
 

Increasing the Maximum Capacity Path in a Network and Its
Application for Improving the Connection Between Two Routers
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Abstract: This  paper  addresses  the  problem  of  improving  the  optimal  value  of  the  Maximum  Capacity  Path

(MCP) through expansion in a flexible network, and minimizing the involved costs. The only condition applied to

the cost functions is to be non-decreasing monotone. This is a non-restrictive condition, reflecting the reality in

practice,  and  is  considered  for  the  first  time  in  the  literature.  Moreover,  the  total  cost  of  expansion  is  a

combination of max-type cost (e.g., for supervision) and sum-type cost (e.g. for building infrastructures, price of

materials,  price  of  labor,  etc.).  For  this  purpose,  two  types  of  strategies  are  combined:  (I)  increasing  the

capacity  of  the  existing  arcs,  and  (II)  adding  potential  new  arcs.  Two  different  problems  are  introduced  and

solved.  Both  the  problems  have  immediate  applications  in  Internet  routing  infrastructure.  The  first  one  is  to

extend  the  network,  so  that  the  capacity  of  an  MCP in  the  modified  network  becomes  equal  to  a  prescribed

value, therefore the cost of modifications is minimized. A strongly polynomial-time algorithm is deduced to solve

this problem. The second problem is a network expansion under a budget constraint, so that the capacity of an

MCP is maximized. A weakly polynomial-time algorithm is presented to deal with it. In the special case when all

the costs are linear, a Meggido’s parametric search technique is used to develop an algorithm for solving the

problem in strongly polynomial time. This new approach has a time complexity of , which is better than

the time complexity of  of the previously known method from literature.
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1　Introduction

O (m log (n))

In  a  network,  the  Maximum  Capacity  Path  Problem
(MCPP), also known as the widest path problem, is to
find  a  path  between  two  specific  nodes  having  the
largest capacity. The capacity of a path is given by the
minimum  capacity  of  its  arcs.  There  are  several
algorithms that efficiently solve MCPP in 

m n
log

n

time, where  is the number of arcs,  is the number of
nodes,  and  is  the  iterated  logarithm,  i.e.,  it  is  the
minimum number of times the logarithm function must
be iteratively applied to  nodes before the result is less
than or equal to 1[1].

MCPP  has  real  practical  applications.  One  of  the
most  important  and  immediate  application  is  the
connection between routers in Internet. The capacity of
an  arc  represents  the  bandwidth  of  a  connection
between  two  routers.  Here,  Maximum  Capacity  Path
(MCP)  is  to  find  an  end-to-end  path  between  two
Internet  nodes  that  has  the  maximum  possible
bandwidth[2].  The smallest  arc  capacity  on this  path  is
known as the capacity or bandwidth of the path. Other
possible  applications  of  MCPP  include:  the  Schulze
method for deciding the winner of a multiway election
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that  has  been  applied  to  digital  compositing[3, 4],
metabolic  pathway  analysis[5],  or  in  finding  the
maximum flow in a network[6].

lk

l∞

Since the expansion problems belong to the class of
inverse/reverse  optimization  problems[7],  let  us  review
the  related  works  in  this  field.  The  Inverse  Maximum
Capacity  Path  problem  (IMCP)  is  studied  in  Ref.  [8].
This  is  to  modify  the  capacities  of  the  arcs  as  little  as
possible,  so  that  a  given  path  becomes  a  maximum
capacity  path  in  the  modified  network.  Two  cases  of
IMCP are considered: the capacity of the given path is
preserved,  or  not.  IMCP  is  studied  and  solved  in  two
cases, under any sum-type (e.g., weighted  norms and
sum-type  Hamming  distance)  and  max-type  distances
(e.g.,  weighted  norm  or  bottleneck  Hamming
distance).  The  obtained  algorithms  for  IMCP  are
applied  to  solve  a  real  road  transportation  network
optimization problem.

It  is  very  likely  that  at  some  moment  the  network
needs  to  be  extended  by  increasing  the  arc  capacities,
and/or  by  adding  new  arcs.  There  are  costs  involved,
and a given budget, and so, not all the new arcs can be
added,  and  not  all  the  capacities  on  the  arcs  can  be
increased  to  the  maximum.  Depending  on  the  desired
purpose of expansion, it results different problems with
different strategies to solve.

In Ref. [9], a network expansion problem to increase
the  maximum  flow  in  a  network  of  electricity,  water,
gas,  etc.,  is  studied.  In  this  problem,  the  flow
augmentation can be achieved either by increasing the
capacities on the existing arcs, or by adding new arcs to
the  network.  Both  operations  are  coming  with  an
expansion cost. It is shown that this problem is reduced
to  the  calculation  of  a  minimum  cost  flow  in  an
auxiliary network.

In this  paper,  the problem to efficiently increase the
capacity  of  the  MCP  through  network  expansion  is
addressed.  The  expansion  can  be  obtained  by
increasing  the  capacities  of  the  existing  arcs,  and  by
adding new arcs to the network. This paper focuses on
a  general  case  for  cost  functions.  Let  us  explain  it  in
more  details.  Most  network  optimization  problems
consider  the  cost  as  a  function  linearly  increasing,
which  generally  does  not  reflect  reality  (see  problems
mentioned  above  and  others,  such  as  minimum  cost
flow  problems[10]).  When  estimating  the  amount  of
money that has to be spent, different kinds of costs may
be involved. In this paper, the only condition applied to
the  cost  function  on  an  arc  is  non-decreasing

z > 0

O (n2)

O (m log (n)+n log2 (n))

O (An2 log2 (n)) A

O (n2)

O (n4 log2 (n))
O (n4)

monotone,  which  is  really  non-restrictive  from
practical  viewpoint.  Moreover,  the total  cost  may be a
hybrid  of  max-type  costs  (e.g.,  for  supervision  of  the
project  implementation)  and  sum-type  costs  (e.g.,  for
building infrastructures, price of materials, labor, etc.).
Two kinds of MCP expansion problems are introduced
and  solved.  The  first  one  is  to  extend  the  network,  so
that  the  capacity  of  MCP  becomes  equal  to  a
predetermined value , and the cost of expansion is
minimized.  For  this  problem,  a  strongly  polynomial
algorithm  in  time  is  developed.  The  second
problem  is  a  network  expansion  under  a  budget
constrained, so that the capacity of MCP is maximized.
In  this  case,  a  weakly  polynomial  algorithm  is
proposed in the general case. Moreover, the concept of
Meggido’s  parametric  search  is  used  to  introduce  a
better  time  complexity  algorithm  for  solving  the
problem in the case of linear cost functions. To the best
of  our  knowledge,  there  is  only  one  paper  which
considers  the  MCP  expansion  problem  by  modifying
the  arcs  capacities  under  a  budget  constraint[7].  This
problem is studied under two sum-type distances: fixed
costs  and  linear  costs.  In  the  former,  an  algorithm  is
designed to solve the problem in 
time.  In  the  latter,  a  two  phases  polynomial-time
approach is developed. The first phase applies the first
algorithm  as  a  subroutine  to  find  a  small  interval
containing  the  optimal  value.  The  second  phase
converts  the  reduced  problem  into  a  minimum  ratio
path problem. Then, a Secant-Newton hybrid algorithm
is  proposed  to  obtain  the  exact  optimal  solution  in

, where  is the running time of the first
problem  under  linear  cost  functions  (see  Theorem  4.3
in Ref.  [7]  and Theorem 4 in Ref.  [11]).  So,  based on
the  results  of  this  paper,  since  we  know  that  the  first
problem  can  be  solved  in  time,  it  follows  that
the complexity of the algorithm presented in Ref. [7] is

,  which  is  greater  than  time  complexity
 of  the  algorithm  proposed  in  this  paper  for  the

linear-cost case in Section 3.1.

n n = 3

The  proposed  methods  of  this  paper  have
applicability for many practical optimization problems,
such as to increase the bandwidth between two routers
in  Internet  (e.g.,  in  business  or  military
communications at long distances), or for road network
expansion  between  two  locations  (cities)  by  adding
lanes or new links, so that after modifications, there is
the  possibility  to  have  a  connection  between  the  two
locations  with  minimum  lanes  (e.g., )  on  each
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link (portion of road). In the literature, there are studies
that  address  the  Discrete  Network  Design  Problem
(DNDP)  with  multiple  capacity  levels,  which
determines the optimal number of lanes to add to each
candidate  link  in  a  road  network.  Of  course,  this
problem  is  different  than  the  proposed  one  in  this
paper,  but  shares  the  same  idea  of  road  widening  by
adding  lanes,  and  DNDP  is  solved  with  different
techniques,  such  as  system  optimal  relaxation  or
mixed-integer linear programming[12].

2　Minimum Cost MCP Expansion
G = (V,A, s, t,c) st V

A ⊆ V ×V s ∈ V
t ∈ V

c (w) = c (i, j) > 0 w = (i, j) ∈ A
G n n = |V |

m m = |A| st P
(s = i1, i2, . . . , ik = t) k ⩾ 1

(il, il+1) ∈ A l = 1, 2, . . . , k−1
st P = (s = i1, i2, . . . , ik = t) c (P)

c (P) =min {c (il, il+1)|l = 1, 2, . . . , k−1}
st P∗

st c (P∗) ⩾ c (P)
st P G

st G

Let  be  a  directed -network,  where 
is  the  node  set,  is  the  arc  set,  is  the
source  node,  is  the  sink  node,  and

 is  the  capacity  of  arc .
For ,  denotes the number of nodes, i.e., , and

 is the number of arcs, i.e., . An -path  is a
sequence of nodes  ( ),  so that

 for every . The capacity of
an -path  is denoted by ,
and  is  the  minimum  capacity  of  its  arcs,  i.e.,

. The maximum
capacity  path  is  an -path  having  the  maximum
capacity  among  all -paths,  i.e.,  for
every -path  in .  So,  the maximum capacity path
problem  in  an -network  can  be  formulated  as
follows:
 

max c (P),
s.t., P is an st-path in G (1)

z
G z > c (PG) PG

G G

z

Let  be  a  given  positive  value  greater  than  the
capacity of the MCP in , i.e., , where  is
an  MCP  in .  The  network  is  intended  to  be
extended (by increasing the capacities of  the arcs,  and
by adding new arcs), so that the capacity of an MCP in
the  modified  network  is  equal  to ,  and  the  cost  of
modification  is  minimized.  We  call  this  problem  as
Minimum  Cost  MCP  Expansion  Problem
(MCMCPEP).

A
z Az ⊆ A

z
z

z

Since  it  is  possible  that  the  capacities  of  some  arcs
belonging  to  are  not  allowed  to  be  increased  to  the
value , we denote by  the set of arcs having the
capacities greater than or equal to , and the arcs whose
capacities are less than , and however, their capacities
are permitted to be increased to the value of , i.e.,
 

Az =
{
w ∈ A|c (w) ⩾ z or

(c (w) < z and c (w) is allowed to become z)
}

(2)

We define the cost of increasing the capacities of the

Azarcs belonging to  by a generic cost function,
 

b : Az×R+→ R+ (3)

b (w, ·)
[z,+∞)

w ∈ Az

Az c (w) ⩾ z

The  cost  function  is  considered  non-
decreasing  monotone  on  the  interval  for  every
arc .  Obviously,  since  there  is  no  need  to
increase the capacity of an arc from  when ,
we may define
 

b (w, z) = 0, if z ⩽ c (w), ∀w ∈ Az (4)

w ∈ Az

For  instance,  the  total  cost  of  expanding  an  arc
 can include the following costs:

(1) A fixed cost that includes demounting the exiting
infrastructures,  the  implementation  of  new
infrastructures, the price of labor, etc.

z

(2)  A  cost  of  the  materials,  which  is  given  by  the
price of the cable that is used in the implementation of
the Ethernet and Internet networks, that depends on the
type (Cat5, Cat5e, Cat6, Cat6a, or Cat7), characteristics
(shielded  or  unshielded),  section  diameter,  build
quality,  etc.  Obviously,  the  higher  the  price  of  the
materials, the larger bandwidth is obtained. So, the cost
increases whenever the maximum desired bandwidth 
is increased on arcs.

Aa ⊆ (V ×V)−A
z G

Let us consider now the case that potential new arcs
may  be  added  to  the  network.  We  denote  by

 a  set  of  potential  new arcs  having the
capacity equal to  that can be added to the network .
In  order  to  add  a  new  arc,  at  least  two  kinds  of  costs
may be involved:

(1)  A  fixed  cost  for  preparing  new  infrastructures,
including the price of labor.

(2)  A  cost  of  materials  which  increases  with  the
enlargement of the desired maximum bandwidth on the
new arc.

b Aa
So, we can extend the definition of the cost function

 for the arcs of  as follows:
 

b : Aa×R+→ R+ (5)

b (w, ·)
[z,+∞) w ∈ Aa

where  is  also non-decreasing monotone on the
interval  for every arc .

We introduce the following notation:
 

AE = Az∪Aa (6)

b
AE ×R+

Using Eq. (4) and Formula (5) the cost function  is
now defined for .

w ∈ AE

Ae ⊆ AE

From now on, an arc  is  called expansion arc
if and only if  it  is  an existing arc of which capacity is
increased, or it is a new arc added to the network. We
denote by  the set of expansion arcs.
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Besides the per arc expansion costs we also consider
a supervision cost of the whole network expansion. The
supervision cost depends on the whole expansion time
(for  all  arcs).  So,  in  order  to  minimize  this  cost,  we
suppose  that  the  expansion  of  any arc  is  performed in
parallel by a different team for each arc. Consequently,
the supervision cost is given by the longest time needed
to finish each arc. It can be formulated as follows:
 

max
w∈Ae

u (w, z) (7)

u (w, z) w
z

w
w

u (w, z) = f (t (w, z))
f : R+→ R+

t (w,z)
w z

u (w, ·)
[z,+∞) w ∈ Az

where  is  the  cost  for  supervising  the  arc  to
reach  capacity  (bandwidth).  Since  a  higher  increase
of  the  capacity  on  an  arc  should  take  longer  or  the
same time as for a lower increase of the capacity of ,
we  could  consider ,  where

 is  a  non  decreasing  cost  function
depending  on  time,  and  is  the  time  needed  to
increase the capacity of  to the value of . So, in our
model,  is also non-decreasing monotone on the
interval  for every arc .

Ae zFor  and the desired capacity , the total expansion
cost is
 

max
w∈Ae

u (w, z)+
∑
w∈Ae

b (w, z) (8)

st GE = (V,AE)
When  solving  MCMCPEP,  the  capacities  are

modified on an -path in the graph .  This
path  becomes  MCP  in  the  extended  network.  So,
MCMCPEP can be formulated as follows:
 

min

max
w∈P

u (w, z)+
∑
w∈P

b (w, z)

 ,
P is an st-path in GE = (V, AE) (9)

R (i)
i R (i) = 1 i R (i) = 0

M ( j) S ( j)

s j p ( j) i j
s j j

(i, j)

Starting  from  Formula  (9),  Algorithm  1
(AMCMCPEP)  is  proposed  for  solving  MCMCPEP,
where  is a binary label used to indicate the status
of  the  node  (  if  is  checked, 
otherwise),  and  are  used  to  store  the
maximum and sum costs,  respectively,  on a path from

 to ,  keeps  the  predecessor  of  node  on  the
path found from  to  if the costs of  are updated for
an arc .

We  shall  demonstrate  next  the  correctness  of
AMCMCPEP. But, first, let us prove some preliminary
results (Lemmas 1, 2, and 3).

k R (k) = 1
Pk s k i

Pk R (i) = 1

Lemma 1　For any node  having ,  a path
 can be constructed from  to , so that every node 

from  has .
k R (k) = 1 Pk sProof　For a node  with , a path  from 

k
k j Pk

p ( j) , −1 p ( j) i , −1 R (i)
1 i Pk

R (i) = 1

to  can  be  calculated  using  Algorithm  2  denoted
APF ( ): It is easy to see that every node  from  has

. When  becomes equal to ,  is
previously  set  to .  So,  every  node  from  has

. ■
k R (k) = 1

Pk k
s k

Definition 1　For  a  node  with ,  the  path
 constructed by APF ( ) is called the path found by

AMCMCPEP from  to .
P∗

Pt s t
Let  us  notice  that  the  path  constructed  by

AMCMCPEP is the path  from  to .
k R (k) = 1Lemma  2　 For  any  node  having ,  we

have
 

M (k) =max
w∈Pk

u (w, z),

S (k) =
∑
w∈Pk

b (w, z) (10)

Pk s kwhere  is the path found by AMCMCPEP from  to .

l Pk

Proof　We  shall  prove  Eq.  (10)  through  induction
by  being the length (number of arcs) of the paths 
found by AMCMCPEP.

0 s k = s
s k

0 M (k) = 0
S (k) = 0

A path with -length is a path from  to  with no
arcs,  or  a  path from  to  a  node  of  which arcs  have

-costs.  Of  course,  for  such  a  path  we  have 
and .

l ⩾ 1
h R (h) = 1

Ph

l−1

For  an  integer  value ,  we  suppose  as  induction
hypothesis, that for every node  with  that has
the path  found by AMCMCPEP with the length less
than or equal to , we have
 

M (h) =max
w∈Ph

u (w, z),

S (h) =
∑

w∈Ph

b (w, z) (11)

k Pk

l l ⩾ 1
h p (k) = h

Let  be  a  node,  so  that  the  path  found  by
AMCMCPEP  has  the  length  equal  to .  Since ,
there exists a node  so that , and
 

M (k) =max
{
M(h), u ((h, k), z)

}
,

S (k) = S (h)+b ((h, k), z) (12)

(h, k) Ph

s h
l−1

h

If the last arc  is eliminated, the path  found
by AMCMCPEP from  to  is obtained. This path has
the  length  equal  to .  Then,  from  the  induction
hypothesis, Eq. (11) is true for node .

Using Eqs. (11) and (12), we obtain
 

M (k) =max {M (h), u ((h, k), z)} =max
w∈Pk

u (w, z),

S (k) = b ((h, k), z)+S (h) =
∑
w∈Pk

b (w, z) (13)

■
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i j
R (i) = R ( j) = 1

Lemma  3　 Let  and  be  two  nodes  having
. We have

R (i) 1
R ( j) 1 M (i)+S (i) ⩽ M ( j)+
S ( j)

(a) If  is set by Algorithm 1 to the value  before
 is  set  to  the  value ,  then 
.

M (i)+S (i) < M ( j)+S ( j) R (i)
1 R ( j)

1

(b)  If ,  then  is  set  by
Algorithm  1  to  the  value  before  is  set  to  the
value .

i j
R ( j)

1 R (i) 1

Proof　The proof of (a) in Lemma 3: Let  and  be
two  nodes,  so  that  is  the  next  value  set  by
AMCMCPEP to , immediately after  becomes .
There are two cases in the following:

(i, j) ∈ AE R (i)Case  1: ,  and  in  the  iteration  when 
becomes 1, we have
 

max {M (i),u ((i, j), z)}+S (i)+b ((i, j), z) <
M ( j)+S ( j) (14)

M (i)+S (i) < M ( j)+S ( j)Obviously, in this case, .
(i, j) < AE R (i)Case  2: ,  or  in  the  iteration  when 

becomes 1, we have
 

max {M (i), u ((i, j), z)}+S (i)+b ((i, j), z) ⩾
M ( j)+S ( j) (15)

M ( j) S ( j)
R (i) R ( j)

0 i
M (i)+S (i)

M (i)+S (i) ⩽ M ( j)+S ( j)

This  means  that  the  values  of  and  are  not
changed in the iteration when  becomes 1,  is

 when  this  iteration  starts,  and  since  the  node  is
selected having the smallest , it is clear that

.
i j

R 1
M (i)+S (i) ⩽ M ( j)+S ( j)

i j R (i)
1 R ( j)

1 M (i)+S (i) ⩽ M ( j)+S ( j)

Since  and  are  two  nodes  arbitrarily  chosen  for
which  the  values  of  are  consecutively  set  to ,  and
for  these  two  nodes ,  it
results that for every two nodes  and , if  is set by
Algorithm  1  to  the  value  before  is  set  to  the
value , then .

 

Algorithm 1 (AMCMCPEP)　Algorithm to solve MCMCPEP
G, Az, Aa, z  1: Input: 

GE = (V, Az∪Aa)  2: Build ;
s t GE  3: if there is no path from  to  in  then

  4: 　MCMCPEP is not feasible;
  5: 　stop
  6: end if

PG G  7: Find  = MCP in ;
c (PG) ⩾ z  8: if  then

G  9: 　There is no need to expand ;
10: 　Stop
11: end if

i ∈ V −{s}12: for  do
M (i) =∞13: 　 ;
S (i) =∞14: 　 ;

15: end for
M (s) = 016: ;
S (s) = 017: ;

i ∈ V18: for  do
R (i) = 019: 　 ;
p (i) = −120: 　 ;

21: end for
R (t) = 022: while  do

i ∈ V R (i) = 0 i
M (i)+S (i)

23: 　Find , so that  and  has the smallest
　　   ;

R(i) = 124: 　 ;

w = (i, j) ∈ AE R ( j) = 025: 　for all , so that  do
max {M (i), u (w, z)}+S (i)+b (w, z) < M ( j)+S ( j)26: 　　if 

　　　　  then
M ( j) =max {M (i),u (w, z)}27: 　　　 ;
S ( j) = S (i)+b (w, z)28: 　　　 ;
p ( j) = i29: 　　　 ;

30: 　　end if
31: 　end for
32: end while

P∗33: Call APF (t) to calculate ;
A∗ = A34: ;

w ∈ A35: for  do
w ∈ P∗ z < c (w)36: 　if  and  then
c∗(w) = z37: 　　 ;

38: 　else
c∗(w) = c (w)39: 　　 ;

40: 　end if
41: end for

w ∈ P∗∩Aa42: for  do
A∗ = A∗∪{w}43: 　 ;
c∗(w) = z44: 　 ;

45: end for

G∗ = (V, A∗, s, t, c∗)
46: expanded network (solution of MCMCPEP) is
　　 ;

M (t)+S (t)47: Total cost of expansion is ;
P∗ G∗ c∗(P∗) = z48:  is MCP in  with ;

P∗ G∗49: Output:  and 

 

Algorithm 2　 Algorithm Path Find (APF)
k1: Input: Node 

Pk = ∅2: ;
j = k3: ;

,4: while j  s do
(p ( j), j) Pk5: 　Insert the arc  at the beginning of ;

j = p ( j)6: 　 ;
7: end while

Pk s k8: Output: Path  from  to  found by AMCMCPEP
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M (i)+S (i) < M ( j)+S ( j) R ( j)
1 R (i)

1
M ( j)+S ( j) ⩽ M (i)+S (i)

Proof　The  proof  of  (b)  in  Lemma  3:  We  suppose
that ,  and  is  set  by
Algorithm  1  to  the  value  before  is  set  to  the
value .  Using  (a)  in  Lemma  3,  it  follows  that

 (contradiction). ■
t s GE

s t GE PG G
c (PG) < z P∗

Theorem 1　If the node  is accessible from  in 
(there is a path from  to  in ), and  is MCP in 
with ,  then  AMCMCPEP  builds  the  path 
which is the solution of MCMCPEP.

t
s GE PG G c (PG) < z

Proof　 We  suppose  that  the  node  is  accessible
from  in ,  and  is  MCP  in  with .
This  means  that  the  execution  of  AMCMCPEP enters
the “while” statement.

PE = (s = i1, i2, . . . , ip = t) s t
p−1 ⩾ 0 GE

R (t) 1

s R (s) 1

Let  be  a  path  from  to 
of  length  in .  We  suppose  that  in  the
iterations of “while” loop  never becomes . So, its
execution  never  ends.  Obviously,  in  the  first  iteration,
the node  is selected, and  becomes .

ik PE 1 ⩽ k ⩽ p−1
R (ik) = 1
R (s) = 1 (ik, ik+1) PE GE

R (ik) 1 M (ik+1)+
S (ik+1) =∞ M (ik+1)+S (ik+1) <∞

M (ik+1)+S (ik+1) <∞
ik+1 R (ik+1) 1

R (ip = t) 1

Let us consider a node  from  ( ), so
that  (of which existence is assured by the fact
that ). Since  is an arc of  in , in
the  iteration  when  becomes ,  if 

, then  is set to a value .
Since ,  in  a  future  iteration,  the
node  is  selected,  and  becomes .  By
successively  applying  this  property,  we  obtain  that

 is set to  (contradiction).
R (t) 1So,  is  set  to  by  AMCMCPEP,  and  the

execution  of “while” loop  ends  in  a  finite  number  of
iterations.

P∗

P∗ = Pt s t
G P∗ M (t)+S (t)

We  shall  prove  now  that  the  path  built  by
AMCMCPEP  is  the  solution  of  MCMCPEP.  Since

 is the path found by AMCMCPEP from  to ,
the  cost  of  expansion  of  on  is  (see
Lemma 2).

P GEWe suppose that there is a path  in , so that
 

M (t)+S (t) >max
w∈P

u (w,z)+
∑
w∈P

b (w,z) (16)

We have two cases:

R(t) 1 i P
R (i) = 1

Case 1: At the end of the iterations of “while” loop
(when  becomes ),  for  every  node  from ,  we
have .

u∗ t P∗Let us denote by  the previous node of  in . We
have
 

M (t)+S (t) =max
{
M (u∗), u ((u∗, t), z)

}
+

S (u∗)+b ((u∗, t), z) (17)

(u, t) PLet  us  consider  now  the  last  arc  of .  Since

R (u) = 1, using Lemma 2, we have
 

M (u) =max
w∈Pu

u (w, z),

S (u) =
∑

w∈Pu

b (w, z) (18)

From Formula (16) and Eq. (18), it results that
 

M (t)+S (t) >

max
w ∈ Pu ∪ {(u, t)}

u (w, z)+
∑

w ∈ Pu ∪ {(u, t)}
b (w, z) =

max {M (u), u ((u, t), z)}+S (u)+b ((u, t), z) (19)

R (u) 1 R (t) 1
M (t)+S (t)

u u∗ M (t)+S (t)
max {M (u), u ((u, t), z)}+

S (u)+b ((u, t), z)
max {M (u∗), u ((u∗, t), z)}+

S (u∗)+b ((u∗, t), z)

From  Formula  (19)  and  (a)  in  Lemma  3,  it  results
that  becames  before  becomes ,  and  a
lower  value  of  could  have  been  obtained
from  than from , and in this case  would
have  been  set  to  the  value 

 or  less,  and  not  changed  in  the  next
iterations  to  the  value  of 

 (contradiction).

i P R (i) = 0 s P
u P R (u) = 1 v

P R(v) = 0
s u P′u P

Pu s u
P′u Pu

t u P′u
Pu P P′

c (P′) = c (P) P P′

s u

Case  2: At  the  end  of  Algorithm  1,  there  exists  a
node  from ,  so  that .  Starting from  on 
we denote  as the last node in  with , and 
the  next  node  in  (that  has ).  If  the  sub-path
from  to  denoted  of  is different than the path

 found by AMCMCPEP from  to ,  and since  the
cost  of  the  paths  and  have  the  same costs  (this
can  be  proved  in  a  similar  way  as  for  case  1,  where
instead of , node  is considered), we replace  with

 in  resulting  a  new  path  denoted  for  which
,  where  the  nodes  from  and  are  the

same from  to .
R (u) = 1Since , and using Lemma 2, we have

 

M (u) =max
w∈Pu

u (w, z)

S (u) =
∑

w∈Pu

b (w, z) (20)

c (P′) = c (P)Since , from Formula (16), Eq. (20), and
Lemma 2, it results that
 

M (t)+S (t) >max
w∈P′

u (w, z)+
∑
w∈P′

b (w, z) ⩾

max
w∈P

u (w, z)+
∑
w∈P

b (w, z) =

max {M (u), u ((u, v), z)}+S (u)+b ((u, v), z) (21)

R (v) = 0 R (t)
R (t)

R (v) = 1

Since  when  becomes  1,  we  let  the
iterations  of  the “while” loop  continue  after 
becomes 1 until . Then, we have
 

M (v)+S (v) ⩽max {M(u), u ((u, v), z)}+
S (u)+b ((u, v), z) (22)
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From Formulas (21) and (22) we obtain
 

M(t)+S (t) > M(v)+S (v) (23)

v R (v)
1 R (t) 1

R (v) = 0 R (t)

Using  (b)  in  Lemma  3,  it  results  that  for , 
becomes  before  becomes  (contradiction with
the assumption that  when  becomes 1).

So,  in  both the cases  a  contradiction is  obtained.  So
we have
 

M(t)+S (t) =min {max
w∈P

u(w, z)+∑
w∈P

b (w, z)|P is st-path in GE}.

Moreover, using Lemma 2, we have
 

M(t)+S (t) =max
w∈P∗

u (w, z)+
∑

w∈P∗
b (w, z).

■

O (n2)
Theorem 2　The time complexity  of  AMCMCPEP

is , which is strongly polynomial.
t s O (m+n)

s
Proof　Testing if  is accessible from  takes 

time by applying a depth search algorithm from .
G O (m log (n))Finding MCP in  takes  time[1].

i R (i)
1 n

O (n)
AE = A∪Aa

ma = |Aa|
O (max {n2, m+ma, m log (n)}) = O (max {n2, m log (n)})

A∪Aa ⊆ V ×V A∩Aa = ∅

m log (n) > n2 G

R (t) = 0 i R (i) = 0
M (i)+S (i) <∞ R (t) 0

G

G
O (n2)

At each iteration for a new node ,  is set to the
value .  So, the “while” loop has at  most  iterations.
At  each  iteration,  a  minimum  is  calculated  in 
time. During all  iterations,  every arc from 
is  considered  at  most  once.  We  make  the  notation

.  So,  the  time  complexity  of  AMCMCPEP  is
,

since  and .  Moreover,  if
,  then the  computation of  MCP in  can

be  avoided  by  a  slight  modification  to  the “while”
statement. More exactly, the condition can be extended
to “  and  there  is  node ,  so  that  and

”. If  remains  when the iterations
of “while” loop end, then it means that  does not need
expansion.  So,  with  this  adaptation,  the  initial
construction of MCP in  is  not needed, and the time
complexity of AMCMCPEP is . ■

G

z = 20

z

We  shall  consider  now  an  example  to  illustrate  how
Algorithm 1 works. In Fig. 1, a network  is presented
that  has  to  be  expanded,  so  that  in  the  modified
network there exists an MCP with the value of .
The dotted arcs are those of which capacities cannot be
increased to the value of . The arcs that can be added
to the network are dashed.

w = (i, j)
z = 20

We  choose  the  following  functions  which  are  the
cost  of  modifying  the  capacities  of  the  arcs 
having the capacities less than :
 

b (w, x) = 10 | j− i| (x− c (i, j)),

u (w, x) = | j− i| (x− c (i, j))2.

w = (i, j)
Also,  we  consider  the  following  functions  for  the

cost of adding new arcs :
 

b (w, x) = 4 | j− i| x,
u (w, x) = | j− i| (x−10)2.

[z,+∞)
Let  us  observe  that  the  cost  functions  above  are  all

non-decreasing monotone on the interval .
GE

s = 1 t = 7 (1, 4, 5, 7) GE
In Fig.  2,  the  network  is  presented.  Since  there

are  paths  from  to  (e.g., )  in ,
the problem is feasible.

Next  we  shall  apply  the  iterations  of  Algorithm  1.
First, initializations are done,
 

M = (0, ∞, ∞, ∞, ∞, ∞, ∞),
S = (0, ∞, ∞, ∞, ∞, ∞, ∞),
R = (0, 0, 0, 0, 0, 0, 0),
p = (−1, −1, −1, −1, −1, −1, −1).

The iterations of Algorithm 1 are reported in Table 1.
At the end we have
 

M = (0, 100, 0, 100, 100, 108, 121),
S = (0, 100, 0, 180, 180, 180, 180, 290),
R = (1, 1, 1, 1, 1, 1, 1),
p = (−1, 3, 1, 2, 4, 3, 5).

G∗

p
k = t = 7 P∗ = (1, 3, 2, 4, 5, 7)

G∗ P∗

z = 20
M (7)+S (7) = 411

(3, 2)
(5, 7) (2, 4)

In Fig.  3,  the modified network  is  presented.  By
applying  Algorithm  2  on  the  vector  starting  from
node ,  is  found,  which is
MCP  in .  Of  course,  the  path  has  the  desired
capacity of . The total cost of modification of the
network  is .  Let  us  observe  that  the
capacities  of  two  arcs  have  been  modified  (  and

), and the arc  has been added.

3　MCP Expansion Under Budget Constraint

As mentioned  in  Section  1,  the  second problem is  the

 

c (i, j)
ji

s t

 
GFig. 1    Network  that has to be expanded.
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Aa

network expansion for increasing the capacity of MCP
under  a  budget  constraint.  The  problem  consists  of
expanding the network, so that the capacity of an MCP
in  the  modified  network  is  maximized,  and  the  total
cost of expansion does not exceed a given budget. We
denote this problem as MCPEBCP. Here, we similarly
consider the same costs for increasing the capacities of
the  existing  arcs  and  for  adding  new  arcs  from  as

W

for  MCMCPEP.  For  MCPEBCP,  we  introduce  some
constraints  to  the  increase  of  the  capacities  of  the
existing arcs and to the maximum capacity allowed on
any  new  added  arcs,  together  with  a  maximum  given
budget denoted  for the network expansion.

c′ (w) w A
ĉ (w) c′ (w) ⩽

ĉ (w) ĉ (w) ⩾ c (w)

w Aa

ĉ (w) c′ (w) ⩽ ĉ (w) ĉ (w) > 0

The  increased  capacity  of  an  arc  from 
cannot  exceed  a  given  maximum ,  i.e., 

,  where .  If  added  to  the  network,  on
an arc  from ,  the capacity cannot  exceed a  given
maximum , i.e., , where .

So, MCPEBCP can be formulated as follows:
 

max z,

max
w∈P∗

u (w, z)+
∑

w∈P∗
b (w, z) ⩽W,

P∗ is MCP in GE = (V, AE = Az∪Aa
z ),

Az = {w ∈ A|z ⩽ ĉ (w)},
Aa

z = {w ∈ Aa|z ⩽ ĉ (w)} (24)

G
z st GE

z

Let us observe that if an MCP of  has the capacity
less  than  a  given  value ,  and  on  a -path  in ,  all
the  capacities  of  the  arcs  become  all  equal  to ,  then
this  path  is  an  MCP  in  the  expanded  network.
Consequently, MCPEBCP can be rewritten as follows:
 

max z,

min {max
w∈P

u (w, z)+
∑
w∈P

b (w, z)} ⩽W,

P is st-path in GE = (V, AE = Az∪Aa
z ),

Az = {w ∈ A|z ⩽ ĉ (w)},
Aa

z = {w ∈ Aa|z ⩽ ĉ (w)} (25)

zFor  each  possible  value  of  an  MCMCPEP  can  be
solved,  and  if  the  cost  of  expansion  for  its  solution
respects the budget constraint from Formula (25), then
this  solution  is  feasible  for  MCPEBCP.  So,  using
Formula  (9),  Formula  (25)  can  be  farther  rewritten  as
follows:
 

max z,

C ⩽W,

C is the cost of expansion of the solution of

MCMCPEP for z in GE = (V, AE = Az∪Aa
z ),

Az = {(i, j) ∈ A|z ⩽ ĉ (i, j)},
Aa

z = {(i, j) ∈ Aa|z ⩽ ĉ (i, j)}. (26)

z1 > 0 z2 > 0
z1 z2

GE
1 = (V, AE

1 = Az1 ∪Aa
z1

) GE
2 = (V, AE

2 = Az2 ∪Aa
z2

)
z1 < z2

Lemma 4　Let  and  be  two  values,  so
that  MCMCPEP  is  feasible  for  both  and  in

 and ,
respectively. Then, if , we have
 

C1 ⩽C2,

 

u ((i, j), z), b ((i, j), z)
ji

s t

 
GEFig. 2    Network .

 

Table 1    Iterations of Algorithm 1
Iteration

time i M (i)+S (i)
Minimum of Update

M ( j) S ( j) p ( j)

1 1 0 M (3) = 0 S (3) = 0 p (3) = 1

M (4) = 192 S (4) = 240 p (4) = 1

2 3 0 M (2) = 100 S (2) = 100 p (2) = 3

M (4) = 162 S (4) = 180 p (4) = 2

M (6) = 108 S (6) = 180 p (6) = 2

3 2 200 M (4) = 100 S (4) = 180 p (4) = 3

M (5) = 100 S (5) = 250 p (5) = 2

4 4 280 M (5) = 100 S (5) = 180 p (5) = 4

5 6 288 M (7) = 162 S (7) = 360 p (7) = 6

6 5 350 M (7) = 121 S (7) = 290 p (7) = 5

7 7 − − − −

 

c (i, j)
ji

s t

 
G∗Fig. 3    Modified network  having MCP with the capacity

of z = 20.
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C1 G z1 C2

G z2

where  is the cost of expansion of  to , and  is
the cost of expansion of  to .

zi > 0
GE

i = (V, AE
i = Azi ∪Aa

zi
) i = 1, 2

Proof　 If  MCMCPEP  is  feasible  for  in
 ( ), then,

 

Ci =max
w∈P∗i

u (w, zi)+
∑

w∈P∗i

b (w, zi) (27)

P∗i
zi i = 1, 2
where  is the MCP found by solving MCMCPEP for

 ( ).
z1 < z2If , then we have

 

C1 =max
w∈P∗1

u (w, z1)+
∑

w∈P∗1

b (w, z1) ⩽

max
w∈P∗2

u (w, z1)+
∑

w∈P∗2

b (w, z1) ⩽

max
w∈P∗2

u (w, z2)+
∑

w∈P∗2

b (w, z2) =C2 (28)

GE
2 GE

1
GE

2 GE
1

P∗1 P∗2 GE
1

P1 GE
1

u (w, ·) b (w, ·)
w z1 < z2

In the first inequality from Formula (28), we use the
fact  that  if  a  path  exists  in ,  then  it  exists  in ,
since all the arcs from  exists in . Moreover, the
cost on  is less than or equal to the cost on  in ,
since  is optimum in  (it has the lowest cost). The
second inequality holds because  and  are
both non-decreasing for every arc , and . ■

zmin G
z = zmin 0

We  denote  by  the  capacity  of  MCP  in .  Of
course, the cost of expansion for  is .

G
(i, j)

A∪Aa c′ (i, j) = ĉ (i, j)

Ĝ = (V, Â = A∪Aa, ĉ)
zmax Ĝ

z

Let  us  consider  the  network  expansion  of  to  the
maximum by setting the capacity of each arc  from

 to  the  maximum,  i.e., .  We
denote  this  network  as .  The
capacity  denoted  of  MCP  in  is  the  maximum
value  of  for  which  MCPEBCP  has  solution  by
ignoring the budget  constraint.  We have the following
result:

z
[zmin, zmax]

Theorem  3　The  solution  of  MCPEBCP  (Formula
(26))  is  obtained  for  the  maximum  value  of  in  the
interval ,  where  the  budget  constraint  is
fulfilled.

Proof　 This  result  is  immediately  obtained  from
Lemma 4. ■

Using Theorem 3 and by considering that the values
of  capacities  and  costs  are  all  integers,  it  is  clear  that
Algorithm  3  calculates  (in  a  divide  and  conquer
manner) the solution of MCPEBCP.

⌈·⌉ ⌈x⌉

x

In  Algorithm  3,  is  the  ceiling  operator,  i.e., 
denotes  the  least  integer  greater  than  or  equal  to  the
real number .

Theorem 4　The time complexity of Algorithm 3 is

weakly polynomial,
 

O (max {(m+ma) log (n), n2 log (zmax− zmin)}),
zmin zmax

ma = |Aa|
where  and  are the initial values calculated by
Algorithm 3, and .

O (m log (n))
G O ((m+ma) log (n)) Ĝ

Proof　MCP can be calculated in  time
for  and in  time for .

O (log (zmax− zmin))

O (n2)

The “while” loop  has  iterations,
and for each iteration AMCMCPEP is executed once in

 time (see Theorem 2).

O (max {(m+ma) log (n), n2 log (zmax− zmin)})
So,  the  time  complexity  of  AMCPEBCP  is

,  which  is
weakly polynomial. ■

m+ma ⩽ n2 log (n)

(m+ma) log (n) ⩽ n2

O (n2 log (zmax− zmin))

Let  us  observe  that  since  and  is
negligible,  in  practice,  it  is  very  likely  that

,  and  so,  the  time  complexity  of
AMCPEBCP becomes .

3.1　Linear-cost case

Algorithm 3 solves the second problem (Formula (25))
in weakly polynomial time. In the special case that the
cost  functions  are  linear,  we  shall  present  next  an
algorithm to solve the problem in strongly polynomial
time.

MCPEBCP  under  linear  costs  was  investigated  in
 

Algorithm 3 (AMCPEBCP)　Algorithm to solve MCPEBCP
G and W  1: Input: 

zmin G  2: Compute  = capacity of MCP in ;

Ĝ = (V, Â = A∪Aa, ĉ)  3: Build network ;
zmax Ĝ  4: Compute  = capacity of MCP in ;

zmin zmax  5: if  =  then
G  6:　 Network  cannot be expanded;

  7: 　stop;
  8: end if

zmin < zmax  9: while  do

⌈(zmin + zmax)/2⌉10: 　z = ;

Az Aa
z z11: 　Calculate  and  for ;

Az Aa
z z P∗

G∗ = (V, A∗, s, t, c∗)
12: 　Call AMCMCPEP (G, , , ) to obtain  and
　　　 ;

G∗ P∗13: 　if  satisfies the budget constraint on  then
zmin = z14: 　　 ;

15:　 else
zmax = z16: 　　 ;

17: 　end if
18: end while

G∗19: Output: Last computed network 
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O (A n2 log2 (n))
A

O (n4 log2 (n))

O (n4)

Ref.  [7].  There,  a  hybrid  Secant-Newton  algorithm  is
proposed  to  solve  the  problem  in ,
where  is the time complexity of solving MCMCPEP
under linear cost functions (see Theorem 4.3 from Ref.
[7]  and  Theorem  4  from  Ref.  [11]).  So,  based  on
Theorem  2,  it  follows  that  its  complexity  is

. Now, we use the concept of Meggido’s
parametric  search  to  present  an  algorithm  for  solving
the  problem  in  time[13].  Hence,  our  proposed
algorithm  has  a  better  time  complexity  than  the
algorithm given in Ref. [7].

u (w, z) = 0
b (w, z) = rw (z− c (w)) rw

w ∈ Az

w ∈ Aa Az

c (w) = 0

In  Formula  (25),  in  the  linear  case,  and
,  where  is  the  cost  of

increasing  the  capacity  of  the  arc  by  one  unit.
Without  loss  of  the  generality,  we  hereafter  suppose
that  every  is  an  arc  belonging  to  with

.  To  solve  MCPEBCP  under  linear  costs,  we
propose an algorithm that has two phases:

Phase I: This  phase finds an interval  containing the
optimal  value.  The  total  cost  is  a  convex  piecewise-
linear function in terms of the optimal value.

Phase  II: This  phase  uses  the  idea  of  Megiddo’s
parametric search to exactly find the optimal value.

Let  us  explain  both  the  phases  in  complete  details.
Suppose  we  have  arranged  the  distinct  values  of  the
set,
  ∪

w∈A
{c (w)}∪

∪
w∈Az

{ĉ (w)}∪ {zmax},

zmax

z1 < z2 < · · · < zl

l ⩽ O (m)
k = 1, 2, . . . , l−1

zk W
zk+1 W

zk

[zk, zk+1)

in which  is computed the same as for Algorithm 3.
Let  be  the  sorted  list.  Obviously,

. The first phase applies a binary search to find
an index , so that the minimum cost of
MCMCPEP for  is less than or equal to  while that
of  MCMCPEP  for  is  greater  than .  For  this
purpose, Algorithm 1 is performed in every iteration to
determine  the  minimum  cost  of  MCMCPEP  for  some
value .  This  phase  implies  that  the  optimal  value
belongs  to  the  half-closed  interval .  This  fact
determines  the  set  of  arcs  which  are  allowed  to  be
modified linearly on this interval. Trivially, this set is
 

Ā = {w ∈ Az : c− (w) ⩽ zk and ĉ− (w) ⩾ zk+1} (29)

w < Ā
w ∈ Ā

rw− (z− c (w))

So  an  arc  has  a  fixed  value  in  the  second
phase,  while  the  capacity  of  an  arc  can  be
modified by imposing the linear cost .

z∗ ∈ [zk, zk+1)
It is easy to see that in the second phase we have to

find  a  value  to  satisfy  the  budget
constraint  in  the  equality  form.  For  this  purpose,  we

r̄define a cost vector  as
 

r̄w =

rw, w ∈ Ā;
0, w ∈ A− Ā.

z

r̄w (z− c (w)) W

So,  the  problem  is  reduced  to  finding  a  value ,  so
that  the  shortest  path  length  (minimum  cost)  with
respect to  is equal to . Let us introduce
the function
 

tc (z) =
∑

w∈P∗
b (w, z) =

∑
w∈P∗

r̄w(z− c (w)).

[zk, zk+1) P∗

r̄w (z− c (w)) tc (z)

z

At the interval ,  in which  is  the shortest
path  with  respect  to .  Obviously,  is
the  same  total  cost  function  in  terms  of  the  optimal
value .  By  noting  the  sensitivity  analysis  for  shortest
path problems, it is easy to prove the following result.

tc (z)
[zk, zk+1)

Lemma 5　  is an increasing convex piecewise-
linear function at .

z

z
z

To  find  the  exact  optimal  value ,  we  can  apply
Megiddo’s parametric search. Its vital concept is to use
Algorithm 1 without knowing the exact value of . So,
 is  assumed  to  be  considered  as  a  parameter  whose

value  is  not  explicitly  given in  Algorithm 1.  The only
challenge is how to evaluate the accuracy of inequality,
 

S (i)+b (w, z) < S ( j) (30)

S ( j) = S (i)+b (w, z)

S (i) i ∈ V
z S ( j)−S (i)−b (w, z)

u− vz
u/v > z

u/v tc (u/v)
W u/v > z

Because  we  update  if  the
inequality  holds,  and  we  do  not  change  it,  otherwise.
Notice  that , ,  is  not  a  number,  but  it  is  a
linear  function of .  So,  is  also  a
linear  function  as .  So,  the  Inequality  (30)  is
converted into . Hence, we can run Algorithm 1
for . Based on Lemma 5, if the total cost  is
greater than , {it results} that  (see Fig. 4). A
formal  description  of  our  proposed algorithm is  stated
in Algorithm 4.

O (n4)
Theorem  5　 The  worst-case  time  complexity  of

Algorithm 4 is .

O (n2 log (m)) = O (n2 log (n))
O (n2) l ⩽ O (m)

O (n4)
O (n4)

Proof　 The  complexity  of  the  first  phase  is
 since  AMCMCPEP  runs

in  and . The complexity analysis of the
second phase is . So, the whole Algorithm 4 has
a time complexity of . ■
3.2　Example

15
W = 24 s = 1 t = 5

Let us now provide an example to illustrate the process
of Algorithm 4. Figure 5 depicts an acyclic instance of
the  problem with  linear  costs,  in  which  the  maximum
amount  of  increased  capacities  is  supposed  to  be 
and . It is assumed that  and .
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zmin = 10 zmax = 15 zmin , zmax

L = 1
U = 6

k = 4 Ā = A\{(3, 5)}
S (t) = 9z−100

24 z∗ = 13.777 77
1−2−3−5

Algorithm  4  begins  Phase  I  by  running  Line  3.  So,
we  have  and .  Since ,
Algorithm 4 continues the steps of Phase I. The sorted
list  of  Line  4  is  {6,  8,  10,  12,  14,  15}.  So,  and

. Table  2 shows  the  iterations  of  Phase  I.  In  the
end of Phase I, we have  and . Table
3 shows the iterations of Phase II. Since 
is  finally  equal  to ,  it  follows  that  is
the optimal value, and the optimal path is .

4　Conclusion

This  paper  introduces  two  problems  which  concern

 

Algorithm 4　Algorithm to solve MCPEBCP under linear
cost functions

G and W  1: Input: 
  2: Phase I:
  3: Run Lines 2−8 in Algorithm 3;

z1 < z2 < · · · < zl∪
w∈A{c (w)}∪∪w∈Az {ĉ (w)}∪ {zmax}

  4: Let  be the sorted list of
　   ;

Ā  5: Obtain  using Eq. (29);
L = 1 U = l  6:  and ;

U −L > 1  7: while  do

k =
[L+U

2

]
  8: 　 ;

Az Aa
z z  9: 　Calculate  and  for ;

Az z P∗10: 　Call AMCMCPEP (G, , ) to obtain ;
G∗ P∗11: 　if  satisfies the budget constraint on  then
L = k12: 　　 ;

13: 　else
U = k14: 　　 ;

15: 　end if
16: end while
17: k = L;
18: Phase II:

i ∈ V −{s}19: for  do
S (i) =∞20: 　 ;

21: end for
S (s) = 022: ;

i ∈ V23: for  do
R (i) = 024: 　 ;
p (i) = −125: 　 ;

26: end for
R (t) = 027: while  do

i ∈ V R (i) = 0 i S (i)28: 　Find  so that  and  has the smallest ;
R (i) = 129: 　 ;

w = (i, j) ∈ AE R( j) = 030: 　for all  so that  do
S ( j) ,∞31: 　　if  then

S ( j) u− vz32: 　　　Let  be in the form ;
v , 033: 　　　if  then

Az u/v
tc (u/v)

34: 　　　　Call AMCMCPEP (G, , ) to obtain total cost
　　　　  　 ;
35: 　　　end if
36: 　　end if

tc (u/v) >W v = 0 S ( j) =∞37: 　　if  or  or  then
S ( j) = S (i)+b (w, z)38: 　　　 ;
p ( j) = i39: 　　　 ;

40: 　　end if
41: 　end for
42: end while
43: Run Lines 33−44 of Algorithm 1;

G∗ = (V, A∗, s, t, c∗)44: Expanded network is ;
G∗45: Output: Network 

 

tc ()tc
 (

)

 

 
tc (z)Fig. 4    Graph of .

 

Table 2    Phase I in Algorithm 4 of the presented example.
L U k zk P∗ Total cost
1 6 3 10 1−3−5 ⩽ 240 ( )
3 6 4 12 1−2−3−5 ⩽ 248 ( )
4 6 5 14 1−2−3−5 > 2426 ( )
4 5 − − − −

 

Table 3    Phase II in Algorithm 4 of the presented example.
Iteration

time Node 1 2 3 4 5

S (·) 0 ∞ ∞ ∞ ∞
1 p (·) −1 −1 −1 −1 −1

R (·) 1 0 0 0 0
S (·) 0 5z−60 8z−80 4z−32 ∞

2 p (·) −1 1 1 1 −1
R (·) 1 1 0 0 0
S (·) 0 5z−60 9z−100 4z−32 13z−124

3 p (·) −1 1 2 1 2
R (·) 1 1 1 0 0
S (·) 0 5z−60 9z−100 4z−32 9z−100

4 p (·) −1 1 2 1 3
R (·) 1 1 1 1 0
S (·) 0 5z−60 9z−100 4z−32 9z−100

5 p (·) −1 1 2 1 3
R (·) 1 1 1 1 1
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MCP expansion. The admissible actions are to increase
capacity  on  existing  arcs  and  to  add  new  arcs.  These
problems have real applications, e.g., for increasing the
bandwidth  between  two  routers  in  Internet,  or  road
widening  between  two  cities.  The  first  problem
expands the  network to  a  desired capacity  of  MCP by
minimizing the cost. The total cost is a combination of
max-type  and  sum-type  costs.  The  only  condition
applied  to  the  cost  function  on  an  arc  is  to  be
non-decreasing  monotone,  which  is  really  non-
restrictive  from  practical  viewpoint.  Most  network
problems  consider  costs  as  linear  functions  or  fixed,
which  generally  does  not  reflect  reality.  In  this  paper,
for  the  first  problem,  a  quadratic-time  algorithm  is
developed.  The  second  problem consists  of  increasing
the  capacity  of  MCP  as  much  as  possible,  so  that  the
sum of costs does not exceed a given budget. A weakly
polynomial method is presented to solve this problem.
Finally,  a  strongly  polynomial-time  algorithm  is
designed  to  solve  the  problem  with  linear  costs.  This
algorithm  has  a  better  complexity  than  the  one
presented in Ref. [7].

As  future  extension  of  this  work,  the  more  general
cases of one source to multiple sinks, multiple sources
to one sink, or multiple sources to multiple sink nodes
can be studied.
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Fig. 5    Instance  of  the  problem  with  linear  costs  and W =
24.
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