·Hz−1)  supported  by  the
system[104].

Both  EE  and  SE  are  the  most  commonly  used  and
critical  metrics  for  evaluating  system  efficiency,  thus
deserving consideration when designing a system with
edge caching. Many works, like Refs. [105, 106], have
also  explored  the  tradeoffs  between  EE  and  SE,  in
order to optimize the system performance.

3　Caching Location

As  demonstrated  in  Ref.  [107],  caching  techniques
which  store  content  in  caching  devices  at  the  edge  of
network  for  future  usage  are  strong  candidates  for
reducing  backhaul  traffic.  A  significant  portion  of  the
backhaul  traffic  stems from the duplicate  transmission
of  popular  content  to  multiple  users[108].  Thanks  to

    824 Tsinghua Science and Technology, June 2024, 29(3): 818−842

 



edge  caching,  the  redundant  traffic  could  be  reduced
significantly. A simplified architecture of edge caching
network  system  is  shown  in Fig.  4,  where  the  edge
caching  is  mainly  deployed  in  BSs  and  end  devices.
Caching  at  different  locations  have  different
characteristics,  which  will  be  discussed  in  the
following subsections.

3.1　Caching at BSs

According  to  3GPP[109, 110],  based  on  power  and
capacity,  wireless  BSs  can  be  divided  into  two  main
categories,  namely  Macro  BS  (MBS)  and  Small  BS
(SBS).  Further,  the  SBS  can  be  subdivided  into  Pico
BS (PBS) and Femto BS (FBS). The configurations of
different  BSs  are  compared  in Table  4.  As  shown  in
Table  4,  different  types  of  BSs  differ  greatly  in  their
characteristics,  and  therefore  play  different  roles  in
edge  caching.  The  deployment  of  cache  in  BSs
abstracts  the  BS  network  into  a  distributed  model,
which can considerably relieve the burden on the core
link.  Distributive  storage  at  the  caching-enabled  BSs
has  the  potential  to  reduce  the  traffic  load  in  future
cellular networks[23].

Heterogeneous Network (HetNet), which coordinates
the deployment of different BSs so that they can work
synergistically,  has  been  introduced  to  provide  high
data throughput, strong mobility, and high-quality user
experience[24]. HetNet has been deemed as a promising
architectural  technique  for  5G,  where  SBSs  that
address  high-density  access  demands  in  small  areas
(e.g.,  PBSs  and  FBSs),  are  deployed  intensively  and
work  cooperatively  with  MBSs,  which  fulfill  access
requirements in wide area. In a cache-enabled HetNet,
caching can occur at BSs of different types in order to
provide users with service with more convenience and
higher  quality.  Edge caching at  different  types  of  BSs
will be discussed in the following subsections.
3.1.1　Caching at MBSs
Since  the  amount  of  MBS  in  the  HetNet  is  usually
limited because of its high cost and outdoor application
scenarios,  with  respect  to  caching  at  MBSs,  most
current  works  have  focused  on  the  framework  of
caching  at  HetNet  where  a  small  number  of  MBSs
work in conjunction with densely deployed SBSs.

Given  the  limited  storage  capacity,  in  order  to
achieve higher caching efficiency, it is vital for BSs to

 

 
Fig. 4    A simplified architecture of edge caching network system.
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alter their caching targets based on content popularity.
Gu et al.[23] modelled the cache replacement process of
BSs  as  a  Markov  Decision  Process  (MDP)  and
proposed  a  distributive  scheme  based  on
Reinforcement  Learning  (RL)  algorithm,  aimed  at
reducing  transmission  costs  between  different  BSs.  In
5G  wireless  networks,  the  total  energy  consumption
and  the  backhaul  constraint  have  emerged  as  critical
factors  impacting  system  performance  and  user  QoE.
Focused  on  these  problems,  Zhang  et  al.[25] proposed
an HetNet architecture with the control-plane and user-
plane, where the MBS and SBSs with different caching
capabilities  were  stacked  and  collaborate.  Results
showed  that  the  proposed  architecture  could  improve
the throughput and EE greatly. Likewise, Guo et al.[26]

proposed  a  distributive  BS  dormant  technique  which
took caching into account for  enhancing HetNets’ EE,
while overcoming excessive backhaul expenditure. The
power consumption in a system where an MBS shares
with  multiple  SBSs  was  also  considered  in  the
proposed approach.

In cache-enabled HetNets, one of the key difficulties
is determining how many cache items should be stored
at different BSs in order to ensure assured service in a
cost-effective way. Zhang et  al.[27] designed a two-tier
cache-enabled HetNet in a hierarchical structure, where
the most popular instances were cached at SBSs, while
the less popular ones at MBSs. The cache sizes of two
types  of  BSs  were  optimized  in  order  to  increase
network  capacity  and  transmission  rate.  Furthermore,
in Ref. [28], they investigated the cost-effective design
of IoV made up of traditional MBSs and a special kind
of  SBSs,  namely  the  cache-enabled  Roadside  Units
(RSUs). Many factors were jointly optimized to reduce
the  deployment  cost,  under  the  constraints  of  QoE
criteria  and  restricted  backhaul  capacity.  In  IoV
environment,  requests  from  fast-moving  mobile  users
may  affect  SBSs’ content  popularity  distribution.  To
avoid this, Li et al.[29] proposed a two-level architecture
with multiple MBSs and SBSs, where high-speed users
were  always  served  by  MBSs,  while  low-speed  users
were served by SBSs in the same cluster together.

Although  the  researches  above  have  exploited  the
limited  caching  space,  energy  consumption,  or  the
backhaul  limitation,  the  security  of  cache-enabled
HetNets  is  not  considered.  Focused  on  this  point,
Zheng et al.[30] studied the physical-layer safety for an
HetNet  consisting  of  one  MBS  and  several  SBSs.  A
joint  design  was  proposed  on  caching  placement  and
file  transmission,  aimed  at  realizing  safe  and  energy-
efficient  delivery,  confronted  with  randomly
distributive listeners.
3.1.2　Caching at SBSs
Compared  with  MBS,  SBS  is  featured  by  lower
manufacturing  cost  and  narrower  coverage  radius.
Hence,  it  can  be  deployed  more  in  an  edge  caching
system,  in  collaboration  with  MBSs.  With  the
paradigm  transition  from  homogeneous  networks  to
heterogeneous ones, the notion of caching at SBSs has
gained  great  attention,  which  has  the  potential  to
support  low  power  and  high  rate  transmission.  For
example,  in  Ref.  [31],  Zhu  et  al.  designed  a  hybrid
architecture merging conventional SBSs and SBSs with
caching capability, aimed at maximizing area SE while
minimizing  backhaul  cost.  They  confirmed  that  in
order to maximize SE, the most popular content should
be  cached,  and  a  balance  should  be  achieved  between
BS density and cache size.

In  addition,  many  AI  algorithms  and  mathematical
theories  have  been  applied  to  solve  problems  in  SBS
caching.  For  instance,  Sengupta  et  al.[32] applied  RL
methods  to  study  the  distributive  caching  schemes  in
an  HetNet  composed  of  SBSs.  To  handle  the  joint
cache  placement  optimization,  which  turns  out  to  be
NP-hard,  a  coded  caching  framework  was  proposed,
where  SBSs  first  learn  the  file  popularity  through  a
classic  RL  technique,  and  then  pre-cache  encoded
fragments  of  popular  files  regularly,  so  as  to  better
satisfy  user  requests.  The  game  theory  has  also  been
utilized and combined with RL algoritms. For example,
Hamidouche  et  al.[33] proposed  a  self-organizing  RL
algorithm  modelled  by  the  minority  game  theory,
aimed  at  the  managing  backhaul  of  the  5G  SBS
HetNet.  The  algorithm  designed  was  confirmed  to

 

Table 4    Configuration comparison of BSs[15].

BS Application scenario Maximum transmitting
power (W) Bandwidth (MHz) Maximum coverage

radius (m) Number of users Manufacturing
cost

MBS Outdoor 40−100 60−70 10 000−40 000 200−1000+ High

SBS
PBS Indoor or outdoor 250 20 200 32−100 Medium
FBS Indoor 0.020−0.100 10 10−50 4−16 Low

    826 Tsinghua Science and Technology, June 2024, 29(3): 818−842

 



surpass  the  traditional  greedy  algorithm  while  not
threatening requests’ Quality of Service (QoS).

Since each SBS is just equipped with limited caching
space,  it  is  necessary  for  SBSs  to  adjust  their  caching
targets  based  on  the  request  record.  Krishnendu
et al.[34] presented a novel edge caching strategy for the
SBS  caching,  which  addressed  the  LP  problem  of
maximizing  average  CHR  in  an  approximate  method.
Results showed that the designed algorithm has a better
performance compared with traditional greedy caching,
Least  Recently  Used  (LRU),  and  Least  Frequently
Used  (LFU).  Further,  in  Ref.  [35],  Krishnendu  et  al.
proposed  a  caching  strategy  based  on  Federated
Learning  (FL),  aimed  at  optimizing  the  CHR  of  the
distributed  SBS  edge  caching  network.  Unlike  most
previous  efforts,  which  only  take  the  static
requirements  into  account,  in  their  work,  the  data
owned  by  each  SBS  were  thought  to  be  related
spatiotemporally.  And  results  showed  that  their
algorithm  performed  better  than  recent  online
algorithms.
3.1.3　Caching at PBSs
As one kind of special SBS, PBS can be also applied in
edge  caching,  which  can  also  be  referred  to  as  pico-
caching.  Caching  at  MBS  along  with  PBSs  is  a
promising method to support  massive content delivery
and reduce backhaul cost in HetNets. many works have
considered  to  utilize  the  pico-caching  to  assist  the
traditional MBS caching.

For example, Cui et al.[36] attempted to minimize the
total  time  by  optimizing  caching  strategy  and
considering user correlation, so as to meet the average
user  demands.  The  problem was  modelled  as  a  mixed
discrete-continuous  optimization  under  the  constraints
of  bandwidth  and  caching  space.  Specifically,  they
demonstrated  that  the  best  policy  is  to  store  the  most
popular contents at each PBS. Furthermore, in Ref. [37],
Jiang  and  Cui  proposed  a  mixed  two-tier  caching
design  composed  of  an  MBS-tier  and  a  PBS-tier,  and
attempted  to  maximize  the  successful  transmission
probability of the HetNets, which can also come down
to  a  mixed  discrete-continuous  optimization  problem.
An  approximate  solution  to  the  problem  was  found,
which  had  better  performance  and  controllable
complexity. There are also many other works focusing
on  the  design  of  two-tier  HetNet.  For  instance,  Yi
et  al.[38] proposed  a  novel  HetNet  architecture,  where
MBSs  were  covered  with  intensive  PBSs.  The  BSs  in
each layer were modelled as an homogeneous Poisson

Point  Processes  (PPP)  respectively,  and  cached
contents based on content popularity ranking.
3.1.4　Caching at FBSs
An FBS, also known as a helper node or a home BS, is
another kind of special SBS with smaller coverage and
lower  cost  compared  to  FBS.  Since  FBSs  are  more
flexible and cost-effective to deploy than conventional
BSs,  they  are  particularly  suitable  for  indoor
deployment,  in  order  to  improve  indoor  coverage
which cannot be coverd by MBSs[39]. Since the concept
of FBS was proposed, many studies have concentrated
on  caching  at  FBSs,  which  can  be  also  referred  to  as
femto-caching.  Femto-caching  can  function  as  a
supplement to other cache-enabled BSs, which has the
great  potential  to  improve  the  performance  of  edge
caching.

For  example,  Lee  and  Lin[40] proposed  a  BS
reselection  caching  strategy  aimed  at  accelerating  the
transition  of  the  HetNet  structure  from  MBS-tier  to
FBS-tier. In Refs. [41, 42], Liu and Yang compared the
SE  of  two  different  network  structures,  where  the
MBS-tier  in  the  HetNet  is  overlaid  by  PBS-tier  and
FBS-tier,  respectively.  Results showed that in order to
achieve  the  same  target  SE,  the  required  density  of
FBS  is  lower  than  that  of  PBS,  and  by  increasing
increasing the caching space, the density can be further
reduced.  Considering  a  cache-enabled  HetNet  with
FBSs  spread  around  MBSs,  Kuang  and  Liu[43]

proposed  a  hybrid  files  caching  strategy  based  on  the
request  probability,  where  the  most  popular  files  are
entirely  cached  in  FBSs,  while  the  less  popular  ones
are  partly  cached.  Using  stochastic  geometry  theory,
the  locations  of  two  different  types  of  BSs  were
modeled,  and  an  optimal  strategy  was  designed  to
maximize the average SE.

3.2　Caching at end devices

End  device  generally  refers  to  device  which  directly
interacts  with users,  such as laptop and mobile  phone,
also known as User Equipment (UE). The proliferation
of  smartphones  in  the  last  decade  has  led  to  a  sharp
increase  in  data  traffic,  challenging  the  capacity  of
network  infrastructure  and  mobile  devices.  To  cope
with  this  amount  of  traffic,  Device-to-Device  (D2D)
communication has become a key feature for enhancing
the  performance  of  5G  cellular  network[111, 112].
Current smartphones are becoming more complex with
stronger  computing  and  storage  abilities.  Therefore,
mobile  devices  can  serve  as  caching  devices
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themselves,  caching  locally  and  sharing  with  other
terminals  directly  via  D2D  communication.  Via  D2D
communication, adjacent end devices can skip the BSs
to  establish  a  direct  link,  thereby  relieving  the  burden
of  network  infrastructure  and  improving  the  network
capacity  dramatically.  This  type  of  caching  is  called
D2D  caching[44],  which  can  bring  contents  closer  to
users  and  reduce  backhaul  traffic,  thus  optimizing
users’ QoE.

The growing demand for videos on mobile devices is
a  huge  challenge  to  current  network  architecture.  To
address  this  challenge,  Wu  et  al.[45] proposed  a  D2D
caching  based  video  transmission  mechanism,  which
allows  end  users  to  cache  and  share  videos
cooperatively,  aimed at  improving mobile users’ QoE.
In  response  to  the  same  demand,  Anjum  et  al.[46]

suggested  a  two-tier  D2D  caching  approach  aimed  at
reducing  the  delay  experienced  by  Video-on-Demand
(VoD) mobile users. In the proposed approach, caching
capacity  of  the  end  device  is  split  into  two  parts.  The
first  part  is  dedicated  to  caching  and  delivering  the
initial  portion  of  the  most  popular  videos,  while  the
second  one  is  responsible  for  caching  the  remaining
portion  totally  or  partly  in  accordance  with  users’
watching behavior and video popularity.

In Ref. [47], Panahi et al. pointed it out that the dense
deployment  of  SBSs  can  suffer  the  EE of  the  HetNet,
while the D2D caching can overcome this problem. In
order  to  maximize  EE,  they  introduced  a  D2D  tier  to
the  HetNet,  along with  saving energy consumption by
hibernating some SBSs. Moreover, In Ref. [48], Meng
et al. focused on the performance for the D2D caching
network with Energy Harvesting (EH) function, where
each  end  device  can  cache  from  BSs  and  get  charged
via  EH.  Stochastic  geometry  was  used  to  model  the
network  transmission,  and  then,  two  probabilistic
caching schemes with different goals were proposed to
jointly  optimize  CHR  and  successful  offloading
probability. In addition, the game theory has also been
applied to optimize D2D caching. Shi et al.[49] pointed
out that the selfish nature of users is the primary barrier
to D2D caching, and the Stackelberg game was used to
modeled the interest conflict between the operator and
mobile  users.  Then,  they  proved  that  the  game
equilibrium exists, and designed an algorithm with low
complexity  to  jointly  optimize  the  incentive  price  and
caching strategy approximately.

3.3　Cooperative BS/D2D caching

In a cache-enabled D2D cellular network, collaboration

between BS caching and D2D caching can exploit  the
limited  caching  capacity  adequately  and  achieve  more
efficient resource utilization, thus relieving core traffic
and  strengthening  network  capability  dramatically.
This caching strategy can be referred to as cooperative
BS/D2D  caching[50],  where  delivery  traffic  can  be
offloaded  to  end  devices’ cache  through  D2D link,  or
else  directly  to  cache-enabled  BSs  through  cellular
link.

As  to  cooperative  BS/D2D  caching,  one  of  the  key
questions is to decide whether popular contents should
be cached at end devices or at BSs. In Ref. [51], Chen
and Kountouris explored this problem by modelling the
network  using  stochastic  geometry  and  analyzing  the
performance  of  two  different  architectures  (i.e.,  D2D
caching  and  BS  caching).  Results  showed  that  the
performance depends on content popularity distribution
and  user  density  heavily.  In  Ref.  [52],  Jiang  et  al.
proposed  an  optimal  cooperative  edge  caching  and
delivery  policy  combining  femto-caching  and  D2D
caching. The cooperative problem was modelled as an
Integer  Linear  Programming  (ILP)  problem,  and  a
decomposition  method  was  used  to  decompose  the
original  problem  into  two  sub-problems.  In  addition,
considering the latency, it is important for the network
to  provide  users  with  timely  service  responses.  In
Ref.  [50],  Soleimani  and  Tao  proposed  a  strategy  to
evaluate  whether  a  caching  device  can  transmit  the
requested  contents  within  the  tolerant  delay.  Further,
they designed a  cooperation offloading strategy which
integrated the transmission from BS caching and D2D
caching to ensure the specified delay. Likewise, Wang
et  al.[53] also  investigated  the  cooperation  of  BS
caching  and  D2D  caching,  aimed  at  improving  the
successful  transmission  probability  and  guarantee  the
delay.  A  descent  algorithm  was  proposed  to  resolve
this collaborative caching placement problem.

4　Caching Object

As  to  the  implication  of  the  issue “what  to  cache”,
opinions  vary  among  different  researchers.  On  one
hand,  in  Ref.  [16],  this  issue  is  equated  with  the
caching  placement  policies,  which  are  designed  to
decide  what  content  should  be  cached.  In  systems
equipped  with  edge  caching,  such  as  cache-enabled
HetNet,  both  the  caching  and  backhaul  capacity  are
finite.  An  idea  to  solve  this  problem  is  to  equip  BSs
with larger caching capacity[113]. However, as a matter
of  fact,  the  caching  capacity  is  always  not  enough
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relative to massive amounts of contents in the network.
For  this  reason,  a  proper  caching  placement  policy  is
always  indispensable  in  order  for  more  appropriate
contents  to  be  stored  in  the  edge  cache,  which  will
improve  the  performance  metrics  at  both  the  cache-
based  and  system  aspects.  On  the  other  hand,  both  in
Refs.  [15, 18],  the  issue  is  interpreted  as  the
classification  of  the  caching  content.  The  former
classified  the  edge  caching  contents  into  three  types:
(1)  time  tolerant  data;  (2)  time  sensitive  data;  (3)  IoT
data, according to the analysis of users’ content request
types.  The  latter  discussed  the  classification  of  edge
caching contents for intelligent applications, and based
on  requests’ redundancy,  the  caching  contents  were
divided  into  two  categories:  (1)  data  redundancy
content and (2) computation redundancy content.

Nevertheless,  although  the  two  works  above  have
both  tried  to  classify  the  edge  caching  contents,  their
classification  patterns  have  certain  one-sidedness  and
limitations.  In  this  section,  we  will  follow  the  latter
comprehension of the issue “what to cache” in general,
while  attempting  to  propose  a  more  novel  and
systematic classification method. In order to carry on a

more  comprehensive  elaboration  to  this  issue,  having
synthesized  many  works  on  edge  caching,  we  tend  to
refer  to  the  issue “what  to  cache” as  the  classification
of the “caching objects”. Specifically, the edge caching
objects can be classified into three broad categories: (1)
content cache; (2) data cache; (3) service cache, which
will  be  discussed  respectively  in  the  following
subsections,  as  shown  in Table  5.  Furthermore,  the
comparison  of  these  three  types  of  caching  objects  is
shown graphically in Fig. 5.

4.1　Content cache

Content  cache,  such as  files,  videos,  and webpages,  is
the most commonly cached object of edge caching, and
is also the caching object of the CDN, which is one of
the most mature application scenarios for edge caching.

The  critical  idea  of  in-network  cache  can  be
recognized  as  exploring  and  exploiting  the
spatiotemporal redundancy in user requests[54], and the
same idea also holds true for edge caching techniques.
The redundancy can largely determine the feasibility of
caching  techniques.  According  to  Ref.  [18],  caching
redundancy  can  be  divided  into  two  main  categories,

 

Table 5    Classification of caching objects.
Type of caching objects Application scenario Reference

Content cache Content (e.g., videos and webpages) transmission in CDN or IoT [45, 54−61]

Data cache
Result cache Storage of computation results from smart applications

(e.g., image recognition and music identification) [62−65]

Self-data cache Storage of monitoring data generated from devices
(e.g., smart devices and IoT devices) [66−68]

Service cache Application services offloading at edge [69−72]

 

 
Fig. 5    Comparison of three types of edge caching objects.

  Hanwen Li et al.:  A Survey of Edge Caching: Key Issues and Challenges 829

 



i.e.,  communication  redundancy  and  computation
redundancy.  The  repeated  request  of  popular
multimedia  contents  can  bring  about  communication
redundancy.  Since contents  with high popularity tends
to  be  requested  by  users  frequently,  as  a  result,  the
network has to delivery the duplicate contents over and
over again. In this case, caching popular content at BSs
or  end  devices  can  eliminate  huge  repetitive
transmissions  in  the  core  network,  thus  relieving  the
strain on core network and improving users’ QoE.

According  to  Cicso’s  latest  report[1],  video  devices
can have a huge effect on traffic especially. Because of
the  the  increasing  demand  of  users  for  high  quality
video  experience,  video  devices  will  have  an  even
more  evident  impact  on  the  traffic.  This  throws  up  a
huge challenge for current network. Therefore, to better
design  the  content  cache  so  as  to  meet  the  challenge,
many existing  studies  have  investigated  users’ request
of  various  types  of  content,  especially  for  videos.  For
example,  Crane  and  Sornette[55] researched  massive
amounts of videos on YouTube in order to describe the
activity of video requests. They found that the poisson
process can be used to model most activity accurately,
while other activities can be classified as three distinct
patterns. Meanwhile, Traverso et al.[56] built a realistic
arrival  mechanism  for  content  requests  using  access
records from 60 000 YouTube end users. A new model
was  then  proposed  to  allow  users  to  capture  the
dynamics of content popularity locally and is effective
for  analysing  caching  systems.  Based  on  these
theoretical  findings,  many  researchers  have  attempted
to  construct  algorithms  and  mechanisms  for  caching
video  contents  at  edge.  For  instance,  Tanzil  et  al.[57]

applied  ML  method  to  construct  an  adaptive  strategy
for edge video content caching. The proposed strategy
accounted  for  user  pattern  and  network  properties
comprehensively,  intended  to  select  appropriate
caching locations and caching sizes in the network.  In
Ref.  [58],  Sermpezis  et  al.  investigated  the  process  of
caching popular content at FBSs and then introduced a
new  concept  of “Soft  Cache  Hits” (SCHs),  which
extended  the  meaning  of  the  traditional  cache  hits,
considering  using  relative  contents  to  compensate  for
cache  misses.  SCH  is  capable  of  complementing  the
service  strategy  of  many  applications  like  YouTube
well,  and  it  is  shown  that  when  SCHs  are  introduced,
the  optimal  caching  strategy  should  be  redesigned.
Moreover,  in  Ref.  [45],  Wu  et  al.  designed  a  user-
centric  video  transmission  mechanism  based  on  D2D

communications  allowing  user  video  caching  and
sharing.  The  proposed  mechanism  considered  various
factors  jointly,  such  as  user  relevance,  user  sharing
willingness, etc.

The edge content caching has also played a vital role
in IoT scenarios  such as  IoV. The development  of  the
IoV has spawned a series of driving assistance services,
which  enhances  the  safety  and  intelligentization  of
transportation[59, 60].  As  to  self-driving,  the  edge
computation  offloading  along  with  content  caching  is
one  of  the  key  issues  to  offer  high-quality  vehicular
services.  For  instance,  in  Ref.  [61],  Tian  et  al.
suggested  a  collaborative  Deep  Reinforcement
Learning (DRL) based scheme for compute offloading
and  content  caching,  in  order  to  overcome  the  high
mobility and dynamic requests of self-driving vehicles,
so  as  to  support  informed  offloading  decision-making
while  assuring  efficient  utilization  of  content  caching
resources.

4.2　Data cache

Data  cache  is  generally  required  by  various  emerging
applications  requesting  a  large  amount  of  data  all  the
time in order to accomplish certain tasks,  e.g.,  various
smart  applications  and  IoT  applications.  These
applications  create  massive  volumes  of  monitoring,
observation,  and  computation  data,  and  requesting
these  data  might  spell  enormous  network  traffic
load[114].  Confronted  with  the  growing  demand  of
mobile  users  for  higher  service  quality,  in  spite  of  the
increasing  computational  power  of  smart  mobile
devices,  they  may  still  not  be  equal  to  those
computationally intensive applications in a short period
of time, like VR, AR, face recognition, etc. In addition,
the  huge  power  consumption  involved  with  operating
these  applications  remains  a  substantial  barrier
preventing  users  from  fully  enjoying  these  services.
Activating  devices  frequently  for  data  acquisition  or
calculation will drain their batteries and this is a major
challenge. Therefore, it is beneficial for cache data for
improve applications’ efficiency, while saving network
traffic and energy consumption.

In  this  paper,  we  classify  the  data  cache  into  two
main categories: (1) result cache; (2) self-data cache.
4.2.1　Result cache
In  this  AI  era,  we  are  now  accustomed  to  a  wide
variety  of  intelligent  edge  devices,  such  as  smart
phones,  laptops,  etc.  These  intelligent  edge  devices
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provide users with diverse smart applications based on
AI model, in order to provide convenience and richness
to  users’ daily  life.  For  example,  AI  assistants  with
voice recognition,  such as  Siri,  can communicate  with
mobile  users  naturally  in  real  time,  providing  them
with all  kinds of  services.  Furthermore,  users  can turn
to  song  identification  module  built  into  music
applications  for  help  to  identify  their  interested songs,
or use a plant picture recognition application to identify
unknown  flowers.  Nevertheless,  in  spite  of  the  great
convenience  these  smart  devices  have  brought  to  our
lives,  frequent use of these AI-based applications with
high computational  complexity may spell  computation
redundancy, which can cause great power consumption
of devices[62, 63].

On  the  other  hand,  many  researchers  have  realized
the  computation  redundancy  presence  in  applications
with  AI  techniques,  and  attempted  to  eliminate  it.  For
example,  when  walking  in  a  park,  many  visitors  may
perform plant  recognition on the same flowers.  In this
case,  without  the  data  cache,  when  each  user  tries  to
identify  the  same  flower,  their  edge  device  will
perform  the  exact  same  task  all  over  again.  In  this
process,  there  exists  lots  of  unwarranted  computations
across devices. However, if such an image recognition
task  can  be  offloaded  to  edges,  and  the  recognition
results  can  be  cached,  redundant  computations  can  be
further eliminated[64], which is exactly the core idea of
the result cache, which belongs to edge data cache. By
caching the correspondence between specific tasks and
results,  along  with  the  assistance  of  D2D
communication among different users, the execution of
repetitive  computational  tasks  can  be  reduced  to  a
certain extent, thus optimizing the users’ experience of
the  applications  while  reducing  the  devices’ power
consumption  from  activating  tasks  with  high
computational complexity frequently.

The  same  application  is  often  called  on  plural
devices  in  close  distance,  and  it  often  process  similar
inputs which will correspond to the same result. Based
on this pattern, Guo et al.[64] exploited the equivalence
between  different  application  inputs  in  order  to  reuse
the  results  of  previous  calculations,  aimed  at
minimizing redundant computations. This was an early
attempt  to  carve  out  and  eliminate  the  computation
redundancy  of  application  input  data  by  using  real
datasets. In addition, Xia et al.[65] utilized collaborative
cache-enabled  BSs  to  guarantee  low  latency  users’

retrieval  of  application  data.  They  then  designed  an
online  algorithm  to  deal  with  caching  resource
limitations,  which  was  proved  to  obtain  the
approximate optimal performance.

As  to  computation  redundancy and result  cache,  the
key  step  is  to  mine  and  measure  the  similarity  of  the
features  of  users’ requests.  Then,  we  need  to  find  the
best  mapping  from  input  features  to  computation
results.  It  is  worth  emphasizing  that  from  the
perspective  of  computation  redundancy,  the  caching
object  is  computation  results  of  smart  applications,
instead  of  users’ requested  files  in  content  cache  (i.e.,
communication redundancy),  which is  where the main
difference between the two lies.
4.2.2　Self-data cache
When  smart  applications  work,  edge  devices  may  be
activated to monitor the surrounding environment.  For
example,  when  a  picture  recognition  application  is
used, the device’s camera lens may need to be invoked
to collect the picture. Additionally, when a music app’s
song identification module is called, the device’s audio
recording component requires to be activated. Another
typical  example  is  for  IoT  applications.  Since  the
operation of IoT applications requires massive amounts
of monitoring information about the surroundings, IoT
devices  must  be  activated  periodically  to  obtain  data.
However,  frequent  activation  of  devices  to  fetch  data
may  increase  power  consumption  and  reduce  service
life in the long term.

Unlike  the  result  cache,  this  kind  of  data  cache
discussed  here  refers  to  the  data  generated  by  devices
themselves  or  acquired  from  the  surroundings,  which
can  be  called  the  self-data  cache.  Especially,  it  is
beneficial  for  IoT  devices  to  cache  IoT  data  so  as  to
reduce the activation frequency[66]. For one hand, since
the much shorter lifespan of IoT data, without the self-
data  cache,  IoT devices  will  have to  be  activated  now
and again.  On the other  hand,  to ensure the timeliness
and availability of the collected data, it is necessary to
evaluate  the  freshness  of  the  cached  data,  and  then
update  in  due  course.  Therefore,  more  intelligent
caching  strategies  are  desired  to  strike  a  balance
between  data  freshness  and  caching  frequency.  For
instance,  Vural  et  al.[67] first  applied  in-network
caching  techniques  to  IoT  data.  They  investigated  the
IoT  data  caching  at  content  routers  and  modelled  the
trade-off  between  data  freshness  and  communication
costs.  Likewise,  in  Ref.  [68],  Zhu  et  al.  applied  DRL
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algorithm  to  solve  the  problem  of  edge  IoT  data
caching,  which  considered  the  variability  of  both  the
IoT data and IoT environment. By designing metrics to
measure  data  freshness,  they  found  that  the  key  to
caching  IoT  data  is  to  achieve  a  trade-off  between
communication costs and data freshness loss,  which is
consistent with the view put forward in Ref. [67].

4.3　Service cache

Service  cache  refers  to  the  caching  of  application
services and the associated databases/libraries at BS or
edge cloud[115–118],  so that the corresponding tasks can
be executed at  the edge[69].  Whether for  content  cache
or  data  cache,  the  cached  object  will  only  occupy  the
storage resources of the caching devices. However, for
the service cache, since the cached service needs to be
executed on edge devices, apart from storage resources,
computing resources  also require  consideration,  which
is  where  the  hugest  difference  between  service  cache
and  previous  two  kinds  of  cache  lies.  Compared  with
content  cache  and  data  cache,  service  cache  is  an
equally  important  kind  of  caching  object  worth
studying, yet receives much less attention.

Unlike  caching  services  at  cloud  with  huge  and
diverse resources, when considering caching service at
edge,  the  limitation  of  caching  devices  on  both
computing  and  storage  resources  is  a  huge  challenge.
As a result, as to caching services at edge, only a small
quantity  of  services  can  be  cached  simultaneously  at
edge  with  limited  resources,  and  judicious  decisions
must  be  mapped  out  about  which  services  to  cache  in
order to improve the performance of EC.

To  overcome  this  issue,  some  existing  researches
have  attempted  to  propose  some algorithm or  strategy
to  optimize  the  edge  service  caching.  For  example,
focused  on  joint  dynamic  service  caching  and
assignment offloading, Xu et al.[69] devised a Lyapunov
optimization  and  Gibbs  sampling  based  online
algorithm,  taking  into  account  the  complexity  of  both
service  requests  and  environment.  In  addition,  Huang
and  Shen[70] proposed  a  novel  service  caching
architecture  to  cache  popular  services  in  edge  clouds
autonomously.  Along  with  the  architecture,  a  new
caching  replacement  strategy  was  also  designed  to
maximize  the  service  CHR,  which  was  verified
superior  to  other  current  strategies  in  improving  CHR
and reducing average delay. Moreover, Zhang et al.[71]

proposed a collaborative optimization method to tackle
the  Mixed-Integer  Nonlinear  Programming  (MINLP)

problem  aimed  at  high-efficient  service  caching
resource  distribution  and  computation  offloading.
Similarly, Tran et al.[72] modelled the joint optimization
of  service  caching  costs  and  power  consumption  as  a
Mixed-Integer  Linear  Programming  (MILP)  problem,
and  then  designed  an  iterative  algorithm  to  find  an
acceptable approximate optimal solution efficiently.

5　Caching Strategy

Since  the  concept  of  caching  was  introduced  into
computer science, it has become a core issue in caching
to  design  a  reasonable  and  effective  caching
strategy[119].  The purpose of  caching is  to  enhance the
speed  of  retrieval  by  storing  data  selectively.
Therefore,  it  is  necessary  to  design  a  sensible  caching
strategy so  that  caching can  achieve  its  desired  effect.
Caching  strategy  is  a  large  category  in  itself,  which
contains numerous “sides”.

In  this  section,  the  edge  caching  strategies  will  be
compared  from  two  distinct  perspectives:  (1)  reactive
caching  vs.  proactive  caching;  (2)  centralized  caching
vs.  distributed  caching.  The  comparison  of  these  two
pairs  of  caching  strategies  is  shown  in Table  6.
Conventional  web  caching  usually  adopts  a  reactive
and  centralized  caching  strategy,  which  is  simpler
while insufficient to meet specific network application
environments,  making  it  difficult  to  demonstrate  the
merits of caching. In virtue of the distributive nature of
EC,  many  existing  studies  have  attempted  to  innovate
algorithms  on  conventional  caching  strategies  or  to
design  novel  edge  caching  strategies,  which  will  be
discussed in the following subsections.

5.1　Reactive caching vs. proactive caching

The  edge  caching  placement  strategy  can  be
categorized  as  reactive  caching  strategy  and  proactive
caching  strategy,  depending  on  whether  caching  or
replacement behavior occurs only at the arrival time of
the  request  or  in  advance  by  using  network
information.  The  key  difference  between  the  two
strategies  lies  in  the  precedence  of  cache  updates  and
user requests. The former determines whether to cache
a  particular  object  after  the  arrival  of  a  user  request,
while  the  latter  determines  which  objects  to  cache
before  they  are  requested  based  on  the  prediction  of
user  requests,  which  is  also  called  the  pre-caching
technology.  The  comparison  between  the  process  of
reactive  caching  and  proactive  caching  is  shown  in
Fig. 6.
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Traditional caching strategies used to be reactive, the
key  to  which  is  various  caching  replacement
algorithms, such as First In First Out (FIFO), LRU, and
LFU[120].  On  the  other  hand,  with  the  aid  of  AI
technology,  it  is  advantageous  to  estimate  users’
request  patterns  and  cache  some  popular  objects  in
advance.
5.1.1　Reactive edge caching strategy
As  to  reactive  edge  caching  strategy,  some  existing
works have attempted to combine several conventional
caching  replacement  algorithms  to  construct  new
caching  strategy,  or  to  introduce  new  metrics  into
conventional  caching  strategies  to  form novel  reactive
caching strategies.

For  one  thing,  some  reactive  caching  strategies
incorporating  different  algorithms  can  get  better
performance  in  edge  caching.  For  example,  based  on
the second-chance concept,  Alghazo et  al.[73] designed
a  new  caching  replacement  algorithm  called  Second
chance-Frequency-LRU  (SF-LRU),  which  combined
LFU  and  LRU  together.  Results  showed  that  the  SF-
LRU  algorithm  can  improve  CHR  significantly
compared  with  both  LRU  and  LFU.  Further,  in
Ref.  [74],  Subramanian  et  al.  proposed  an  adaptive

reactive caching strategy which is able to combine any
two  traditional  replacement  algorithms  and  switch
between them according to the running state.

For  another,  some  new  metrics  have  been  designed
from  EC  and  added  into  conventional  caching
strategies  so  as  to  generate  novel  reactive  caching
strategies. For instance, Hu and Johnson[75] established
a series of new mobility metrics to accurately measure
the relative complexity that a given movement scenario
brings  to  the  caching  strategies  in  a  specific  routing
protocol.  Dimokas  et  al.[76] introduced  two  novel
metrics to assist the caching location selection and then
proposed  two  novel  cooperative  caching  strategies
based on the metrics. Results showed that the designed
strategies  can  achieve  lower  delay  and  higher  CHR
against their opponent, NICoCa. Moreover, in Ref. [77],
Yeh  et  al.  proposed  a  new  metric  Virtual  Interest
Packets  (VIP)  to  measure  the  demand for  data  objects
in the network. Then, a novel framework based on VIP
metric  was  designed  to  achieve  the  load  balance  via
dynamic  delivering  and  caching,  aimed  at  reducing
latency and improving CHR.
5.1.2　Proactive edge caching strategy
Human  behavior  is  closely  related  and  divinable[78],
which  has  great  enlightenment  significance  for  the
proposal  and  design  of  the  proactive  edge  caching
strategy.  With  the  assistance  of  AI  and  big  data
analytic  technology,  it  is  feasible  to  predict  users’
demand  and  pre-cache  popular  objects  locally  before
the  true  arrival  of  the  requests[79−81].  In  general,  as  to
proactive  caching strategy,  caching objects  are  cached
actively at BSs or end devices during off-peak periods
according  to  user  demand  prediction  according  to  the
popularity and relevance of user patterns. Then, during
peak  periods,  traffic  load  can  be  observably  relieved

 

Table 6    Comparison of caching strategies.
Strategy Characteristic Key issue Reference

Reactive
caching

Determine whether to cache a particular
object after the arrival of a user request.

Constructing novel caching
replacement algorithms;

Introducing novel caching
metrics

[73−77]

Proactive
caching

Determines which objects to cache before
they are requested based on the prediction of user requests.

Object popularity estimation;
User patterns prediction [78−85]

Centralize
d caching

Be centered on the central controller
which can check the global state of the network to make

appropriate caching decisions.

—
(Unsuitable for edge caching) [86−88]

Distribute
d caching

Caching devices make their own decisions
(e.g., caching placement and replacement) according to the

local information or the information from their neighboring nodes, instead of
following the instructions from the central controller.

Designing effective and
efficient distributed caching

algorithms
[89−92]

 

 
Fig. 6    Comparison between the process of reactive caching
and proactive caching.
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via  these  pre-cached  objects[82],  thus  improving  the
caching  efficiency  immensely  compared  with  reactive
caching strategy.

In  order  to  confirm  the  effectiveness  of  proactive
edge  caching,  Bastug  et  al.[82] investigated  two  cases
where  proactive  caching plays  a  critical  role.  Through
the  detailed  analysis  of  proactive  caching  paradigm,
results  showed  that  the  introduction  of  proactive
caching strategy can  deliver  significant  gains  for  edge
caching,  saving  the  backhaul  costs  and  improving  the
user satisfaction rate considerably. They also pointed it
out that this kind of gains can even be higher with more
sufficient caching space.

In Ref. [83], Zeydan et al. proposed a 5G architecture
combining  proactive  caching  and  big  data  technique.
By  using  ML  tools,  a  mass  of  data  were  utilized  for
object popularity estimation, and then valuable objects
were pre-cached at BSs based on prediction, which was
shown  to  enhance  user  satisfaction  and  reduce
backhaul  cost.  Moreover,  Ale  et  al.[84] proposed  an
online  deep  learning  based  proactive  caching  strategy
which  can  predict  sequential  user  requests  and  update
edge  caching  correspondingly,  so  as  to  improve  the
accuracy of popularity prediction and then improve the
CHR of  end  devices.  The  game theory  is  also  applied
to design proactive edge caching strategy. In Ref. [85],
Zheng  et  al.  modelled  the  proactive  edge  caching
process  as  a  Stackelberg  game,  which  can  be  further
broken  up  into  two  types  of  sub-games.  Then  they
designed  a  distributed  algorithm  to  solve  the  sub-
games,  which  turned out  to  be  linearly  or  sub-linearly
related to  the network scale,  showing that  the strategy
has the potential to cope with large-scale edge caching.

5.2　Centralized caching vs. distributed caching

Centralized  caching  takes  the  central  controller  as
center, which can check the global state of the network
to  make  appropriate  caching  decisions.  The  central
controller will monitor network state and user patterns
at  any  time  through  analysis  of  received  requests  in
order  to  make  caching  policies.  Hence,  the  goal  of
centralized  caching  is  to  optimize  the  caching
performance  of  the  entire  system  globally  by
optimizing  caching  decisions.  Nevertheless,  in  the
wave  of  5G,  which  is  projected  to  service  a  growing
number of mobile users, it is especially challenging for
the  centralized  caching  to  obtain  global  network
information  due  to  the  high  dynamics  of  mobile
networks[86, 87].  Furthermore,  in  the  centralized

caching,  the  central  controller  has  to  handle  large
amounts  of  traffic,  which  will  pose  a  tremendous
burden on both itself and the network links. Therefore,
the  centralized  caching  strategy  has  become  a
bottleneck affecting the performance of mobile caching
systems[88].

On  the  contrary,  as  to  distributed  caching,  also
known  as  decentralized  caching,  caching  devices  will
make their own decisions (e.g., caching placement and
replacement)  according to  the local  information or  the
information  from  their  neighboring  nodes,  instead  of
following  the  instructions  from  the  central  controller.
The  comparison  between  the  characteristic  of
centralized caching and distributed caching is shown in
Fig.  7.  EC is  a  distributed  model,  which  decentralizes
computation  and  storage  tasks  to  the  edge  closer  to
users.  From  this  perspective,  the  distributed  caching
strategy  can  make  better  use  of  caching  devices  like
BSs  and  end  devices  in  the  edge  caching  system  to
participate in caching decision-making, thus improving
the  caching  performance  of  the  whole  system.
Therefore, the distributed caching is a more appropriate
caching  strategy  for  edge  caching,  which  matches  the
characteristics of EC.

The  key  to  the  distributed  caching  strategy  is  to
design  effective  and  efficient  distributed  caching
algorithms,  in  order  to  solve  the  caching  optimization
problem  in  a  distributed  system.  For  example,  in
Ref. [89], Borst et al. investigated the edge caching for
video  content  delivery  and  proposed  a  distributed  and
cooperative  caching  management  algorithm  aimed  at
maximizing  CHR  and  minimizing  the  bandwidth
overhead. They focused on distributed caching clusters
and  modelled  the  content  caching  placement  as  a
Linear  Programming  (LP)  problem  in  order  to  obtain
the global optimal solution, which provided meaningful
 

 
Fig. 7    Comparison  between  the  characteristic  of
centralized caching and distributed caching.
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inspiration  for  designing  caching  algorithms  with  low
complexity.  Likewise,  focused  on  optimizing  VoD
transmission in wireless network, Shanmugam et al.[90]

designed  an  edge  caching  system  with  MBSs  and
auxiliary  FBSs  to  cache  popular  video  files
distributively, aimed at maximizing video transmission
efficiency.  In  order  to  explore  the  optimal  femto-
caching  placement  algorithm  for  video  files,  they
distinguished  the  cases  into  the  uncoded  method  and
coded  method,  and  confirmed  that  the  latter  method
holds more advantages. In addition, in Ref. [91], Liu et
al. designed a distributed edge caching algorithm based
on  probability  propagation  algorithm,  aimed  at
minimizing  the  average  download  delay.  In  their
designed  algorithm,  each  BS  can  compute  and  make
caching  decisions  parallelly  based  on  finite  local
information  and  very  few  information  from  adjcent
ones, thus requiring no central controller to collect the
global  information  and  saving  backhaul  cost.
Concentrated  on  distributed  edge  caching  for  IoT
devices,  Tian  et  al.[92] proposed  a  novel  distributed
micro-service  caching  strategy.  They  modelled  the
caching problem as an MDP, and then designed an RL-
based algorithm to optimize the delay and CHR, which
allowed  each  IoT  device  to  make  caching  decisions
independently and distributively.

6　Challenge and Open Issue

Although many existing studies have explored the edge
caching  techniques  from  various  aspects  and  made
substantial  gains,  there  still  remains  many  challenges
and open issues to be discovered and addressed in this
topic,  which  will  be  briefly  discussed  below  in  this
section, including privacy and security, intelligent edge
caching, mobile edge caching, and IoT edge caching.

6.1　Privacy and security

By utilizing the computing and storage resources at the
edge of the network, edge caching can reduce network
delay, relieve network burden, and enhance users’ QoE
significantly.  However,  in  spite  of  these  advantages,
edge  caching  is  subject  to  lots  of  threats  regarding
privacy  attacks  and  security  hazards[121, 122].  For  one
thing,  the  proactive  edge  caching  strategy  requires  a
large  number  of  user  data  to  optimize  the  network
caching  performance,  which  may  contain  sensitive
privacy information and lead to user privacy exposure.
For  another,  the  edge  caching  strategy  is  distributed
generally, which makes the edge caching system more

susceptible to various types of security attacks[123].
The  security  and  privacy  have  always  been  an  open

issue to be solved in EC, and the same is true for edge
caching.  In  recent  years,  some  researchers  have
attempted  to  leverage  AI  techniques  to  overcome  the
potential  privacy  and  security  issues  of  edge  caching.
Typically,  federated  learning  is  a  distributed  ML
framework  with  the  advantage  of  protecting  privacy
and  guaranteeing  data  security[124],  and  thus  is  often
applied  in  privacy  and  security  protection  for  edge
caching.  For  example,  Yu  et  al.[125] proposed  a
proactive  edge  caching strategy based  on  FL,  in  order
to  improve  the  CHR  in  IoV  edge  caching,  while
protecting user privacy effectually. In addition, the RL
technique is also another powerful tool to deal with this
problem. For instance, in Ref. [123], Xiao et al. applied
RL  method  to  protect  the  mobile  edge  caching  from
security  attack  and  privacy  disclosure.  Similarly,  in
Ref.  [126],  Liu  et  al.  proposed a  distributed  RL-based
algorithm  to  maximize  the  CHR  in  the  Mobile  Edge
Computing  (MEC)  networks  while  considering  the
constraint conditions of the privacy protection.

6.2　Intelligent edge caching

In  the  5G  wireless  networks,  the  network  should  be
more  adaptive  and  intelligent  to  offer  better  user
experience to an increasing number of mobile users. As
the  structure  of  the  network  becomes  progressively
more  complex,  and  the  user  demands  gradually
increase,  traditional  caching  strategies  are  no  longer
capable  and applicable  to  edge caching.  Therefore,  AI
techniques must be combined with edge caching so that
the  designed  caching  system  can  collect  network
information more intelligently, make smarter decisions,
and better serve users.

Intelligent edge caching has always been an issue of
enduring  vitality  and  endless  potential  in  the  field  of
edge  caching[127].  Apart  from  the  presented  efforts  to
edge caching system design using AI techniques in this
paper,  with  the  development  of  AI  technology,
intelligent  edge  caching  still  has  a  long  way  to  go  to
propose  more  intelligent,  more  efficient,  and  better-
performing edge caching systems.

6.3　Mobile edge caching

With the development of 5G technology along with the
widespread  employment  of  numerous  mobile
applications,  the  MEC  has  gained  great  attention,
which  brings  computing  and  storage  resources  to  the
edge of mobile networks. The mobile edge caching can
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cache content,  data,  or services at BSs or end devices,
and transmit them by utilizing wireless communication,
thus improving the QoE of mobile end users. As one of
the  three  major  scenarios  for  5G,  Ultra-Reliable  and
Low-Latency  Communication  (URLLC)[128] requires
the  network  to  be  capable  of  offering  high-quality
services  with  extremely  low  latency  to  many
applications, such as online games, AR, VR, etc.

The  issue  of  technical  applications  for  mobile
networks  remains  a  hot  topic  for  future  research.
Therefore, the mobile edge caching is one of the hottest
research issues in edge caching at  present  and even in
the  future.  The  fundamental  challenge  of  mobile  edge
caching  is  how  to  design  effective  strategies  that  can
cope  with  the  dynamic  and  volatile  properties  of
mobile  networks,  so  that  the  storage  and  computing
resources  of  distributed  edge  devices  can  be  fully
utilized  to  optimize  caching  performance  and  enhance
user  experience.  While  complex  caching  strategies
have the capability to improve users’ QoE, they can be
inefficient  and  take  up  too  many  computation
resources.  Thus,  although  many  existing  studies  have
proposed  some  intelligent  mobile  edge  caching
algorithms, it remains an open issue to design an edge
caching  algorithm  capable  of  achieving  the  same
effect, but with lower complexity.

6.4　IoT edge caching

Since  the  concept  of  the  IoT  was  first  proposed  in
1999,  in  recent  years,  it  has  brought  earth-shaking
changes  to  our  daily  lives.  The  core  of  the  IoT  is  to
connect  numerous  devices  with  sensing  capabilities,
which  can  monitor  the  surroundings  in  real  time,  and
utilize the acquired data to provide convenient services
for  human  production  and  life[129, 130].  However,  the
high latency and high power consumption are the main
barriers  currently  that  prevent  IoT  facilities  from
reaching their true potential, while the consideration of
introducing  edge  caching  into  IoT  architecture  can
alleviate these problems effectively[131].

In  fact,  as  previously  illustrated,  both  the  edge  data
caching  and  edge  service  caching  are  of  profound
significance  to  IoT  networks,  powering  up  Industry
4.0[132, 133].  In  order  to  enable  edge  caching  in  IoT
networks, designing edge caching strategies applicable
to  IoT  is  of  great  value.  Nevertheless,  current
exploration of IoT edge caching is still inadequate, and
more  works  are  urgently  required  in  this  subdomain.
Recently,  some  works  have  proposed  to  apply

Unmanned  Aerial  Vehicles  (UAVs)  to  assist  edge
caching  in  IoT.  For  instance,  in  Ref.  [134],  Gu  et  al.
designed a unique kind of mobile edge caching system
for  IoT  consisting  of  UAVs  and  satellites,  aimed  at
optimizing  the  delay  and  energy  consumption  in  IoT
networks. In summary, the IoT edge caching is still an
area worth exploring.

7　Conclusion

This article provides a clear survey of the present edge
caching techniques comprehensively and systematically.
The  key  issues  regarding  edge  caching  can  fall  into
three  main  categories,  i.e.,  where,  what,  and  how  to
cache,  which correspond to caching locations,  caching
objects,  and caching strategies,  respectively.  The most
commonly  applied  performance  metrics  of  edge
caching  are  introduced  from  the  perspective  of  the
cache  itself  and  the  entire  network  caching  system,
before  the  detailed  elaboration  of  three  key  issues  in
edge caching in turn. In particular, the issue of “what to
cache” is  reinterpreted  as  the  classification  of  caching
objects from a novel perspective, which can be further
divided  into  content  cache,  data  cache,  and  service
cache.  At  last,  we  also  discuss  some  challenges  and
open issues about the edge caching from four different
aspects.  The aim of  this  survey paper  is  to  summarize
existing  edge  caching  technologies  systematically  and
to provide certain reference for edge caching design in
the  context  of  5G  and  beyond  5G.  According  to  the
survey, there are still broad prospects for edge caching
worth further researching, and there is still a long way
to go to bring the true power of edge caching to bear.
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