

DeepSI: A Sensitive-Driven Testing Samples Generation Method of
Whitebox CNN Model for Edge Computing

Zhichao Lian* and Fengjun Tian

Abstract: In recent years, Deep Learning (DL) technique has been widely used in Internet of Things (IoT) and

Industrial Internet of Things (IIoT) for edge computing, and achieved good performances. But more and more

studies have shown the vulnerability of neural networks. So, it is important to test the robustness and

vulnerability of neural networks. More specifically, inspired by layer-wise relevance propagation and neural

network verification, we propose a novel measurement of sensitive neurons and important neurons, and

propose a novel neuron coverage criterion for robustness testing. Based on the novel criterion, we design a

novel testing sample generation method, named DeepSI, which involves definitions of sensitive neurons and

important neurons. Furthermore, we construct sensitive-decision paths of the neural network through selecting

sensitive neurons and important neurons. Finally, we verify our idea by setting up several experiments, then

results show our proposed method achieves superior performances.

Key words: neuron sensitivity; Layer-wise Relevance Propagation (LRP); neural network verification; deep

learning testing

1　Introduction

Deep Learning (DL) technique has achieved great
breakthroughs in many fields and solved many
previous tasks, such as image classification[1, 2],
recommendation system[3, 4], object detection[5, 6],
privacy protection[7, 8], image segmentation[9, 10],
blockchain[11, 12], natural language processing[13], as
well as edge computing[14, 15]. However, there are still
many safety problems in DL. The model is not robust
enough, resulting in poor performance of the model in
challenging environments. For example, the system
cannot correctly identify pedestrians or signal lights in
automatic driving in the complex senarios. Therefore,
deep learning models need better testing methods to

validate the models.
Nowadays, intrusion detection attacks the security of

Internet of Things (IoT) and Industrial Internet of
Things (IIoT), and many emerging intrusion detection
methods (e.g., ASTREAM[16], HAA[17], MDS_AD[18],
etc.) based on deep neural networks ensure the security
of IIoT or IoT. In IoT and IIoT, there is a need to
process large amount of data[19, 20] or use physical
sensors[21–23] for communication, which requires
privacy protection, data security, or cyber attack issues
for data in IoT or IIoT. To ensure the accuracy of
detection in IoT, a large number of researchers[24, 25]

use edge computing to improve detection performance,
but the accuracy and robustness of deep neural
networks in edge computing cannot be guaranteed.
Therefore, these deep neural networks need efficient
testing methods for validation.

In traditional software testing, more attentions are
paid to generating the test cases which can cover the
codes, and can make the program crash as much as
possible. But in the Deep Neural Network (DNN)

 Zhichao Lian and Fengjun Tian are with School of Cyber

Science and Engineering, Nanjing University of Science and
Technology, Nanjing 210094, China. E-mail: newlzcts@njust.
edu.cn; fengjun_tian@njust.edu.cn.

* To whom correspondence should be addressed.
 Manuscript received: 2023-02-03; revised: 2023-05-11;

accepted: 2023-06-02

TSINGHUA SCIENCE AND TECHNOLOGY
ISSN 1007-0214 11/20 pp784−794
DOI: 10 .26599 /TST.2023 .9010057
Volume 29 , Number 3 , June 2024

© The author(s) 2024. The articles published in this open access journal are distributed under the terms of the

Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

testing, given a test case, the model can always get a
prediction result. This makes it difficult to know
whether the generated test samples are good enough to
cover the codes. According to the idea of coverage in
traditional software testing, some researchers proposed
the criterion of neuron coverage[26], so that the neurons
in the neural network are activated as much as possible.
Furthermore, some researchers also proposed other
coverage criteria[27], such as k-Multisection Neuron
Coverage (KMNC) and Neuron Boundary Coverage
(NBC). Subsequently, the researchers develop testing
sample generation techniques based on these criteria.
However, the existing methods ignore the relationship
between input perturbations and output results.

Many researchers have achieved breakthroughs in
the field of correlation graph[28, 29], and in this paper we
use Layer-wise Relevance Propagation (LRP)[30]. In
addition, some previous works[31] have improved the
robustness of deep neural networks by adding
perturbations to training samples to limit the output
boundaries of neurons during training. Inspired by
them, we find that different neurons in the models have
obvious differences between the input perturbation and
the output boudary changes. Therefore, we propose a
novel measurement to quantify the sensitivity of
neurons on the input perturbation, and design a novel
testing samples generation method. Our methods and
results can be used for model validation and model
lightweight in edge computing. To summarize, the
main contributions of this paper are as follows:

(1) We propose a novel neuron coverage criterion,
Sensibility-Importance Neuron Coverage (SINC). We
quantify the sensitivity of neurons by neural network
verification and use the SINC to guide sample
generation.

(2) We propose a novel framework DeepSI for
generating sensitivity test samples, and propose a
sensitivity measurement method. Compared with other
State-Of-The-Art (SOTA) methods, our experimental
results are better at SINC and keep neuron coverage
unchanged.

(3) Experimental results show that sensitive neurons
we proposed can explain the idea that the middle
convolutional layer is more important in convolutional
layers, and the bottom linear layers is more important
in linear layer, which is consistent with the findings of
other researchers.

2　Related Work

DNN Testing. Different from traditional software
development methods, deep learning is a data-driven
development method[32, 33]. DeepXplore[26] proposes a
measurement named neuron coverage based on
differential testing, the DeepXplore seeded unlabeled
test inputs and generated new testing samples covering
a large number of neurons (i.e., activating them above
a customizable threshold), while making the tested
DNN generate different behaviors. DeepGauge[27]

monitored and measured neuronal behavior, as well as
internal network connections, at various levels of
granularity. DeepTest[34] brought neuron coverage to
self-driving technology, verifying that changes in
neuron coverage are statistically correlated with
changes in the actions of self-driving cars.
TensorFuzz[35] introduced coverage-guided fuzzing
technology in traditional software into DNN testing
technology. And the coverage is checked using a fast
approximate nearest neighbor algorithm. DeepCT[36]

proposed a set of combined testing criteria for DNN,
and a series of test coverage criteria, as well as
corresponding test case generation methods. According
to the path of activated neurons in the model,
DeepInspect[37] defined metrics such as Neuron
Activation Probability Vector Distance (NAPVD) and
average bias. DeepPath[38] drew on the concept of path
in traditional software engineering, considering a single
neuron in the model as a node, and the neuron
connection between different layers as a path.
Moreover, three paths coverage metrics, l-SAP, l-OAP,
and l-FSP are proposed. DeepCon[39] believed that the
existing coverage criteria only use the output of
neurons to determine the activation state of neurons,
while ignoring the size of the connection weights
issued by neurons. Therefore, the prediction results of
DNN should be determined by the output of neurons.
The connection weights are jointly determined. In
DeepHunter[40], five state-of-the-art trial criteria, three
existing and one novel selection strategies were
employed. After initializing the seed queue, extensible
seed selection strategy, extensible metamorphic
mutation, and extensible testing criterion, it generates
the new seed queue which has high coverage such as
KMNC and Neuron Coverage (NC).

DNN verification. Neural network verification can
be divided into complete verifiers and incomplete
verifiers. Early complete verifiers are based on

 Zhichao Lian et al.: DeepSI: A Sensitive-Driven Testing Samples Generation Method of Whitebox CNN... 785

Satisfiability Modulo Theory (SMT)[41–43]. In
incomplete verifiers of neural network verification,
convex relaxation is used to relax the nonlinear
activation function, using linear constraints instead of
nonlinear activation functions[44, 45]. BaBSR[46] shrinks
the boundary by separating the activation boundary of
Rectified Linear Unit (ReLU) on it. GPUPoly[47] is the
GPU extended version of DeepPloy[48] as an
incomplete verifier. Crown[49] is a verifier for
determining the functional relationship between the
output and the input through backward propagation.

3　Method

3.1　Overview of DeepSI

The interpretability of DL model has been greatly
improved recently. The decision strategy of the neural
network has become more and more transparent, and
make the neural network more and more credible.

c.f.
c.f.

c.f.

Specifically, Fig. 1 describes the overview of
DeepSI. We expound one neuron important analysis
method which is based on LRP in DeepSI (Section
3.2) and one neuron sensitive analysis strategy (
Section 3.3) which is inspired by neural network
verification. And we propose a novel testing criterion
(Section 3.4) named SINC which is based on
neuron important analysis and neuron sensitive
analysis. In Fig. 1, important neurons are represented in
green, sensitive neurons are represented in red, and
yellow neurons represent both important and sensitive
neurons.

3.2　Neuron important analysis

Definition 1 (DNN)　 A multilayer DNN contains
convolution layers, ReLU layers, linear layers, etc.

⟨l1, l2, ..., ln⟩ l1
ln

⟨l2, l3, ..., ln−1⟩

They can be represented by , where is the
input layer and is the output layer of the DNN.

 are the hidden layers in DNN. The output
of the previous layer is the input of the next layer.

f : X→ Y X Y
x ∈ X f (x) =

arg max
y

(On(x)) On(x)

ln

li

f (x)

In this work, we focus on a classification work
, is the set of inputs and is set of all

classes. For the given input ,
, where is the n-dimensional

vector output by the output layer of the neural
network. LRP calculates the relevance score for each
pixel in the input image, and that it also explains the
score of each neuron in each hidden layer by backward
propagation. Therefore, the sum of the relevance scores
of each neuron which is in is equal to the sum of the
scores in the next layer. In this way, the relationship
between the output and the input of the DNN is
shown in the following formula:

f (x) =
∑
i∈l+1

R(l+1)
i = · · · =

∑
i∈l

R(l)
i =
∑

i

R(1)
i (1)

k
l+1
R(l+1)

k R(l+1)
k

k
l

For a specific node where is the neuron at layer
, the relevance of this neuron is represented by
. The relevance is equal to the sum of the

relevance of all neurons related to the neuron at layer
 such that

R(l+1)
k =

∑
i

R(l,l+1)
i←k (2)

R(n)
j

j ln
l1

The relevance is back-propagated from the
prediction neuron at the last layer of DNN to all
neurons in the first layer , including the input image.

Figure 2 illustrates how LRP calculates the relevance
score. In Fig. 2a, we reveal how DNN which is a
“black-box” predicts that the image x is “7”. And LRP
calculates the relevance score layer-by-layer form the

Fig. 1 Workflow of DeepSI for generating sample.

 786 Tsinghua Science and Technology, June 2024, 29(3): 784−794

ln l1output Layer to the first Layer in Fig. 2b. Finally,
the neurons and pixels that have an impact on the
prediction are recorded. Neurons of different colors
represent different degrees of influence on the
prediction results.

Different from previous works[50] in which only
positive relevance is selected, we think that in DNN,
negatively relevant neurons or pixels that affect the
prediction results are also important. For a prediction
result, if negatively relevant nodes are removed, the
prediction of DNN will also have a huge deviation.

Inspired by LRP, we consider neurons or pixels with
relevance to be important, and define these neurons or
pixels as importance neurons or importance pixels.

x
f n

Definition 2 (important neuron)　Given an input
and a DNN which is consist of layers, we define
Important Neuron (IN) as a set of neurons which the
relevance score is nonzero:

IN = {(k, li) |
(
R(li)

k > 0
)
∨
(
R(li)

k < 0
)
} (3)

Although there has been works to remove the
relevance score of the non-target area in LRP such as
Contrastive Layer-wise Relevance Propagation
(CLRP)[51] and Softmax-Gradient Layer-wise
Relevance Propagation (SGLRP)[52]. We consider the
importance of non-target neurons still active. If we
delete the corresponding relevance scores of non-target
classes, the information obtained will be reduced. So,
in this work, we still use LRP as a measure of the
importance of neurons.

3.3　Neuron sensitive analysis

Due to the complex senarios and unseen noise, the
result of model recognition or detection is normally
much lower than the expected level.

Neural network verification calculates the boundaries
of each prediction result of the output layer by adding a
fixed perturbation to the input image. We consider that

in addition to the output layer, each hidden layer
neuron in the neural network is also bounded.
Therefore, for a classification model or a detection
model, given a white box, the reachability range of
neurons in its hidden layer is calculated.

x
f ϵ

OB = {OB1,OB2, ...}
OB1,OB2 x f ϵ.

ϵ

Definition 3 (DNN verification)　Given an input ,
a DNN and a perturbation , the output boundaries
are represented by the set .

,... are calculated by , , and DNN
verification is to find the smallest such that there is
no intersection of output boundaries.

In this part, we introduce a neural network
verification method for measuring sensitivity.
Although there have been several verification
methods[49, 53, 54] of backward propagation, in this
paper, we use the neural network verification method
based on forward propagation to calculate the output
boundary of perturbation test image for lower
computational burden.

x0 x0 z0 (ϵ) = x0− ϵ
z0 (ϵ) = x0+ ϵ

i k

Verification based on forward propagation. The
verification method is named Interval Bound
Propagation (IBP)[55]. IBP is originally used to train
large and provably robust neural networks to improve
model accuracy. Meanwhile, IBP can also be used for
model validation. While adding perturbation to the test
image , lower boundary for is , and
upper boundary is . Through forward
propagation, the upper and lower boundaries of the
neuron in the layer are expressed as

zk,i (ϵ) = min
zk−1(ϵ)⩽zk−1⩽zk−1(ϵ)

eT
i hk(zk−1) (4)

zk,i (ϵ) = max
zk−1(ϵ)⩽zk−1⩽zk−1(ϵ)

eT
i hk(zk−1) (5)

hk()
k

i
k ei i-th z

where is the corresponding neural network hidden
layer operation. Specifically, represents the layer of
the neural network, represents the number of neurons
in layer , is the standard basis vector, and
represents the output of neuron.

Fig. 2 Workflow of DeepSI for generating sample.

 Zhichao Lian et al.: DeepSI: A Sensitive-Driven Testing Samples Generation Method of Whitebox CNN... 787

However, existing neural networks (e.g., ResNet[56],
DenseNet[57], etc.) have a large number of non-linear
activation functions such as ReLU. Figure 3 shows the
solution of the bounds of the IBP to calculate the ReLU
activation function. IBP defines the two blue lines as
the upper and lower bounds of this function.

B =
{
B1

1, B2
1, . . . , Bl1

i , . . . , Bln
k , . . . , Bn−1

n , Bn
n

}
B =
{
B1

1, B2
1, . . . , Bl1

i , . . . , Bln
k , . . . ,

Bn−1
n , Bn

n

}
ϵ

α

NewB ={
NewB1

1,NewB2
1, . . . , NewBl1

i , . . . , NewBln
k , . . . , NewBn−1

n ,

NewBn
n

}
NewB =

{
NewB1

1, NewB2
1, . . . , NewBl1

i , . . . ,

NewBln
k , . . . , NewBn−1

n , NewBn
n

}

When we use neural network verification methods by
forward propagation. We can obtain an upper boundary
set and a

lower boundary set

. By adjusting the perturbation size to
adjust the boundary change ratio , we can obtain a
new set of upper and lower boundaries:

,

.
x

ϵ α f
Definition 4 (sensitive neuron)　Given an input , a

perturbation , a ratio , and a DNN , we define the
set of Sensitive Neurons (SN) to satisfy

SN =

(i, l j) | (i, l j) ∈

NewB
l j
i −NewB

l j
i

B
l j
i −B

l j
i

> α

 (6)

l j j iwhere is the layer and is the neuron.

3.4　Sensitivity-driven coverage

ϵ

Algorithm 1 shows the main algorithm idea. During the
generation, the process adds perturbation to the
training samples set (Line 3). After neuron analyzing,
DeepSI selects the neurons which are important and
Sensitive (Line 10). If the neuron is selected, its
corresponding region is perturbed.

Important neurons are the neurons that guarantee
correct model predictions, but it does not mean that
these neurons are sensitive to perturbations. Sensitive

neurons are defined by boundary changes and are more
concerned with the sensitivity of neurons to
perturbations. Therefore, we need to focus on sensitive
neurons while not losing the neurons that play a role in
model prediction.

x
Definition 5 (SINC)　Given a set of IN and a set of

SN, if a test image could cover neurons which are
both sensitive and important neuron, we call these
neurons activated. So the formula for SINC is as
follows:

SINC =
sum
({(

i, l j
)
|
(
i, l j
)
∈ SN∩ IN

})
total(Neuron)

(7)

The neurons selected by SINC ensure both the anti-
perturbation capability and the truth rate of model
prediction. So, we use SINC as a novel neuron
coverage metric to guide test sample generation.

Sensitivity-driven coverage. To determine the set of
sensitive and important neurons in the neural network,
the training samples are all put into the neural network.
After that, we obtain the set of sensitive and important
neurons. Algorithm 2 demonstrates our approach to
sample generation using SINC. When the SINC of the
newly generated test sample is larger than the original
sample (Line 10), the sample is put into the new queue
(Line 11).

uj
(i)

lj
(i) zj

(i)

rj
(i)

Fig. 3 Workflow of DeepSI for generating sample.

Algorithm 1　DeepSI test generation
ϵ DNN

I T
Input: : adversarial perturbation, : target neural
network, : initial tests, : training tests

SI S L VOutput: : SI tests, : sensitive tests, : important tests, :
coverage tests

αConst: : a configurable of perturbation control
α← ∅1:
U ← I2:

P← Perturb(T, ϵ) N← Perturb(T, ϵ ×α)3: while and do

Bl
i Bl

i ← DNN P4: 　 , Run(,)

NewBl
i NewBl

i ← DNN N5: 　 , Run(,)

S ← Sensitive_Analysis(Bl
i,B

l
i,NewBl

i,NewBl
i,α)6:　

7: end while

L← Important_Analysis(T)8:
p ∈ S9: for do

isInImportance(p,L)10:　 if then
SI← SI.append(p)11: 　　

12: 　end if
V ← Coverage(U,SI)13:　

14: end for

 788 Tsinghua Science and Technology, June 2024, 29(3): 784−794

4　Experiment

4.1　Setup

In order to verify the sensitive neurons, we have
designed relevant experiments to demonstrate the
effectiveness of our method. We select datasets that are
widely used in the field of image classification and
train models on PyTorch framework with competitive
test accuracy that are widely used in the previous
works.

MNIST[58] is a handwriting dataset for object
recognition, which contains 60 000 training data and
10 000 test data. We train a neural network with two
convolution layers and two linear layers named
MNIST-model. The MNIST-model achieves an
accuracy of 98.64%. Also, we train an LeNet-5 model.
And its accuracy is 98.5%, as shown in Table 1.

CIFAR-10[59] is a dataset for object recognition,
which contains 50 000 training data and 10 000 test
data. We train a VGG-16 model with CIFAR-10 and its
accurary is 88.99%.

The existing whitebox testing samples generation

frameworks by Coverage-Guided Fuzz (CGF) mainly
include DeepXplore, DeepGauge, DeepTest,
TensorFuzz, and DeepHunter. In the whitebox testing
samples generation frameworks, DeepHunter has
proven that it is a SOTA framework by CGF. So, we
choose DeepHunter as the comparison framework.

4.2　Result of neuron coverage

NC. The output of a neuron determines whether the
current neuron is activated or non-activated. Given an
input image, a neuron is activated if its output is above
a certain threshold. NC measures the ratio between
activated neurons and all neurons in the model as
follows:

NC =
|{n|∀x ∈ T,out(n, x) > t}|

|N | (8)

N = {n1,n2, ...}
T = {x1, x2, ...} out(n, x)

n x

where all neurons of a DNN are represented by the set
, all testing samples are represented by

the set , and denotes the output
value of neuron when the input is .

Table 2 demonstrates that the initial NC of the seed
queue is 41.89%, and the NC of testing samples
generated by DeepHunter is 84.03% in the MNIST
model. NC for generating new test samples through our
proposed DeepSI framework is 84.03%. Similar
experimental results are also observed in the LeNet-5
model and the VGG-16 model. Under the NC criterion,
the test samples we generated did not have another
large drop.

4.3　Result of SINC

α

Table 3 shows the difference of the SINC coverage
criteria of the two methods when the hyperparameters

 are different. It can be found that the samples
generated by our proposed novel framework DeepSI

Algorithm 2　SINC coverage
L IInput: S: sensitive tests, : important tests, : initial tests

VOutput: : coverage tests
αConst: : a configurable of perturbation control

U ← I1:
p ∈ S2: for do
isInImportance(p,L)3: 　if then
SI← SI.append(p)4: 　　

5: 　end if
6: end for

u ∈ U7: while do
si ∈ SI8: 　for do

u′← Coverage(u,si)9: 　　

Coverage_Ratio(u′) > Coverage_Ratio(u)10:　 　if then
V ← V.append(u′)11: 　　　

12: 　　end if
13: 　end for
14: end while

Table 1 Subject dataset and DNN models.
Dataset DNN model Number of layers Accuracy (%)

MNIST
MNIST 9 98.69
LeNet-5 12 98.50

CIFAR-10 VGG-16 37 88.99

Table 2 Results of neuron coverage with different
strategies.

Dataset Model Strategy NC (%)

MNIST

MNIST
Initial 41.89

DeepHunter + Prob 84.03

(ϵ = 1×10−6)DeepSI + IBP 84.03

LeNet-5
Initial 68.44

DeepHunter + Prob 92.31

(ϵ = 1×10−6)DeepSI + IBP 92.31

CIFAR-10 VGG-16
Initial 44.16

DeepHunter + Prob 60.62

(ϵ = 2×10−9)DeepSI + IBP 60.62

 Zhichao Lian et al.: DeepSI: A Sensitive-Driven Testing Samples Generation Method of Whitebox CNN... 789

have higher SINC than the samples generated by
DeepHunter in general.

α

α

α

α

α

α

The definition of sensitive neurons is different due to
the different values of . Whether neurons are sensitive
to boundary changes depend to perturbations on the
test sample. When is 0.1, the SINC of the test sample
generated by our method is 48.05%. But the SINC of
testing samples generated by DeepHunter is 41.51%.
When is 0.9, DeepSI is only 0.04% larger than
testing samples generated by DeepHunter under SINC
criteria. The reason for this phenomenon is that more
sensitive neurons are selected when is 0.9 than when

 is 0.1. Neurons differ in their sensitivity to different
sizes of perturbations. When is increased, fewer
neurons are judged to be sensitive in the training
samples set. And the original testing samples set covers
more sensitive neurons. So the coverage of the testing
samples set generated by our method has limited
improvement. In LeNet-5 model, due to the high SINC
of the test samples generated by DeepHunter, the SINC
of the samples generated by DeepSI is slightly smaller.

4.4　Sensitive-decision path

Definition 6 (Sensitive-Decision Path (SDP))
Pathways consisting of neurons that are both important
and sensitive are selected.

Compared with traditional software testing, DNN
predictions are made through neural pathways between
neurons. Neural pathways are paths in DNN. Neural

pathways are the sequence of code execution in DNN.
Among these neural pathways, the paths that affect
prediction are the decision paths.

Sensitive neurons are of importance. We introduce
sensitive neurons to guide the decision paths to
construct novel sensitive-decision paths. These novel
sensitive-decision paths not only preserve the accuracy
of decision paths, but also eliminate the neurons that
are not sensitive to perturbations.

We evaluate the importance of these selected
sensitive-decision paths to DNN prediction by
designing experiments to verify whether there is a
decreasing trend in the accuracy when all sensitive-
decision paths are masked in the neural network.

α

α = 0.1
ϵ = 1×10−6

Figure 4 demonstrates that the accuracy of the
MNIST model, LeNet-5 model, and the VGG-16
model decreases for different hyperparameters for
different perturbation sizes. Under all selected
perturbations, the boundaries of all classes are
separated. In Fig. 4, the accuracy of the MNIST model
decreases from 98.64% to 9.8% (green line) after
masking all importance neurons. When and

, sensitive neurons and importance neurons
are calculated, and it is found that after masking the
sensitive-decision paths, the recognition rate of the
neural network decreases from 98.64% to 12.08%.
Experiments have shown that the model is less accurate
in classification without sensitive neurons.

As seen in Fig. 4, the models accuracy does not

Table 3 Results of SINC with different strategies.

Dataset Model ϵ Method
SINC (%)

α = 0.1 α = 0.2 α = 0.3 α = 0.4 α = 0.5 α = 0.6 α = 0.7 α = 0.8 α = 0.9

MNIST
MNIST 1×10−6 DeepHunter + Prob 41.51 46.17 51.62 50.75 51.54 55.29 56.66 57.43 61.21

DeepSI + IBP 48.05 51.71 53.42 54.89 55.82 55.82 60.15 60.30 61.25

LeNet-5 1×10−6 DeepHunter + Prob 39.73 53.12 51.60 56.05 61.84 65.28 64.83 85.91 75.47
DeepSI + IBP 48.89 55.65 58.01 58.70 62.59 66.97 64.65 78.29 75.77

CIFAR-10 VGG-16 2×10−9 DeepHunter + Prob 0.56 1.11 1.50 4.08 4.09 4.57 4.87 3.97 4.85
DeepSI + IBP 10.14 10.80 8.49 9.64 9.28 9.40 9.65 9.72 10.65

18
16
14
12

A
cc

ur
ac

y
(%

)

10
8

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
α

(a) MNIST model

0.9

=5.00×10−6 =1.00×10−6 =5.00×10−7

=1.00×10−7 All

48
43
38
33

A
cc

ur
ac

y
(%

)

28
23
18
13
8

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
α

(b) LeNet-5 model

0.9

=1.00×10−6 =5.00×10−6

=5.00×10−7 =1.00×10−7

=2.00×10−9 =2.50×10−9

=3.00×10−9 =3.50×10−9

88
78
68
58
48
38
28

A
cc

ur
ac

y
(%

)

18
8

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
α

(c) VGG-16 model

0.9

Fig. 4 Models accuracy after masking sensitive decision paths.

 790 Tsinghua Science and Technology, June 2024, 29(3): 784−794

αincrease linearly when the hyperparameter increases.
This is because the sensitive neurons do not increase
linearly.

4.5　Correlation with the middle layer
characteristics of neural network

To further evaluate the impact on sensitive-decision
paths, a fine-grained evaluation is performed. Previous
works have proposed the hypothesis of that the middle
convolutional layer is more important, and the bottom
linear layer is more important in neural networks, and
designed experiments to test it[60]. We consider the
same property for sensitive-decision paths, where the
importance of the neurons selected in the upper layer is
less than that of the neurons selected in the middle
layer.

We design experiments to verify the above
conjecture by masking neurons that are both important
and sensitive in a single hidden layer.

α

As shown in Table 4, the MNIST model has two
convolutional layers and two linear layers. If =0.1,
when we mask the first convolutional layer, the first
linear layer model accuracy decreases less, and the
second linear layer has a significant effect by masking
the second convolutional layer. It is seen through the
whole table that the neurons in the sensitive-decision
path satisfy the same property that the neurons in the
middle convolutional layer are more important than the
neurons in the upper convolutional layer, while the
underlying linear layer is more important. And it also
has the same effect in the LeNet-5 model.

5　Conclusion

This paper proposes a general framework for DNN test
sample generation of sensitive neurons. Sensitivity
analysis in DeepSI is extensible. We conduct some

experiments to show that sensitive neurons are also
important in neural networks. Since sensitivity analysis
and definitions are in their infancy, we hope that
follow-up work will lead to more rigorous sensitivities
of neurons. We think that neurons have many
properties to explore, where each is with some
limitations. The main advantage of sensitive neurons is
their interpretability and defense against adversarial
examples. We hope that DeepSI can facilitate further
discussions on DNN testing.

In DeepSI, we select the IBP method for neural
network verification. It provides the boundaries of
neurons in DNN. However, the IBP method can only
calculate the neuron boundaries of the CNN model. In
the future, we will expand it to be applicable to ResNet
or transformer. The limitation of current sensitive
neurons boundary approximation method is not precise
enough. Thus how to calculate the boundary more tight
and effective will be an interesting research direction in
future.

Acknowledgment

This work was supported by the National Key R&D
Program of China (No. 2021YFF0602104-2).

References

 X. Chu, Z. Tian, Y. Wang, B. Zhang, H. Ren, X. Wei, H.
Xia, and C. Shen, Twins: Revisiting the design of spatial
attention in vision transformers, arXiv preprint arXiv:
2104.13840, 2021.

[1]

 Q. Hua, L. Chen, P. Li, S. Zhao, and Y. Li, A pixel-
channel hybrid attention model for image processing,
Tsinghua Science and Technology, vol. 27, no. 5, pp.
804–816, 2022.

[2]

 S. Wu, S. Shen, X. Xu, Y. Chen, X. Zhou, D. Liu, X. Xue,
and L. Qi, Popularity-aware and diverse web APIs
recommendation based on correlation graph, IEEE Trans.

[3]

ϵ = 1×10−6Table 4 Model accuracy after masking sensitive-decision path ().

Dataset Model Layer
Accuracy (%)

α = 0.1 α = 0.2 α = 0.3 α = 0.4 α = 0.5 α = 0.6 α = 0.7 α = 0.8 α = 0.9

MNIST

MNIST

Conv_1 15.28 23.24 16.66 16.45 31.71 20.08 19.08 34.53 22.17
Conv_2 13.59 19.19 14.21 13.69 32.29 18.63 15.88 36.23 18.19
Linear_1 98.12 97.03 97.24 97.71 97.00 97.36 97.43 97.30 96.48
Linear_2 60.73 57.14 57.14 57.77 59.84 59.48 59.74 60.42 59.09

LeNet-5

Conv_1 96.37 97.61 76.41 54.53 91.59 81.36 43.62 98.08 89.02
Conv_2 52.00 77.29 66.53 24.43 70.90 71.76 10.43 98.02 88.57
Linear_1 58.43 48.52 62.39 63.45 84.81 58.17 54.03 45.62 62.26
Linear_2 82.51 75.27 79.17 73.37 63.61 72.01 61.04 52.11 64.80
Linear_3 49.71 50.25 49.03 50.80 49.73 49.29 51.35 50.51 49.33

 Zhichao Lian et al.: DeepSI: A Sensitive-Driven Testing Samples Generation Method of Whitebox CNN... 791

Comput. Soc. Syst., vol. 10, no. 2, pp. 771–782, 2023.
 X. Zhou, Y. Li, and W. Liang, CNN-RNN based
intelligent recommendation for online medical pre-
diagnosis support, IEEE/ACM Trans. Comput. Biol.
Bioinform., vol. 18, no. 3, pp. 912–921, 2021.

[4]

 Z. Liu, H. Hu, Y. Lin, Z. Yao, Z. Xie, Y. Wei, J. Ning, Y.
Cao, Z. Zhang, L. Dong, et al., Swin transformer V2:
Scaling up capacity and resolution, in Proc. 2022
IEEE/CVF Conf. Computer Vision and Pattern
Recognition (CVPR), New Orleans, LA, USA, 2022, pp.
11999–12009.

[5]

 J. Sun, X. Jiang, J. Liu, F. Zhang, and C. Li, An anti-
recompression video watermarking algorithm in bitstream
domain, Tsinghua Science and Technology, vol. 26, no. 2,
pp. 154–162, 2020.

[6]

 F. Wang, G. Li, Y. Wang, W. Rafique, M. R. Khosravi, G.
Liu, Y. Liu, and L. Qi, Privacy-aware traffic flow
prediction based on multi-party sensor data with zero trust
in smart city, ACM Trans. Internet Technol., vol. 23, no. 3,
pp. 1–19, 2023.

[7]

 F. Wang, H. Zhu, G. Srivastava, S. Li, M. R. Khosravi,
and L. Qi, Robust collaborative filtering recommendation
with user-item-trust records, IEEE Trans. Comput. Soc.
Syst., vol. 9, no. 4, pp. 986–996, 2022.

[8]

 L. C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and
A. L. Yuille, DeepLab: Semantic image segmentation with
deep convolutional nets, atrous convolution, and fully
connected CRFs, IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 40, no. 4, pp. 834–848, 2018.

[9]

 L. Zhang, K. Zhang, and H. Pan, SUNet++: A deep
network with channel attention for small-scale object
segmentation on 3D medical images, Tsinghua Science
and Technology, vol. 28, no. 4, pp. 628–638, 2023.

[10]

 Y. Xu, C. Zhang, G. Wang, Z. Qin, and Q. Zeng, A
blockchain-enabled deduplicatable data auditing
mechanism for network storage services, IEEE Trans.
Emerg. Top. Comput., vol. 9, no. 3, pp. 1421–1432, 2021.

[11]

 Y. Xu, J. Ren, Y. Zhang, C. Zhang, B. Shen, and Y.
Zhang, Blockchain empowered arbitrable data auditing
scheme for network storage as a service, IEEE Trans.
Serv. Comput., vol. 13, no. 2, pp. 289–300, 2020.

[12]

 J. Devlin, M. W. Chang, K. Lee, and K. Toutanova,
BERT: Pre-training of deep bidirectional transformers for
language understanding, arXiv preprint arXiv:
1810.04805, 2018.

[13]

 F. Wang, L. Wang, G. Li, Y. Wang, C. Lv, and L. Qi,
Edge-cloud-enabled matrix factorization for diversified
APIs recommendation in mashup creation, World Wide
Web, vol. 25, no. 5, pp. 1809–1829, 2022.

[14]

 L. Kong, L. Wang, W. Gong, C. Yan, Y. Duan, and L. Qi,
LSH-aware multitype health data prediction with privacy
preservation in edge environment, World Wide Web, vol.
25, no. 5, pp. 1793–1808, 2022.

[15]

 Y. Yang, X. Yang, M. Heidari, M. A. Khan, G. Srivastava,
M. Khosravi, and L. Qi, ASTREAM: Data-stream-driven
scalable anomaly detection with accuracy guarantee in
IIoT environment, IEEE Trans. Netw. Sci. Eng., doi:
10.1109/TNSE.2022.3157730.

[16]

 X. Zhou, W. Liang, W. Li, K. Yan, S. Shimizu, and K. I.
K. Wang, Hierarchical adversarial attacks against graph-
neural-network-based IoT network intrusion detection
system, IEEE Internet Things J., vol. 9, no. 12, pp.
9310–9319, 2022.

[17]

 L. Qi, Y. Yang, X. Zhou, W. Rafique, and J. Ma, Fast
anomaly identification based on multiaspect data streams
for intelligent intrusion detection toward secure industry
4.0, IEEE Trans. Ind. Inform., vol. 18, no. 9, pp.
6503–6511, 2022.

[18]

 Z. Cai and Z. He, Trading private range counting over big
IoT data, in Proc. 2019 IEEE 39th Int. Conf. Distributed
Computing Systems (ICDCS), Dallas, TX, USA, 2019, pp.
144–153.

[19]

 L. Kong, G. Li, W. Rafique, S. Shen, Q. He, M. R.
Khosravi, R. Wang, and L. Qi, Time-aware missing
healthcare data prediction based on ARIMA model,
IEEE/ACM Trans. Comput. Biol. Bioinform., doi:
10.1109/TCBB.2022.3205064.

[20]

 L. Nie, Z. Ning, X. Wang, X. Hu, J. Cheng, and Y. Li,
Data-driven intrusion detection for intelligent Internet of
vehicles: A deep convolutional neural network-based
method, IEEE Trans. Netw. Sci. Eng., vol. 7, no. 4, pp.
2219–2230, 2020.

[21]

 Y. Xu, Z. Liu, C. Zhang, J. Ren, Y. Zhang, and X. Shen,
Blockchain-based trustworthy energy dispatching
approach for high renewable energy penetrated power
systems, IEEE Internet Things J., vol. 9, no. 12, pp.
10036–10047, 2022.

[22]

 C. Zhang, Y. Xu, Y. Hu, J. Wu, J. Ren, and Y. Zhang, A
blockchain-based multi-cloud storage data auditing
scheme to locate faults, IEEE Trans. Cloud Comput., vol.
10, no. 4, pp. 2252–2263, 2022.

[23]

 X. Zhou, X. Yang, J. Ma, and K. I. K. Wang, Energy-
efficient smart routing based on link correlation mining for
wireless edge computing in IoT, IEEE Internet Things J.,
vol. 9, no. 16, pp. 14988–14997, 2022.

[24]

 X. Zhou, X. Xu, W. Liang, Z. Zeng, and Z. Yan, Deep-
learning-enhanced multitarget detection for
end–edge–cloud surveillance in smart IoT, IEEE Internet
Things J., vol. 8, no. 16, pp. 12588–12596, 2021.

[25]

 K. Pei, Y. Cao, J. Yang, and S. Jana, DeepXplore:
Automated whitebox testing of deep learning systems, in
Proc. 26th Symp. on Operating Systems Principles,
Shanghai, China, 2017, pp. 1–18.

[26]

 L. Ma, F. Juefei-Xu, F. Zhang, J. Sun, M. Xue, B. Li, C.
Chen, T. Su, L. Li, Y. Liu, et al., DeepGauge: Multi-
granularity testing criteria for deep learning systems, in
Proc. 2018 33rd IEEE/ACM Int. Conf. Automated
Software Engineering (ASE), Montpellier, France, 2018,
pp. 120–131.

[27]

 X. Zhou, W. Liang, K. I. K. Wang, and L. T. Yang, Deep
correlation mining based on hierarchical hybrid networks
for heterogeneous big data recommendations, IEEE Trans.
Comput. Soc. Syst., vol. 8, no. 1, pp. 171–178, 2021.

[28]

 L. Qi, W. Lin, X. Zhang, W. Dou, X. Xu, and J. Chen, A
correlation graph based approach for personalized and
compatible web APIs recommendation in mobile APP

[29]

 792 Tsinghua Science and Technology, June 2024, 29(3): 784−794

development, IEEE Trans. Knowl. Data Eng., vol. 35, no.
6, pp. 5444–5457, 2023.
 S. Bach, A. Binder, G. Montavon, F. Klauschen, K. R.
Müller, and W. Samek, On pixel-wise explanations for
non-linear classifier decisions by layer-wise relevance
propagation, PLoS One, vol. 10, no. 7, p. e0130140, 2015.

[30]

 H. Zhang, H. Chen, C. Xiao, S. Gowal, R. Stanforth, B. Li,
D. Boning, and C. J. Hsieh, Towards stable and efficient
training of verifiably robust neural networks, arXiv
preprint arXiv: 1906.06316, 2019.

[31]

 R. S. Pressman, Software Engineering: A Practitioner’s
Approach. London, UK: Palgrave Macmillan, 2005.

[32]

 N. B. Ruparelia, Software development lifecycle models,
SIGSOFT Softw. Eng. Notes, vol. 35, no. 3, pp. 8–13,
2010.

[33]

 Y. Tian, K. Pei, S. Jana, and B. Ray, DeepTest:
Automated testing of deep-neural-network-driven
autonomous cars, in Proc. 2018 IEEE/ACM 40th Int. Conf.
Software Engineering (ICSE), Gothenburg, Sweden, 2018,
pp. 303–314.

[34]

 A. Odena and I. Goodfellow, TensorFuzz: Debugging
neural networks with coverage-guided fuzzing, arXiv
preprint arXiv: 1807.10875, 2018.

[35]

 L. Ma, F. Juefei-Xu, M. Xue, B. Li, L. Li, Y. Liu, and J.
Zhao, DeepCT: Tomographic combinatorial testing for
deep learning systems, in Proc. 2019 IEEE 26th Int. Conf.
Software Analysis, Evolution and Reengineering (SANER),
Hangzhou, China, 2019, pp. 614–618.

[36]

 Y. Tian, Z. Zhong, V. Ordonez, and B. Ray, Testing deep
neural network based image classifiers, arXiv preprint
arXiv: 1905.07831, 2019.

[37]

 D. Wang, Z. Wang, C. Fang, Y. Chen, and Z. Chen,
DeepPath: Path-driven testing criteria for deep neural
networks, in Proc. 2019 IEEE Int. Conf. Artificial
Intelligence Testing (AITest), Newark, CA, USA, 2019,
pp. 119–120.

[38]

 Z. Zhou, W. Dou, J. Liu, C. Zhang, J. Wei, and D. Ye,
DeepCon: Contribution coverage testing for deep learning
systems, in Proc. 2021 IEEE Int. Conf. Software Analysis,
Evolution and Reengineering (SANER), Honolulu, HI,
USA, 2021, pp. 189–200.

[39]

 X. Xie, L. Ma, F. Juefei-Xu, M. Xue, H. Chen, Y. Liu, J.
Zhao, B. Li, J. Yin, and S. See, DeepHunter: A coverage-
guided fuzz testing framework for deep neural networks,
in Proc. 28th ACM SIGSOFT Int. Symp. on Software
Testing and Analysis, Beijing, China, 2019, pp. 146–157.

[40]

 G. Katz, C. Barrett, D. Dill, K. Julian, and M.
Kochenderfer, Reluplex: An efficient SMT solver for
verifying deep neural networks, arXiv preprint arXiv:
1702.01135, 2017.

[41]

 X. Huang, M. Kwiatkowska, S. Wang, and M. Wu, Safety
verification of deep neural networks, in Computer Aided
Verification, R. Majumdar and V. Kunčak, eds. Cham,
Switzerland: Springer, 2017, pp. 3–29.

[42]

 R. Ehlers, Formal verification of piece-wise linear feed-
forward neural networks, in Automated Technology for
Verification and Analysis, D. D’Souza and K. N. Kumar,
eds. Cham, Switzerland: Springer, 2017, pp. 269–286.

[43]

 G. Singh, T. Gehr, M. Mirman, M. Püschel, and M.[44]

Vechev, Fast and effective robustness certification, in
Proc. 32nd Int. Conf. Neural Information Processing
Systems, Montréal, Canada, 2018, pp. 10825–10836.
 G. Singh, T. Gehr, M. Püschel, and M. Vechev, Boosting
robustness certification of neural networks,
https://openreview.net/forum?id=HJgeEh09KQ, 2018.

[45]

 R. Bunel, I. Turkaslan, P. H. S. Torr, P. Kohli, and M. P.
Kumar, A unified view of piecewise linear neural network
verification, in Proc. 32nd Int. Conf. Neural Information
Processing Systems, Montréal, Canada, 2018, pp.
4795–4804.

[46]

 C. Müller, F. Serre, G. Singh, M. Püschel, and M. Vechev,
Scaling polyhedral neural network verification on GPUs,
arXiv preprint arXiv: 2007.10868, 2020.

[47]

 G. Singh, T. Gehr, M. Püschel, and M. Vechev, An
abstract domain for certifying neural networks, Proc. ACM
Program. Lang., vol. 3, no. POPL, p. 41, 2019.

[48]

 H. Zhang, T. W. Weng, P. Y. Chen, C. J. Hsieh, and L.
Daniel, Efficient neural network robustness certification
with general activation functions, in Proc. 32nd Int. Conf.
Neural Information Processing Systems, Montréal,
Canada, 2018, pp. 4944–4953.

[49]

 X. Xie, T. Li, J. Wang, L. Ma, Q. Guo, F. Juefei-Xu, and
Y. Liu, NPC: Neuron path coverage via characterizing
decision logic of deep neural networks, ACM Trans. Softw.
Eng. Methodol., vol. 31, no. 3, p. 47, 2022.

[50]

 J. Gu, Y. Yang, and V. Tresp, Understanding individual
decisions of CNNs via contrastive backpropagation, in
Computer Vision – ACCV 2018, C. V. Jawahar, H. Li, G.
Mori, and K. Schindler, eds. Cham, Switzerland: Springer,
2018, pp. 119–134.

[51]

 B. K. Iwana, R. Kuroki, and S. Uchida, Explaining
convolutional neural networks using softmax gradient
layer-wise relevance propagation, in Proc. 2019
IEEE/CVF Int. Conf. Computer Vision Workshop
(ICCVW), Seoul, Republic of Korea, 2019, pp.
4176–4185.

[52]

 K. Xu, H. Zhang, S. Wang, Y. Wang, S. Jana, X. Lin, and
C. J. Hsieh, Fast and complete: Enabling complete neural
network verification with rapid and massively parallel
incomplete verifiers, arXiv preprint arXiv: 2011.13824,
2020.

[53]

 S. Wang, H. Zhang, K. Xu, X. Lin, S. Jana, C. J. Hsieh,
and J. Z. Kolter, Beta-CROWN: Efficient bound
propagation with per-neuron split constraints for complete
and incomplete neural network robustness verification,
arXiv preprint arXiv: 2103.06624, 2021.

[54]

 S. Gowal, K. Dvijotham, R. Stanforth, R. Bunel, C. Qin, J.
Uesato, R. Arandjelovic, T. Mann, and P. Kohli, On the
effectiveness of interval bound propagation for training
verifiably robust models, arXiv preprint arXiv:
1810.12715, 2018.

[55]

 K. He, X. Zhang, S. Ren, and J. Sun, Deep residual
learning for image recognition, in Proc. 2016 IEEE Conf.
Computer Vision and Pattern Recognition (CVPR), Las
Vegas, NV, USA, 2016, pp. 770–778.

[56]

 G. Huang, Z. Liu, L. Van Der Maaten, and K. Q.
Weinberger, Densely connected convolutional networks,

[57]

 Zhichao Lian et al.: DeepSI: A Sensitive-Driven Testing Samples Generation Method of Whitebox CNN... 793

in Proc. 2017 IEEE Conf. Computer Vision and Pattern
Recognition (CVPR), Honolulu, HI, USA, 2017, pp.
2261–2269.
 Y. LeCun and C. Cortes, The MNIST database of
handwritten digits, http://yann.lecun.com/exdb/mnist/,
1998.

[58]

 N. Krizhevsky, H. Vinod, C. Geoffrey, M. Papadakis, and
A. Ventresque, The CIFAR-10 dataset, http://www.
cs.toronto.edu/kriz/cifar.html, 2014.

[59]

 J. Ren, M. Li, Z. Liu, and Q. Zhang, Interpreting and
disentangling feature components of various complexity
from DNNs, arXiv preprint arXiv: 2006.15920, 2020.

[60]

Zhichao Lian received the bachelor and
master degrees in computer science from
Jilin University, Changchun, China, in
2005 and 2008, respectively, and the PhD
degree from Nanyang Technological
University, Singapore, in 2013. From 2012
to 2014, he was a postdoctoral researcher
with Department of Statistics, Yale

University, USA. He is currently an associate professor at
School of Cyber Science and Engineering, Nanjing University of
Science and Technology, Nanjing, China. His research interests
include machine learning, explainable AI, and cyberspace
security.

Fengjun Tian received the BS degree in
computer science and technology from
Nanjing University of Science and
Technology, Nanjing, China, in 2021. He
is currently pursuing the MS degree at
School of Cyber Science and Engineering,
Nanjing University of Science and
Technology, China. His research interests

include software testing and explainable AI.

 794 Tsinghua Science and Technology, June 2024, 29(3): 784−794

