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Abstract: This paper uses the minimization and weighted sum of battery capacity loss and energy consumption

under  driving cycles as objective functions to  improve the economy of  Electric  Vehicles (EVs)  with  an hybrid

energy storage system composed of power batteries and ultracapacitors. Furthermore, Dynamic Programming

(DP)  is  employed  to  determine  the  objective  function  values  under  different  weight  coefficients,  the

comprehensive cost consisting of battery aging and power consumption costs, and the relationship between the

hybrid  power  distribution.  We  also  evaluate  the  real-time  fuzzy  Energy  Management  Strategy  (EMS),  fuzzy

control  strategies,  and a strategy based on DP using the World Light  vehicle Test  Procedure (WLTP) driving

cycle  and  a  synthesis  driving  cycle  derived  from  New  European  Driving  Cycle  (NEDC),  WLTP,  and  Urban

Dynamometer Driving Schedule (UDDS) as examples. Then, the proposed strategy is compared with the fuzzy

control  strategy  and  the  strategy  based  on  DP.  Compared  with  fuzzy  energy  management  strategy  (namely

FZY-EMS), the proposed EMS reduces the battery capacity loss and system energy consumption. The results

demonstrate the effectiveness of the proposed EMS in improving EV economy.

Key words:  automobile  engineering; hybrid  energy  storage; Energy  Management  Strategy  (EMS); fuzzy  control

strategy

1　Introduction

Relative  to  gasoline  and  diesel-powered  vehicles,
Electric Vehicles (EVs) have the advantages of energy
saving,  low  noise,  emission  reduction,  and  simple
power  system structure,  which  give  them a  prominent
place  in  sustainable  transportation.  EVs  that  use  a
Hybrid  Energy  Storage  System  (HESS)[1, 2] composed

of  an  ultracapacitor  and  power  batteries  combine  the
advantages  of  these  two  forms  of  energy  storage.
Furthermore,  HESS  can  protect  the  power  battery,
improve vehicle economy, and help overcome mileage
anxiety[3, 4].

The power battery and ultracapacitor of HESSs act in
tandem  to  store  energy  and  provide  power  as  needed.
An Energy Management Strategy (EMS) can optimize
system  efficiency  and  improve  vehicle  economy.
Typical  EMSs  include  rule-based  strategies[5−7] (e.g.,
logic  rules  and  fuzzy  logic[8−12]),  intelligent  algorithm
based  strategies  (e.g.,  convex  optimization[13] and
genetic  algorithm[14]),  and  global  optimization
algorithms  (e.g.,  Dynamic  Programming  (DP)[15]).
Particle  Swarm  Optimization  (PSO)  has  attracted
increasing  research  attention  because  of  its  simple
mechanism, relatively small number of parameters, and
the  advantage  of  integrating  with  other  algorithms  to
improve overall optimization performance[16].

Meanwhile,  the  power  battery  cost  accounts  for  a
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substantial  portion  of  the  total  cost  of  the  whole
vehicle.  Furthermore,  in  the  EMS  design,  the  aging
factor  of  the  battery  must  also  be  fully  considered  to
prolong  its  service  life,  and  thereby  improve  the
economy  of  the  whole  vehicle  and  the  value  of  its
entire  life  cycle[17].  In  Ref.  [2],  DP  was  applied  to
match  the  parameters  of  the  composite  power  supply
and  meet  the  optimization  goals  of  minimizing  the
energy  consumption  of  the  composite  power  supply
and the capacity loss of the battery pack. In Ref. [8], a
rule-based  control  strategy  was  formulated,  taking  the
total  cost  and  total  quality  of  the  composite  HESS  as
parts  of  the  optimization  goal,  and  a  composite  fuzzy
control  strategy  was  proposed.  In  Ref.  [13],  convex
optimization  was  used  to  optimize  the  power
distribution  to  achieve  the  optimization  goal  of
determining  the  weighted  sum  of  the  initial  cost  and
cost  of  the  composite  power  supply.  In  Ref.  [14],  a
multipart  objective  was  established,  to  minimize  both
the  replacement  cost  of  the  composite  power  supply
and  the  average  daily  energy  consumption.  The
optimization  function  uses  a  genetic  algorithm  to
optimize  the  EMS  of  the  composite  power  supply,
based on which a rule-based EMS is  presented.  While
the  rule-based  control  strategy  is  simple,  its
optimization  requires  further  improvement.
Additionally,  fuzzy  control  is  robust  and  suitable  for
time-varying  systems;  however,  its  control  strategy  is
mainly  based  on  expert  experience  and  is  subjective.
The  use  of  optimization  algorithms  to  optimize  fuzzy
controllers  can  more  effectively  adapt  to  changes  in
operating  cycles[18−20].  HESSs  are  promising  for
renewable energy integration and EV adoption, as well
as  for  the  battery-supercapacitor  hybrid  system  setup,
Direct  Current  to  Direct  Current  (DC-DC)  converter
design,  and  EMS  development.  A  case  study  shows
that an HESS with proper size and EMS may minimize
battery deterioration by 40% at 1/8 the system cost. An
EV  operational  data  based  battery  capacity  estimate
system is  proposed in  the article.  It  outperforms state-
of-the-art approaches with a mean absolute percentage
error  of  2.79% and  minimal  computational  cost[21, 22].
The  optimization  problem’s  convexity  must  be
considered when convex optimization is applied, which
is  difficult  in  practical  application.  Meanwhile,  the
genetic algorithm has a low convergence speed and can
easily fall  into a local minimum. Finally,  although DP
can achieve global optimization, it is slow.

Given  the  problems  of  poor  optimization  results,

strong  subjectivity,  difficulty  in  actual  use,  and  long
calculation  time  of  the  above  EMS,  the  current  work
takes  an  EV  with  batteries  and  ultracapacitors  as  the
research  object.  The  optimization  goal  is  to  minimize
the  weighted  sum  of  battery  capacity  loss  and  energy
consumption,  and  DP  is  used  to  solve  the  objective
function  under  different  weight  coefficients.  We  also
determine the comprehensive cost consisting of battery
aging  cost  and  energy  consumption  cost,  and  the
corresponding  power  distribution  relationship  between
the  power  battery  and  the  ultracapacitor.  Based  on
these  results,  we  apply  PSO  to  optimize  fuzzy  logic
membership parameters,  from which a real-time fuzzy
EMS is developed.

2　Research Structure

The  arrangement  of  this  paper  is  shown  in Fig.  1.
Meanwhile,  the remainder of the paper is presented as
follows:  Section  3  introduces  the  configuration
characteristics  of  the  model  EV  system  with  batteries
and  ultracapacitors.  In  Section  4,  the  World  Light
vehicle  Test  Procedure  (WLTP)  driving  cycle  is
selected  as  the  research  driving  cycle,  and  a  synthesis
of  the  New European Driving Cycle  (NEDC),  WLTP,
and Urban Dynamometer Driving Schedule (UDDS) is
selected  as  a  verification  driving  cycle.  In  Section  5,
we construct the objective function that  minimizes the
weighted  sum  of  the  capacity  loss  and  energy
consumption  of  the  power  battery  under  cycling,  after
which we use DP to solve the objective function value
under  different  weight  coefficients.  In  this  section,  we
also introduce comprehensive cost as a measure of the
EMS. It includes the purchase price of the battery pack
and  considers  different  electricity  prices,  which  are
assigned  to  the  comprehensive  cost  with  weight
coefficients  as  the  independent  variable.  Finally,  we
obtain  the  weight  coefficient  and  the  corresponding
power  distribution  relationship  when  the
comprehensive cost is the smallest. In Section 6, based
on  the  above  global  optimization  results,  we  use  PSO
to  optimize  fuzzy  logic  membership  parameters,  after
which  we  develop  a  real-time  fuzzy  EMS.  Section  7
discusses the fuzzy strategy and fuzzy control based on
PSO in the WLTP and synthesis cycles.  The proposed
EMS, the fuzzy logic strategy, and the DP-based EMS
are  simulated  and  analyzed  in  this  section.  Then,  we
compare  the  proposed  EMS  with  the  fuzzy  control
strategy  and  the  DP-based  EMS.  Finally,  Section  8
presents the conclusions and points to future work.
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3　Composite  Power  EV  Structure  and
Parameters

Ultracapacitors  are  energy  storage  devices  that  bridge
the gap between batteries and conventional capacitors.
They can store more energy than capacitors and supply
higher  power  outputs  than  batteries.  EVs  that  use
HESSs  typically  use  Electrochemical  Double-Layer
Capacitors (EDLCs) as the supercapacitor. Also known
as  supercapacitors  or  ultracapacitors,  EDLCs  are
energy storage devices that can store and release large
amounts  of  energy  quickly.  They  have  high  power
density and can provide short  bursts  of  energy to help
meet  the  demands  of  a  vehicle’s  powertrain.
Additionally, EDLCs have a longer cycle life and faster
charging  times  than  traditional  batteries,  making  them
well-suited for use in EVs.

3.1　Structure  of  hybrid  energy  storage  system  in
an EV

There  are  many  types  of  HESS.  In  our  version  of
HESS,  the  ultracapacitor  is  connected  in  series  with
DC-DC, and connected in parallel with the battery pack
to  connect  to  the  DC  bus,  thus  providing  the
advantages of simple structure and convenient control.

The  structure  is  shown  in Fig.  2.  The  EMS calculates
the  ultracapacitor  output  power  and  battery  output
power  according  to  the  collective  State  of  Charge  of
the  battery  (SOCb),  the  State  of  Charge  of  the
ultracapacitor (SOCu), and the power P[2].

3.2　Electric machine

We use a permanent magnet synchronous motor as the
EM  model.  Its  maximum  speed  is  8000  rpm,  its
maximum torque is 180 N·m, and its maximum power
is  105 kW.  The  electric  power  of  the  drive  motor  can
be  expressed  as  a  relationship  between  the  motor
output power and the motor efficiency,
 

Pem =
Tm ·ωm

9.55
·ηz

m (Tm, ωm) (1)

Pem Tm

ωm ηm

z
z = −1 z = 1

where  is  the  power  of  the  EM,  is  the  torque,
 is  the  angular  velocity,  is  the  EM’s efficiency,

which  is  expressed  as  a  function  of  the  torque  and
rotational  speed,  and  is  the  index  coefficient;  when

, the machine works as a motor, and when ,
the  machine  works  as  a  generator.  In  this  paper,  we
perform the calculation in the form of a look-up table.
The functional relationship is shown in Fig. 3.

 

 
Fig. 1    Arrangement of this paper.
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3.3　Power of the DC bus

The power of the DC bus is defined by
  Pdri = Pb+Pu ·ηDC-DC,

Pre = Pb+Pu/ηDC-DC
(2)

Pdri Pb

Pu Pre

ηDC-DC

where  is  the  driving  power,  is  the  battery
power,  is  the  ultracapacitor  power,  is  the  bus
power  in  the  energy  feedback,  and  is  the  DC-
DC conversion efficiency, as shown in Fig. 4.
3.3.1　Ultracapacitor
The  ultracapacitor  model  is  shown  in Fig.  5.  The
ultracapacitor has a nominal capacitance of 28 F and a
rated  voltage  of  399  V.  The  ultracapacitor  model  is
described by
 

Uu = U − Iu ·Ru (3)

and the power of the ultracapacitor is given by
 

Pu = Uu · Iu− I2
u ·Ru (4)

Uu U
Iu

where  is the output voltage of the ultracapacitor, 
is  the  open-circuit  voltage  of  the  ultracapacitor,  is
the  current  of  the  ultracapacitor  (discharge is  positive,

Rucharge is  negative),  and  is  the capacitor  equivalent
internal  resistance.  The  relationship  between  voltage
and SOC is shown in Fig. 6.

3.4　Battery

3.4.1　Battery circuit model
The  nominal  capacity  of  the  power  battery  pack  is
102  A·h,  and  the  total  rated  voltage  is  400  V.  The
battery  model  adopts  the  Rint  model  of  internal
resistance  voltage[17],  as  shown  in Fig.  7.  The  Rint
model  is  a  mathematical  model  that  simplifies  the
representation  of  a  battery  by  assuming  that  it  can  be
approximated  as  a  voltage  source  in  series  with  an
internal  resistor.  The  internal  resistor  represents  the
battery’s  internal  resistance,  while  the  voltage  source
represents  its  open-circuit  voltage.  This  model  is
frequently  used  in  battery  management  systems  to
monitor  battery  health  and  optimize  performance,  as
well  as  in  battery  modeling  and  simulation  to  predict
how  batteries  perform  under  different  conditions.
Notably,  however,  the  Rint  model  is  a  simplified
representation  of  the  complex  electrochemical

 

DC-DC

 
Fig. 2    Structure of hybrid energy storage system.

 

 
Fig. 3    Model of motor efficiency.

 

 
Fig. 4    Efficiency of DC-DC converter.
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processes  that  occur  within a  battery,  and its  accuracy
may  be  limited  under  certain  conditions.  The  battery
model can be described in the following:
 

Ub = U0− Ib ·Rb (5)

The power of the battery is defined as
 

Pb = Ub · Ib− I2
b ·Rb (6)

Ub U0

Ib Rb

SOC

where  is the battery voltage,  is the open-circuit
voltage of the battery,  is the battery current, and 
is the internal resistance of the battery, which includes
ohmic resistance, concentration polarization resistance,
and  charge  transfer  resistance.  The  relationship
between  battery  internal  resistance, ,  and  battery
ambient temperature is shown in Fig. 8.
3.4.2　Battery thermal model
The  Bernardi  heat  production  model[23] is  chosen  to
determine the temperature rise of the power battery. It
can be defined as
 

dT
dt
=

Rb · I2
b

mb ·Cp
− T · Ib

mb ·Cp

dE0

dT
(7)

dT/dtwhere  is  the  rate  of  change  of  the  battery’s

mb

Cp

T
dE0/dT

kelvin temperature,  is the mass of the single battery,
 is the equivalent kelvin specific heat capacity of the

battery,  is  the  temperature  of  the  battery,  and
 is  the  temperature  rise  coefficient  of  the

battery. The thermal management system of the whole
vehicle controls the ambient temperature of the battery.
In  this  study,  we  refer  to  the  thermal  management
system of the power battery of an EV model and set the
maximum working temperature of the power battery to
35°C (308.15 K).

The HESS parameter values are shown in Table 1.

3.5　Vehicle longitudinal dynamics

Preq

The  required  power  of  the  vehicle  is  based  on  the
formula governing the longitudinal force of the vehicle.
We  employ  backward  simulation  to  solve  the  driving
power  required  by  the  vehicle  through  the  speed  and
acceleration of each cycle. The required power  can
be written as
 

Preq =

(
G · f · cosθ+A ·Cd ·ρ · v2/21.15 +

δ ·m · dv
dt
+G · sinθ

)
v/

(
3600 ηz

m
)

(8)

G f
θ A

Cd ρ

v δ

m
(G = mg) ηm

where  is  the  weight  of  the  vehicle,  is  the  rolling
resistance,  is the slope of the road,  is the windward
area,  is  the  aerodynamic  drag  coefficient,  is  the
air  density,  is  the  velocity  of  the  vehicle,  is  the
correction  coefficient  of  the  rotation  mass,  is  the
gross  mass  of  the  vehicle ,  and  is  the
efficiency  of  the  drive  train.  The  main  parameters  of
the vehicle simulation model are provided in Table 2.

4　Driving Cycle Selection

The driving cycle, which describes the vehicle’s speed

 

Ru

Iu

Uu U

 
Fig. 5    Ultracapacitor model.

 

 
Fig. 6    Relationship between the voltage and SOC.

 

Rb

Ib

Ub U0

 
Fig. 7    Battery model.

 

 
Fig. 8    Relationship  among  the  battery  SOC,  equivalent
resistance, and temperature.
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over  time,  is  the  main  benchmark  for  calibrating  and
optimizing various vehicle performance indicators. We
use  WLTP  as  the  research  driving  cycle,  where  the
maximum and average speed levels are 131.3 km/h and
46.5  km/h,  respectively.  The  WLTP  driving  cycle  is
divided into low-, medium-, high-, and extremely high-
speed according to the average driving speed, as shown
in Fig. 9.

Next,  we  randomly  select  three  different  driving
cycles  (NEDC,  UDDS,  and  WLTP),  including  urban,
suburban,  and  expressways.  We  combine  the
representative speed range with a new driving cycle to
verify the universality of the optimization effect of the
proposed  EMS.  The  synthesized  driving  cycles  are
composed  of  low-speed  NEDC  and  WLTP  driving
cycles,  medium-speed  UDDS  and  WLTP  driving
cycles,  and  high-speed  NEDC  and  UDDS  driving
cycles[24], as shown in Fig. 10.

5　Energy  Management  Strategy  Based  on
Dynamic Programming (DP-EMS)

5.1　Objective function construction

α

The  EMS  of  the  vehicle  composite  power  supply,
which  seeks  to  balance  battery  life  and  energy
consumption,  is  one  of  the  key  factors  in  improving
vehicle  performance.  By  introducing  the  weight
coefficient ,  we  construct  an  objective  function  to
minimize  the  weighted  sum  of  the  battery’s  capacity
loss and energy consumption under driving cycles,
 

min J = f (α,L(k)) = α ·Qnor
loss+ (1−α) Enor (9)

J αwhere  is  the  objective  function,  is  the  weight

L
Qnor

loss
Enor

Qnor
loss Enor

coefficient  (whose value  ranges  from 0 to  1),  is  the
sequence of control variables,  is the capacity loss
of the battery, and  is the normalized cyclic energy
consumption of  HESS. In addition,  and  can
be described as
  

Qnor
loss =

Qloss−Qmin
loss

Qmax
loss −Qmin

loss

,

Enor =
E−Emin

Emax−Emin

(10)

where
  

Qloss = B · exp
(
−31700+163.3 · Ib

R ·T

)
·AH0.57,

E =
w t f

t0
Pb(τ) dτ+

w t f

t0
Pu(τ) dτ

(11)

B
R T

t0 t f

AH

in  which  the  superscripts “min” and “max” represent
the  minimum  and  maximum  values  of  the  variables
they  refer  to,  respectively;  is  a  pre-exponential
factor,  is  the  gas  constant,  8.314;  is  the  battery
temperature expressed in Kelvins;  and  are the trip
start  and  end  time,  respectively;  and  is  the  Ah-
throughput, described below:
 

AH =
r t f

t0 σ (I (τ),T (τ),SOCb (τ)) · I (τ) dτ (12)

σ( )where  is the severity factor which can be obtained
empirically below:

 

Table 1    Hybrid energy storage system parameter value.
Parameter Value

Series number of batteries 108
Parallel number of batteries 34

Series number of ultracapacitors 133
Parallel number of ultracapacitors 1

 

Table 2    Main parameters of the vehicle simulation model.
Parameter Value

Mass of the vehicle m (kg) 1400
Friction and vertical force ratio f (%) 1

AWindward area (m2) 1.60
CdAerodynamic drag coefficient 0.30

ρAir density  (kg/m3) 1.18
δCorrection coefficient of the rotation mass 1.10

ηmEfficiency of the drive train 0.95

 

 
Fig. 9    WLTP driving cycle.

 

 
Fig. 10    Synthesis driving cycle.
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σ (I, T, SOCb) =
(β ·SOCb+γ) · exp

(
−31700+163.3 · Ib

R ·T

)
(β ·SOCnom+γ) · exp

(
−31700+163.3 · Inom

R ·Tnom

)


1
0.57

(13)

β γ

SOCb β = 1385.5 γ = 4193.2
SOCnom Tnom Inom SOC

SOCnom = 0.35 Tnom = 298.15 K
Inom = 0.35 A

where  and  are  the  fitting  coefficients  related  to
 (  and ).  Additionally,

, , and  are the , temperature, and
current  of  the  battery  in  nominal  cycles,  respectively.
In  this  study, , ,  and

.

5.2　Dynamic programming

The  core  concept  of  DP  is  to  ensure  that  the
optimization  problem  achieves  the  globally  optimal
solution by transforming a complex multistage globally
optimal  decision  problem  into  a  multistage  local
optimal problem, and by obtaining the optimal solution
of  each  stage  separately.  According  to  the  optimal
control theory of DP[25, 26], the discrete form of the DP
iterative  format  with  the  optimization  objective
function as the performance index is
 

Jk (L (h)) =min
(
α ·Qnor

loss+ (1−α) ·Enor
)
, k = kend;

min
(
α ·Qnor

loss+ (1−α) ·Enor+ Jk+1(L(h))
)
,

k = kend−1,kend−2, . . . ,1 (14)

Jk (L (h))

L ∈ [0 : 0.01 : 1] α

CO2

where  is  the  objective  function  with  the
variable h in  the  stage k,  and kend denotes  the  final
stage.  In  this  work, ,  is  substituted
into Eq. (9) to solve the objective function value under
different  weight  coefficients,  as  shown  in Fig.  11.
Thus,  we  are  able  to  obtain  the  capacity  loss  of  the
battery  and  the  system  cycle  energy  consumption,  as
shown  in Fig.  12.  The  WLTP  driving  cycle  and  the
synthesis  driving  cycle  are  the  two  types  of  driving
cycles used to obtain the optimal solution variable and
values  of  the  battery  loss  and  energy  consumption  in
different weight co-efficients (i.e., 0−1). The graphical
representations  of  the  obtained results  are  indicated  in
Figs.  11 and 12.  The  WLTP is  a  standardized  driving
cycle  designed  to  assess  the  fuel  consumption, 
emissions,  and  pollutant  emissions  of  light-duty
vehicles.  It  replaces  the  outdated  NEDC in  2017.  The
WLTP  consists  of  four  driving  phases  with  different
speed, acceleration, and deceleration patterns, covering
a distance of 23.25 km (14.44 miles) within 30 min. It

represents  a  controlled  environment  that  allows  for  a
consistent  and  accurate  comparison  among  different
vehicles.

At  the  same  time,  the  synthesis  driving  cycle  is  a
generic driving cycle that represents real-world driving
conditions  in  a  particular  region  or  country.  It  is  a
statistical  analysis  of  driving  data  that  provides  an
average  of  typical  driving  scenarios.  The  synthesis
driving  cycle  is  used  for  vehicle  emissions  and  fuel
consumption  evaluation  in  several  regions,  including
the United States, Japan, and China. Unlike the WLTP,
the  synthesis  driving  cycle  is  not  standardized  and
varies  depending on the duration,  region,  and distance
covered.  It  generally  covers  a  longer  distance  and
duration,  including  more  stops  and  starts  to  better
reflect real-world driving conditions.

α = 0

α = 1

On the one hand,  when ,  the  optimization goal
is  based  completely  on  the  system  cycle  energy
consumption.  At  this  point,  the  system  cycle  energy
consumption is the least, the battery capacity loss is the
greatest,  and the composite power system is  closest  to
the working state of a single battery. On the other hand,
when ,  the optimization goal is based completely
on  the  battery  life.  The  battery  capacity  loss  becomes
the smallest, and the system cycle energy consumption
becomes the largest.

 

 
Fig. 11    Optimal  solution  variable  with  different  weight
coefficients.
 

 
Fig. 12    Value of battery loss and energy consumption with
different weight coefficients.
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5.3　Solute  optimal  weight  coefficient  based  on
comprehensive cost

The  comprehensive  cost  is  the  sum  of  battery  aging
cost  and  power  consumption  cost.  The  former  is  the
purchase cost of the battery pack shared by the loss of
the battery capacity in the current trip,  while the latter
is the power consumption cost of the power battery and
the  output  power  of  the  ultracapacitor.  This  can  be
described as
 

Fc =Cbr+Ce (15)

Fc Cbr

Ce

where  is the comprehensive cost,  is the battery
aging cost, and  is the energy consumption cost, Cbr
and Ce are defined in Eq. (16), shown at the bottom of
this page.

Pbr

QEOL%

pe

Fc1

Fc2 Fc3

In  Eq.  (16),  is  the  battery  pack  acquisition  cost
(1000  yuan/(kW·h)),  is  the  capacity  loss
percentage when the battery is at end of its life, and 
is  the  electricity  price.  The  cost  of  electricity
consumption  is  related  to  the  unit  price  of  electricity.
Taking  Xi’an  as  an  example,  the  price  of  commercial
AC-slow charging is 0.8 yuan/(kW·h), and the DC-fast
charging  price  ranges  from  1.0  to  1.5  yuan/(kW·h).
Substituting the battery capacity loss and system cycle
energy consumption under different weight coefficients
into Eqs. (16) and (17),  the fitting formula is found in
Eq. (17),  shown at the bottom of this page, where 
is the comprehensive cost of AC-slow charging with an
electricity  price  of  0.8  yuan/(kW·h);  and  and 
are  the  comprehensive  costs  with  electricity  prices  of
1.0  and  1.5  yuan/(kW·h),  respectively,  for  AC-slow
charging and DC-fast charging.

(pe1 = 0.8) α = 0.78

The combined costs of different electricity prices are
shown in Fig.  13.  Taking  the  AC-slow charging  price

 as an example, when , the minimum
comprehensive  cost  per  cycle  is  3.34  yuan;  when  the

pe2 = 1.0
α = 0.81

pe2 = 1.5 α = 0.83

pe1 = 1.5 α = 0.83

DC-fast  charging  price  is  taken  as  an
example,  and  with ,  the  minimum
comprehensive  cost  per  cycle  is  3.68  yuan.  When  the
fast charging price , with , is adopted,
the  minimum  comprehensive  cost  per  cycle  is  4.53
yuan.  The  research  object  of  this  paper  is  commercial
vehicles  that  require  high  charging  speeds.  Therefore,
we  consider  the  lowest  comprehensive  cost  when  the
DC-fast charging price is  and .

6　Energy  Management  Strategy
Optimization

The optimal EMS obtained by DP cannot be applied in
real-time,  but  its  optimization  result  can  be  used  to
evaluate the effect of the EMS.

6.1　Fuzzy rules

Fuzzy control is suitable for multi-objective, nonlinear,
time-varying  systems,  and  has  wide  applicability.  In
this paper, we adopt the Mamdani-type fuzzy controller
and  use “If...,  then...” statements  to  establish  fuzzy
rules.  Here,  each  strategy  is  established  individually
because the driving and feedback states  have different

 

e1

e2

e3

 
Fig. 13    Comprehensive cost for different electric prices and
weight coefficients.
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SOCu Pdri

SOCb, SOCu Pre

SOCb

SOCu

L M H

Pdri Pre

SOCb SOCu Pdri

logic.  The  input  variables  of  the  fuzzy  policy-driven
state are  and , whereas the input variables of
the  feedback  state  are ,  and .  The
domain  of  discourse  of  is  from  0.2  to  1,  the
domain of discourse of  is from 0.4 to 1, and the
fuzzy  subsets  are  divided  into , ,  and ,
representing  low,  medium,  and  high,  respectively.  In
addition,  the  domains  of  the  discourse  of  and 
both  range  from  0  to  1,  and  the  fuzzy  subsets  are
divided  into  SL,  L,  M,  H,  and  SH,  representing
represent  extremely  low,  low,  medium,  high,  and
extremely  high,  respectively.  The  membership
functions  of , ,  and  are  shown  in
Fig.  14.  The  load  ratio  in Fig.  14c  represents  the

normalized required power.

SOCb

The  output  gain  coefficient  is  the  proportionality
coefficient of the ultracapacitor in the required power;
its  universe  of  discourse  ranges  from  0  to  1;  and  the
fuzzy subset is divided into SL, L, M, H, and SH. The
membership function rule is that the ultracapacitor and
the  battery  work  together  when  the  battery  is
sufficiently  charged,  thereby  reducing  the  charge  and
discharge  current  of  the  battery  when  the  power
demand  is  high,  and  the  fuzzy  control  strategy  avoids
the  charging and discharging of  the  ultracapacitor  and
DC-DC  when  the  power  demand  is  low.  The  energy
feedback to the battery is given priority when the 
is  slow.  The  rules  are  shown  in Tables  3 and 4.  We
refer  to  the  fuzzy  control  strategy  as “FZY-EMS” in
this work.

6.2　PSO algorithm to optimize fuzzy strategy

The  membership  function  of  the  above  fuzzy  control
strategy  depends  on  the  subjective  experience  of
experts;  thus,  the  rules  may  not  be  optimal.  Thus,  we
use PSO in this paper to optimize the fuzzy control. We
iterate  the  objective  function  when  the  weight
coefficient  is  0.47,  and  then  apply  the  optimized
membership  function  to  the  energy  distribution  of  the
composite power system. The fuzzy strategy subjected
to PSO is called “PFZY-EMS” in this work.

Theoretically,  the  more  parameters  that  the  PSO
algorithm optimizes, the more chances it has to achieve
what  is  known  as  the  globally  optimal  solution.
However,  the  particle  swarm  rules  and  the  number  of

 

(a) Membership function of the battery SOC

(b) Membership function of the ultracapacitor SOC

(c) Membership function of the driving power 
Fig. 14    Membership functions of driving status inputs.

 

Table 3    Driving state fuzzy control rules.

Pdri
SOCb ∈ L SOCb ∈M SOCb ∈ H

L M H L M H L M H
SL SL SL SL SL SL SL SL SL SL
L SL SL SL SL SL SL L L L
M SL M H SL L H L M H
H L M H SL M H L H H

SH L H SH L H SH SL H SH

 

Table 4    Energy recovery fuzzy control rules.

Pre
SOCb ∈ L SOCb ∈M SOCb ∈ H

L M H L M H L M H
SL SL SL SL ML SL SL M SL SL
L SL SL SL SH M SL SL SH SH
M SL SL SL SH M L SH H M
H SL SL SL SH M L SH SH M

SH SL SL SL SH M SL SH SH M
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iterations  also  increase  as  the  number  of  parameters
increases,  eventually  leading  to  a  substantial  increase
in  computation  time.  Thus,  we  maintain  the  original
fuzzy  rules,  and  the  membership  function  of  the  rule
boundary is removed by PSO optimization.

Pdri

Pdri1 Pdri2, . . . Pdri11 SOCu

SOCu1, SOCu2, SOCu3 SOCu4

SOCb

SOCb1, SOCb2, SOCb3 SOCb4

Pre

Pre1, Pre2, . . . Pre11

First,  we  uniformly  encode  the  parameters  to  be
optimized. When the boundary of  is removed, the
membership  parameters  to  be  optimized  are  recorded
as , , .  When the  boundary  is
removed,  the  membership  parameters  to  be  optimized
are  recorded  as ,  and .  At
the  same  time,  when  the  boundary  is  removed,
the  membership  parameters  to  be  optimized  are
recorded  as ,  and ,  while
the membership parameters to be optimized for  are
recorded  as , .  So,  38  parameters
need to be optimized. The steps to optimize fuzzy rule
parameters using PSO are as follows:

X = (Pdri1,
Pdri2, . . . , Pdri11, SOCu1, SOCu2, . . . , SOCu4, SOCb1,

SOCb2, . . . , SOCb4, Pre1, Pre2, . . . , Pre11)

Step  1: Take  optimization  variables 

 as  particles.
Each dimension is encoded with real numbers, and the
velocity  and  position  of  each  particle  are  randomly
initialized within their respective ranges.

Step  2: Decode  each  particle,  output  it  to  the  fuzzy
control  rule  as  the  corresponding  membership
parameter,  and  simulate  the  constructed  pure  EV
model.

Step 3: Update the particle velocity and position by
evaluating the current optimal position and the optimal
position  of  the  entire  particle  swarm  using  the
following equations:
  

vt′
i = w · vt′−1

i + c1 · rand ·
(
pbest · tt′−1

i − xt′−1
i

)
+

c2 · rand ·
(
gbest · tt′−1

i − xt′−1
i

)
,

xt′
i = xt′−1

i + vt′−1
i

(18)

w vi xi

rand
c1 c2

c1 = c2 = 2 i t′

pbest gbest

where  is the inertia factor,  is the particle speed, 
is the current position of the particle,  is a random
number between 0 and 1,  and  are learning factors
(with  in  this  study),  and  and  are  the
particle  number,  and  the  number  of  iterations,
respectively.  and  are  the  self-optimal
position and group-optimal position, respectively.

gbest

Step  4: Return  to  Step  3  to  continue  the  iteration
until  the number of iterations does not change for 400
consecutive  generations,  and  then  use  as  the
optimal parameter of  the fuzzy control  rule.  The drive
state  input  membership  function  optimized  by  PSO  is

shown in Fig. 15. The load ratio in Fig. 15c represents
the normalized required power.

Simulation  results  of  the  three  energy  management
strategies  under  the  two  driving  cycles  are  shown  in
Fig.  16.  For each part,  the results  for the WLTP cycle
are on the left, and those for the synthesis cycle are on
the right.

7　Result and Analysis

Taking  WLTP  and  synthesis  driving  cycles  as
examples,  we  analyze  the  PSO-based  fuzzy  EMS  and
 

(a) Membership function of the battery SOC

(b) Membership function of the ultracapacitor SOC

(c) Membership function of the driving power 
Fig. 15    Membership functions of  driving state  inputs  after
particle swarm optimization optimization.
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compare  this  with  the  fuzzy  control  and  energy
management  strategies  based  on  DP.  The  simulation
results are shown in Figs. 16 and 17.

The  output  power  of  the  battery  for  three  energy
management strategies and two driving cycles is shown
in Fig.  16.  It  can  be  seen  that  the  EMS  of  the  PSO
fuzzy control proposed in this paper effectively avoids
a high current charge and discharge of the battery pack,
which slows the aging process of the battery pack, and
is closer to the energy management curve based on DP.
Meanwhile, Fig. 17 compares the simulation results of
three  energy  management  strategies,  namely,  PFZY-
EMS, FZY-EMS, and DP-EMS, for two driving cycles.

0.878×10−3%
1.161×10−3% 0.9×10−3%

Figure  17a  shows  the  battery  capacity  loss  as  a
function  of  time.  For  the  WLTP  cycle,  the  battery
capacity  loss  for  PFZY-EMS  lies  initially  (0−680  s)
between the losses for DP-EMS and FZY-EMS, closer
to  DP-EMS  and  much  lower  than  that  of  FZY-EMS.
From 681 s to the end of the cycle, the battery capacity
loss  for  the  PFZY-EMS  cycle  is  the  least.  For  the
synthesis  cycle,  the  battery  capacity  loss  of  PFZY-
EMS  is  much  lower  than  that  of  FZY-EMS,  and
slightly higher than that of DP-EMS. At the end of the
cycle,  under  the  WLTP  cycle,  the  battery  capacity
losses  of  the  three  strategies  are ,

,  and  for  PFZY-EMS, FZY-
EMS,  and  DP-EMS,  respectively.  For  the  synthesis
cycle,  the  corresponding  battery  capacity  losses  of

0.849×10−3% 1.091×10−3%
0.832×10−3%

6.273×106 5.98×106 5.962×
106

5.584×106 5.327×106 5.036×106

these three strategies are , ,
and ,  respectively.  For  this  cycle,  the
PFZY-based  strategy  outperforms  the  FZY-based
strategy, and is slightly inferior to the DP strategy. The
energy consumption trends of the three systems for the
two driving  cycles  are  shown in Fig.  17b.  The  graphs
indicate  that  for  the  WLTP  cycle,  the  system  energy
consumption  of  PFZY-EMS  is  between  those  of  DP-
EMS  and  FZY-EMS  from  the  start  of  the  vehicle
operation to 928 s. Meanwhile, from 929 s to the end of
the  cycle,  the  system  energy  consumption  for  PFZY-
EMS is  higher  than  those  for  the  other  two strategies.
For the synthesis cycle, the system energy consumption
of PFZY-EMS is between those of DP-EMS and FZY-
EMS from 0 to 1068 s; its system energy consumption
is  the greatest  from 1069 s  to the end of the cycle.  At
the end of the cycle, under the WLTP cycle, the energy
consumption  levels  of  PFZY-EMS,  FZY-EMS,  and
DP-EMS  are  J,  J,  and 

 J, respectively, while under the synthesis cycle, the
corresponding  cycle  energy  consumptions  are

 J,  J,  and  J.  The
comprehensive  cost  trends  of  PFZY-EMS,  FZY-EMS,
and  DP-EMS  for  two  driving  cycles  are  shown  in
Fig.  17c.  At  the  end  of  the  WLTP  cycle,  the
comprehensive  costs  of  PFZY-EMS,  FZY-EMS,  and
DP-EMS are 4.569 yuan, 5.074 yuan, and 4.490 yuan,
respectively.  At  the  end  of  the  synthesis  cycle,  the

 

(a) WLTP  driving cycle

(b) Synthesis driving cycle 
Fig. 16    Membership functions of driving status inputs.
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corresponding  cycle  energy  consumption  levels  of  the
three  strategies  are  4.217  yuan,  4.649  yuan,  and
4.063  yuan,  respectively.  The  cycle  energy
consumption of  PFZY strategy is  higher  than those  of
the  other  two  strategies.  The  reason  is  that  the
optimization  objective  function  in  this  work  is  the
comprehensive cost, and the battery aging cost is much
higher  than  the  energy  consumption  cost.  Thus,  the
proposed EMS greatly reduces the capacity loss of the

power  battery  and  the  comprehensive  cost  of  the
composite power supply at a small energy consumption
cost.

Furthermore,  the  numerical  results  are  shown  in
Table  5.  Compared with  FZY-EMS and DP-EMS,  the
EMS  proposed  in  this  paper  reduces  the  battery
capacity loss by 24.374% and 22.181%, and the system
energy consumption increases by 4.900% and 4.824%,
respectively.  Comprehensive  costs  decreased  by

 

(a) Capacity loss of the battery

(b) Energy consumption

(c) Comprehensive cost 
Fig. 17    Simulation results of three EMSs under two driving cycles. For each part, results for the WTLP cycle are on the left
and for the synthesis cycle on the right.

 

Table 5    Comparison of evaluation indicators.

Strategy
Battery capacity loss (%) Energy consumption (×106 J) Comprehensive cost (yuan)
WLTP Synthesis WLTP Synthesis WLTP Synthesis

PFZY-EMS 0.878×10−3 0.849×10−3 6.273 5.584 4.569 4.217
FZY-EMS 1.161×10−3 1.091×10−3 5.980 5.327 5.074 4.649
DP-EMS 0.900×10−3 0.832×10−3 5.962 5.036 4.490 4.063
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9.953% and  9.292%,  respectively.  Meanwhile,
compared  with  DP-EMS,  the  battery  capacity  loss  is
reduced  by  24.374% under  the  WLTP  cycle,  and  the
battery capacity loss is increased by 2.043% under the
synthesis cycle, and the system energy consumption is
increased  by  5.216% and  10.882%,  respectively.  The
comprehensive  cost  also  increased  by  1.759% and
3.790%,  respectively.  Thus,  the  results  of  the  PSO-
optimized  fuzzy  EMS  are  much  higher  than  those  of
the fuzzy control strategy, and slightly lower than those
of the DP strategy, thus showing significant benefits.

8　Conclusion

The  EMSs  proposed  in  existing  works  are  known  for
poor optimization results, strong subjectivity, difficulty
in  actual  use,  and  long  calculation  time  requirements.
Thus,  the  present  work  uses  an  EV with  batteries  and
ultracapacitors. In particular, this work investigates the
energy  management  of  EVs  with  an  HESS.  The
weighted  sum  of  the  battery  capacity  loss  and  energy
consumption  under  sample  driving  cycles  is  taken  to
minimize  the  objective  function,  which  is  then  solved
by  DP.  Thereafter,  we  obtain  the  objective  function
value  under  the  weight  coefficient,  along  with  the
corresponding  composite  power  distribution
relationship  and  the  comprehensive  cost  composed  of
battery  aging  cost  and  power  consumption  cost.  We
then use the PSO algorithm to optimize the fuzzy logic
membership parameters, after which we develop a real-
time  fuzzy  EMS  based  on  these  optimization  results.
PFZY-EMS,  FZY-EMS,  and  DP-EMS  are  then
compared and analyzed in the research and verification
cycles. The results demonstrate the effectiveness of the
proposed  EMS.  However,  the  proposed  EMS  has  not
been  verified  in  actual  vehicles.  In  follow-up  work,  a
test  system will  be built  to  conduct  performance tests,
and  the  strategy  will  be  continuously  optimized
according to the test results.
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