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Abstract: In recent years, Deep Learning (DL) technique has been widely used in Internet of Things (IoT) and

Industrial Internet of Things (IIoT) for edge computing, and achieved good performances. But more and more

studies  have  shown  the  vulnerability  of  neural  networks.  So,  it  is  important  to  test  the  robustness  and

vulnerability  of  neural  networks.  More  specifically,  inspired  by  layer-wise  relevance  propagation  and  neural

network  verification,  we  propose  a  novel  measurement  of  sensitive  neurons  and  important  neurons,  and

propose a  novel  neuron  coverage criterion  for  robustness  testing.  Based on  the  novel  criterion,  we design  a

novel  testing sample  generation method,  named DeepSI,  which involves definitions of  sensitive  neurons and

important neurons. Furthermore, we construct sensitive-decision paths of the neural network through selecting

sensitive  neurons and important  neurons.  Finally,  we verify  our  idea by  setting  up several  experiments,  then

results show our proposed method achieves superior performances.

Key words:  neuron  sensitivity; Layer-wise  Relevance  Propagation  (LRP); neural  network  verification; deep

learning testing

1　Introduction

Deep  Learning  (DL)  technique  has  achieved  great
breakthroughs  in  many  fields  and  solved  many
previous  tasks,  such  as  image  classification[1, 2],
recommendation  system[3, 4],  object  detection[5, 6],
privacy  protection[7, 8],  image  segmentation[9, 10],
blockchain[11, 12],  natural  language  processing[13],  as
well  as  edge  computing[14, 15].  However,  there  are  still
many safety problems in DL. The model  is  not  robust
enough, resulting in poor performance of the model in
challenging  environments.  For  example,  the  system
cannot correctly identify pedestrians or signal lights in
automatic  driving  in  the  complex  senarios.  Therefore,
deep  learning  models  need  better  testing  methods  to

validate the models.
Nowadays, intrusion detection attacks the security of

Internet  of  Things  (IoT)  and  Industrial  Internet  of
Things  (IIoT),  and  many  emerging  intrusion  detection
methods  (e.g.,  ASTREAM[16],  HAA[17],  MDS_AD[18],
etc.) based on deep neural networks ensure the security
of  IIoT  or  IoT.  In  IoT  and  IIoT,  there  is  a  need  to
process  large  amount  of  data[19, 20] or  use  physical
sensors[21–23] for  communication,  which  requires
privacy protection, data security, or cyber attack issues
for  data  in  IoT  or  IIoT.  To  ensure  the  accuracy  of
detection  in  IoT,  a  large  number  of  researchers[24, 25]

use edge computing to improve detection performance,
but  the  accuracy  and  robustness  of  deep  neural
networks  in  edge  computing  cannot  be  guaranteed.
Therefore,  these  deep  neural  networks  need  efficient
testing methods for validation.

In  traditional  software  testing,  more  attentions  are
paid  to  generating  the  test  cases  which  can  cover  the
codes,  and  can  make  the  program  crash  as  much  as
possible.  But  in  the  Deep  Neural  Network  (DNN)
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testing,  given  a  test  case,  the  model  can  always  get  a
prediction  result.  This  makes  it  difficult  to  know
whether the generated test samples are good enough to
cover  the  codes.  According  to  the  idea  of  coverage  in
traditional software testing, some researchers proposed
the criterion of neuron coverage[26], so that the neurons
in the neural network are activated as much as possible.
Furthermore,  some  researchers  also  proposed  other
coverage  criteria[27],  such  as  k-Multisection  Neuron
Coverage  (KMNC)  and  Neuron  Boundary  Coverage
(NBC).  Subsequently,  the  researchers  develop  testing
sample  generation  techniques  based  on  these  criteria.
However,  the  existing  methods  ignore  the  relationship
between input perturbations and output results.

Many  researchers  have  achieved  breakthroughs  in
the field of correlation graph[28, 29], and in this paper we
use  Layer-wise  Relevance  Propagation  (LRP)[30].  In
addition,  some  previous  works[31] have  improved  the
robustness  of  deep  neural  networks  by  adding
perturbations  to  training  samples  to  limit  the  output
boundaries  of  neurons  during  training.  Inspired  by
them, we find that different neurons in the models have
obvious differences between the input perturbation and
the  output  boudary  changes.  Therefore,  we  propose  a
novel  measurement  to  quantify  the  sensitivity  of
neurons  on  the  input  perturbation,  and  design  a  novel
testing  samples  generation  method.  Our  methods  and
results  can  be  used  for  model  validation  and  model
lightweight  in  edge  computing.  To  summarize,  the
main contributions of this paper are as follows:

(1)  We  propose  a  novel  neuron  coverage  criterion,
Sensibility-Importance  Neuron  Coverage  (SINC).  We
quantify  the  sensitivity  of  neurons  by  neural  network
verification  and  use  the  SINC  to  guide  sample
generation.

(2)  We  propose  a  novel  framework  DeepSI  for
generating  sensitivity  test  samples,  and  propose  a
sensitivity measurement method. Compared with other
State-Of-The-Art  (SOTA)  methods,  our  experimental
results  are  better  at  SINC  and  keep  neuron  coverage
unchanged.

(3) Experimental results show that sensitive neurons
we  proposed  can  explain  the  idea  that  the  middle
convolutional layer is more important in convolutional
layers,  and  the  bottom linear  layers  is  more  important
in linear layer, which is consistent with the findings of
other researchers.

2　Related Work

DNN  Testing. Different  from  traditional  software
development  methods,  deep  learning  is  a  data-driven
development  method[32, 33].  DeepXplore[26] proposes  a
measurement  named  neuron  coverage  based  on
differential  testing,  the  DeepXplore  seeded  unlabeled
test inputs and generated new testing samples covering
a large number of neurons (i.e.,  activating them above
a  customizable  threshold),  while  making  the  tested
DNN  generate  different  behaviors.  DeepGauge[27]

monitored and measured neuronal behavior, as well as
internal  network  connections,  at  various  levels  of
granularity.  DeepTest[34] brought  neuron  coverage  to
self-driving  technology,  verifying  that  changes  in
neuron  coverage  are  statistically  correlated  with
changes  in  the  actions  of  self-driving  cars.
TensorFuzz[35] introduced  coverage-guided  fuzzing
technology  in  traditional  software  into  DNN  testing
technology.  And  the  coverage  is  checked  using  a  fast
approximate  nearest  neighbor  algorithm.  DeepCT[36]

proposed  a  set  of  combined  testing  criteria  for  DNN,
and  a  series  of  test  coverage  criteria,  as  well  as
corresponding test case generation methods. According
to  the  path  of  activated  neurons  in  the  model,
DeepInspect[37] defined  metrics  such  as  Neuron
Activation  Probability  Vector  Distance  (NAPVD)  and
average bias. DeepPath[38] drew on the concept of path
in traditional software engineering, considering a single
neuron  in  the  model  as  a  node,  and  the  neuron
connection  between  different  layers  as  a  path.
Moreover, three paths coverage metrics, l-SAP, l-OAP,
and l-FSP are proposed.  DeepCon[39] believed that  the
existing  coverage  criteria  only  use  the  output  of
neurons  to  determine  the  activation  state  of  neurons,
while  ignoring  the  size  of  the  connection  weights
issued by neurons.  Therefore,  the  prediction  results  of
DNN  should  be  determined  by  the  output  of  neurons.
The  connection  weights  are  jointly  determined.  In
DeepHunter[40],  five  state-of-the-art  trial  criteria,  three
existing  and  one  novel  selection  strategies  were
employed. After initializing the seed queue, extensible
seed  selection  strategy,  extensible  metamorphic
mutation,  and  extensible  testing  criterion,  it  generates
the  new  seed  queue  which  has  high  coverage  such  as
KMNC and Neuron Coverage (NC).

DNN  verification. Neural  network  verification  can
be  divided  into  complete  verifiers  and  incomplete
verifiers.  Early  complete  verifiers  are  based  on
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Satisfiability  Modulo  Theory  (SMT)[41–43].  In
incomplete  verifiers  of  neural  network  verification,
convex  relaxation  is  used  to  relax  the  nonlinear
activation  function,  using  linear  constraints  instead  of
nonlinear activation functions[44, 45].  BaBSR[46] shrinks
the boundary by separating the activation boundary of
Rectified Linear Unit (ReLU) on it. GPUPoly[47] is the
GPU  extended  version  of  DeepPloy[48] as  an
incomplete  verifier.  Crown[49] is  a  verifier  for
determining  the  functional  relationship  between  the
output and the input through backward propagation.

3　Method

3.1　Overview of DeepSI

The  interpretability  of  DL  model  has  been  greatly
improved recently.  The decision strategy of  the neural
network  has  become  more  and  more  transparent,  and
make the neural network more and more credible.

c.f.
c.f.

c.f.

Specifically, Fig.  1 describes  the  overview  of
DeepSI.  We  expound  one  neuron  important  analysis
method which is based on LRP in DeepSI (  Section
3.2)  and  one  neuron  sensitive  analysis  strategy  (
Section  3.3)  which  is  inspired  by  neural  network
verification.  And  we  propose  a  novel  testing  criterion
(  Section  3.4)  named  SINC  which  is  based  on
neuron  important  analysis  and  neuron  sensitive
analysis. In Fig. 1, important neurons are represented in
green,  sensitive  neurons  are  represented  in  red,  and
yellow neurons  represent  both  important  and  sensitive
neurons.

3.2　Neuron important analysis

Definition  1 (DNN)　 A  multilayer  DNN  contains
convolution  layers,  ReLU  layers,  linear  layers,  etc.

⟨l1, l2, ..., ln⟩ l1
ln

⟨l2, l3, ..., ln−1⟩

They can be represented by , where  is the
input  layer  and  is  the  output  layer  of  the  DNN.

 are the hidden layers in DNN. The output
of the previous layer is the input of the next layer.

f : X→ Y X Y
x ∈ X f (x) =

arg max
y

(On(x)) On(x)

ln

li

f (x)

In  this  work,  we  focus  on  a  classification  work
,  is  the  set  of  inputs  and  is  set  of  all

classes.  For  the  given  input , 
,  where  is  the n-dimensional

vector  output  by  the  output  layer  of  the  neural
network.  LRP  calculates  the  relevance  score  for  each
pixel  in  the  input  image,  and  that  it  also  explains  the
score of each neuron in each hidden layer by backward
propagation. Therefore, the sum of the relevance scores
of each neuron which is in  is equal to the sum of the
scores  in  the  next  layer.  In  this  way,  the  relationship
between  the  output  and  the  input  of  the  DNN  is
shown in the following formula:
 

f (x) =
∑
i∈l+1

R(l+1)
i = · · · =

∑
i∈l

R(l)
i =
∑

i

R(1)
i (1)

k
l+1
R(l+1)

k R(l+1)
k

k
l

For  a  specific  node  where  is  the  neuron  at  layer
,  the  relevance  of  this  neuron  is  represented  by
.  The  relevance  is  equal  to  the  sum  of  the

relevance of all neurons related to the neuron  at layer
 such that

 

R(l+1)
k =

∑
i

R(l,l+1)
i←k (2)

R(n)
j

j ln
l1

The  relevance  is  back-propagated  from  the
prediction  neuron  at  the  last  layer  of  DNN  to  all
neurons in the first layer , including the input image.

Figure 2 illustrates how LRP calculates the relevance
score.  In Fig.  2a,  we  reveal  how  DNN  which  is  a
“black-box” predicts that the image x is “7”. And LRP
calculates  the  relevance  score  layer-by-layer  form  the

 

 
Fig. 1    Workflow of DeepSI for generating sample.
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ln l1output Layer  to the first Layer  in Fig. 2b. Finally,
the  neurons  and  pixels  that  have  an  impact  on  the
prediction  are  recorded.  Neurons  of  different  colors
represent  different  degrees  of  influence  on  the
prediction results.

Different  from  previous  works[50] in  which  only
positive  relevance  is  selected,  we  think  that  in  DNN,
negatively  relevant  neurons  or  pixels  that  affect  the
prediction  results  are  also  important.  For  a  prediction
result,  if  negatively  relevant  nodes  are  removed,  the
prediction of DNN will also have a huge deviation.

Inspired by LRP, we consider neurons or pixels with
relevance to be important, and define these neurons or
pixels as importance neurons or importance pixels.

x
f n

Definition  2 (important  neuron)　Given  an  input 
and  a  DNN  which  is  consist  of  layers,  we  define
Important  Neuron  (IN)  as  a  set  of  neurons  which  the
relevance score is nonzero:
 

IN = {(k, li) |
(
R(li)

k > 0
)
∨
(
R(li)

k < 0
)
} (3)

Although  there  has  been  works  to  remove  the
relevance  score  of  the  non-target  area  in  LRP such  as
Contrastive  Layer-wise  Relevance  Propagation
(CLRP)[51] and  Softmax-Gradient  Layer-wise
Relevance  Propagation  (SGLRP)[52].  We  consider  the
importance  of  non-target  neurons  still  active.  If  we
delete the corresponding relevance scores of non-target
classes,  the  information  obtained  will  be  reduced.  So,
in  this  work,  we  still  use  LRP  as  a  measure  of  the
importance of neurons.

3.3　Neuron sensitive analysis

Due  to  the  complex  senarios  and  unseen  noise,  the
result  of  model  recognition  or  detection  is  normally
much lower than the expected level.

Neural network verification calculates the boundaries
of each prediction result of the output layer by adding a
fixed perturbation to the input image. We consider that

in  addition  to  the  output  layer,  each  hidden  layer
neuron  in  the  neural  network  is  also  bounded.
Therefore,  for  a  classification  model  or  a  detection
model,  given  a  white  box,  the  reachability  range  of
neurons in its hidden layer is calculated.

x
f ϵ

OB = {OB1,OB2, ...}
OB1,OB2 x f ϵ.

ϵ

Definition 3 (DNN verification)　Given an input ,
a  DNN  and  a  perturbation ,  the  output  boundaries
are  represented  by  the  set .

,...  are  calculated  by , ,  and  DNN
verification  is  to  find  the  smallest  such  that  there  is
no intersection of output boundaries.

In  this  part,  we  introduce  a  neural  network
verification  method  for  measuring  sensitivity.
Although  there  have  been  several  verification
methods[49, 53, 54] of  backward  propagation,  in  this
paper,  we  use  the  neural  network  verification  method
based  on  forward  propagation  to  calculate  the  output
boundary  of  perturbation  test  image  for  lower
computational burden.

x0 x0 z0 (ϵ) = x0− ϵ
z0 (ϵ) = x0+ ϵ

i k

Verification  based  on  forward  propagation. The
verification  method  is  named  Interval  Bound
Propagation  (IBP)[55].  IBP  is  originally  used  to  train
large  and  provably  robust  neural  networks  to  improve
model  accuracy.  Meanwhile,  IBP can also be used for
model validation. While adding perturbation to the test
image ,  lower  boundary  for  is ,  and
upper  boundary  is .  Through  forward
propagation,  the  upper  and  lower  boundaries  of  the
neuron  in the layer  are expressed as
 

zk,i (ϵ) = min
zk−1(ϵ)⩽zk−1⩽zk−1(ϵ)

eT
i hk(zk−1) (4)

 

zk,i (ϵ) = max
zk−1(ϵ)⩽zk−1⩽zk−1(ϵ)

eT
i hk(zk−1) (5)

hk()
k

i
k ei i-th z

where  is the corresponding neural network hidden
layer  operation.  Specifically,  represents  the  layer  of
the neural network,  represents the number of neurons
in  layer ,  is  the  standard  basis  vector,  and 
represents the output of neuron.

 

 
Fig. 2    Workflow of DeepSI for generating sample.
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However,  existing  neural  networks  (e.g.,  ResNet[56],
DenseNet[57],  etc.)  have  a  large  number  of  non-linear
activation functions such as ReLU. Figure 3 shows the
solution of the bounds of the IBP to calculate the ReLU
activation  function.  IBP  defines  the  two  blue  lines  as
the upper and lower bounds of this function.

B =
{
B1

1, B2
1, . . . , Bl1

i , . . . , Bln
k , . . . , Bn−1

n , Bn
n

}
B =
{
B1

1, B2
1, . . . , Bl1

i , . . . , Bln
k , . . . ,

Bn−1
n , Bn

n

}
ϵ

α

NewB ={
NewB1

1,NewB2
1, . . . , NewBl1

i , . . . , NewBln
k , . . . , NewBn−1

n ,

NewBn
n

}
NewB =

{
NewB1

1, NewB2
1, . . . , NewBl1

i , . . . ,

NewBln
k , . . . , NewBn−1

n , NewBn
n

}

When we use neural network verification methods by
forward propagation. We can obtain an upper boundary
set  and  a

lower  boundary  set 

.  By  adjusting  the  perturbation  size  to
adjust  the  boundary  change  ratio ,  we  can  obtain  a
new  set  of  upper  and  lower  boundaries: 

, 

.
x

ϵ α f
Definition 4 (sensitive neuron)　Given an input , a

perturbation , a ratio ,  and a DNN , we define the
set of Sensitive Neurons (SN) to satisfy
 

SN =

(i, l j) | (i, l j) ∈

NewB
l j
i −NewB

l j
i

B
l j
i −B

l j
i

> α


 (6)

l j j iwhere  is the layer  and  is the neuron.

3.4　Sensitivity-driven coverage

ϵ

Algorithm 1 shows the main algorithm idea. During the
generation,  the  process  adds  perturbation  to  the
training  samples  set  (Line  3).  After  neuron  analyzing,
DeepSI  selects  the  neurons  which  are  important  and
Sensitive  (Line  10).  If  the  neuron  is  selected,  its
corresponding region is perturbed.

Important  neurons  are  the  neurons  that  guarantee
correct  model  predictions,  but  it  does  not  mean  that
these  neurons  are  sensitive  to  perturbations.  Sensitive

neurons are defined by boundary changes and are more
concerned  with  the  sensitivity  of  neurons  to
perturbations. Therefore, we need to focus on sensitive
neurons while not losing the neurons that play a role in
model prediction.

x
Definition 5 (SINC)　Given a set of IN and a set of

SN,  if  a  test  image  could  cover  neurons  which  are
both  sensitive  and  important  neuron,  we  call  these
neurons  activated.  So  the  formula  for  SINC  is  as
follows:
 

SINC =
sum
({(

i, l j
)
|
(
i, l j
)
∈ SN∩ IN

})
total(Neuron)

(7)

The neurons selected by SINC ensure  both the  anti-
perturbation  capability  and  the  truth  rate  of  model
prediction.  So,  we  use  SINC  as  a  novel  neuron
coverage metric to guide test sample generation.

Sensitivity-driven coverage. To determine the set of
sensitive and important neurons in the neural network,
the training samples are all put into the neural network.
After that, we obtain the set of sensitive and important
neurons.  Algorithm  2  demonstrates  our  approach  to
sample generation using SINC. When the SINC of the
newly generated test  sample is  larger than the original
sample (Line 10), the sample is put into the new queue
(Line 11).

 

uj
(i)

lj
(i) zj

(i)

rj
(i)

 
Fig. 3    Workflow of DeepSI for generating sample.

 

Algorithm 1　DeepSI test generation
ϵ DNN

I T
Input: : adversarial perturbation, : target neural
network, : initial tests, : training tests

SI S L VOutput: : SI tests, : sensitive tests, : important tests, :
coverage tests

αConst: : a configurable of perturbation control
α← ∅1: 
U ← I2: 

P← Perturb(T, ϵ) N← Perturb(T, ϵ ×α)3: while  and  do

Bl
i Bl

i ← DNN P4: 　 ,   Run( , )

NewBl
i NewBl

i ← DNN N5: 　 ,   Run( , )

S ← Sensitive_Analysis(Bl
i,B

l
i,NewBl

i,NewBl
i,α)6:　 

7: end while

L← Important_Analysis(T )8: 
p ∈ S9: for  do

isInImportance(p,L)10:　 if  then
SI← SI.append(p)11: 　　

12: 　end if
V ← Coverage(U,SI)13:　 

14: end for
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4　Experiment

4.1　Setup

In  order  to  verify  the  sensitive  neurons,  we  have
designed  relevant  experiments  to  demonstrate  the
effectiveness of our method. We select datasets that are
widely  used  in  the  field  of  image  classification  and
train  models  on  PyTorch  framework  with  competitive
test  accuracy  that  are  widely  used  in  the  previous
works.

MNIST[58] is  a  handwriting  dataset  for  object
recognition,  which  contains  60  000  training  data  and
10  000  test  data.  We  train  a  neural  network  with  two
convolution  layers  and  two  linear  layers  named
MNIST-model.  The  MNIST-model  achieves  an
accuracy of 98.64%. Also, we train an LeNet-5 model.
And its accuracy is 98.5%, as shown in Table 1.

CIFAR-10[59] is  a  dataset  for  object  recognition,
which  contains  50  000  training  data  and  10  000  test
data. We train a VGG-16 model with CIFAR-10 and its
accurary is 88.99%.

The  existing  whitebox  testing  samples  generation

frameworks  by  Coverage-Guided  Fuzz  (CGF)  mainly
include  DeepXplore,  DeepGauge,  DeepTest,
TensorFuzz,  and  DeepHunter.  In  the  whitebox  testing
samples  generation  frameworks,  DeepHunter  has
proven  that  it  is  a  SOTA framework  by  CGF.  So,  we
choose DeepHunter as the comparison framework.

4.2　Result of neuron coverage

NC. The  output  of  a  neuron  determines  whether  the
current  neuron  is  activated  or  non-activated.  Given  an
input image, a neuron is activated if its output is above
a  certain  threshold.  NC  measures  the  ratio  between
activated  neurons  and  all  neurons  in  the  model  as
follows:
 

NC =
|{n|∀x ∈ T,out(n, x) > t}|

|N | (8)

N = {n1,n2, ...}
T = {x1, x2, ...} out(n, x)

n x

where all neurons of a DNN are represented by the set
,  all  testing  samples  are  represented  by

the  set ,  and  denotes  the  output
value of neuron  when the input is .

Table  2 demonstrates  that  the initial  NC of  the seed
queue  is  41.89%,  and  the  NC  of  testing  samples
generated  by  DeepHunter  is  84.03% in  the  MNIST
model. NC for generating new test samples through our
proposed  DeepSI  framework  is  84.03%.  Similar
experimental  results  are  also  observed  in  the  LeNet-5
model and the VGG-16 model. Under the NC criterion,
the  test  samples  we  generated  did  not  have  another
large drop.

4.3　Result of SINC

α

Table  3 shows  the  difference  of  the  SINC  coverage
criteria  of  the  two methods  when the  hyperparameters

 are  different.  It  can  be  found  that  the  samples
generated  by  our  proposed  novel  framework  DeepSI

 

Algorithm 2　SINC coverage
L IInput: S: sensitive tests, : important tests, : initial tests

VOutput: : coverage tests
αConst: : a configurable of perturbation control

U ← I1: 
p ∈ S2: for  do
isInImportance(p,L)3: 　if  then
SI← SI.append(p)4: 　　

5: 　end if
6: end for

u ∈ U7: while  do
si ∈ SI8: 　for  do

u′← Coverage(u,si)9: 　　

Coverage_Ratio(u′) > Coverage_Ratio(u)10:　 　if  then
V ← V.append(u′)11: 　　　

12: 　　end if
13: 　end for
14: end while

 

Table 1    Subject dataset and DNN models.
Dataset DNN model Number of layers Accuracy (%)

MNIST
MNIST 9 98.69
LeNet-5 12 98.50

CIFAR-10 VGG-16 37 88.99

 

Table 2    Results  of  neuron  coverage  with  different
strategies.

Dataset Model Strategy NC (%)

MNIST

MNIST
Initial 41.89

DeepHunter + Prob 84.03

(ϵ = 1×10−6)DeepSI + IBP 84.03

LeNet-5
Initial 68.44

DeepHunter + Prob 92.31

(ϵ = 1×10−6)DeepSI + IBP 92.31

CIFAR-10 VGG-16
Initial 44.16

DeepHunter + Prob 60.62

(ϵ = 2×10−9)DeepSI + IBP 60.62
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have  higher  SINC  than  the  samples  generated  by
DeepHunter in general.

α

α

α

α

α

α

The definition of sensitive neurons is different due to
the different values of . Whether neurons are sensitive
to  boundary  changes  depend  to  perturbations  on  the
test sample. When  is 0.1, the SINC of the test sample
generated  by  our  method  is  48.05%.  But  the  SINC of
testing  samples  generated  by  DeepHunter  is  41.51%.
When  is  0.9,  DeepSI  is  only  0.04% larger  than
testing samples  generated by DeepHunter  under  SINC
criteria.  The  reason  for  this  phenomenon  is  that  more
sensitive neurons are selected when  is 0.9 than when

 is 0.1. Neurons differ in their sensitivity to different
sizes  of  perturbations.  When  is  increased,  fewer
neurons  are  judged  to  be  sensitive  in  the  training
samples set. And the original testing samples set covers
more sensitive neurons.  So the coverage of the testing
samples  set  generated  by  our  method  has  limited
improvement. In LeNet-5 model, due to the high SINC
of the test samples generated by DeepHunter, the SINC
of the samples generated by DeepSI is slightly smaller.

4.4　Sensitive-decision path

Definition  6 (Sensitive-Decision  Path  (SDP))
Pathways consisting of neurons that are both important
and sensitive are selected.

Compared  with  traditional  software  testing,  DNN
predictions are made through neural pathways between
neurons.  Neural  pathways  are  paths  in  DNN.  Neural

pathways are the sequence of code execution in DNN.
Among  these  neural  pathways,  the  paths  that  affect
prediction are the decision paths.

Sensitive  neurons  are  of  importance.  We  introduce
sensitive  neurons  to  guide  the  decision  paths  to
construct  novel  sensitive-decision  paths.  These  novel
sensitive-decision paths not only preserve the accuracy
of  decision  paths,  but  also  eliminate  the  neurons  that
are not sensitive to perturbations.

We  evaluate  the  importance  of  these  selected
sensitive-decision  paths  to  DNN  prediction  by
designing  experiments  to  verify  whether  there  is  a
decreasing  trend  in  the  accuracy  when  all  sensitive-
decision paths are masked in the neural network.

α

α = 0.1
ϵ = 1×10−6

Figure  4 demonstrates  that  the  accuracy  of  the
MNIST  model,  LeNet-5  model,  and  the  VGG-16
model  decreases  for  different  hyperparameters  for
different  perturbation  sizes.  Under  all  selected
perturbations,  the  boundaries  of  all  classes  are
separated. In Fig. 4, the accuracy of the MNIST model
decreases  from  98.64% to  9.8% (green  line)  after
masking  all  importance  neurons.  When  and

, sensitive neurons and importance neurons
are  calculated,  and  it  is  found  that  after  masking  the
sensitive-decision  paths,  the  recognition  rate  of  the
neural  network  decreases  from  98.64% to  12.08%.
Experiments have shown that the model is less accurate
in classification without sensitive neurons.

As  seen  in Fig.  4,  the  models  accuracy  does  not

 

Table 3    Results of SINC with different strategies.

Dataset Model ϵ Method
SINC (%)

α = 0.1 α = 0.2 α = 0.3 α = 0.4 α = 0.5 α = 0.6 α = 0.7 α = 0.8 α = 0.9

MNIST
MNIST 1×10−6 DeepHunter + Prob 41.51 46.17 51.62 50.75 51.54 55.29 56.66 57.43 61.21

DeepSI + IBP 48.05 51.71 53.42 54.89 55.82 55.82 60.15 60.30 61.25

LeNet-5 1×10−6 DeepHunter + Prob 39.73 53.12 51.60 56.05 61.84 65.28 64.83 85.91 75.47
DeepSI + IBP 48.89 55.65 58.01 58.70 62.59 66.97 64.65 78.29 75.77

CIFAR-10 VGG-16 2×10−9 DeepHunter + Prob 0.56 1.11 1.50 4.08 4.09 4.57 4.87 3.97 4.85
DeepSI + IBP 10.14 10.80 8.49 9.64 9.28 9.40 9.65 9.72 10.65
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Fig. 4    Models accuracy after masking sensitive decision paths.
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αincrease linearly when the hyperparameter  increases.
This  is  because  the  sensitive  neurons  do  not  increase
linearly.

4.5　Correlation  with  the  middle  layer
characteristics of neural network

To  further  evaluate  the  impact  on  sensitive-decision
paths, a fine-grained evaluation is performed. Previous
works have proposed the hypothesis of that the middle
convolutional  layer  is  more important,  and the  bottom
linear  layer  is  more important  in  neural  networks,  and
designed  experiments  to  test  it[60].  We  consider  the
same  property  for  sensitive-decision  paths,  where  the
importance of the neurons selected in the upper layer is
less  than  that  of  the  neurons  selected  in  the  middle
layer.

We  design  experiments  to  verify  the  above
conjecture by masking neurons that are both important
and sensitive in a single hidden layer.

α

As  shown  in Table  4,  the  MNIST  model  has  two
convolutional  layers  and  two  linear  layers.  If =0.1,
when  we  mask  the  first  convolutional  layer,  the  first
linear  layer  model  accuracy  decreases  less,  and  the
second linear layer has a significant effect by masking
the  second  convolutional  layer.  It  is  seen  through  the
whole  table  that  the  neurons  in  the  sensitive-decision
path  satisfy  the  same  property  that  the  neurons  in  the
middle convolutional layer are more important than the
neurons  in  the  upper  convolutional  layer,  while  the
underlying  linear  layer  is  more  important.  And  it  also
has the same effect in the LeNet-5 model.

5　Conclusion

This paper proposes a general framework for DNN test
sample  generation  of  sensitive  neurons.  Sensitivity
analysis  in  DeepSI  is  extensible.  We  conduct  some

experiments  to  show  that  sensitive  neurons  are  also
important in neural networks. Since sensitivity analysis
and  definitions  are  in  their  infancy,  we  hope  that
follow-up work will lead to more rigorous sensitivities
of  neurons.  We  think  that  neurons  have  many
properties  to  explore,  where  each  is  with  some
limitations. The main advantage of sensitive neurons is
their  interpretability  and  defense  against  adversarial
examples.  We  hope  that  DeepSI  can  facilitate  further
discussions on DNN testing.

In  DeepSI,  we  select  the  IBP  method  for  neural
network  verification.  It  provides  the  boundaries  of
neurons  in  DNN.  However,  the  IBP  method  can  only
calculate the neuron boundaries of the CNN model. In
the future, we will expand it to be applicable to ResNet
or  transformer.  The  limitation  of  current  sensitive
neurons boundary approximation method is not precise
enough. Thus how to calculate the boundary more tight
and effective will be an interesting research direction in
future.
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