

Increasing the Maximum Capacity Path in a Network and Its
Application for Improving the Connection Between Two Routers

Adrian M. Deaconu* and Javad Tayyebi

O (n4)

O (n4 log2(n))

Abstract: This paper addresses the problem of improving the optimal value of the Maximum Capacity Path

(MCP) through expansion in a flexible network, and minimizing the involved costs. The only condition applied to

the cost functions is to be non-decreasing monotone. This is a non-restrictive condition, reflecting the reality in

practice, and is considered for the first time in the literature. Moreover, the total cost of expansion is a

combination of max-type cost (e.g., for supervision) and sum-type cost (e.g. for building infrastructures, price of

materials, price of labor, etc.). For this purpose, two types of strategies are combined: (I) increasing the

capacity of the existing arcs, and (II) adding potential new arcs. Two different problems are introduced and

solved. Both the problems have immediate applications in Internet routing infrastructure. The first one is to

extend the network, so that the capacity of an MCP in the modified network becomes equal to a prescribed

value, therefore the cost of modifications is minimized. A strongly polynomial-time algorithm is deduced to solve

this problem. The second problem is a network expansion under a budget constraint, so that the capacity of an

MCP is maximized. A weakly polynomial-time algorithm is presented to deal with it. In the special case when all

the costs are linear, a Meggido’s parametric search technique is used to develop an algorithm for solving the

problem in strongly polynomial time. This new approach has a time complexity of , which is better than

the time complexity of of the previously known method from literature.

Key words: Maximum Capacity Path (MCP); network expansion; Internet routing; polynomial-time algorithms

1　Introduction

O (m log (n))

In a network, the Maximum Capacity Path Problem
(MCPP), also known as the widest path problem, is to
find a path between two specific nodes having the
largest capacity. The capacity of a path is given by the
minimum capacity of its arcs. There are several
algorithms that efficiently solve MCPP in

m n
log

n

time, where is the number of arcs, is the number of
nodes, and is the iterated logarithm, i.e., it is the
minimum number of times the logarithm function must
be iteratively applied to nodes before the result is less
than or equal to 1[1].

MCPP has real practical applications. One of the
most important and immediate application is the
connection between routers in Internet. The capacity of
an arc represents the bandwidth of a connection
between two routers. Here, Maximum Capacity Path
(MCP) is to find an end-to-end path between two
Internet nodes that has the maximum possible
bandwidth[2]. The smallest arc capacity on this path is
known as the capacity or bandwidth of the path. Other
possible applications of MCPP include: the Schulze
method for deciding the winner of a multiway election

 Adrian M. Deaconu is with Department of Mathematics and

Computer Science, Transilvania University of Brasov, Brasov
500036, Romania. E-mail: a.deaconu@unitbv.ro.

 Javad Tayyebi is with Department of Industrial Engineering,
Birjand University of Technology, Birjand 000097, Iran. E-mail:
javadtayyebi@birjandut.ac.ir.

* To whom correspondence should be addressed.
 Manuscript received: 2023-01-01; revised: 2023-04-25;

accepted: 2023-05-26

TSINGHUA SCIENCE AND TECHNOLOGY
ISSN 1007-0214 09/20 pp753−765
DOI: 10 .26599 /TST.2023 .9010055
Volume 29 , Number 3 , June 2024

© The author(s) 2024. The articles published in this open access journal are distributed under the terms of the

Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

that has been applied to digital compositing[3, 4],
metabolic pathway analysis[5], or in finding the
maximum flow in a network[6].

lk

l∞

Since the expansion problems belong to the class of
inverse/reverse optimization problems[7], let us review
the related works in this field. The Inverse Maximum
Capacity Path problem (IMCP) is studied in Ref. [8].
This is to modify the capacities of the arcs as little as
possible, so that a given path becomes a maximum
capacity path in the modified network. Two cases of
IMCP are considered: the capacity of the given path is
preserved, or not. IMCP is studied and solved in two
cases, under any sum-type (e.g., weighted norms and
sum-type Hamming distance) and max-type distances
(e.g., weighted norm or bottleneck Hamming
distance). The obtained algorithms for IMCP are
applied to solve a real road transportation network
optimization problem.

It is very likely that at some moment the network
needs to be extended by increasing the arc capacities,
and/or by adding new arcs. There are costs involved,
and a given budget, and so, not all the new arcs can be
added, and not all the capacities on the arcs can be
increased to the maximum. Depending on the desired
purpose of expansion, it results different problems with
different strategies to solve.

In Ref. [9], a network expansion problem to increase
the maximum flow in a network of electricity, water,
gas, etc., is studied. In this problem, the flow
augmentation can be achieved either by increasing the
capacities on the existing arcs, or by adding new arcs to
the network. Both operations are coming with an
expansion cost. It is shown that this problem is reduced
to the calculation of a minimum cost flow in an
auxiliary network.

In this paper, the problem to efficiently increase the
capacity of the MCP through network expansion is
addressed. The expansion can be obtained by
increasing the capacities of the existing arcs, and by
adding new arcs to the network. This paper focuses on
a general case for cost functions. Let us explain it in
more details. Most network optimization problems
consider the cost as a function linearly increasing,
which generally does not reflect reality (see problems
mentioned above and others, such as minimum cost
flow problems[10]). When estimating the amount of
money that has to be spent, different kinds of costs may
be involved. In this paper, the only condition applied to
the cost function on an arc is non-decreasing

z > 0

O (n2)

O (m log (n)+n log2 (n))

O (An2 log2 (n)) A

O (n2)

O (n4 log2 (n))
O (n4)

monotone, which is really non-restrictive from
practical viewpoint. Moreover, the total cost may be a
hybrid of max-type costs (e.g., for supervision of the
project implementation) and sum-type costs (e.g., for
building infrastructures, price of materials, labor, etc.).
Two kinds of MCP expansion problems are introduced
and solved. The first one is to extend the network, so
that the capacity of MCP becomes equal to a
predetermined value , and the cost of expansion is
minimized. For this problem, a strongly polynomial
algorithm in time is developed. The second
problem is a network expansion under a budget
constrained, so that the capacity of MCP is maximized.
In this case, a weakly polynomial algorithm is
proposed in the general case. Moreover, the concept of
Meggido’s parametric search is used to introduce a
better time complexity algorithm for solving the
problem in the case of linear cost functions. To the best
of our knowledge, there is only one paper which
considers the MCP expansion problem by modifying
the arcs capacities under a budget constraint[7]. This
problem is studied under two sum-type distances: fixed
costs and linear costs. In the former, an algorithm is
designed to solve the problem in
time. In the latter, a two phases polynomial-time
approach is developed. The first phase applies the first
algorithm as a subroutine to find a small interval
containing the optimal value. The second phase
converts the reduced problem into a minimum ratio
path problem. Then, a Secant-Newton hybrid algorithm
is proposed to obtain the exact optimal solution in

, where is the running time of the first
problem under linear cost functions (see Theorem 4.3
in Ref. [7] and Theorem 4 in Ref. [11]). So, based on
the results of this paper, since we know that the first
problem can be solved in time, it follows that
the complexity of the algorithm presented in Ref. [7] is

, which is greater than time complexity
 of the algorithm proposed in this paper for the

linear-cost case in Section 3.1.

n n = 3

The proposed methods of this paper have
applicability for many practical optimization problems,
such as to increase the bandwidth between two routers
in Internet (e.g., in business or military
communications at long distances), or for road network
expansion between two locations (cities) by adding
lanes or new links, so that after modifications, there is
the possibility to have a connection between the two
locations with minimum lanes (e.g.,) on each

 754 Tsinghua Science and Technology, June 2024, 29(3): 753−765

link (portion of road). In the literature, there are studies
that address the Discrete Network Design Problem
(DNDP) with multiple capacity levels, which
determines the optimal number of lanes to add to each
candidate link in a road network. Of course, this
problem is different than the proposed one in this
paper, but shares the same idea of road widening by
adding lanes, and DNDP is solved with different
techniques, such as system optimal relaxation or
mixed-integer linear programming[12].

2　Minimum Cost MCP Expansion
G = (V,A, s, t,c) st V

A ⊆ V ×V s ∈ V
t ∈ V

c (w) = c (i, j) > 0 w = (i, j) ∈ A
G n n = |V |

m m = |A| st P
(s = i1, i2, . . . , ik = t) k ⩾ 1

(il, il+1) ∈ A l = 1, 2, . . . , k−1
st P = (s = i1, i2, . . . , ik = t) c (P)

c (P) =min {c (il, il+1)|l = 1, 2, . . . , k−1}
st P∗

st c (P∗) ⩾ c (P)
st P G

st G

Let be a directed -network, where
is the node set, is the arc set, is the
source node, is the sink node, and

 is the capacity of arc .
For , denotes the number of nodes, i.e., , and

 is the number of arcs, i.e., . An -path is a
sequence of nodes (), so that

 for every . The capacity of
an -path is denoted by ,
and is the minimum capacity of its arcs, i.e.,

. The maximum
capacity path is an -path having the maximum
capacity among all -paths, i.e., for
every -path in . So, the maximum capacity path
problem in an -network can be formulated as
follows:

max c (P),
s.t., P is an st-path in G (1)

z
G z > c (PG) PG

G G

z

Let be a given positive value greater than the
capacity of the MCP in , i.e., , where is
an MCP in . The network is intended to be
extended (by increasing the capacities of the arcs, and
by adding new arcs), so that the capacity of an MCP in
the modified network is equal to , and the cost of
modification is minimized. We call this problem as
Minimum Cost MCP Expansion Problem
(MCMCPEP).

A
z Az ⊆ A

z
z

z

Since it is possible that the capacities of some arcs
belonging to are not allowed to be increased to the
value , we denote by the set of arcs having the
capacities greater than or equal to , and the arcs whose
capacities are less than , and however, their capacities
are permitted to be increased to the value of , i.e.,

Az =
{
w ∈ A|c (w) ⩾ z or

(c (w) < z and c (w) is allowed to become z)
}

(2)

We define the cost of increasing the capacities of the

Azarcs belonging to by a generic cost function,

b : Az×R+→ R+ (3)

b (w, ·)
[z,+∞)

w ∈ Az

Az c (w) ⩾ z

The cost function is considered non-
decreasing monotone on the interval for every
arc . Obviously, since there is no need to
increase the capacity of an arc from when ,
we may define

b (w, z) = 0, if z ⩽ c (w), ∀w ∈ Az (4)

w ∈ Az

For instance, the total cost of expanding an arc
 can include the following costs:

(1) A fixed cost that includes demounting the exiting
infrastructures, the implementation of new
infrastructures, the price of labor, etc.

z

(2) A cost of the materials, which is given by the
price of the cable that is used in the implementation of
the Ethernet and Internet networks, that depends on the
type (Cat5, Cat5e, Cat6, Cat6a, or Cat7), characteristics
(shielded or unshielded), section diameter, build
quality, etc. Obviously, the higher the price of the
materials, the larger bandwidth is obtained. So, the cost
increases whenever the maximum desired bandwidth
is increased on arcs.

Aa ⊆ (V ×V)−A
z G

Let us consider now the case that potential new arcs
may be added to the network. We denote by

 a set of potential new arcs having the
capacity equal to that can be added to the network .
In order to add a new arc, at least two kinds of costs
may be involved:

(1) A fixed cost for preparing new infrastructures,
including the price of labor.

(2) A cost of materials which increases with the
enlargement of the desired maximum bandwidth on the
new arc.

b Aa
So, we can extend the definition of the cost function

 for the arcs of as follows:

b : Aa×R+→ R+ (5)

b (w, ·)
[z,+∞) w ∈ Aa

where is also non-decreasing monotone on the
interval for every arc .

We introduce the following notation:

AE = Az∪Aa (6)

b
AE ×R+

Using Eq. (4) and Formula (5) the cost function is
now defined for .

w ∈ AE

Ae ⊆ AE

From now on, an arc is called expansion arc
if and only if it is an existing arc of which capacity is
increased, or it is a new arc added to the network. We
denote by the set of expansion arcs.

 Adrian M. Deaconu et al.: Increasing the Maximum Capacity Path in a Network and Its Application... 755

Besides the per arc expansion costs we also consider
a supervision cost of the whole network expansion. The
supervision cost depends on the whole expansion time
(for all arcs). So, in order to minimize this cost, we
suppose that the expansion of any arc is performed in
parallel by a different team for each arc. Consequently,
the supervision cost is given by the longest time needed
to finish each arc. It can be formulated as follows:

max
w∈Ae

u (w, z) (7)

u (w, z) w
z

w
w

u (w, z) = f (t (w, z))
f : R+→ R+

t (w,z)
w z

u (w, ·)
[z,+∞) w ∈ Az

where is the cost for supervising the arc to
reach capacity (bandwidth). Since a higher increase
of the capacity on an arc should take longer or the
same time as for a lower increase of the capacity of ,
we could consider , where

 is a non decreasing cost function
depending on time, and is the time needed to
increase the capacity of to the value of . So, in our
model, is also non-decreasing monotone on the
interval for every arc .

Ae zFor and the desired capacity , the total expansion
cost is

max
w∈Ae

u (w, z)+
∑
w∈Ae

b (w, z) (8)

st GE = (V,AE)
When solving MCMCPEP, the capacities are

modified on an -path in the graph . This
path becomes MCP in the extended network. So,
MCMCPEP can be formulated as follows:

min

max
w∈P

u (w, z)+
∑
w∈P

b (w, z)

 ,
P is an st-path in GE = (V, AE) (9)

R (i)
i R (i) = 1 i R (i) = 0

M (j) S (j)

s j p (j) i j
s j j

(i, j)

Starting from Formula (9), Algorithm 1
(AMCMCPEP) is proposed for solving MCMCPEP,
where is a binary label used to indicate the status
of the node (if is checked,
otherwise), and are used to store the
maximum and sum costs, respectively, on a path from

 to , keeps the predecessor of node on the
path found from to if the costs of are updated for
an arc .

We shall demonstrate next the correctness of
AMCMCPEP. But, first, let us prove some preliminary
results (Lemmas 1, 2, and 3).

k R (k) = 1
Pk s k i

Pk R (i) = 1

Lemma 1　For any node having , a path
 can be constructed from to , so that every node

from has .
k R (k) = 1 Pk sProof　For a node with , a path from

k
k j Pk

p (j) , −1 p (j) i , −1 R (i)
1 i Pk

R (i) = 1

to can be calculated using Algorithm 2 denoted
APF (): It is easy to see that every node from has

. When becomes equal to , is
previously set to . So, every node from has

. ■
k R (k) = 1

Pk k
s k

Definition 1　For a node with , the path
 constructed by APF () is called the path found by

AMCMCPEP from to .
P∗

Pt s t
Let us notice that the path constructed by

AMCMCPEP is the path from to .
k R (k) = 1Lemma 2　 For any node having , we

have

M (k) =max
w∈Pk

u (w, z),

S (k) =
∑
w∈Pk

b (w, z) (10)

Pk s kwhere is the path found by AMCMCPEP from to .

l Pk

Proof　We shall prove Eq. (10) through induction
by being the length (number of arcs) of the paths
found by AMCMCPEP.

0 s k = s
s k

0 M (k) = 0
S (k) = 0

A path with -length is a path from to with no
arcs, or a path from to a node of which arcs have

-costs. Of course, for such a path we have
and .

l ⩾ 1
h R (h) = 1

Ph

l−1

For an integer value , we suppose as induction
hypothesis, that for every node with that has
the path found by AMCMCPEP with the length less
than or equal to , we have

M (h) =max
w∈Ph

u (w, z),

S (h) =
∑

w∈Ph

b (w, z) (11)

k Pk

l l ⩾ 1
h p (k) = h

Let be a node, so that the path found by
AMCMCPEP has the length equal to . Since ,
there exists a node so that , and

M (k) =max
{
M(h), u ((h, k), z)

}
,

S (k) = S (h)+b ((h, k), z) (12)

(h, k) Ph

s h
l−1

h

If the last arc is eliminated, the path found
by AMCMCPEP from to is obtained. This path has
the length equal to . Then, from the induction
hypothesis, Eq. (11) is true for node .

Using Eqs. (11) and (12), we obtain

M (k) =max {M (h), u ((h, k), z)} =max
w∈Pk

u (w, z),

S (k) = b ((h, k), z)+S (h) =
∑
w∈Pk

b (w, z) (13)

■

 756 Tsinghua Science and Technology, June 2024, 29(3): 753−765

i j
R (i) = R (j) = 1

Lemma 3　 Let and be two nodes having
. We have

R (i) 1
R (j) 1 M (i)+S (i) ⩽ M (j)+
S (j)

(a) If is set by Algorithm 1 to the value before
 is set to the value , then
.

M (i)+S (i) < M (j)+S (j) R (i)
1 R (j)

1

(b) If , then is set by
Algorithm 1 to the value before is set to the
value .

i j
R (j)

1 R (i) 1

Proof　The proof of (a) in Lemma 3: Let and be
two nodes, so that is the next value set by
AMCMCPEP to , immediately after becomes .
There are two cases in the following:

(i, j) ∈ AE R (i)Case 1: , and in the iteration when
becomes 1, we have

max {M (i),u ((i, j), z)}+S (i)+b ((i, j), z) <
M (j)+S (j) (14)

M (i)+S (i) < M (j)+S (j)Obviously, in this case, .
(i, j) < AE R (i)Case 2: , or in the iteration when

becomes 1, we have

max {M (i), u ((i, j), z)}+S (i)+b ((i, j), z) ⩾
M (j)+S (j) (15)

M (j) S (j)
R (i) R (j)

0 i
M (i)+S (i)

M (i)+S (i) ⩽ M (j)+S (j)

This means that the values of and are not
changed in the iteration when becomes 1, is

 when this iteration starts, and since the node is
selected having the smallest , it is clear that

.
i j

R 1
M (i)+S (i) ⩽ M (j)+S (j)

i j R (i)
1 R (j)

1 M (i)+S (i) ⩽ M (j)+S (j)

Since and are two nodes arbitrarily chosen for
which the values of are consecutively set to , and
for these two nodes , it
results that for every two nodes and , if is set by
Algorithm 1 to the value before is set to the
value , then .

Algorithm 1 (AMCMCPEP)　Algorithm to solve MCMCPEP
G, Az, Aa, z 1: Input:

GE = (V, Az∪Aa) 2: Build ;
s t GE 3: if there is no path from to in then

 4: 　MCMCPEP is not feasible;
 5: 　stop
 6: end if

PG G 7: Find = MCP in ;
c (PG) ⩾ z 8: if then

G 9: 　There is no need to expand ;
10: 　Stop
11: end if

i ∈ V −{s}12: for do
M (i) =∞13: 　 ;
S (i) =∞14: 　 ;

15: end for
M (s) = 016: ;
S (s) = 017: ;

i ∈ V18: for do
R (i) = 019: 　 ;
p (i) = −120: 　 ;

21: end for
R (t) = 022: while do

i ∈ V R (i) = 0 i
M (i)+S (i)

23: 　Find , so that and has the smallest
　　 ;

R(i) = 124: 　 ;

w = (i, j) ∈ AE R (j) = 025: 　for all , so that do
max {M (i), u (w, z)}+S (i)+b (w, z) < M (j)+S (j)26: 　　if

　　　　 then
M (j) =max {M (i),u (w, z)}27: 　　　 ;
S (j) = S (i)+b (w, z)28: 　　　 ;
p (j) = i29: 　　　 ;

30: 　　end if
31: 　end for
32: end while

P∗33: Call APF (t) to calculate ;
A∗ = A34: ;

w ∈ A35: for do
w ∈ P∗ z < c (w)36: 　if and then
c∗(w) = z37: 　　 ;

38: 　else
c∗(w) = c (w)39: 　　 ;

40: 　end if
41: end for

w ∈ P∗∩Aa42: for do
A∗ = A∗∪{w}43: 　 ;
c∗(w) = z44: 　 ;

45: end for

G∗ = (V, A∗, s, t, c∗)
46: expanded network (solution of MCMCPEP) is
　　 ;

M (t)+S (t)47: Total cost of expansion is ;
P∗ G∗ c∗(P∗) = z48: is MCP in with ;

P∗ G∗49: Output: and

Algorithm 2　 Algorithm Path Find (APF)
k1: Input: Node

Pk = ∅2: ;
j = k3: ;

,4: while j s do
(p (j), j) Pk5: 　Insert the arc at the beginning of ;

j = p (j)6: 　 ;
7: end while

Pk s k8: Output: Path from to found by AMCMCPEP

 Adrian M. Deaconu et al.: Increasing the Maximum Capacity Path in a Network and Its Application... 757

M (i)+S (i) < M (j)+S (j) R (j)
1 R (i)

1
M (j)+S (j) ⩽ M (i)+S (i)

Proof　The proof of (b) in Lemma 3: We suppose
that , and is set by
Algorithm 1 to the value before is set to the
value . Using (a) in Lemma 3, it follows that

 (contradiction). ■
t s GE

s t GE PG G
c (PG) < z P∗

Theorem 1　If the node is accessible from in
(there is a path from to in), and is MCP in
with , then AMCMCPEP builds the path
which is the solution of MCMCPEP.

t
s GE PG G c (PG) < z

Proof　 We suppose that the node is accessible
from in , and is MCP in with .
This means that the execution of AMCMCPEP enters
the “while” statement.

PE = (s = i1, i2, . . . , ip = t) s t
p−1 ⩾ 0 GE

R (t) 1

s R (s) 1

Let be a path from to
of length in . We suppose that in the
iterations of “while” loop never becomes . So, its
execution never ends. Obviously, in the first iteration,
the node is selected, and becomes .

ik PE 1 ⩽ k ⩽ p−1
R (ik) = 1
R (s) = 1 (ik, ik+1) PE GE

R (ik) 1 M (ik+1)+
S (ik+1) =∞ M (ik+1)+S (ik+1) <∞

M (ik+1)+S (ik+1) <∞
ik+1 R (ik+1) 1

R (ip = t) 1

Let us consider a node from (), so
that (of which existence is assured by the fact
that). Since is an arc of in , in
the iteration when becomes , if

, then is set to a value .
Since , in a future iteration, the
node is selected, and becomes . By
successively applying this property, we obtain that

 is set to (contradiction).
R (t) 1So, is set to by AMCMCPEP, and the

execution of “while” loop ends in a finite number of
iterations.

P∗

P∗ = Pt s t
G P∗ M (t)+S (t)

We shall prove now that the path built by
AMCMCPEP is the solution of MCMCPEP. Since

 is the path found by AMCMCPEP from to ,
the cost of expansion of on is (see
Lemma 2).

P GEWe suppose that there is a path in , so that

M (t)+S (t) >max
w∈P

u (w,z)+
∑
w∈P

b (w,z) (16)

We have two cases:

R(t) 1 i P
R (i) = 1

Case 1: At the end of the iterations of “while” loop
(when becomes), for every node from , we
have .

u∗ t P∗Let us denote by the previous node of in . We
have

M (t)+S (t) =max
{
M (u∗), u ((u∗, t), z)

}
+

S (u∗)+b ((u∗, t), z) (17)

(u, t) PLet us consider now the last arc of . Since

R (u) = 1, using Lemma 2, we have

M (u) =max
w∈Pu

u (w, z),

S (u) =
∑

w∈Pu

b (w, z) (18)

From Formula (16) and Eq. (18), it results that

M (t)+S (t) >

max
w ∈ Pu ∪ {(u, t)}

u (w, z)+
∑

w ∈ Pu ∪ {(u, t)}
b (w, z) =

max {M (u), u ((u, t), z)}+S (u)+b ((u, t), z) (19)

R (u) 1 R (t) 1
M (t)+S (t)

u u∗ M (t)+S (t)
max {M (u), u ((u, t), z)}+

S (u)+b ((u, t), z)
max {M (u∗), u ((u∗, t), z)}+

S (u∗)+b ((u∗, t), z)

From Formula (19) and (a) in Lemma 3, it results
that becames before becomes , and a
lower value of could have been obtained
from than from , and in this case would
have been set to the value

 or less, and not changed in the next
iterations to the value of

 (contradiction).

i P R (i) = 0 s P
u P R (u) = 1 v

P R(v) = 0
s u P′u P

Pu s u
P′u Pu

t u P′u
Pu P P′

c (P′) = c (P) P P′

s u

Case 2: At the end of Algorithm 1, there exists a
node from , so that . Starting from on
we denote as the last node in with , and
the next node in (that has). If the sub-path
from to denoted of is different than the path

 found by AMCMCPEP from to , and since the
cost of the paths and have the same costs (this
can be proved in a similar way as for case 1, where
instead of , node is considered), we replace with

 in resulting a new path denoted for which
, where the nodes from and are the

same from to .
R (u) = 1Since , and using Lemma 2, we have

M (u) =max
w∈Pu

u (w, z)

S (u) =
∑

w∈Pu

b (w, z) (20)

c (P′) = c (P)Since , from Formula (16), Eq. (20), and
Lemma 2, it results that

M (t)+S (t) >max
w∈P′

u (w, z)+
∑
w∈P′

b (w, z) ⩾

max
w∈P

u (w, z)+
∑
w∈P

b (w, z) =

max {M (u), u ((u, v), z)}+S (u)+b ((u, v), z) (21)

R (v) = 0 R (t)
R (t)

R (v) = 1

Since when becomes 1, we let the
iterations of the “while” loop continue after
becomes 1 until . Then, we have

M (v)+S (v) ⩽max {M(u), u ((u, v), z)}+
S (u)+b ((u, v), z) (22)

 758 Tsinghua Science and Technology, June 2024, 29(3): 753−765

From Formulas (21) and (22) we obtain

M(t)+S (t) > M(v)+S (v) (23)

v R (v)
1 R (t) 1

R (v) = 0 R (t)

Using (b) in Lemma 3, it results that for ,
becomes before becomes (contradiction with
the assumption that when becomes 1).

So, in both the cases a contradiction is obtained. So
we have

M(t)+S (t) =min {max
w∈P

u(w, z)+∑
w∈P

b (w, z)|P is st-path in GE}.

Moreover, using Lemma 2, we have

M(t)+S (t) =max
w∈P∗

u (w, z)+
∑

w∈P∗
b (w, z).

■

O (n2)
Theorem 2　The time complexity of AMCMCPEP

is , which is strongly polynomial.
t s O (m+n)

s
Proof　Testing if is accessible from takes

time by applying a depth search algorithm from .
G O (m log (n))Finding MCP in takes time[1].

i R (i)
1 n

O (n)
AE = A∪Aa

ma = |Aa|
O (max {n2, m+ma, m log (n)}) = O (max {n2, m log (n)})

A∪Aa ⊆ V ×V A∩Aa = ∅

m log (n) > n2 G

R (t) = 0 i R (i) = 0
M (i)+S (i) <∞ R (t) 0

G

G
O (n2)

At each iteration for a new node , is set to the
value . So, the “while” loop has at most iterations.
At each iteration, a minimum is calculated in
time. During all iterations, every arc from
is considered at most once. We make the notation

. So, the time complexity of AMCMCPEP is
,

since and . Moreover, if
, then the computation of MCP in can

be avoided by a slight modification to the “while”
statement. More exactly, the condition can be extended
to “ and there is node , so that and

”. If remains when the iterations
of “while” loop end, then it means that does not need
expansion. So, with this adaptation, the initial
construction of MCP in is not needed, and the time
complexity of AMCMCPEP is . ■

G

z = 20

z

We shall consider now an example to illustrate how
Algorithm 1 works. In Fig. 1, a network is presented
that has to be expanded, so that in the modified
network there exists an MCP with the value of .
The dotted arcs are those of which capacities cannot be
increased to the value of . The arcs that can be added
to the network are dashed.

w = (i, j)
z = 20

We choose the following functions which are the
cost of modifying the capacities of the arcs
having the capacities less than :

b (w, x) = 10 | j− i| (x− c (i, j)),

u (w, x) = | j− i| (x− c (i, j))2.

w = (i, j)
Also, we consider the following functions for the

cost of adding new arcs :

b (w, x) = 4 | j− i| x,
u (w, x) = | j− i| (x−10)2.

[z,+∞)
Let us observe that the cost functions above are all

non-decreasing monotone on the interval .
GE

s = 1 t = 7 (1, 4, 5, 7) GE
In Fig. 2, the network is presented. Since there

are paths from to (e.g.,) in ,
the problem is feasible.

Next we shall apply the iterations of Algorithm 1.
First, initializations are done,

M = (0, ∞, ∞, ∞, ∞, ∞, ∞),
S = (0, ∞, ∞, ∞, ∞, ∞, ∞),
R = (0, 0, 0, 0, 0, 0, 0),
p = (−1, −1, −1, −1, −1, −1, −1).

The iterations of Algorithm 1 are reported in Table 1.
At the end we have

M = (0, 100, 0, 100, 100, 108, 121),
S = (0, 100, 0, 180, 180, 180, 180, 290),
R = (1, 1, 1, 1, 1, 1, 1),
p = (−1, 3, 1, 2, 4, 3, 5).

G∗

p
k = t = 7 P∗ = (1, 3, 2, 4, 5, 7)

G∗ P∗

z = 20
M (7)+S (7) = 411

(3, 2)
(5, 7) (2, 4)

In Fig. 3, the modified network is presented. By
applying Algorithm 2 on the vector starting from
node , is found, which is
MCP in . Of course, the path has the desired
capacity of . The total cost of modification of the
network is . Let us observe that the
capacities of two arcs have been modified (and

), and the arc has been added.

3　MCP Expansion Under Budget Constraint

As mentioned in Section 1, the second problem is the

c (i, j)
ji

s t

GFig. 1 Network that has to be expanded.

 Adrian M. Deaconu et al.: Increasing the Maximum Capacity Path in a Network and Its Application... 759

Aa

network expansion for increasing the capacity of MCP
under a budget constraint. The problem consists of
expanding the network, so that the capacity of an MCP
in the modified network is maximized, and the total
cost of expansion does not exceed a given budget. We
denote this problem as MCPEBCP. Here, we similarly
consider the same costs for increasing the capacities of
the existing arcs and for adding new arcs from as

W

for MCMCPEP. For MCPEBCP, we introduce some
constraints to the increase of the capacities of the
existing arcs and to the maximum capacity allowed on
any new added arcs, together with a maximum given
budget denoted for the network expansion.

c′ (w) w A
ĉ (w) c′ (w) ⩽

ĉ (w) ĉ (w) ⩾ c (w)

w Aa

ĉ (w) c′ (w) ⩽ ĉ (w) ĉ (w) > 0

The increased capacity of an arc from
cannot exceed a given maximum , i.e.,

, where . If added to the network, on
an arc from , the capacity cannot exceed a given
maximum , i.e., , where .

So, MCPEBCP can be formulated as follows:

max z,

max
w∈P∗

u (w, z)+
∑

w∈P∗
b (w, z) ⩽W,

P∗ is MCP in GE = (V, AE = Az∪Aa
z),

Az = {w ∈ A|z ⩽ ĉ (w)},
Aa

z = {w ∈ Aa|z ⩽ ĉ (w)} (24)

G
z st GE

z

Let us observe that if an MCP of has the capacity
less than a given value , and on a -path in , all
the capacities of the arcs become all equal to , then
this path is an MCP in the expanded network.
Consequently, MCPEBCP can be rewritten as follows:

max z,

min {max
w∈P

u (w, z)+
∑
w∈P

b (w, z)} ⩽W,

P is st-path in GE = (V, AE = Az∪Aa
z),

Az = {w ∈ A|z ⩽ ĉ (w)},
Aa

z = {w ∈ Aa|z ⩽ ĉ (w)} (25)

zFor each possible value of an MCMCPEP can be
solved, and if the cost of expansion for its solution
respects the budget constraint from Formula (25), then
this solution is feasible for MCPEBCP. So, using
Formula (9), Formula (25) can be farther rewritten as
follows:

max z,

C ⩽W,

C is the cost of expansion of the solution of

MCMCPEP for z in GE = (V, AE = Az∪Aa
z),

Az = {(i, j) ∈ A|z ⩽ ĉ (i, j)},
Aa

z = {(i, j) ∈ Aa|z ⩽ ĉ (i, j)}. (26)

z1 > 0 z2 > 0
z1 z2

GE
1 = (V, AE

1 = Az1 ∪Aa
z1

) GE
2 = (V, AE

2 = Az2 ∪Aa
z2

)
z1 < z2

Lemma 4　Let and be two values, so
that MCMCPEP is feasible for both and in

 and ,
respectively. Then, if , we have

C1 ⩽C2,

u ((i, j), z), b ((i, j), z)
ji

s t

GEFig. 2 Network .

Table 1 Iterations of Algorithm 1
Iteration

time i M (i)+S (i)
Minimum of Update

M (j) S (j) p (j)

1 1 0 M (3) = 0 S (3) = 0 p (3) = 1

M (4) = 192 S (4) = 240 p (4) = 1

2 3 0 M (2) = 100 S (2) = 100 p (2) = 3

M (4) = 162 S (4) = 180 p (4) = 2

M (6) = 108 S (6) = 180 p (6) = 2

3 2 200 M (4) = 100 S (4) = 180 p (4) = 3

M (5) = 100 S (5) = 250 p (5) = 2

4 4 280 M (5) = 100 S (5) = 180 p (5) = 4

5 6 288 M (7) = 162 S (7) = 360 p (7) = 6

6 5 350 M (7) = 121 S (7) = 290 p (7) = 5

7 7 − − − −

c (i, j)
ji

s t

G∗Fig. 3 Modified network having MCP with the capacity

of z = 20.

 760 Tsinghua Science and Technology, June 2024, 29(3): 753−765

C1 G z1 C2

G z2

where is the cost of expansion of to , and is
the cost of expansion of to .

zi > 0
GE

i = (V, AE
i = Azi ∪Aa

zi
) i = 1, 2

Proof　 If MCMCPEP is feasible for in
 (), then,

Ci =max
w∈P∗i

u (w, zi)+
∑

w∈P∗i

b (w, zi) (27)

P∗i
zi i = 1, 2
where is the MCP found by solving MCMCPEP for

 ().
z1 < z2If , then we have

C1 =max
w∈P∗1

u (w, z1)+
∑

w∈P∗1

b (w, z1) ⩽

max
w∈P∗2

u (w, z1)+
∑

w∈P∗2

b (w, z1) ⩽

max
w∈P∗2

u (w, z2)+
∑

w∈P∗2

b (w, z2) =C2 (28)

GE
2 GE

1
GE

2 GE
1

P∗1 P∗2 GE
1

P1 GE
1

u (w, ·) b (w, ·)
w z1 < z2

In the first inequality from Formula (28), we use the
fact that if a path exists in , then it exists in ,
since all the arcs from exists in . Moreover, the
cost on is less than or equal to the cost on in ,
since is optimum in (it has the lowest cost). The
second inequality holds because and are
both non-decreasing for every arc , and . ■

zmin G
z = zmin 0

We denote by the capacity of MCP in . Of
course, the cost of expansion for is .

G
(i, j)

A∪Aa c′ (i, j) = ĉ (i, j)

Ĝ = (V, Â = A∪Aa, ĉ)
zmax Ĝ

z

Let us consider the network expansion of to the
maximum by setting the capacity of each arc from

 to the maximum, i.e., . We
denote this network as . The
capacity denoted of MCP in is the maximum
value of for which MCPEBCP has solution by
ignoring the budget constraint. We have the following
result:

z
[zmin, zmax]

Theorem 3　The solution of MCPEBCP (Formula
(26)) is obtained for the maximum value of in the
interval , where the budget constraint is
fulfilled.

Proof　 This result is immediately obtained from
Lemma 4. ■

Using Theorem 3 and by considering that the values
of capacities and costs are all integers, it is clear that
Algorithm 3 calculates (in a divide and conquer
manner) the solution of MCPEBCP.

⌈·⌉ ⌈x⌉

x

In Algorithm 3, is the ceiling operator, i.e.,
denotes the least integer greater than or equal to the
real number .

Theorem 4　The time complexity of Algorithm 3 is

weakly polynomial,

O (max {(m+ma) log (n), n2 log (zmax− zmin)}),
zmin zmax

ma = |Aa|
where and are the initial values calculated by
Algorithm 3, and .

O (m log (n))
G O ((m+ma) log (n)) Ĝ

Proof　MCP can be calculated in time
for and in time for .

O (log (zmax− zmin))

O (n2)

The “while” loop has iterations,
and for each iteration AMCMCPEP is executed once in

 time (see Theorem 2).

O (max {(m+ma) log (n), n2 log (zmax− zmin)})
So, the time complexity of AMCPEBCP is

, which is
weakly polynomial. ■

m+ma ⩽ n2 log (n)

(m+ma) log (n) ⩽ n2

O (n2 log (zmax− zmin))

Let us observe that since and is
negligible, in practice, it is very likely that

, and so, the time complexity of
AMCPEBCP becomes .

3.1　Linear-cost case

Algorithm 3 solves the second problem (Formula (25))
in weakly polynomial time. In the special case that the
cost functions are linear, we shall present next an
algorithm to solve the problem in strongly polynomial
time.

MCPEBCP under linear costs was investigated in

Algorithm 3 (AMCPEBCP)　Algorithm to solve MCPEBCP
G and W 1: Input:

zmin G 2: Compute = capacity of MCP in ;

Ĝ = (V, Â = A∪Aa, ĉ) 3: Build network ;
zmax Ĝ 4: Compute = capacity of MCP in ;

zmin zmax 5: if = then
G 6:　 Network cannot be expanded;

 7: 　stop;
 8: end if

zmin < zmax 9: while do

⌈(zmin + zmax)/2⌉10: 　z = ;

Az Aa
z z11: 　Calculate and for ;

Az Aa
z z P∗

G∗ = (V, A∗, s, t, c∗)
12: 　Call AMCMCPEP (G, , ,) to obtain and
　　　 ;

G∗ P∗13: 　if satisfies the budget constraint on then
zmin = z14: 　　 ;

15:　 else
zmax = z16: 　　 ;

17: 　end if
18: end while

G∗19: Output: Last computed network

 Adrian M. Deaconu et al.: Increasing the Maximum Capacity Path in a Network and Its Application... 761

O (A n2 log2 (n))
A

O (n4 log2 (n))

O (n4)

Ref. [7]. There, a hybrid Secant-Newton algorithm is
proposed to solve the problem in ,
where is the time complexity of solving MCMCPEP
under linear cost functions (see Theorem 4.3 from Ref.
[7] and Theorem 4 from Ref. [11]). So, based on
Theorem 2, it follows that its complexity is

. Now, we use the concept of Meggido’s
parametric search to present an algorithm for solving
the problem in time[13]. Hence, our proposed
algorithm has a better time complexity than the
algorithm given in Ref. [7].

u (w, z) = 0
b (w, z) = rw (z− c (w)) rw

w ∈ Az

w ∈ Aa Az

c (w) = 0

In Formula (25), in the linear case, and
, where is the cost of

increasing the capacity of the arc by one unit.
Without loss of the generality, we hereafter suppose
that every is an arc belonging to with

. To solve MCPEBCP under linear costs, we
propose an algorithm that has two phases:

Phase I: This phase finds an interval containing the
optimal value. The total cost is a convex piecewise-
linear function in terms of the optimal value.

Phase II: This phase uses the idea of Megiddo’s
parametric search to exactly find the optimal value.

Let us explain both the phases in complete details.
Suppose we have arranged the distinct values of the
set,
 ∪

w∈A
{c (w)}∪

∪
w∈Az

{ĉ (w)}∪ {zmax},

zmax

z1 < z2 < · · · < zl

l ⩽ O (m)
k = 1, 2, . . . , l−1

zk W
zk+1 W

zk

[zk, zk+1)

in which is computed the same as for Algorithm 3.
Let be the sorted list. Obviously,

. The first phase applies a binary search to find
an index , so that the minimum cost of
MCMCPEP for is less than or equal to while that
of MCMCPEP for is greater than . For this
purpose, Algorithm 1 is performed in every iteration to
determine the minimum cost of MCMCPEP for some
value . This phase implies that the optimal value
belongs to the half-closed interval . This fact
determines the set of arcs which are allowed to be
modified linearly on this interval. Trivially, this set is

Ā = {w ∈ Az : c− (w) ⩽ zk and ĉ− (w) ⩾ zk+1} (29)

w < Ā
w ∈ Ā

rw− (z− c (w))

So an arc has a fixed value in the second
phase, while the capacity of an arc can be
modified by imposing the linear cost .

z∗ ∈ [zk, zk+1)
It is easy to see that in the second phase we have to

find a value to satisfy the budget
constraint in the equality form. For this purpose, we

r̄define a cost vector as

r̄w =

rw, w ∈ Ā;
0, w ∈ A− Ā.

z

r̄w (z− c (w)) W

So, the problem is reduced to finding a value , so
that the shortest path length (minimum cost) with
respect to is equal to . Let us introduce
the function

tc (z) =
∑

w∈P∗
b (w, z) =

∑
w∈P∗

r̄w(z− c (w)).

[zk, zk+1) P∗

r̄w (z− c (w)) tc (z)

z

At the interval , in which is the shortest
path with respect to . Obviously, is
the same total cost function in terms of the optimal
value . By noting the sensitivity analysis for shortest
path problems, it is easy to prove the following result.

tc (z)
[zk, zk+1)

Lemma 5　 is an increasing convex piecewise-
linear function at .

z

z
z

To find the exact optimal value , we can apply
Megiddo’s parametric search. Its vital concept is to use
Algorithm 1 without knowing the exact value of . So,
 is assumed to be considered as a parameter whose

value is not explicitly given in Algorithm 1. The only
challenge is how to evaluate the accuracy of inequality,

S (i)+b (w, z) < S (j) (30)

S (j) = S (i)+b (w, z)

S (i) i ∈ V
z S (j)−S (i)−b (w, z)

u− vz
u/v > z

u/v tc (u/v)
W u/v > z

Because we update if the
inequality holds, and we do not change it, otherwise.
Notice that , , is not a number, but it is a
linear function of . So, is also a
linear function as . So, the Inequality (30) is
converted into . Hence, we can run Algorithm 1
for . Based on Lemma 5, if the total cost is
greater than , {it results} that (see Fig. 4). A
formal description of our proposed algorithm is stated
in Algorithm 4.

O (n4)
Theorem 5　 The worst-case time complexity of

Algorithm 4 is .

O (n2 log (m)) = O (n2 log (n))
O (n2) l ⩽ O (m)

O (n4)
O (n4)

Proof　 The complexity of the first phase is
 since AMCMCPEP runs

in and . The complexity analysis of the
second phase is . So, the whole Algorithm 4 has
a time complexity of . ■
3.2　Example

15
W = 24 s = 1 t = 5

Let us now provide an example to illustrate the process
of Algorithm 4. Figure 5 depicts an acyclic instance of
the problem with linear costs, in which the maximum
amount of increased capacities is supposed to be
and . It is assumed that and .

 762 Tsinghua Science and Technology, June 2024, 29(3): 753−765

zmin = 10 zmax = 15 zmin , zmax

L = 1
U = 6

k = 4 Ā = A\{(3, 5)}
S (t) = 9z−100

24 z∗ = 13.777 77
1−2−3−5

Algorithm 4 begins Phase I by running Line 3. So,
we have and . Since ,
Algorithm 4 continues the steps of Phase I. The sorted
list of Line 4 is {6, 8, 10, 12, 14, 15}. So, and

. Table 2 shows the iterations of Phase I. In the
end of Phase I, we have and . Table
3 shows the iterations of Phase II. Since
is finally equal to , it follows that is
the optimal value, and the optimal path is .

4　Conclusion

This paper introduces two problems which concern

Algorithm 4　Algorithm to solve MCPEBCP under linear
cost functions

G and W 1: Input:
 2: Phase I:
 3: Run Lines 2−8 in Algorithm 3;

z1 < z2 < · · · < zl∪
w∈A{c (w)}∪∪w∈Az {ĉ (w)}∪ {zmax}

 4: Let be the sorted list of
　 ;

Ā 5: Obtain using Eq. (29);
L = 1 U = l 6: and ;

U −L > 1 7: while do

k =
[L+U

2

]
 8: 　 ;

Az Aa
z z 9: 　Calculate and for ;

Az z P∗10: 　Call AMCMCPEP (G, ,) to obtain ;
G∗ P∗11: 　if satisfies the budget constraint on then
L = k12: 　　 ;

13: 　else
U = k14: 　　 ;

15: 　end if
16: end while
17: k = L;
18: Phase II:

i ∈ V −{s}19: for do
S (i) =∞20: 　 ;

21: end for
S (s) = 022: ;

i ∈ V23: for do
R (i) = 024: 　 ;
p (i) = −125: 　 ;

26: end for
R (t) = 027: while do

i ∈ V R (i) = 0 i S (i)28: 　Find so that and has the smallest ;
R (i) = 129: 　 ;

w = (i, j) ∈ AE R(j) = 030: 　for all so that do
S (j) ,∞31: 　　if then

S (j) u− vz32: 　　　Let be in the form ;
v , 033: 　　　if then

Az u/v
tc (u/v)

34: 　　　　Call AMCMCPEP (G, ,) to obtain total cost
　　　　 　 ;
35: 　　　end if
36: 　　end if

tc (u/v) >W v = 0 S (j) =∞37: 　　if or or then
S (j) = S (i)+b (w, z)38: 　　　 ;
p (j) = i39: 　　　 ;

40: 　　end if
41: 　end for
42: end while
43: Run Lines 33−44 of Algorithm 1;

G∗ = (V, A∗, s, t, c∗)44: Expanded network is ;
G∗45: Output: Network

tc ()tc
 (

)

 

tc (z)Fig. 4 Graph of .

Table 2 Phase I in Algorithm 4 of the presented example.
L U k zk P∗ Total cost
1 6 3 10 1−3−5 ⩽ 240 ()
3 6 4 12 1−2−3−5 ⩽ 248 ()
4 6 5 14 1−2−3−5 > 2426 ()
4 5 − − − −

Table 3 Phase II in Algorithm 4 of the presented example.
Iteration

time Node 1 2 3 4 5

S (·) 0 ∞ ∞ ∞ ∞
1 p (·) −1 −1 −1 −1 −1

R (·) 1 0 0 0 0
S (·) 0 5z−60 8z−80 4z−32 ∞

2 p (·) −1 1 1 1 −1
R (·) 1 1 0 0 0
S (·) 0 5z−60 9z−100 4z−32 13z−124

3 p (·) −1 1 2 1 2
R (·) 1 1 1 0 0
S (·) 0 5z−60 9z−100 4z−32 9z−100

4 p (·) −1 1 2 1 3
R (·) 1 1 1 1 0
S (·) 0 5z−60 9z−100 4z−32 9z−100

5 p (·) −1 1 2 1 3
R (·) 1 1 1 1 1

 Adrian M. Deaconu et al.: Increasing the Maximum Capacity Path in a Network and Its Application... 763

MCP expansion. The admissible actions are to increase
capacity on existing arcs and to add new arcs. These
problems have real applications, e.g., for increasing the
bandwidth between two routers in Internet, or road
widening between two cities. The first problem
expands the network to a desired capacity of MCP by
minimizing the cost. The total cost is a combination of
max-type and sum-type costs. The only condition
applied to the cost function on an arc is to be
non-decreasing monotone, which is really non-
restrictive from practical viewpoint. Most network
problems consider costs as linear functions or fixed,
which generally does not reflect reality. In this paper,
for the first problem, a quadratic-time algorithm is
developed. The second problem consists of increasing
the capacity of MCP as much as possible, so that the
sum of costs does not exceed a given budget. A weakly
polynomial method is presented to solve this problem.
Finally, a strongly polynomial-time algorithm is
designed to solve the problem with linear costs. This
algorithm has a better complexity than the one
presented in Ref. [7].

As future extension of this work, the more general
cases of one source to multiple sinks, multiple sources
to one sink, or multiple sources to multiple sink nodes
can be studied.

References

 H. N. Gabow and R. E. Tarjan, Algorithms for two
bottleneck optimization problems, J. Algorithm., vol. 9,
no. 3, pp. 411–417, 1988.

[1]

 N. Shacham, Multicast routing of hierarchical data, in
Proc. Discovering a New World of Communications,
Chicago, IL, USA, 1992, pp. 1217–1221.

[2]

 M. Schulze, A new monotonic, clone-independent,
reversal symmetric, and condorcet-consistent single-
winner election method, Soc. Choice Welfare, vol. 36, no.
2, pp. 267–303, 2011.

[3]

 E. Fernandez, R. Garfinkel, and R. Arbiol, Mosaicking of
aerial photographic maps via seams defined by bottleneck
shortest paths, Oper. Res., vol. 46, no. 3, pp. 293–304,
1998.

[4]

 E. Ullah, K. Lee, and S. Hassoun, An algorithm for
identifying dominant-edge metabolic pathways, in Proc.
IEEE/ACM Int. Conf. Computer-Aided Design-Digest of
Technical Papers, San Jose, CA, USA, 2009, pp. 144–150.

[5]

 R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network
Flows: Theory, Algorithms and Applications. Englewood
Cliffss, NJ, USA: Prentice Hall, 1993.

[6]

 J. Tayyebi and A. Deaconu, Expanding maximum capacity
path under weighted sum-type distances, AIMS Math., vol.
6, no. 4, pp. 3996–4010, 2021.

[7]

 A. M. Deaconu and J. Tayyebi, Inverse maximum capacity
path problems under sum-type and max- type distances
and their practical application to transportation networks,
IEEE Access, vol. 8, pp. 225957–225966, 2020.

[8]

 A. M. Deaconu and L. Majercsik, Flow increment through
network expansion, Mathematics, vol. 9, no. 18, p. 2308,
2021.

[9]

 Y. Hu, X. Zhao, J. Liu, B. Liang, and C. Ma, An efficient
algorithm for solving minimum cost flow problem with
complementarity slack conditions, Math. Probl. Eng., vol.
2020, p. 2439265, 2020.

[10]

 J. Zhang and Z. Liu, An oracle strongly polynomial
algorithm for bottleneck expansion problems, Optim.
Methods Softw., vol. 17, no. 1, pp. 61–75, 2002.

[11]

 S. Wang, Q. Meng, and H. Yang, Global optimization
methods for the discrete network design problem, Transp.
Res. Part B: Meth., vol. 50, pp. 42–60, 2013.

[12]

 N. Megiddo, Combinatorial optimization with rational
objective functions, Math. Oper. Res., vol. 4, no. 4, pp.
414–424, 1979.

[13]

Adrian M. Deaconu received the BS, MS,
and PhD degrees in computer science from
Transilvania University of Brasov,
Romania in 1997, 1998, and 2008,
respectively, Starting from 2009, he is an
associate professor at Department of
Mathematics and Computer Science,
Transilvania University of Brasov,

Romania. From 2019 to 2020, he was a visiting professor at
University College Cork, Ireland. In 2023 he obtained his
habilitation in computer science. Since 2018 he has been the
coordinator of the research group “Optimization algorithms”
inside Transilvania University of Brasov. He is a member of the
Romanian Mathematical Society, and a member of the
Mathematical Modeling and Software Products Research Centre
from the Research Development Institute, Brasov. He is the
author of four books, five electronic courses, three book
chapters, and more than 50 research articles. His research
interests include algorithms, graphs, optimization, inverse
network optimization, and heuristics.

s t

c (i, j), c (i, j), bij
^

ji

12, 15, 5 8, 15, 8

6, 15, 6

8, 15, 4

14, 15, 610, 15, 8

10, 15, 4

12, 15, 4

Fig. 5 Instance of the problem with linear costs and W =
24.

 764 Tsinghua Science and Technology, June 2024, 29(3): 753−765

Javad Tayyebi received the BS degree in
mathematics from University of Birjand,
Iran in 2007, the MS degree in applied
mathematics from Sharif University of
Technology, Iran in 2009, and the PhD
degree from University of Birjand, Iran in
2014. The subject of his thesis was
“inverse optimization”. He is a member of

the Iranian Operations Research Society. From 2022 to now, he
is an associate professor at Department of Industrial
Engineering, Birjand University of Technology, Iran. He is the
author of more than 40 articles. His research interests include
network optimization, game theory, and fuzzy theory.

 Adrian M. Deaconu et al.: Increasing the Maximum Capacity Path in a Network and Its Application... 765

