
 

SmartEagleEye: A Cloud-Oriented Webshell Detection System
Based on Dynamic Gray-Box and Deep Learning
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Abstract: Compared with traditional environments, the cloud environment exposes online services to additional

vulnerabilities and threats of cyber attacks, and the cyber security of cloud platforms is becoming increasingly

prominent. A piece of code, known as a Webshell, is usually uploaded to the target servers to achieve multiple

attacks.  Preventing  Webshell  attacks  has  become  a  hot  spot  in  current  research.  Moreover,  the  traditional

Webshell  detectors  are  not  built  for  the  cloud,  making  it  highly  difficult  to  play  a  defensive  role  in  the  cloud

environment. SmartEagleEye, a Webshell detection system based on deep learning that is successfully applied

in various scenarios, is proposed in this paper. This system contains two important components: gray-box and

neural network analyzers. The gray-box analyzer defines a series of rules and algorithms for extracting static

and  dynamic  behaviors  from  the  code  to  make  the  decision  jointly.  The  neural  network  analyzer  transforms

suspicious  code  into  Operation  Code  (OPCODE)  sequences,  turning  the  detection  task  into  a  classification

problem. Comprehensive experiment results show that SmartEagleEye achieves an encouraging high detection

rate and an acceptable false-positive rate, which indicate its capability to provide good protection for the cloud

environment.
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1　Introduction

Cloud  computing  technology,  which  is  characterized
by  its  manageability,  scalability,  and  availability,
provides  efficient  and  convenient  resources  for  end
users.  The  most  widely  used  definition  of  the  cloud

computing  model  is  introduced  by  NIST  as “a  model
for enabling convenient, on-demand network access to
a  shared  pool  of  configurable  computing  resources
(e.g.,  networks,  servers,  storage,  applications,  and
services)  that  can  be  rapidly  provisioned  and  released
with  minimal  management  effort  or  service  provider
interaction”[1].  The  rapid  development  of  cloud
computing has effectively promoted the Internet, while
also inducing several new network security problems[2, 3].

Attack methods are endless but  often have the same
goal, that is, to steal and destroy the target’s data. One
of  the  foundations  for  completing  these  attacks  is  to
insert  backdoor  code  in  the  cloud  web  system  to
establish persistent access to achieve the purpose of the
episode. This backdoor code, Webshell, is a web-based
implementation  of  the  shell  concept  and  can  be
uploaded  on  servers,  either  on  clouds  or  edges,  by
malicious  attackers[4].  Attackers  could  then  escalate
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privilege  and  maintain  persistent  remote  access  to
victim  servers  through  Webshells  for  future
exploitation,  such  as  command  execution,  database
connection,  network  surveillance,  and  exposure  of
compromised  servers  to  danger.  A  report[5] has
indicated  that  exploitation  of  breaches  within  web
applications remains a severe threat. The survey in this
report revealed that 39% of the sites could be illegally
accessed.

Attackers  can  mix  the  Webshell  into  the  highly
flexible  normal  code.  They  can  also  use  encryption,
encoding,  and  other  methods  to  reduce  the  readability
of  Webshells,  which  substantially  increases  the
difficulty  of  detection.  Highly  frequent  data
interactions  and  additional  devices  in  the  cloud
environment  provide  increasing  opportunities  for
attackers  to  implant  Webshells.  The  widespread
adoption  of  cloud  technologies  also  amplifies  the
impact of security incidents and allows security issues
to permeate across business processes.

Therefore, efficient solutions are demanded to handle
such  security  breaches.  A  Webshell  detection  system
based on PHP as a prototype is proposed to secure the
cloud  environment  to  solve  the  aforementioned
problems.  The  core  implementation  components
include a gray-box analyzer, a neural network analyzer,
and a cloud platform. The white-boxed part in the gray-
box  analyzer  is  responsible  for  conducting  taint
analysis  to  check  the  possible  flow  of  remotely-
controlled  taints  into  sensitive “sinks” and  performing
a  preliminary  inspection  for  code  obfuscation.  More
importantly,  this  part  extracts  behaviors  from  the
source  code,  of  which  the  detailed  definition  and
implementation can be found in Section 3.3. The black-
boxed part in the gray-box analyzer is implemented as
a  PHP  extension  that  extracts  dynamic  behaviors  by
hooking  into  the  PHP  kernel.  In  both  pieces,  code
branches  created  by  control  statements,  such  as “if” ,
are  combined  into  the  main  branch  to  enhance  code
coverage.

The  neural  network  analyzer  is  designed  by  the
following  the  idea  of  code  classification.  The  PHP
source  files  are  first  transformed  into  OPCODE
sequences[6].  A  network  based  on  Bidirectional
Encoder  Representation  from  Transformers  (BERT)[7]

and  Bi-directional  Long  Short-Term  Memory
(BiLSTM),  named  Conv-BiLSTM,  is  designed  to
classify the OPCODE sequences.

A  cloud-based  distributed  architecture  ensures  the

stable  and  effective  operation  of  the  entire  system  in
the  cloud  environment.  This  architecture  can  provide
secure,  convenient,  fast,  scalable,  and  continuously
evolving  Webshell  defense  capabilities  for  cloud
environments  with  additional  computing  requirements
and  devices.  This  architecture  is  introduced  later  in
Section 3.

Overall, the contributions of this work are as follows:
• A “gray-boxed” method  of  PHP-based  Webshell

detection,  which mainly  extracts  behaviors  from static
source  code  and  dynamic  execution  traces,  is
introduced. These behaviors are deliberately defined to
be  security-related  to  capture  the  maliciousness  of
Webshells.
• A  learning-based  neural  network  analyzer  named

Conv-BiLSTM,  which  uses  OPCODE  sequences  of
PHP  source  code  that  can  reflect  whether  it  is
malicious or not, is designed.
• SmartEagleEye,  a  cloud-based,  client-server

distributed  architecture  with  the  gray-box  and  neural
network  analyzers  as  its  core  detection  modules,  is
designed and implemented to protect the security of the
cloud environment.
• A  series  of  evaluation  experiments  for

SmartEagleEye  on  Webshell  detection  is  performed.
Compared with other recognized server-based security
softwares,  the  proposed  system  achieves  superior
detection  accuracy  and  acceptable  system overhead  in
the meantime.

The  background  of  this  paper,  including  basic
knowledge  of  Webshells  and  intuition  behind  the
system  design,  is  described  in  Section  2.  The  design
and  implementation  details  of  the  SmartEagleEye
system  are  introduced  in  Sectionn  3,  outlining  the
structure  of  SmartEagleEye  with  four  basic
components:  the  platform  server,  the  agent,  the  gray-
box analyzer, and the neural network analyzer. Dataset
collection  and  evaluation  processes  are  described  in
Section 4. The paper is concluded and the future work
is discussed in Section 5. Related work is introduced in
Section 6.

2　Background

2.1　Webshell

Webshells  usually  work  after “installation”,  so  to
speak,  being  uploaded  onto  the  target  server  and
maintaining persistent existence. Webshell is a type of
web  application  written  in  supported  languages  of  a
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target  web  server,  which  can  be  manipulated  by
attackers to enable remote access and administration of
the  compromised  host.  Numerous  approaches  can  be
used  to  upload  Webshells,  such  as  file  inclusion,
arbitrary  file  upload,  and  SQL  injection.  The
consequences include keeping illegal remote accession,
stealing  credential  information,  hijacking  the  host  as
bots  in  botnets,  or  defacing  the  website  with  phishing
intent  or  simply  for  a  hoax. Figure  1 shows the  threat
model of the Webshell.

2.2　Code obfuscation

Developers usually use code obfuscation techniques to
protect  legitimate  codes  from  reverse  engineering  and
modification.  Covering  the  true  malicious  intention
naturally  becomes  impossible  for  attackers.  The  most
popular  paradigm is  based  on  the  encoder  decoder.  In
that  way,  a  malicious  code  payload  is  encoded  (or
decoded) into a string wrapped with the corresponding
decode  (in  that  way,  a  malicious  code  payload  is
encoded or  decoded into  a  string that  is  wrapped with
the corresponding decode or encode function) function.

Encoded  payload  with  a  decoder  wrapper  is  usually
concatenated  upon  some  functions  or  language
constructs, such as eval, require, assert, or preg_replace
with “e” operation  (deprecated  since  PHPv5.5.0).
Indexes  1  and  2  in Table  1 are  typical  examples.  The
string  is  derived  from  executable  payloads,  and  some
encoding  methods,  such  as  Base64,  intrinsically
expand the size (3 bytes in and 4 bytes out for Base64).
Therefore, the string is often eccentrically large.

$_POST[_]

Webshells  can  have  various  deformation  techniques
due  to  the  flexible  syntax  and  numerous  built-in
functions of PHP. Table 1 shows other viable methods.
With loose syntactic constraints, slippery attackers may
elaborate  variable  functions,  which  are  substantially
applying  the  same  mechanism  as  the  aforementioned
ones,  except  that  the  real  effective  parts  are  stored  in
string  variables  and  further  concatenated  together.
Code  snippet  illustrates  a  direct  use  case  by  Index  3.
Index  4  is  also  an  exciting  example.  The  final
composition  assert  ( )  can  be  obtained  by
performing  XOR  operations  on  non-alphabetic  and
non-numeric  characters.  Taking  values  from  declared
strings to spell out sensitive functions is also a way, as
shown  by  Index  5.  Code  obfuscation  has  remained  to
be an intractable problem due to its tricky and various
approaches.

2.3　PHP OPCODE

The  use  of  PHP  as  a  prototype  is  investigated  in  this
section.  Theoretically,  Webshells  could  be
implemented in any server-side programming language
(e.g., PHP, ASP, JAVA, and Python); however, PHP is

 

Persistence Webshell

 
Fig. 1    Threat model.

 

Table 1    Examples of obfuscation.
Index Code example

1 eval (base64_decode(“ZWNobyAiaGkiOw==”))
2 eval (gzuncompress (base64_decode (“eJxLTc7IV1D3yFQHAA8tAr8=”)));

3

$
$
$
$ $ $

func1=‘as’.‘se’.‘rt’;
func2=‘base’.‘64’.‘_de’.‘code’;
code=‘cHJpbnQgImhpIjs=’;
func1 ( func2 ( code));

4

$
$
$ $$
$ $

_= (‘%01’^‘`’).(‘%13’^‘`’).(‘%13’^‘`’).(‘%05’^‘`’).(‘%12’^‘`’).(‘%14’^‘`’);
_ _=‘_’.(‘%0D’^‘]’).(‘%2F’^‘`’).(‘%0E’^‘]’).(‘%09’^‘]’);
_ _ _= _ _;
_( _ _ _[_]);

5

$
$ $ $ $ $ $ $ $ $ $ $ $ $ $
$ $ $ $ $ $ $

$
$ $

sF=“PCT4BA6ODSE_”;
s21=strtolower ( sF[4]. sF[5]. sF[9]. sF[10]. sF[6]. sF[3]. sF[11]. sF[8]. sF[10]. sF[1]. sF[7]. sF[8]. sF[10]);
s22=  {strtoupper ( sF[11]. sF[0]. sF[7]. sF[9]. sF[2])}[‘n985de9’];

if (isset( s22)){
　　eval ( s21 ( s22));
}

    768 Tsinghua Science and Technology, June 2024, 29(3): 766−783

 



the  most  commonly  used  one  partially  due  to  its
ubiquitous  existence  today[8].  According  to  the
statistics  by  W3Techs,  PHP  is  used  by  nearly  80% of
all  the  websites  with  known  server-side  programming
languages, demonstrating that PHP has been one of the
most widely used script languages on the Web[9]. PHP
offers  ease-of-use  features  for  developers  and
malicious attackers  because of  its  dynamic syntax and
several  built-in  features.  Therefore,  this  paper  mainly
focuses on Webshells developed in PHP languages.

A  PHP  source  file  can  be  compiled  into  a  series  of
operation codes, commonly known as OPCODE[6]. An
OPCODE is  a  numeric  identifier  of  a  single  operation
performed  by  the  Zend  Virtual  Machine  (Zend  VM).
This  code  can  also  be  dumped  by  Vulcan  Logic
Dumper  (VLD)  extension,  which  hooks  into  the  Zend
engine. Table  2 shows  the  corresponding  OPCODE,
and  integer  sequences  of  a  typical “one-sentence”'
Webshell are shown in Fig. 2.

3　Design of SmartEagleEye

The  stealthy  nature  of  Webshells  makes  it  hard  to  be
distinguished from normal codes, introducing potential
risks.  A  Webshell  detection  system  named
SmartEagleEye  is  proposed  to  address  this  problem.
This section details the implementation of this system,
from  a  high-level  architecture  overview  to  explaining
each submodule.

SmartEagleEye  is  a  distributed  multiserver  system
comprising a platform server, database server, message
queue  server,  gray-box  analyzer,  neural  network
analyzer,  and  agent.  The  structure  overview  is  shown
in Fig.  3.  The following components  work together  to
form a SmartEagleEye instance.

• The  platform  server  is  an  essential  interaction
center  in  the  SmartEagleEye  system.  This  server
provides  RESTful  API  and  a  front-end  interaction
interface for administrators.
• The  database  server  stores  user,  alarm,  and

processing data of the entire SmartEagleEye system.
• The  message  queue  server  distributes  Webshell

detection  tasks  to  the  gray-box  and  neural  network
analyzers for Webshell detection.
• The gray-box analyzer uses the dynamic gray-box

method  for  Webshell  detection  of  suspicious  file
samples.
• The  neural  network  analyzer  uses  the  Conv-

BiLSTM  model  for  Webshell  detection  of  suspicious
file samples.
• Agents  are  deployed  on  servers  that  must  be

protected  and  are  used  for  initial  detection,  reporting,
isolation  of  malicious  samples,  and  monitoring  server
operating status.

The final detection result is jointly determined by the
gray-box  analyzer  and  the  neural  network  detector.
Specifically,  the  union  of  the  two  detector  results  is
taken as the final detection result.

3.1　Platform server

The  platform  server  is  the  operating  hub  of  the
SmartEagleEye  system.  The  HTTPS  protocol  has  a
stateless  nature;  therefore,  the  platform  server  must
accept  the  polling  of  the  agent  and  afford  heavy  I/O
pressure.  Distributed  technology  provides  centerless
network  based  computer  processing,  which  is  the
opposite of centralized technology. SmartEagleEye is a
centralized client-server-based system, but the platform
server  is  distributed  on  the  basis  of  load  balancing
technology. Figure 4 shows the architectural design of
the  platform  server,  which  is  an  independent  device.
However, this device comprises several web servers, a

 

Table 2    OPCODE sequence of the example code.
Index OPCODE

1 BEGIN_SILENCE
2 FETCH_R
3 FETCH_DIM_R
4 END_SILENCE
5 INCLUDE_OR_EVAL
6 RETURN

 

<?php
eval (@$POST[’a’]);
?>

 
Fig. 2    Example of a typical Webshell.

 

 
Fig. 3    Architecture overview of SmartEagleEye.
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load  balancing  server,  and  a  health  check  server  that
provides complementary services.

Network  I/O  is  intensive  on  the  platform  server.
Therefore,  SmartEagleEye  uses  the  weighted  least-
connection  scheduling  algorithm  for  load  balancing.
The algorithm is described as follows.

S nFirst,  the following is  observed for  cluster  with 
servers.
 

S = {S 1,S 2, . . . ,S n},n ∈ N (1)
S i S

W(S i) C(S i)
S

Suppose that the weight for server  in cluster , is
,  and  its  number  of  connections  is .  The

total  number  of  connections  in  cluster  is  then
computed as follows:
 

Csum =

n∑
i=1

C(S i) (2)

S t ∈ S S tFor server , if  satisfies
 

(S t/Csum)/W(S t) =min{(Ci/Csum)/W(S i)} (3)
Csumthen  is determined. Thus, simplifying the formula

yields
 

S t/W(S t) =min {Ci/W(S i)} (4)
S tThe  server  with  the  least  weighted  connection

identified  by  the  above  algorithm would  be  the  actual
hosting  server  of  the  next  connection.  In  addition,  all
web  servers  should  check  their  health  status  and  load
balancing  to  ensure  the  high  availability  of  platform
servers.  The faulty machine will  be taken offline once
any fault occurs.

3.2　Agent

The  agent  is  the  actual  executor  of  SmartEagleEye  to
protect  the  servers  that  deploy  the  edge  computing
systems. In SmartEagleEye, the agent is responsible for
monitoring web directory changes, reporting suspicious
script  files,  collecting  and  reporting  server  operating
status, and performing server security baseline checks.

Figure  5 shows  the  typical  detection  process  of  an
agent.  First,  the  agent  obtains  file  change  information
through  Linux  inotify,  then  it  performs  RegEx-based
detection on the target  through a RegEx library stored
locally once it senses a file change. If the agent cannot
mark the sample as a Webshell by local detection, then
the  sample  will  be  added  to  the  queue.  When  the
system  is  idle,  the  reporting  queue  is  uploaded  to  the
platform server for detection based on the gray-box and
neural network analyzers. If the SmartEagleEye system
finally determines that the sample is malicious, then the
agent will  either raise the alarm or immediately delete
it according to the administrator scheme.

The agent then collects running data on the host and
reports it to the platform server to assist administrators
in  monitoring  the  cloud  server  status.  These  data
include  basic  operation  and  maintenance  information
(such  as  CPU  usage,  memory  usage,  and  real-time
network  speed),  as  well  as  security  baseline
information  (such  as  SELinux,  web  directory
permission  configuration,  and  web  server  permission
configuration).  Pretty  Good  Privacy  (PGP)  is  an
agreement  used  to  encrypt  information  transmission
and  verify  the  origin  and  integrity  of  the  data.  This
agreement  comprises  algorithms,  such  as  hash,
symmetric  key,  and  asymmetric  key.  SmartEagleEye
uses PGP for agent update signing and verification.

3.3　Grey-box analyzer

“Grey-box” means that this module takes advantage of
black-boxed  dynamic  and  white-boxed  static  code
analysis  techniques  to  make  the  decision  jointly.  The

 

User, agent, …

Load balancer

User interact

Platform server

Web server 1 Web server 2 Web server N

…

 
Fig. 4    Design of platform server.

 

 
Fig. 5    Detection process of agent.
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core  idea  is  to  extract  behavior  from  the  code  to
distinguish  malicious  from  normal.  This  study  mainly
focuses  on  security  issues.  Therefore,  increased
attention is provided to behaviors that reflect malicious
intentions.

The following assumptions regarding the production
environment are presented in accordance with practical
experiences.  This  module  is  designed  on  the  basis  of
these assumptions.
• Web  applications  should  not  be  heavily  modified

by  their  own  or  other  programs  in  a  production
environment  where  the  deployment  has  been
completed.
• If  the  execution  trace  of  a  program  shows

inconsistency with its appearance, then this program is
likely attempting to hide its true intention.

Based  on  the  two  assumptions,  the  agent  of
SmartEagleEye is set to start monitoring the file system
only  after  the  user  confirms  that  all  the  environment
deployment  in  the  operating  system  has  been
completed.  This  mode  effectively  reduces  the  number
of  files  that  must  be  analyzed.  This  strategy  avoids
false  positives  caused  by  third-party  encrypted
libraries,  and  empowers  the  gray-box  analyzers  to  use
aggressive  analysis  strategies  for  edge  computing
systems.

The gray-box analyzer has no special requirement for
expensive hardware such as GPUs. As shown in Fig. 6,
every  gray-box  analyzer  instance  is  encapsulated  in  a
lightweight virtualized environment that currently uses
docker  containers.  Thus,  multiple  gray-box  analyzers
can  work  simultaneously  on  a  single  server.  This

distributed  architecture  effectively  enhances  the
processing  capabilities  of  the  SmartEagleEye  system
while ensuring its security.

As shown in Fig. 7,  the architecture of the gray-box
analyzer  mainly  includes  four  parts:  message  queue
module,  static  analysis  engine,  dynamic  analysis
engine,  and  behavior  analysis  engine.  The  role  of  the
message  queue  module  is  to  obtain  file  locations  of
samples  under  detection,  download  sample  files,  and
report  detection  results  through  the  message  queue
server.  The  module  is  a  Python-based  AMQP
protocol[10],  where  the  consumer  client  communicates
directly with the behavior analysis engine and message
queue server.

The static analysis engine builds an Abstract Syntax
Tree (AST) from the source code and analyzes the taint
spread  and  function  calls  of  the  sample  based  on  the
AST.  The  dynamic  analysis  engine  is  responsible  for
adding  hooks  to  the  PHP  kernel  through  PHP
extensions and uses these hooks to trace behaviors such
as  function  calls  in  samples.  The  behavior  analysis
module  is  designed  to  analyze  the  behaviors  of  PHP
samples  according  to  predetermined  rules  by
synthesizing  and  tracing  results  of  the  static  and
dynamic behavior engines, and then determine whether
the sample is a malicious Webshell.
3.3.1　Sample preprocessing
Directly  executing  a  program  cannot  guarantee  the
tracing of  every  branch of  the  code due to  the  control
statements (e.g., “if-else” and “switch”). Therefore, the
gray-box  analyzer  merges  branches  generated  by

 

 
Fig. 6    Implementation of container.

 

 
Fig. 7    Architecture of gray-box analyzer.
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multiple control statements into one branch, improving
dynamic  testing  coverage.  The  merged  sample  has
different  data  and  control  flow  structures  compared
with  the  original  ones,  but  the  order  and  number  of
behaviors are changed. By contrast, behaviors, such as
assignment,  reading,  function  definition,  function  call,
and PHP code constructor call, are not modified. In the
implementation,  the  behaviors  of  the  branch-merged
samples are used to approximate the original ones and
perform further analysis.

Samples  are  also  formatted  with  the  PSR-12
standard[11] in sample preprocessing.
3.3.2　Static analysis engine
First, the source code is converted into an AST. Then,
the  static  analysis  engine  traverses  the  AST,  tracing
and recording  suspicious  behaviors.  The  results  of  the
recorded  behavior  are  fed  into  the  behavior  analysis
engine after the traversal is completed. A vast majority
of  Webshells  are  built  with  process-oriented
programming.  Thus,  the  current  version  of  the  static
analysis  engine  in  SmartEagleEye  does  not  have  full
object-oriented  analysis  support.  However,  the  gray-
box analyzer also has a good detection effect for most
Webshells  developed  on  the  basis  of  object-oriented
programming due to the aggressive detection strategy.

S static

S static
i i

Static  behavior  analysis  starts  after  AST  extraction.
The  gray-box  analysis  object  is  the  behavior  of  the
PHP  scripts;  therefore,  the  behavior  must  be  recorded
in a certain data structure. First, the set  is defined
as  the  specific  suspicious  behavior  set  of  the  PHP
script.  is  the -th  suspicious  behavior  traced  by
the sample from the entry point of the program,
 

S static
i = f (ttype,k, l, s,e) (5)

(ttype,k, l, s,e)

The following five parameters  can jointly  determine
a specific suspicious behavior.  Therefore,  a suspicious
behavior  data  structure  of  the  static  analysis  engine  is
defined as a five-tuple .
• ttype Variable  is  the  type  of  behavior.  The  types

that  our  static  analysis  engines  focus  on  include
variable  assignments,  ordinary  function  calls,  function
definitions,  and  PHP  code  constructor  calls  such  as
eval ( ) and include ( ).
• k

k
 Variable  is  the  name  of  the  called  function  or

PHP’s  code  constructor.  For  assignment  statements, 
is set to null.
• l Variable  is  a  list  of  behavior-related  values.  For

function calls, it is the parameters list to be passed. For
the  assignment,  it  is  a  constant  or  variable  that

participates  in  the  expression  on  the  assignment
operation’s right side.
• s

e
 Variable  is  the  line  number  where  the  behavior

starts,  and  variable  is  the  line  number  where  the
behavior ends.
• f

S static
i

 The  mapping  is  an  injection  of  the  four
aforementioned variables into .

The traversal algorithm is shown in Algorithm 1. The
input  AST  root  represents  the  entry  point  to  the
program,  behavior_set  represents  the  extracted  static
behavior,  and  the  later_list  holds  nodes  that  are  then
traversed  separately  for  later  analysis.  The  NextNode
function is used to obtain the next node to be processed
in the AST, the NeedTraverseLater function determines
the  order  of  traversals,  and  the  ExtractBehavior
function  extracts  the  static  behavior  of  the  node.
Overall,  the  static  analysis  engine  focuses  on  the  type
of each node, the row number of the node, and related
variables.  The  static  analysis  engine  traversal  logic  is
entered  from  the  program  entry  point  and  traversed
according  to  each  statement.  If  the  statement  contains
child nodes, it is determined according to the node type
whether to start traversing its child nodes (such as code
block  statement  nodes)  or  to  iteratively  analyze  its
children later (such as function definition nodes).

S static

S static
 is  obtained  after  traversal,  and  the  static

analysis engine transfers  to the behavior analysis
module through the Linux pipeline.
3.3.3　Dynamic analysis engine
Similar  to  the  static  analysis  engine,  a  suspicious
 

Algorithm 1　Node traversal algorithm
Input: AST root
Output: Behavior set of the input AST

← ∅behavior_set ;
← ∅later_list ;

←node  AST root;
while NextNode (node) do
　　if NeedTraverseLater (node) then

← ∪　　　later_list  later_list  node;
　　else

← ∪　　　behavior_set  behavior_set  ExtractBehavior (node);
　　end
end

∈for waiting_node  later_list do
← ∪　　behavior_set  behavior_set  ExtractBehavior

　　(waiting_node);
end
Return behavior_set
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S dynamic S dynamic
i

i

behavior set for dynamic analysis is also defined in this
study.  The  set  is  defined,  and  is  the
-th  suspicious  behavior  from  the  entry  point  of  the

program. Therefore,
 

S dynamic
i = g(ttype,k,nl) (6)

(ttype,k,n)

The following three parameters can jointly determine
a specific suspicious behavior.  Therefore,  a suspicious
behavior data structure of the dynamic analysis engine
is defined as a three-tuple .
• ttype Variable  is  the  type  of  behavior.  The  types

that  the  dynamic  analysis  engine  focuses  on  are
ordinary function calls and PHP code constructor calls,
such as eval ( ) and include ( ).
• k Variable  is  the  function  name  of  ordinary

function calls and PHP code constructor calls.
• nl Variable  is  the line number where the behavior

is detected. The PHP kernel provides this information.
• g

S dynamic
i

 The  mapping  is  an  injection  of  the  above  three
variables into .

The goal of the dynamic analysis engine is to extract
behavior while sampling the execution. The engine can
effectively extract behaviors that are difficult to capture
using  static  methods,  e.g.,  whether  the  code  has  been
obfuscated or not.

Dynamic analysis engine performs dynamic behavior
tracing by monitoring and recording the actual function
calls.  The  dynamic  analysis  engine  only  monitors  and
records  function  calls  in  PHP  closely  related  to,  or
commonly  used  in,  Webshell  development  due  to
performance  reasons. Table  3 shows  functions

currently  monitored  and  recorded  by  SmartEagleEye,
and these functions are considered dangerous.

Dynamic  analysis  engine  uses  PHP  extension  with
kernel hooks to monitor and record dynamic behaviors.
Figure  8 shows  two  kinds  of  functions  that  must  be
traced.
• For built-in functions, the dynamic analysis engine

first  deletes  the  function  from  the  PHP  function  table
through  the  PHP  extension,  and  then  registers  a  new
function with the same name. In this function, with the
same  name,  the  dynamic  analysis  engine  records  the
function call according to the record. After recording, it
returns  the  passed  data  to  the  original  function  for
processing and continues tracking.
• For  PHP  code  constructors,  the  dynamic  analysis

engine  needs  to  override  the  zend_complie_string,
which the Zend engine uses  to  convert  strings  to  PHP
code for execution.

Like the static analysis engine, the dynamic analysis
engine transfers the monitered behaviors to a behavior
analysis module through the Linux pipeline.
3.3.4　Behavior analysis engine
In  addition  to  sample  preprocessing,  the  behavior
analysis engine must also synthesize results from static
and  dynamic  analysis.  These  behavior  records  enable
the  behavior  analysis  engine  to  extract  information
further  to  analyze  the  sample  files  effectively.  First,
some  sets  of  features  are  defined  to  assist  analysis.
These sets are unordered, including:
• S static_construct_line :  Set  of  PHP  code  constructors’

line numbers accumulated by the static analysis engine.
 

Table 3    List of dangerous functions.
Name Type Name Type
eval Constructor include Constructor

require Constructor preg_replace Built-in
unserialize Built-in extract Built-in

system Built-in exec Built-in
shell_exec Built-in passthru Built-in

create_function Built-in call_user_func Built-in
unserialize Built-in proc_open Built-in

popen Built-in array_walk Built-in
array_udiff Built-in preg_filter Built-in
array_map Built-in array_walk_recursive Built-in

uksort Built-in register_tick_function Built-in
array_diff_ukey Built-in yaml_parse Built-in
yaml_parse_url Built-in assert Built-in

yaml_emit Built-in register_shutdown_function Built-in
mb_ereg_replace Built-in array_diff_ukey Built-in
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• S static_func_line :  Set  of  function  calls’ line  numbers
accumulated by the static analysis engine.
• S static_dangerous_call

S static_dangerous_call ⊆ S static_func_line

 :  Set  of  dangerous  function  calls
accumulated  by  the  static  analysis  engine.  The
dangerous  functions  are  listed  in Table  3 and

.
• S static_dangerous_fvar :  Set  of  variables  related  to

dangerous function calls and code constructor calls.
• S dynamic_construct_line :  the line number of constructor

calls captured by the dynamic analysis engine.
• S dynamic_func_call :  Set  of  dangerous  function  calls

accumulated by the dynamic analysis engine.
Attackers  often  change  the  control  flows  of

Webshells  to  hide  their  true  intention.  However,
collected features reflect the actual behavior, which has
minimal  effects  on  control  flows.  Therefore,  detection
evading  methods  can  hardly  succeed.  These  features
are  then  used  as  input  for  rule-based  Webshell
detection.

Webshells  are  recognized  with  the  blacklist  policy
after  feature  extraction.  Therefore,  the  gray-box
analyzer  marks  the  sample  as  a  Webshell  once  the
behavior  record  of  a  sample  meets  one  or  more  rules.
The  blacklist  policy  comes  from a  variety  of  practical
security strategies, including:

(1)  Constructor  calls  in  dynamic  analysis  are
different  from  ones  in  static  analysis. For  a  sample
that  has finished branch merging and code formatting,
the sample may be trying to hide its code construction
behavior  if  its  constructor  calls  are  different  from
dynamic analysis and static analysis,
 

S dynamic_construct_line , S static_construct_line (7)

(2) Dangerous function calls are found in dynamic
analysis  but  not  in  static  analysis. The  design
principle of this rule is similar to the previous one, both
of which discover hidden calling behaviors, except that
the rule’s target is dangerous function calls,
 

∃ t ∈ S dynamic_func_call∧ t < S static_dangerous_call (8)

S external

(3)  Dangerous  function  calls  contain  variables
that can be controlled by external code. First, the set

 is  defined  as  the  set  of  externally  controllable
variables.  This  set  contains  all  the  externally
controllable  variables,  including  the  GET,  POST,  and
HTTP header sets transmitted by HTTP. If an external
user  controls  a  part  of  a  dangerous  function  call  (for
example, part of POST data is used in the parameter of
the  system( ),  then  the  call  is  likely  to  constitute  a
remote  code  execution  vulnerability.  Therefore,  this
sample is dangerous and highly suspected of Webshell.
A  similar  phenomenon  is  if  the  code  constructor  calls
contain external controllable variables,
 

∃ t ∈ S external∧ t ∈ S static_dangerous_fvar (9)

(4) Code constructor calls are related to a variable
of abnormally large size. Generally, normal code does
not  have  a  particularly  large  variable,  especially  in
code  constructors.  If  a  particularly  large  variable  is
found,  the  behavior  analysis  engine  first  checks
whether  the  semantic  separator  frequency  meets  the
natural language standard. If not, the behavior analysis
engine  will  mark  this  variable  as  encrypted  or
obfuscated and considers the file a Webshell according
to the second design principle of SmartEagleEye. This
rule deals with Webshells that partially use asymmetric
encryption  algorithms  to  encrypt  key  code  and
dynamically  execute  actual  code  through  PHP  code
constructors.

3.4　Neural network analyzer

The  neural  network  analyzer  is  one  of  the  core
technologies of SmartEagleEye. An optimized network
Conv-BiLSTM comprising three modules is  proposed:
the  OPCODE  extraction  module,  the  word  vector
conversion  module,  and  the  detection  module.  The
OPCODE extraction module converts the PHP file into
OPCODE.  The  word  vector  module  then  extracts  the

 

system ( )
Backup and

delete system ( )
in function table

Register
a new

system ( )

Logcall
in new

system ( )
Start End

Return the
original

system ( )

eval ( ) Override
zend_compile_string ( )

Log call in new
zend_ compile_string ( )Start EndReturn the original

zend_compile_string

(a) Example: system ( ) for dangerous function call

(b) Example: eval ( ) for code constructor call 
Fig. 8    Algorithm for tracing dynamic behavior.
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text  features  for  the  first  time  and  converts  the  text
sequence  into  a  word  vector  representation.  In  the
detection  module,  multiple  convolutional  and  pooling
layers  of  different  sizes  are  first  utilized  to  perform
further  feature  extraction  on  the  text  sequence.
Afterward,  the improved Bi-LSTM network is  used to
extract  the  features  of  the  word  vector  sequence
comprehensively  through  a  two-way  structure.  The
fully  connected  layer  aggregates  the  text  features
according  to  different  weights  for  normalization  and
classification  through  training  on  the  pre-labeled  text.
Finally,  the  detection  results  of  the  Webshell  and  the
regular  PHP  script  files  are  obtained.  An  overview  of
the architecture is depicted in Fig. 9. A highly detailed
part  of  the  transformer  structure  in  the  word  vector
extraction layer can be found in Fig. 10.
3.4.1　OPCODE extraction
Codes  must  be  represented  with  vectors  before  being
fed  into  models.  Therefore,  code  representation  must
be investigated. Naturally, it can be flattened into token
sequences  and  then  processed  with  sequence  models,

turning  the  malicious  code  detection  into  text
classification[12].  A  similar  approach  is  adopted  in  the
proposed  system,  which  utilizes  OPCODE  instead  of
text  tokens.  Vulcan  logic  dumper  is  used  on  the  basis
of the Zend engine to implement the OPCODE output
of PHP scripts employing kernel hooks.
3.4.2　Word vector conversion
BERT  is  then  used  to  extract  information  from  the
OPCODE  sequence  and  convert  it  into  a  word  vector
matrix.  The  final  output  vector  contains  the  syntactic
structure and semantic information between contexts to
extract  preliminary  text  information.  The  BERT
language  model  synthesizes  the  relationship  among
multiple  sentences  in  the  text  and  the  relationship
among  numerous  words  under  a  single  sentence,  and
uses  a  multilayer  transformer  network[13] to  obtain
semantic  information  in  the  context  of  text  sentences.
An overview of the architecture is depicted in Fig. 10.
The  BERT  language  model  completes  the  pretraining
process  through  the  Masked  Language  Model  (MLM)
and  Next  Sentence  Prediction  (NSP)  combined  with  a
substantial  unlabeled  corpus.  The  MLM  model
occludes 15% of randomly selected words in advance,
and  then  uses  the  occlusion  context  to  predict  the
comments.  NSP then enables the model to capture the
dependencies between sentences.
3.4.3　Detection
As the last module of the Conv-BiLSTM network, the
detection  module  mainly  completes  the  further
extraction  and  classification  tasks  of  OPCODE  text
sequence  features.  Through  the  two  aforementioned
sections,  the  initially  extracted  vectorized

 

Trm Trm

Trm

Trm

TrmTrm

 
Fig. 9    Conv-BiLSTM  architecture.  In  the  word  vector
extraction  layer,  the  variable Ti (i =  1,  2,  …, N)  represents
the  input  variable  of  BERT, Trm denotes  the  multilayer
transformer encoder,  and Ei (i =  1,  2,  …, N) represents  the
output of BERT.
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Fig. 10    Transformer architecture.
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representation of the words containing the text features
of the OPCODE sequence is used as the module input.
The detection module employs an optimized Bi-LSTM
that  combines  a  multilayer  convolution  and  pooling
structure  to  differentiate  between  the  Webshell  and
regular  PHP  script  files  to  obtain  the  classification
result. The structure of the detection module, including
the  word  embedding  layer,  convolution  layer,  pooling
layer,  Bi-LSTM  hidden  layer,  and  fully  connected
layer, is shown in Fig. 9.

Inspired by the image feature extraction principle of
Convolutional  Neural  Network  (CNN),  the
convolutional  and  pooling  layers  in  the  network  are
used  to  feature  OPCODE  sequences  further.  Multiple
convolution kernels and the processed word vectors are
utilized  in  matrix  multiplication  operations  at  the
corresponding  positions,  and  then  added  to  obtain  a
new  word  vector  matrix.  The  linear  model  cannot
effectively  express  the  text  characteristics  during  the
convolution  pooling  operation.  Thus,  the  activation
function performs nonlinear processing on the outcome
after  the  pooling  operation.  Simultaneously,  this
function prevents the convolution layer from producing
completely different results due to the small changes in
the  word  embedding  layer.  Afterward,  instead  of
comprehensively retaining all  the text information, the
maximum  pooling  is  selected  to  perform  the  pooling
operation to extract the feature information in the text.

xt Ct

ht

ht

Some  prominent  Trojans  could  generate  a  long
series.  Therefore,  LSTM networks[14],  which can learn
long-term  dependencies,  are  selected  as  part  of  the
detection  model.  The  LSTM  model  comprises  input
words  at  time t,  indicated  by ,  cell  state ,
temporary cell  state,  hidden layer state ,  forget  gate,
memory  gate,  and  output  gate.  By  ignoring  the
information  in  the  cell  state  and  memorizing  the  new
report,  the  useless  data  are  discarded,  the  valuable
information  for  subsequent  calculations  can  be
transmitted,  and  the  state  of  the  hidden  layer  is
outputted at every time step.

ft

ht−1

xt

Ct−1

σ

The  first  step  in  LSTM  is  to  determine  what
information should be thrown away from the cell state.
The decision is made by the sigmoid layer  called the
“forget gate”, which takes the hidden state value of the
previous  layer  and  the  input  word  at  the  current
moment  as  inputs.  This  layer  outputs  a  number
between 0 and 1 for each number in the cell state .
And  the  variables W and b represent  the  model’s
learnable  parameters.  In  LSTM,  function  refers  to

the  Sigmoid  function,  which  performs  gate  control
operations  to  regulate  information  flow  and  capture
long-term dependencies,
 

ft = σ (W f [ht−1, xt]+b f ) (10)

it

C̃t

The  next  step  is  to  decide  what  new  information  to
be  stored  in  the  cell  state.  First,  a  sigmoid  layer ,
called the “input  gate  layer”,  determines  which values
will  be updated.  Next,  a  tanh layer  creates  a  vector  of
new  candidate  values  that  could  be  added  to  the
state,
 

it = σ (Wi [ht−1, xt]+bi) (11)
 

C̃t = tanh (WC [ht−1, xt]+bC) (12)

Ct−1 ft
it × C̃

Then,  the  determined  things  to  be  forgotten  earlier
are ignored by multiplying the old cell state  by 
and adding  to update the old cell state,
 

Ct = ft ×Ct−1+ it × C̃t (13)
otFinally, the output is determined. A sigmoid layer ,

which  determines  what  parts  of  the  cell  state  to  be
outputted,  is  run.  Simultaneously,  the  cell  state  is  put
through  a  tanh  layer  and  then  multiplied  by  the
outcome of the sigmoid layer,
 

ot = σ (Wo [ht−1, xt]+bo) (14)
 

ht = ot × tanh (Ct) (15)
The  above  introduction  revealed  that  LSTM  can

effectively  obtain  the  context  information  of  the  text.
However,  the  Bi-LSTM  with  a  bidirectional  structure
can  process  the  historical  knowledge  of  the  text
sequence  and  use  the  backward  LSTM  structure  to
capture  the  future  information  of  the  text  sequence.
Combining  historical  and  future  information
corresponding  to  the  two  directions  makes  it  possible
to  extract  text  sequence  information  more
comprehensively,  which  plays  a  vital  role  in  the
classification  task.  The  existing  research  content[15]

shows  that  stacking  multiple  Bi-LSTM  layers  can
enhance  the  predictive  capability  of  the  module.  The
overview  of  the  architecture  is  depicted  in Fig.  11.
f-LSTM  represents  the  forward  LSTM  unit,  while
b-LSTM  stands  for  the  backward  LSTM  unit.  The
formula  for  calculating  the  states  of  the  f-LSTM  unit
and the b-LSTM are respectively presented as follows:
 

h f
t = f (W f [h f

t−1, xt]+b f ) (16)
 

hb
t = f (Wb [hb

t−1, xt]+bb) (17)
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4　Experiment

This  section  evaluates  SmartEagleEye  through  the
following questions.

RQ1: Is  it  effective  to  use  OPCODE as  a  Webshell
detection feature?

RQ2: Can  the  neural  network  detector  of
SmartEagleEye  effectively  detect  Webshells?  Is  it
better than existing neural network models?

RQ3: Compared with industrial detection tools, does
SmartEagleEye have superior performance?

4.1　Dataset

A  large  set  of  PHP  samples  is  collected  and
synthesized  to  evaluate  the  SmartEagleEye  system.  In
the  dataset,  malicious  samples  mainly  come  from
several  famous  open-source  Webshell  collection
projects  on  GitHub※ .  Other  samples  are  provided  in
collaboration  with  the  security  enterprise.  Some  of
these samples are later proven to be not malicious; for
example,  simply  file  uploading  or  exploitation  of
certain  vulnerabilities.  These  samples  are  excluded
from  the  dataset.  Normal  samples  in  the  dataset  are
randomly  selected  from the  top-9  stared  PHP projects
on GitHub. All the duplicated samples, as well as those
with  irreparable  compilation  errors,  are  eliminated.
Overall,  the  current  version  of  the  dataset  includes
2553 malicious samples and 2635 normal ones.

4.2　Evaluation metrics

These widely used metrics are adopted to evaluate the
effectiveness  of  different  detection  systems  on  the
proposed task.

(1) Accuracy is the proportion of the samples that are
correctly classified to all samples that are tested,
 

Accuracy =
TP+TN

TP+TN+FP+FN
(18)

where  TP  denotes  true  positive,  FP  denotes  false
positive,  TN  denotes  true  negative,  and  FN  denotes

false negative.
(2) FPR  is  the  ratio  between  the  number  of  false

positive and negative samples,
 

FPR =
FP

FP+TN
(19)

(3) Precision is  the  number  of  true  positive  samples
divided  by  the  number  of  samples  predicted  to  be
positive.  This  metric  measures  the  accuracy  of  some
malicious samples determined by the system,
 

Precision =
TP

TP+FP
(20)

(4) Recall measures the ratio of true positive samples
to all the samples that are truly positive,
 

Recall =
TP

TP+FN
(21)

(5) F1-score  is  the  harmonic  mean  of  precision  and
recall,
 

F1-score =
2×Precision×Recall

Precision+Recall
(22)

4.3　Experiment I

First,  12  sets  of  controlled  experiments  use  Term
Frequency-Inverse  Document  Frequency  (TF-IDF)  as
the  word  vector  extraction  method  to  investigate
multiple text conversion methods, and the experiments
involve  four  models:  Gaussian  Naive  Bayes  (GNB),
Logistic Regression (LR), K-Nearest Neighbor (KNN),
and Support Vector Machine (SVM). The experimental
results  prove  that  the  effect  of  using  OPCODE  is  the
best,  followed  by  AST,  and  the  source  code  is  the
worst. The results are shown in Table 4.

Only  the  necessary  structural  components  in  the
grammar are obtained by converting the source code to
the  AST  to  extract  the  source  code  information
accurately.  The  OPCODE is  compiled  on  the  basis  of
the  AST.  Converting  the  source  code  into  OPCODE
can  convert  the  complex  and  changeable  source  code
containing  substantial  redundant  information  (such  as
comment  content)  into  a  limited  number  of  OPCODE
operating  instructions.  Using  OPCODE  helps  quickly
locate  the  execution  of  sensitive  functions  and
parameter calls in the PHP code, thereby improving the
accuracy of Webshell detection.

4.4　Experiment II

This experiment is designed to prove the effectiveness
of  the  SmartEagleEye  on  the  dataset.  Evaluation
objects  include  the  gray-box  and  neural  network

 

f-LSTM f-LSTM f-LSTM f-LSTM

b-LSTM b-LSTM b-LSTM b-LSTM

 
Fig. 11    BiLSTM architecture.

 
 

※https://github.com/tennc/webshell;  https://github.com/ysrc/webshell-
sample/tree/master/php
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analyzers. Quick detection on agent is excluded in this
experiment  because  its  implementation  is  similar  to
traditional  open-source  detection  tools,  which  will  be
used as the comparison baseline in Experiment II.

First,  the  hidden  sizes  of  Bi-LSTM  are  set  to  128
based  on  the  general  architecture  of  Conv-BiLSTM
described in Section 3.4. Other hyperparameters are set
to the following default values: the batch size is set to
32, the learning rate is set to 0.001, and the number of
epochs  is  set  to  10.  The  dataset  is  randomly  divided
into  two  parts:  70% of  the  samples  are  used  for
training,  and  the  remaining  30% are  used  for  testing.
Convergence  results  are  shown  in Fig.  12,  the  blue
curve  in  the  graph  represents  the  change  in  loss  with
each  epoch,  while  the  yellow  curve  represents  the
change in accuracy with each epoch.

The Conv-BiLSTM model  is  deployed in  the  neural
network  analyzer  upon  completion  of  training,  and
SmartEagleEye  is  evaluated.  The  results  are  shown in
Table  5,  with  metrics  provided  in  Section  4.2.
SmartEagleEye  identifies  all  2553  malicious  samples
and incorrectly labels ten normal samples as malicious.

Afterward,  OPCODE is  used as  input,  and BERT is
utilized for word vector extraction using CNN, LSTM,
and  Conv-BiLSTM  for  experiments.  Compared  to
directly  using  LSTM  or  CNN,  Conv-BiLSTM  has
significantly  improved  recall,  F1-score,  and  accuracy.
The  results  are  shown  in Table  6.  Conv-BiLSTM
extracts  the  feature  information  of  OPCODE  from  a
deep  perspective  and  comprehensively  extracts  the
feature  information  of  the  OPCODE  text,  thereby
obtaining good detection results.

 

Table 4    Comparison between different text conversion methods.
(%)

Model Accuracy Recall F1-score Precision
Source code + TF-IDF + GNB 74.30 48.84 64.82 96.35
Source code + TF-IDF + LR 68.40 49.76 76.36 61.76

Source code + TF-IDF + KNN 51.22 51.32 67.67 51.14
Source code + TF-IDF + SVM 74.56 48.94 80.61 67.51

AST + TF-IDF + GNB 79.91 59.49 74.17 98.93
AST + TF-IDF + LR 76.75 55.06 70.75 98.93

AST + TF-IDF + KNN 67.02 37.50 53.73 94.74
AST + TF-IDF + SVM 77.88 59.83 74.09 97.28

OPCODE + TF-IDF + GNB 87.62 77.89 86.37 96.90
OPCODE + TF-IDF + LR 98.22 98.66 98.24 97.82

OPCODE + TF-IDF + KNN 97.69 97.22 97.69 98.16
OPCODE + TF-IDF + SVM 98.55 99.14 98.57 98.01
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Fig. 12    Training process.

 

Table 5    Evaluation of Conv-BiLSTM.
TP FP TN FN Accuracy (%) Precision (%) Recall (%) F1-score (%)

2549 13 2622 4 99.67 99.49 99.66 99.84

 

Table 6    Comparison among different models.
(%)

Model Accuracy Recall F1-score Precision
OPCODE + BERT + CNN 99.24 98.99 99.07 99.19

OPCODE + BERT + LSTM 97.04 98.71 97.10 95.75
Conv-BiLSTM 99.67 99.49 99.66 99.84
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4.5　Experiment III

In  this  experiment,  SmartEagleEye  (gray-box  and
neural  network  analyzers)  is  compared  with  the
following existing Webshell detection systems.
• Windows  Defender  (WinDefender):  Built-in

antivirus software in Microsoft Windows systems.
• Tencent  PC  Manager  (QQPCMgr):  The  fastest

growing general-purpose security software in mainland
China.
• WebShell.Pub  (HemaAV):  New  multi-engine

Webshell detection system based on machine learning,
cloud technology, and big data technology.
• findWebShell: An open-source Webshell detection

tool.
• Shell-Detector:  An  open-source  Webshell

detection tool designed for PHP.
• php-malware-finder:  An  open-source  Webshell

detection tool designed for PHP.
• D-Shield:  IIS  designed  for  active  defense

protection  software  to  prevent  websites  and  servers
from intrusion.
• 360  Security:  Cloud  security  antivirus  software

integrated with the mainstream killing engine.
• HUORONG  SECURITY:  A  terminal  security

management system.
The dataset in Section 4.1 and the metrics in Section

4.2  are  used  to  compare  these  detection  systems,  and
the  results  are  shown  in Table  7.  This  experiment  is
inconsistent  with  the  design  and  application  scenarios
of  SmartEagleEye.  The  FPR  in  the  production
environment should be substantially lower than that in
this  experiment.  However,  this  experiment  can  reflect
the FPR of SmartEagleEye in extreme scenarios.

Compared  with  the  existing  detection  systems,

SmartEagleEye  still  demonstrates  significant
advantages,  even  in  the  worst  scenario.  The  widely
used  commercial  security  products  perform  poorly  in
Webshell recognition mainly because such products are
not  designed  for  servers  and  are  not  optimized  for
Webshell.  Most  use  simple  fingerprint-matching
methods  and  static  analysis  techniques  for  detection.
Compared  with  the  EagleEye  system,  these  engines
lack  the  key  behavioral  information  introduced  by
dynamic execution and the generalization capability of
machine learning.  Thus,  the detection rate  lags behind
the EagleEye system. Some scan engines mark files as
suspicious and issue an alert, resulting in a phenomenal
increase  in  FPR  while  achieving  relatively  good
detection rates for such machines.

4.6　Summary

Models  in  Experiments  I  and  II  are  widely  used  in
existing  works,  and  systems  in  Experiment  III  are  the
mainstream  tools  currently  utilized  in  the  industry.
Experiments  have  proven  that  SmartEagleEye  has
shown  better  performance  compared  to  machine
learning-based or industrial approaches.

5　Conclusion and Future Work

This  paper  introduces  the  SmartEagleEye  system,  a
cloud-based,  client-server  distributed  architecture  for
PHP-based Webshell detection, to improve the security
of the cloud environment. The two core modules of this
system,  the  gray-box  and  neural  network  analyzers,
work  jointly  to  complete  detection  tasks.  A  series  of
evaluation  experiments  are  designed  for  the
SmartEagleEye  and  some  baseline  methods.
SmartEagleEye  achieves  more  than  99% accuracy  on

 

Table 7    Comparison among different detection systems.
(%)

Detector Accuracy FPR Precision Recall F1-score
SmartEagleEye 99.29 1.40 98.60 100.00 99.28
WinDefender 62.20 0.00 100.00 23.30 37.80

QQPCMgr 60.50 0.00 100.00 19.60 32.80
HemaAV* 83.10 1.30 98.10 67.00 79.60

findWebShell 59.60 0.40 97.70 18.30 30.90
Shell-Detector* 81.40 8.00 89.50 70.40 78.80

php-malware-finder 62.00 0.80 76.80 23.20 37.60
D-Shield 92.44 10.37 95.18 90.44 92.75

360 Security 63.16 74.85 100.00 57.96 73.38
HUORONG SECURITY 73.92 52.99 100.00 66.07 79.57

Note: * denotes samples are labeled as suspicious included.
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different datasets overall and acceptable false positives
in  the  meantime.  Experiments  show that  the  proposed
system  outperforms  other  recognized  competitive
products.

The current version of the SmartEagleEye system has
been  proved  effective  on  the  dataset  but  can  still  be
improved.  Considering  the  gray-box  analyzer,
additional  built-in  functions  commonly  related  to
Webshells  will  be  obtained  and  added  to  a  dangerous
function  list.  Moreover,  support  for  the  detection  of
object-oriented  Webshells,  which  are  not  currently
available,  will  be  provided.  Current  sample
preprocessing has some weaknesses when dealing with
complex samples. Thus, the implementation of sample
preprocessing must be improved.

Further  efforts  can  also  be  made  to  improve  the
neural  network  module.  Properly  representing  and
modeling  the  Source  code  remains  challenging.
Converting  PHP  code  to  OPCODE  sequence  first  is
chosen  in  this  paper,  representing  code  as  OPCODE
tokens. This approach may intuitively be feasible with
natural  language  or  other  sequences  with  an
autoregressive  nature.  However,  capturing  the  long-
range  dependencies  between  the  same  variables  or
function  names  in  distant  locations  is  difficult.  A
superior  solution  for  learning  tasks  in  Source  code
remains  a  popular  area  of  research.  Some  researchers
proposed  using  highly  structural  intermediates  to
represent  code,  such  as  trees  and  graphs[16–18].
Correspondingly,  models  designed  for  learning
structural  data,  such  as  graph  neural  networks,  are
adopted to replace sequential ones[19].

Moreover, the Webshell detection task is regarded as
a classification problem. This approach naturally has a
demand  for  labeled  data  to  train  models.  However,
labeled data that fits the target task is not always easily
available, especially in code learning problems. Labels
for codes can only be acquired by experts in this field;
thus,  labeling  can  also  be  a  labor-intensive  task.  An
alternative approach is to store a database of interesting
samples.  Considering  an  under-detection  sample,  the
entire database is searched, and the similarity between
this  sample  and  that  in  the  database  is  computed.
Hence, malicious codes could ideally be recognized by
at least one known sample of the type that exists in the
database[20].  This  matching  method  possibly  performs
effectively  under  insufficient  or  expensive  to  obtain
training  data[21].  The  exploration  of  these
improvements will be addressed in future work.

6　Related Work

Webshell  may  incur  a  heavy  loss.  Thus,  even  if  the
ideal  approach  is  to  prevent  breaches  in  web
applications  as  well  as  exploitation,  researchers  in  the
domain  of  network  security  have  focused  on  some
conventional  protective  countermeasures[22–25].
Accurately  spotting  and  recognizing  Webshells  once
uploaded  on  the  server  are  still  beneficial.  However,
accurate  recognition  is  never  a  trivial  task  due  to  the
complex  nature  of  the  web  environment  and  the
massiveness of web applications.

Researchers have designed two kinds of approaches,
namely  static  and  dynamic,  to  detect  Webshells.
However,  static  and  dynamic  countermeasures
inherently  possess  advantages  and  disadvantages.
Traditional static methods, including signature or hash-
based  fingerprint  matching,  are  widely  used  to  build
the  sample  database.  These  methods  are  naturally
deficient  in  the  face  of  obfuscated  or  brand-new
Webshell  variations  in  the  wildness  of  the  Internet.
Other  methods,  such  as  static  code  analysis,  usually
introduce  an  intensive  cost  of  design  and  labor
implementation[26–28].  Dynamic  solutions  are  effective
for  capturing  the  actual  behavior  of  malicious  codes.
However, these solutions must execute the code first to
obtain  execution  traces,  introducing  code  coverage
problems  and  system  overhead.  NeoPi[29],  known  as
one  of  the  most  popular  Webshell  detection  tools,  is
based on statistical methods and uses the following five
methods:  entropy,  longest  word,  index of  coincidence,
signature,  and  compression.  Since  it  will  not  be
updated after 2015, its  feature library is  relatively old.
Ying  and  Yong[30] used  Apriori  and  FP-Growth
algorithms for Webshell detection based on NeoPi and
improved  accuracy.  Le  et  al.[31] proposed  a  solution
that  combines  protection  and  scalability.  The  solution
chooses  taint  analysis  and  pattern  matching  as  the
primary methods for Webshell detection.

From  another  perspective,  Webshell  detection  is
regarded  as  a  classification  problem  that  aims  to
determine  whether  a  piece  of  code  belongs  to  the
malicious  or  benign  class.  Machine  learning
approaches,  especially  deep  learning,  have  been
applied  in  various  fields  and  achieved  remarkable
success[32]. Machine learning shows excellent potential
in  classification  tasks  with  a  large  amount  of  training
data  (for  example,  image  classification  and  audio
recognition)[33–35].  Intuitively,  the  prevalence  of
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Webshells  provides  an  excellent  chance  to  learn  from
real-world  samples.  Cui  et  al.[36] proposed  a  detection
model  that  uses  the  OPCODE  sequence  generated
during  the  PHP  script  execution  as  the  feature  vector
and  then  employs  the  random  forest  algorithm  to
classify the PHP files. FRF-WD[37] is a PHP Webshell
detection  model  based  on  the  combination  of  fastText
and random forest algorithms. Zhang et al.[38] used the
URL  and  request  body  part  of  the  HTTP  network
request  as  the original  data  source of  the model.  They
directly used the CNN + LSTM network to extract and
distinguish  the  entire  content,  and  established  a
complete end-to-end deep neural network for Webshell
flow  detection.  Zhou  et  al.[39] utilized  a  deep  learning
technique  called  LSTM  Recurrent  Neural  Networks
(RNNs), to detect Webshells, and their results indicate
that  the  single-layer  model  may  demonstrate  the  best
performance  on  Webshell  detection.  The  proposed
approach  of  Gogoi  et  al.[40] analyzes  the  function  call
and  the  use  of  super  global  variables  commonly
employed  in  PHP  Webshells  using  a  deep  learning
technique. Qi et al.[41] designed a generic static end-to-
end  detection  framework  with  a  deep  neural  network
for  Webshell,  free  from  human  labor  and  domain
knowledge.  Betarte  et  al.[42] introduced  a  combination
of  a  classifier  and  an n-gram  model  to  improve  the
detection  capabilities  of  WAF  application  firewalls.
Nataraj  et  al.[43] indicated  that  if  a  process  converted
malware  binaries  into  grayscale  images,  then  the
computer  could  recognize  malware  from  different
families according to their layout and texture. The idea
in  Ref.  [44]  combines  the  image  identification
capability  of  CNN  with  malware  detection  tasks.
Another  line  of  deep  learning  focuses  on  the  textual
nature  of  codes[45];  thus,  RNN  is  used  to  model  code
sequences[12]. The current work typically falls into this
category.
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