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IQABC-Based Hybrid Deployment Algorithm for Mobile Robotic
Agents Providing Network Coverage

Shuang Xu, Xiaojie Liu�, Dengao Li�, and Jumin Zhao

Abstract: Working as aerial base stations, mobile robotic agents can be formed as a wireless robotic network to

provide network services for on-ground mobile devices in a target area. Herein, a challenging issue is how to deploy

these mobile robotic agents to provide network services with good quality for more users, while considering the

mobility of on-ground devices. In this paper, to solve this issue, we decouple the coverage problem into the vertical

dimension and the horizontal dimension without any loss of optimization and introduce the network coverage model

with maximum coverage range. Then, we propose a hybrid deployment algorithm based on the improved quick

artificial bee colony. The algorithm is composed of a centralized deployment algorithm and a distributed one. The

proposed deployment algorithm deploy a given number of mobile robotic agents to provide network services for the

on-ground devices that are independent and identically distributed. Simulation results have demonstrated that the

proposed algorithm deploys agents appropriately to cover more ground area and provide better coverage uniformity.

Key words: wireless robotic networks; network coverage; deployment algorithm; improved quick artificial bee colony

1 Introduction

With the great prosperity and the increasing popularity
of smart mobile devices, the network connecting
these devices is getting more significant[1, 2]. When
the terrestrial infrastructure is out of work due to the
heavy damage in a sudden disaster, such as earthquake,
flood, fire, and so on, it is important to deploy an
emergency network to provide communication services
timely and quickly. Moreover, when the communication
links are heavily congested due to a large-scale event,
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such as a concert, a basketball game, and so on, a
temporary network with low cost is required. In these
circumstances, mobile robotic agents such as Unmanned
Aerial Vehicles (UAVs) have been widely utilized to
enhance wireless communication systems, since they are
characterized by flexible placement and strong Line-
of-Sight (LoS) communication links[3]. In addition,
communications utilizing mobile robotic agents have
been an important part in the Fifth Generation (5G) and
beyond 5G wireless networks[4].

By deploying a group of mobile robotic agents flexibly
and rapidly, we can form a Wireless Robotic Network
(WRN) to provide wireless communication services
anywhere and anytime. Mobile robotic agents have the
potential to alleviate traffic congestion in mobile internet
by working as floating relays, especially when there are
numerous Internet of Things (IoT) devices transmitting
messages simultaneously[5]. Additionally, working as
flying base stations, mobile robotic agents can provide
wireless communication with network performance
gains for rescue vehicles to achieve disaster relief[6].
Therefore, the deployment of mobile robotic agents
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attracted much attention as an effective approach to
achieve rapid and efficient network coverage[7].

Many deployment algorithms have been proposed
for mobile robotic agents to provide network coverage,
which can be classified into three categories: centralized,
distributed, and hybrid algorithms. Centralized
algorithms rely on a few resourceful agents in
computing, but suffer from low scalability, single high
computation complexity, and individual communication
overhead. Distributed algorithms can deploy agents
without requiring prior knowledge, but may suffer from
local optimization. As a result, centralized algorithms
are typically employed when a resourceful satellite or
agent is available to collect information about the mobile
robotic agents and compute deployment for them. By
contrast, distributed algorithms are preferred when it is
infeasible for an agent to obtain the entire information.
Hybrid algorithms can take advantage of the accuracy of
centralized decision-making, as well as the coordination
and adaptability among mobile robotic agents.

Therefore, based on the Improved Quick Artificial
Bee Colony (IQABC) algorithm[8], we propose a
hybrid deployment algorithms, including a centralized
algorithm and a distributed one, to address the network
coverage problem in a space-air-ground WRN. The
contributions can be summarized as follows:

(1) We decouple the 3D deployment problem into
vertical and horizontal dimensions without any loss of
optimality and introduce both centralized and distributed
network coverage problems. A hybrid deployment
algorithm is proposed to deploy a given number of
mobile robotic agents to improve the covered area even
when the centralized controller is failure.

(2) For the situation where the distributed mobile
agents are controlled with the assistance of a satellite,
we propose an IQABC-based centralized coverage
algorithm (IQABC-C) to deploy mobile robotic agents
with the objective of minimizing the uncovered area and
optimizing the coverage uniformity.

(3) When the satellite is failure, we model the
coverage problem as a continuous programming problem
and propose an IQABC-based distributed coverage
algorithm (IQABC-D) to deploy each agent utilizing
only local information iteratively.

(4) The proposed deployment algorithm can deploy
agents to cover more area so that more devices can be
covered and served. Coverage uniformity is considered
in our proposed algorithms to deploy agents evenly and
uniformly.

The rest of this paper is organized as follows.
Section 2 reviews the related work. The problem
formulation is described in Section 3. Section 4 presents
the proposed hybrid deployment algorithm. Simulation
results are presented in Section 5. Section 6 concludes
this paper.

2 Related Work

In recent years, much attention have been paid to deploy
mobile robotic agents to provide network coverage for
ground users. The related works are summarized in
terms of on-demand coverage, area coverage, and Swarm
Intelligence (SI) based coverage.

2.1 On-demand coverage

From the perspective of providing coverage services
for each ground users, many on-demand coverage
deployment algorithms were proposed. In Ref. [9],
the deployment of UAV base stations for achieving
on-demand full communication coverage in wireless
communication was studied, taking into account network
robustness and service quality. The UAV deployment
algorithm was proposed to minimize the number
of UAVs required while achieving on-demand full
coverage. Alzenad et al.[10] proposed an energy-efficient
deployment algorithm that deploys agents at the optimal
altitude by using the minimum required transmit power
while maximizing the number of covered users. In
Ref. [11], an on-demand coverage solution based on
UAV base stations was proposed to tackle temporary
wireless network congestion in tourism areas. An
automatic UAV base station deployment algorithm was
designed to determine the minimal number of UAV
base stations and their two-dimensional coordinates
simultaneously, addressing the challenge of irregular
tourist distribution.

Lyu et al.[12] proposed a polynomial-time algorithm
with successive agent deployment to minimize the
number of agents required to provide wireless coverage
for ground users. However, the user locations must
be known in advance and the user mobility was not
considered. A centralized algorithm and a distributed
algorithm were proposed in Ref. [13] to deploy mobile
robotic agents to provide on-demand service for ground
user devices. On one hand, the centralized algorithm can
provide desirable services with the minimum number of
mobile robotic agents, but the positions of user devices
have to be known in advance. On the other hand, the
distributed algorithm can find user devices autonomously
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and provide them with on-demand network coverage.
However, the deployment changes along with the
mobility of user devices, leading to network instability
especially when certain mobile devices move into or
outside the target area.

2.2 Area coverage

Aiming at a target area where user devices are located,
some researchers proposed algorithms to deploy mobile
robotic agents to provide good services by improving
the covered area. In Ref. [7], a distributed deployment
algorithm was proposed for WRNs that utilizes Particle
Swarm Optimization (PSO) and Voronoi diagram to
optimize coverage area with a minimum number of
agents. It only required local information and did
not rely on any prior information. Trotta et al.[14]

formulated a constrained coverage and persistence
aerial network deployment problem and proposed two
agent deployment approaches, a centralized optimal
approach, and a distributed game theory based approach,
to maximize the coverage area while scheduling the
recharging operations of these agents. The centralized
approach maximized the coverage area by deploying
agents in regular hexagon patterns, while the distributed
approach placed agents by utilizing virtual spring force
to achieve regular hexagon patterns.

Ruan et al.[15] proposed an energy-efficient coverage
deployment algorithm based on spatial adaptive play to
deploy multiple agents to maximize the covered area
and achieve power control. In Ref. [16], an emergency
network coverage deployment problem was formulated
and two algorithms were proposed to minimize the
deployment delay till covering the whole target area
for two dispatching scenarios, including dispatching
agents from the same location and different locations,
respectively. In Ref. [17], two fast UAV deployment
problems were formulated to cover the target area,
considering the delay among all agents for fairness
and the total delay for efficiency. They also presented
algorithms to address these two problems considering
the aforementioned two dispatching scenarios.

2.3 Coverage based on swarm intelligence

Swarm intelligence optimization algorithms such
as Genetic Algorithm (GA), PSO, Artificial Bee
Colony (ABC), etc., have been utilized in addressing
the coverage deployment problem. In Ref. [18], a
novel genetic algorithm was developed to deploy
heterogeneous sensors in Wireless Sensor Networks
(WSN) to improve the coverage area. Reina et

al.[19] proposed a Multi-Layout Multi-subpopulation
Genetic Algorithm (MLMPGA) to solve the NP-hard
problem of deploying UAVs for optimal coverage
of ground nodes. The simulation demonstrated that
the MLMPGA outperformed other well-known meta-
heuristic optimization algorithms, such as PSO and GA,
in terms of performance results. However, all these GA-
based algorithms are centralized.

Cao et al.[20] proposed a PSO-based strategy to
deploy heterogeneous directional sensors and relay
nodes to maximize coverage area and prolong network
lifetime in complex 3D industrial WSNs. In Ref. [21], a
PSO-based energy efficient coverage control algorithm
is proposed, which achieves a balance between
coverage ratio and energy cost by adjusting the
sensing radius of sensors in different grids. Du et
al.[22] proposed a network-based heterogeneous particle
swarm optimization algorithm to deploy UAVs for UAV
downlink communication coverage, which achieved the
deployment by maximizing the total required data rates
of users.

Qasim et al.[23] proposed a modified Ant Colony
Optimization (ACO) based framework for WSN
deployment in a realistic 3-D environment, which
outperformed ACO-based algorithms in terms of the size
of the solution for node deployment. It achieved quick
convergence and avoided the time overhead problem
that arises in standard ACO-based algorithms in 3-D
environments. In Ref. [24], a U-ABC algorithm is
proposed to deploy agents to provide network access
for user devices in a post-disaster environment. The U-
ABC algorithm improved the network throughput and
achieved a high user coverage rate with a given number
of UAVs. Furthermore, the covered users are supposed
to be static in this scenario.

As mentioned above, almost all the SI-based
algorithms utilized in solving the coverage problem can
solve the coverage problem effectively and efficiently.
However, they are centralized, which are not suitable
in distributed networks, especially when the centralized
controller is failed. Considering both centralized and
distributed algorithms have their advantages respectively,
we will use SI algorithms for the coverage problem in
both centralized and distributed way.

3 System Model and Problem Formulation

3.1 Network model

We consider a WRN providing communication coverage



592 Tsinghua Science and Technology, April 2024, 29(2): 589–604

for ground user devices that are independent and
identically distributed in a target region. As shown
in Figs. 1a and 1c, there are n mobile UAV agents
hovering above the target region. The satellite has a wide
observation range and can dispatch UAVs to provide
communication coverage for the target region. The
UAV agents can be controlled by the satellite flying
above. The satellite primarily serves as a centralized
controller responsible for making deployment decisions
for the agents when it operates effectively. The satellite
controller runs the centralized deployment algorithm
based on the collected information. However, in
cases where UAV agent-to-satellite communications
are interrupted due to severe weather, electromagnetic
interference, or satellite failure, the UAV agents
can operate in self-organized networking way. Each
agent can obtain the local information by sensing
and communication through one-hop connections. The
UAV agents provide communication coverage for the
target region by making deployment decisions through
distributed collaboration among themselves. Important
notations are shown in Table 1.

Suppose that the target area is a square area
sized L �W . The set of UAV agents is denoted
by N D fNi .pa

i ; v
a
i /ji D 1; 2; : : : ; ng, where pa

i D

.pa
i;1; p

a
i;2; p

a
i;3/ .p

a
i;1 2 Œ0; L�, pa

i;2 2 Œ0;W �, and
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i;3 2 Œhmin; hmax�) is the three dimensional position
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i D .va
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the velocity vector of agent Ni , and the speed of agent
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va
max. The Euclidean distance between agentsNi andNj ,

denoted by d a2a
ij , can be calculated as follows:

d a2a
ij D jp

a
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j j (1)
When providing communication coverage for ground

user device, the UAV comprises two main parts of
communication. One is the agent-to-user connections
which is modeled as the coverage model, and the other
is the agent-to-agent connections which is modeled as
the communication model.

3.2 Coverage model

The coverage model presented in Ref. [25] is adopted,
which describes the agent-to-user communication
channels. Each UAV agent uses the Line-of-Sight
(LoS) and Non-Line-of-Sight (NLoS) connections
simultaneously. As illustrated in Fig. 1b, there is an agent
Ni located at pa

i D .pa
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Hence, the path loss between agentNi and user device
Uk can be calculated using Eq. (2).

L.pa
i;3; r

a2g
ik
/ D �

i;k
LoS � L

i;k
LoS C �

i;k
NLoS � L

i;k
NLoS (2)

where Li;kLoS is the path loss model for LoS connections,
and it is calculated using Eq. (3)[10]. Li;kNLoS is the path
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Fig. 1 Network model of a WRN providing network coverage.
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Table 1 Important notations.
Notation Description
L �W Size of target area

N Set of all UAV agents
P Set of positions of all UAV agents
pa

i
Three dimensional position of agent Ni

va
i

Velocity vector of agent Ni

d a2a
ij

Distance between agents Ni and Nj

r
a2g
ik

Horizontal distance of agent Ni with
respect to user device Uk

�
a2g
ik

Elevation angle of agent Ni with respect to
user device Uk

Li;k
LoS Path loss model for LoS

Li;k
NLoS Path loss model for NLoS
�i;k

LoS Probability of having a LoS connection
�i;k

NLoS Probability of having an NLoS connection
f Carrier frequency of agent-to-user channel
�LoS Average additional pathloss for LoS connection
�NLoS Average additional pathloss for NLoS connection
c Speed of light

a and b Constant values that depend on the environment
Pt Signal transmission power of agent Ni

Pr Received power of user device Uk

Pth Receiving power threshold
Lth Path loss threshold
Ra2g Radius of the maximum coverage region

of agent
hopt Altitude at which an agent can provide the

maximum coverage range
f 0 Carrier frequency of agent-to-agent channel
Ra2a Maximum communication range
˛1

i
Local polygon area

˛2
i

Local polygon region within
the proxy coverage region

˛3
i

Local polygon area outside
the proxy coverage area

Vi Set of Voronoi vertices of agent Ni

Ei Set of Voronoi edges of agent Ni

ki Number of Voronoi vertices
Nv

i
Set of neighbor Voronoi agents of agent Ni

va
max Maximum speed of agents

fh.N/ Global hole ratio
fu.N/ Global coverage uniformity
ıi Standard deviation of distances between the i -th

agent and its neighbor Voronoi agents
mi Mean value of distances between the i -th agent

and its neighbor Voronoi agents
c1 and c2 Impact factors

loss model for NLoS connections, and it is calculated
using Eq. (4)[13]. � i;kLoS is the probability of having an
LoS connection, and it is calculated using Eq. (5). � i;kNLoS

is the probability of having an NLoS connection, and it
is calculated using Eq. (6).

L
i;k
LoS D 20 log d a2g

ik
C 20 logf C 20 log

�4 
c

�
C �LoS

(3)

L
i;k
NLoS D 20 log d a2g

ik
C 20 logf C 20 log

�4 
c

�
C �NLoS

(4)

�
i;k
LoS D

1

1C a�b.�
a2g
ik
�a/

(5)

�
i;k
NLoS D 1 � �

i;k
LoS (6)

where f denotes the carrier frequency of the agent-to-
user channel, �LoS and �NLoS are the additional path
losses for LoS and NLoS connections, respectively, c
is the speed of light, a and b are constant values that
depend on the environment (rural, urban, dense urban,
etc.). By substituting Eqs. (3)–(6) into Eq. (2), we obtain
Eq. (7).

L.pa
i;3; r

a2g
ik
/ D

A

1C a�b.
180
  �

a2g
ik
�a/
C

20 log
r

a2g
ik

cos � a2g
ik

C B (7)

where A D �LoS � �NLoS and B D 20 log 4 f
c
C �LoS.

Assuming agent Ni transmits signal with power
Pt, the received power Pr of user device Uk can be
calculated using Eq. (8).

Pr D Pt � L.p
a
i;3; r

a2g
ik
/ (8)

In order to have a guaranteed quality of service, the
received power Pr must exceed a certain threshold
Pth. That is, the user device Uk is covered if its
path loss is no greater than a certain threshold Lth,
i.e., L.pa

i;3; r
a2g
ik
/ 6 Lth. Obviously, the radius of the

communication coverage region of agent Ni can be
defined as Ra2g D r

a2g
ik
j
L.pa

i;3
;r

a2g
ik
/DLth

. For a particular

environment and a given agent at optimal altitude hopt

(i.e., the altitude at which an agent can provide the
maximum coverage range), all the ground points located
at coverage range r < Ra2g experience a path loss no
greater than Lth

Œ26�. The proof refers to the Appendix A.

3.3 Communication model

If the satellite controller is failed, the distributed
communication among UAV agents is enabled to
respond the changes of network status rapidly. The
communication model describes the agent-to-agent
communication channels. The agent communicates
with each other without obstructions resulted by high
buildings or some other obstacles. Thus, the agent-to-
agent links are mainly dominated by LoS connections,
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which can be expressed as the Free Space Propagation
Loss (FSPL). Hence, for any two agents Ni 2 N and
Nj 2 N; j ¤ i , the path loss between them can be
calculated as follows:

LLoS.i; j /D20 log d a2a
ij C20 logf 0C20 log

�4 
c

�
(9)

where f 0 is the carrier frequency of agent-to-agent
channel and c is the speed of light. The path loss
increases with the increase in their distance. Similarly,
given the maximum transmit power, the maximum
communication range Ra2a can be determined[13]. Due
to the constrained communication range, each agent Ni
can only communicate with agents in its vicinity called
neighbor agents, denoted by Neibi

D fNj jd
a2a
ij 6 Ra2a;

j D 1; 2; : : : ; ng.

3.4 Voronoi partition

To evaluate the covered area, the Voronoi partition[27] is
utilized to cut up the target area into many subareas, also
called Voronoi polygons. Figures 2a and 2b illustrate
the instances of Voronoi partition and Voronoi polygon
of agent Ni . After the Voronoi partition, each Voronoi
polygon contains only one agent and any point inside this
polygon is closer to its involved agent than to any other
agent. For each agent Ni , the area of its corresponding
Voronoi polygon is referred to as the local polygon
area, which is denoted by ˛1i . Furthermore, the local
coverage area and local coverage hole of this agent is
the local polygon area inside and outside its coverage
range respectively, which are represented by ˛2i and ˛3i ,
respectively.

Let Vi D fV1; V2; : : : ; Vki
g and Ei D fE1; E2; : : : ;

Eki
g represent the sets of Voronoi vertices and Voronoi

edges of agent Ni , where ki is the number of Voronoi

vertices. Let Nv
i denoted the set of neighbor Voronoi

agents of agent Ni . The agent Ni has ki neighbor
Voronoi agents. As illustrated in Fig. 2b, the agent Ni
has 5 Voronoi vertices, so it also has 5 neighbor Voronoi
agents.

3.5 Problem formulation

We aim to use a given number of mobile robotic agents
to provide a target region with enough and uniform
coverage. Assume that: (1) all the agents are identical
and have the same coverage range Ra2g and radio
communication range Ra2a; (2) There are no obstacles
at the optimal altitude hopt so that an agent can be
deployed at any location in the horizontal dimension.
Consequently, this problem can be simplified into a two-
dimensional one with all mobile robotic agents flying at
the same fixed optimal altitude[26, 28].

The following definitions are given to evaluate
coverage area and coverage uniformity.

Definition 1 (global hole ratio). The global hole
ratio, denoted by fh.N/, is the ratio of the sum of all local
coverage holes to the target area, which is formulated as
Eq. (10).

fh.N/ D

nP
iD1

˛3i

L �W
(10)

Definition 2 (global coverage uniformity). The
global coverage uniformity, denoted by fu.N/, is
calculated by the standard deviation of the distance
between every two neighbor Voronoi agents, which is
formulated as Eqs. (11)–(13).

fu.N/ D
1

n

nX
iD1

ıi (11)

Fig. 2 Voronoi partion and Voronoi polygon.
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ıi D

vuuut 1

ki

kiX
jD1

.d a2v
ij �mi /

2 (12)

mi D
1

ki

kiX
jD1

d a2v
ij (13)

where ıi and mi are the standard deviation and mean
value of distances between the i -th agent and its neighbor
Voronoi agents, respectively. Additionally, the global
coverage uniformity fu.N/ is normalized within the
range [0, 1] through Eq. (14).

f
0

u .N/ D 1 � e�fu.N/ (14)

For optimizing the network coverage, we take both
the coverage area maximization and coverage uniformity
into consideration. Therefore, the global hole ratio and
global coverage uniformity are combined to construct an
objective function, as shown in Eq. (15). The positions
of agents P D fpa

i ji D 1; 2; : : : ; ng are optimized as
follows:

min
P

c1 � fh.N/C c2 � f 0u .N/ (15)

s.t.; va
i < v

a
max; i D 1; 2; : : : ; n (16)

0 6 pa
i;1 6 L; i D 1; 2; : : : ; n (17)

0 6 pa
i;2 6 W; i D 1; 2; : : : ; n (18)

pa
i;3 D hopt; i D 1; 2; � � � ; n (19)

where c1 and c2 are their impact factors, and c1 C c2 D
1. Since the coverage area is more significant than
coverage uniformity, c1 and c2 are set to be 0.9 and
0.1, respectively.

4 IQABC-Based Hybrid Deployment
Algorithm

For the communication coverage with a centralized
satellite controller, we model it as an optimization
problem to maximize the covered area. However,
when the centralized satellite controller is failed,
the distributed communication coverage is modeled
as a continuous programming problem to deploy
each agent step by step. The ABC algorithm was
successfully applied to achieve multivariable numerical
and combinatorial optimization efficiently, and it has
the advantages of easy implementation and fewer
requirement of control parameters[29, 30]. Moreover,
to further improve the stand ABC algorithm, the
improved and enhanced variants, such as Quick ABC
(QABC) algorithm[31] and IQABC algorithm[8], have

been proposed. Compared with other variants, the
IQABC algorithm performs best in terms of convergence
speed and solution quality[8]. Thus, the IQABC is
exploited to design a hybrid deployment algorithm to
address the above two problems. The hybrid deployment
algorithm is composed of an IQABC-based centralized
deployment algorithm and an IQABC-based distributed
deployment algorithm. They are exploited to solve the
coverage deployment with centralized controller and
without centralized controller, respectively.

4.1 IQABC algorithm

There are four fundamental phases in the IQABC
algorithm, i.e., (1) initialization phase, (2) employed
bee phase, (3) onlooker bee phase, and (4) scout bee
phase.

4.1.1 Initialization phase
In the initialization phase, a set of food sources formed
as X D fxij ji D 1; 2; : : : ; sn and j D 1; 2; : : : ;Dg are
initialized utilizing Eq. (20).

xij D x
min
j C �ij � .x

max
j � xmin

j / (20)

where sn is the number of initialized food sources and
D is the dimension of each food source, xmin

j and xmax
j

are the lower and upper bounds for the j -th dimension,
respectively, and �ij is a random number within the
range Œ0; 1�. The initialized food sources are evaluated
by utilizing the fitness function shown in Eq. (21).

fit.xi / D
1

1C f .xi /
; f .xi / > 0 (21)

where f .xi / is the objective function value for a
minimization problem of food source xi D Œxi1;

xi2; : : : ; xiD�. Then, the food source with the largest
fitness value is selected as the global best food source,
and it is recorded as xb. The index of global best
food source is recorded as ib, and the total number of
evaluations Neval is initialized as 1.

Furthermore, counters tEBP and tOBP are defined to
record the times that the global best food source has not
improved in the employed bee phase and in the onlooker
bee phase, respectively, tEBP and tOBP are initialized to 0.
Counters of food sources that record the times each food
source has not improved, denoted by ti ; i D 1; 2; : : : ; sn,
are also initialized to 0. Particularly, control parameters
Lbest and Linit are initialized as 2 � sn � D and sn � D,
respectively. The former control parameter is utilized to
explore new food sources in the employed and onlooker
bee phases, while the latter one is utilized to abandon
exhausted food sources in the scout bee phase.
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4.1.2 Employed bee phase
In the employed bee phase, each employed bee
i; .i D 1; 2; : : : ; sn/ is only responsible for one food
source, and attempts to find a new food source vi D
Œvi1; vi2; : : : ; viD� depending on its corresponding food
source xi and the counter tEBP. If tEBP 6 Lbest, the
employed bee i will explore the global best food source
xb to produce a candidate source using Eq. (22).

vij D xbj C ! � .xbj � xij / (22)
where vij , xbj , and xij are the j -th dimension of the
new food source, the global best food source, and the
food source, respectively. Note that the parameters of
vi are the same with xb except the j -th dimension. ! is
random number within the range Œ�1; 1�. If tEBP > Lbest,
the employed bee i will explore its corresponding food
source xi to produce a candidate source using Eq. (23).

vij D xij C ! � .xij � xkj / (23)
where j and k are randomly selected fromD dimensions
and sn food sources, and the remarkable thing is that k
must be different from i , i.e., j 2 f1; 2; : : : ;Dg, k 2
f1; 2; : : : ; sng, and k ¤ i . Note that the parameters of
vi are the same with xk except the j -th dimension. The
fitness value of the food source vi is caculated using
Eq. (21). If fit.vi / > fit.xb/, replace the global best
food source xb with the new food source vi , and reset
the counter tib to 0, i.e., tib D 0. Otherwise, if fit.vi / <
fit.xb/, keep the global best food source xb unchanged,
and add one to the counters tib and tEBP, i.e., tib D tibC1
and tEBP D tEBP C 1. If fit.vi / > fit.xi /, replace the
food source xi with the new food source vi , and reset
the counter ti to 0, i.e., ti D 0. Otherwise, if fit.vi / <
fit.xi /, keep the food source xi unchanged, and add one
to the counter ti , i.e., ti D ti C 1. Particularly, the
employed bee phase is performed for each employed
bee, only when the termination criteria are not reached.
4.1.3 Onlooker bee phase
In the onlooker bee phase, the selection possibility
of each food source xi , denoted by pro.xi /, is firstly
determined using Eq. (24).

pro.xi / D
fit.xi /

snP
jD1

fit.xj /
(24)

Each onlooker bee i; .i D 1; 2; : : : ; sn/ selects
food sources depending on the calculated selection
possibilities. The roulette wheel selection scheme is
utilized in the selection. That is, each onlooker bee
i generates a random number pror within the range
Œ0; 1�, if pror 6 pro.xi /, food source xi is selected

and onlooker bee m will produce a new food source vi
depending on the selected food source xi and the counter
tOBP. If tOBP 6 Lbest, the onlooker bee i will produce
a new food source around the global best food source
xb using Eq. (22). Otherwise, if tOBP > Lbest, Eq. (23)
is utilized to generate the new food source by onlooker
bee. Then, each onlooker bee m evaluates the new food
source vi using Eq. (21). If fit.vi / > fit.xb/, replace the
global best food source xb with the new food source vi ,
and reset the counter tib to 0, i.e., tib D 0. Otherwise,
if fit.vi / < fit.xb/, keep the global best food source xb

unchanged, and add one to the counters tib and tOBP, i.e.,
tib D tib C 1 and tOBP D tOBP C 1. If fit.vi / > fit.xi /,
replace the food source xi with the new food source vi ,
and reset the counter ti to 0, i.e., ti D 0. Otherwise,
if fit.vi / < fit.xi /, keep the global best food source xb

unchanged, and add one to the counter ti , i.e., ti D tiC1.
Particularly, the onlooker bee phase is performed for
each onlooker bee, only when the termination criteria
are not reached.

4.1.4 Scout bee phase
In the scout bee phase, the global best food source
achieved so far and its index are recorded. Then, for
each food source xi , if ti > Linit, this food source is
abandoned. And its employed bee turns to be a scout
bee to generate a new food source using Eq. (20).

4.2 IQABC-based centralized deployment
algorithm

In case where the centralized satellite controller work
properly, the IQABC-based centralized deployment
algorithm is proposed to improve the communication
coverage area while enhancing the coverage uniformity.

4.2.1 Mapping IQABC into centralized coverage
The mapping relationship between IQABC and
centralized coverage is illustrated in Fig. 3. Bees in
IQABC find good food sources with high profitability in
their hive, where the profitability is a value calculated

Bee
Food 

source
Hive

Bee

satellite 

Agent 

positions 
Target area

Find in

Find in

IQABC

Centralized
coverage

Mapping

Fig. 3 Mapping relationship between IQABC and
centralized coverage.
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by utilizing the fitness function. On the other hand,
artificial bees are created in satellite controller to find
good positions for all agents with high coverage area in
the target area.

Particularly, for IQABC and centralized coverage,
four special instructions are given below. (1) Positive
feedback. The food sources with higher profitability
attract more onlooker bees to visit them. Similarly, the
positions with better coverage performance engage more
onlooker bees in satellite controller to exploit them. (2)
Negative feedback. The exhausted food sources are
abandoned by scout bees, while the perishing positions
are yielded by the scout bees in satellite controller. (3)
Fluctuations. The scout bees find a new food source
randomly, while the scout bees in satellite controller find
new positions for all agents stochastically. (4) Multiple
interactions. A honey bee shares the food source it finds
with other bees. Similarly, the bee in satellite controller
shares the positions of agents with other bees in satellite
controller.

4.2.2 Food source encoding
Each food source encodes a solution for the centralized
communication coverage problem. The optimized food
source is the final positions of all agents. The horizontal
position of agent Ni .i D 1; 2; : : : ; n/ flying at the
optimal altitude hopt is denoted by .pa

i;1; p
a
i;2/. The

food source encoding n mobile robotic agents is denoted
by xi D .pa

1;1; p
a
1;2; p

a
2;1; p

a
2;2; : : : ; p

a
n;1; p

a
n;2/, where

the dimension of the food source is twice the number
of agents, i.e., D D 2n. Furthermore, each agent is
supposed to be deployed inside the target area, i.e.,
0 6 pa

i;1 6 L and 0 6 pa
i;2 6 W . In additon, based on

the objective function Eq. (15), the fitness function is
constructed to evaluate the quality of each solution using
Eq. (21).

4.3 IQABC-based distributed deployment
algorithm

For the situation that the centralized satellite controller
suffers breakdown, we propose an IQABC-based
distributed deployment algorithm utilizing Voronoi
partition to deploy each agent distributedly utilizing only
local information.

4.3.1 Mapping IQABC into distributed coverage
As illustrated in Fig. 4, the mapping relationship between
IQABC and distributed coverage consists of three
aspects: bees correspond to agent bees, food source
corresponds to the candidate position of each agent, and

Bee
Food 

source
Hive

Agent

bee

Candidate 

position

Local 

polygon

Find in

Find in

IQABC

Distributed
coverage

Mapping

Fig. 4 Mapping relationship between IQABC and
distributed coverage.

hive corresponds to its local polygon. Particularly, the
four special instructions mentioned above for IQABC
and centralized coverage also apply to the distributed
coverage where bees in satellite controller are replaced
by agent bees.

4.3.2 Framework of IQABC-D
The IQABC-D algorithm is performed to deploy agents
iteratively. To better reflect the deployment process of
the IQABC-D algorithm, the framework of IQABC-D
for each agent is given in Fig. 5. In each iteration, each
agent first updates its local information by broadcasting
its local information and receiving one-hop messages.
Then, each agent calculates its local polygon information
including local polygon area, local coverage area,
and local coverage hole through the Voronoi partition.
Finally, according to the calculated local coverage hole,
each agent moves with the proposed moving scheme,
which is presented in Section 4.3.3.

Fig. 5 Framework of IQABC-D for each agent in each
iteration.
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4.3.3 Moving scheme
Each agent finds a candidate position by utilizing the
IQABC algorithm. If the local coverage area of
the candidate position is improved by "% or more,
the agent will move to this candidate position.
Otherwise, the agent will keep still. Herein, each food
source is a position inside its Voronoi polygon, i.e.,
xi D .pa

i;1; p
a
i;2/. The objective of finding a candidate

position is to minimize its local coverage hole, which is
expressed in Eq. (25).

f .xi / D ˛
3
i (25)

Particularly, there are two adaptive adjustments for
each food source: position adjustment and speed
adjustment.

(1) Position adjustment. Since the candidate position
is supposed to be inside the Voronoi polygon, the
position generated in IQABC-D should be adjusted
when it is outside the Voronoi polygon. The position
adjustment can be expressed as follows:
xi D xixo \ Ei ; xi is outside its Voronoi polygon

(26)
where xixo denotes the line from the old position xo to
the generated position xi .

(2) Speed adjustment. Another constraint is that
the speed of each agent should be no greater than the
maximum speed. Let vi denote the velocity moving to
the generated position xi , i.e., vi D xi � xo, the velocity
adjustment can be expressed as follows:

v0i D
vi
jvi j

(27)

5 Simulation Result

5.1 Simulation setting

The simulation experiments are conducted on a
computer with Intel(R) Xeon(R) Intel(R) E5-2609 CPU
processor and 64.00 G RAM. The IQABC-based hybrid
deployment algorithm is conducted on MATLAB 2015b
platform. To evaluate the performance of the IQABC-
based centralized deployment algorithm (IQABC-C)
and IQABC-based distributed deployment algorithm
(IQABC-D), ABC[30] and QABC[31] are employed for
comparison with the IQABC based algorithm. In the
simulation, a given number of UAV agents hovering at
optimal altitudes are deployed above a target area. Main
parameters[7, 25] are shown in Table 2.

Performance metrics including objective function
value, coverage rate, and coverage uniformity are
adopted to evaluate the proposed deployment algorithm.

Table 2 Simulation parameters.
Algorithm/

scenario
Parameter Symbol Value

Scenario

Size of target area L �W
2000m�
2000m

Network coverage range Ra2g 250 m
Communication range Ra2a 700 m
Number of UAV agents n 30

IQABC-C

Number of initialized food
sources

sn 20

Maximum cycle number C a
max 1000

Neighbourhood radius in
QABC

r 1

IQABC-D Maximum speed of agents vmax 50 m/cycle

The coverage rate Cr is defined as follows:

Cr D

nP
iD1

˛2i

nP
iD1

˛1i

(28)

5.2 Evaluation of IQABC-C

The IQABC-C is performed with parameters shown in
Table 2. The initial random deployment is shown in
Fig. 6a, it can be seen that there are many coverage holes
and coverage overlaps that interfere with improving the
whole ground coverage area. After performing IQABC-
C, the final deployment is obtained and illustrated in
Fig. 6b. It is easy to find that agents are deployed rather
evenly in the target area and the total coverage areas are
improved significantly.

Moreover, ABC and QABC are exploited as
comparison with IQABC-C with the same problem
mapping and food source encoding. As illustrated in
Figs. 7a, IQABC-C performs better than ABC and
QABC on both objective function and convergence
speed. Furthermore, as illustrated in Figs. 7b and
7c, IQABC-C can obtain maximal coverage rate and
minimal coverage uniformity quickly compared with the
other two algorithms. Particularly, due to the nature of
the objective function, coverage uniformity and coverage
rate changes along with cycles are not monotonic.
This proves the advantage of effectively exploiting
the IQABC in converage deployment with centralized
controller.

In addition, using the optimal solution obtained by
ABC-based deployment algorithm as the reference
value, we calculated the number of cycles required
for the IQABC-C deployment algorithm and QABC-
based deployment algorithm to converge to this optimal
solution. The results are shown in Table 3. It can be
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Fig. 6 IQABC-C deployment instance with 30 agents.

(a) Objective function vs. number of cycles (b) Coverage rate vs. number of cycles (c) Coverage uniformity vs. number of cycles

Fig. 7 Comparison of IQABC-C and ABC variants.

Table 3 Ratio of number of cycles for different deployment
algorithms.

Index
Result

ABC: QABC: IQABC-C
Number of cycles 1: 0.70: 0.20

seen that the IQABC-C deployment algorithm has the
fastest convergence speed, followed by the QABC-based
deployment algorithm and the ABC-based deployment
algorithm. Additionally, it can be observed from Fig. 7
that the IQABC-C deployment algorithm produces better
or at least similar results compared to the QABC-based
and ABC-based deployment algorithms within the same
cycle.

Finally, the impact of agent number on final
deployment by performing IQABC-C is evaluated in
terms of objective function, coverage rate, and coverage
uniformity, as illustrated in Fig. 8. It can be seen
clearly that with the increase of agent number, objective
function value decreases while coverage rate increases.
Furthermore, coverage uniformity first decreases and

then increases. Coverage uniformity reaches the minimal
value with 25 agents, after which coverage rates are
almost the maximal values. In other words, with the
given environmental conditions, the optimal number of
agents is 25 to get maximal coverage rate and minimal
coverage uniformity.

5.3 Evaluation of IQABC-D

To evaluate the local deployment for a particular
agent in IQABC-D, we compare IQABC-D with
ABC and QABC. The agent is randomly initialized
in the target area at (845.77, 1036.10) with 5
Voronoi neighbors located at (1197.05, 1275.42),
(1062.67, 1350.66), (815.24, 1335.66), (532.94, 848.69),
and (914.85, 942.71), respectively. Its Voronoi polygon
is shown in Fig. 9a. These three algorithms are executed
for 40 cycles and run 30 times to obtain the average
local coverage rate. The average local coverage rate
changes with cycles, as shown in Fig. 9b. It is evident
that IQABC-D deployment algorithm converges faster
than the QABC-based deployment algorithm and the
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Fig. 8 Performance of IQABC-C vs. number of agents.

(a) Setting

(b) Average local coverage rate vs. number of cycles

Fig. 9 Comparison of IQABC-D with ABC variants for a
particular agent.

ABC-based deployment algorithm. Moreover, IQABC-D
deployment algorithm produces better or at least similar
results compared to the QABC-based deployment
algorithm and ABC-based deployment algorithm within
the same cycle.

As mentioned in Section 4.3.2, with different settings
of stop control parameter ", the proposed moving scheme
in IQABC-D performs differently. To set the appropriate

stop control parameter, namely, coverage threshold ",
coverage rate, and number of stop cycles are evaluated
with parameters shown in Table 2. As shown in Fig. 10,
with the increase of coverage threshold, coverage rates
and number of stop cycles decrease, because it is easier
to meet the stop condition with larger coverage threshold,
and coverage rate improves with the increase of cycles.
In order to stop the algorithm with high coverage rate
and low stop cycle, we set coverage threshold " D 0:1.

In addition, the IQABC-D is performed with
parameters shown in Table 2. The initial random
deployment is shown in Fig. 11a, it can be seen that
there are many coverage holes and coverage overlaps
that interfere with improving the whole ground coverage
area. After performing IQABC-D iteratively, as shown
in Figs. 11b–11e, the whole coverage rate improves with
the decrease of each agent’s local coverage hole. Finally,
we obtain the final deployment after 34 cycles, which
is illustrated in Fig. 11f, where agents are deployed
rather evenly in the target area and the total coverage
areas are improved significantly. This demonstrates that
the proposed IQABC-D algorithm can achieve a solid
performance, even when the centralized control do not
exist.

To evaluate the performance of IQABC-D, EVF, VVF,
VEVF, and VEDGE[32, 33] are employed as comparison
algorithms since they are both distributed algorithms
for area coverage improvement. As shown in Figs. 12a
and 12b, all of these distributed algorithms have better
performance than the initial random deployment in terms
of coverage rate and coverage uniformity. Moreover,
IQABC-D has higher coverage rate and better coverage
uniformity than other compared algorithms.

Fig. 10 Coverage rate and number of stop cycles vs.
converage threshold """.
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Fig. 11 IQABC-D deployment instance with 30 agents.
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Fig. 12 Performance of IQABC-D vs. number of agents.

6 Conclusion

In this paper, we propose an IQABC-based hybrid
deployment algorithms, including IQABC-C and
IQABC-D, to deploy mobile robotic agents providing
network coverage in a target region. In IQABC-C, an
objective function is designed to maximize the coverage
area while minimizing the coverage uniformity. In
IQABC-D, only local information without any prior
information are utilized. Simulations demonstrate the
proposed algorithms can effectively deploy mobile
robotic agents to provide network coverage. However,

limited power constraint and environmental changes are
not considered in this paper, which will be discussed in
future.

Appendix

A Proof of that there is only one optimal altitude
for a given agent to provide the maximum coverage
range

To prove that there is only one optimal altitude hopt

for a given agent Ni in a particular environment to
provide the maximum coverage range, we conduct
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experiments and analysis in various environments.
Four different environments (suburban environment,
urban environment, dense urban environment, and
high-rise urban environment) are selected and the
following parameters are set; the maximum allowable
path loss Lth D 90 dB, the carrier frequency of
agent-to-user channel f D 2GHz, while using the
following .a; b; �LoS; �NLoS/ pairs .4:88; 0:43; 0:1; 21/,
.9:61; 0:21; 1; 20/, .12:08; 0:18; 1:6; 23/, and .27:23;

0:15; 2:3; 34/ to describe suburban, urban, dense urban,
and high-rise urban, respectively[26]. We can obtain
the coverage range with respect to the altitude of agent
according to Eq. (7), which is illustrated in Fig. A1.

As shown in Fig. A1, it can be observed that for
an agent in a particular environment, its coverage range
initially increases and then decreases with the increase of
altitude. This indicates the existence of a single optimal
altitude, denoted by hopt, which provides the maximum
coverage range. As illustrated in Fig. A1, the optimal
altitudes for suburban, urban, dense urban, and high-rise
urban environments are 127.75 m, 189.90 m, 196.96 m,
and 199.52 m, while the corresponding maximum
coverage ranges are 344.63 m, 251.82 m, 206.11 m,
and 89.59 m, respectively. Therefore, for a given agent
Ni at altitude hopt in a particular environment, all the
ground points located at a distance Ra2g experience the
same path loss Lth, and all points located at a distance
r < Ra2g experience a path loss smaller than Lth.
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