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Few-Shot Graph Classification with Structural-Enhanced Contrastive
Learning for Graph Data Copyright Protection
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Abstract: Open-source licenses can promote the development of machine learning by allowing others to access,

modify, and redistribute the training dataset. However, not all open-source licenses may be appropriate for data

sharing, as some may not provide adequate protections for sensitive or personal information such as social network

data. Additionally, some data may be subject to legal or regulatory restrictions that limit its sharing, regardless of the

licensing model used. Hence, obtaining large amounts of labeled data can be difficult, time-consuming, or expensive

in many real-world scenarios. Few-shot graph classification, as one application of meta-learning in supervised graph

learning, aims to classify unseen graph types by only using a small amount of labeled data. However, the current

graph neural network methods lack full usage of graph structures on molecular graphs and social network datasets.

Since structural features are known to correlate with molecular properties in chemistry, structure information tends

to be ignored with sufficient property information provided. Nevertheless, the common binary classification task

of chemical compounds is unsuitable in the few-shot setting requiring novel labels. Hence, this paper focuses on

the graph classification tasks of a social network, whose complex topology has an uncertain relationship with its

nodes’ attributes. With two multi-class graph datasets with large node-attribute dimensions constructed to facilitate

the research, we propose a novel learning framework that integrates both meta-learning and contrastive learning

to enhance the utilization of graph topological information. Extensive experiments demonstrate the competitive

performance of our framework respective to other state-of-the-art methods.
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1 Introduction

While big data are driving machine learning to new
heights, the performance of machine learning is often
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limited by the availability of input samples. Open-
source licenses can promote the sharing and use of
data, allowing more data to be available for machine
learning training, but sharing data under open-source
licenses is not always appropriate, particularly when
handling sensitive or personal information like social
network data[1–3]. Certain open-source licenses may
not provide adequate protection for such data, while
other data may be legally or regulatory restricted,
making sharing impossible regardless of the licensing
model used[4–6]. Consequently, acquiring large amounts
of labeled data can be a daunting, time-consuming,
or costly task in many real-world situations[7]. Thus,
researchers have developed the concept of Few-Shot
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Learning (FSL) inspired by the rapid reasoning ability
of human beings. FSL involves learning from a small
number of samples and is well-suited for situations
where large amounts of labeled data may be unavailable.
Unlike standard supervised learning, where plenty of
training data are available, FSL must distinguish, instead
of recognizing, the new samples by learning a similarity
metric and generalizing the model for broad applications.
This is particularly advantageous when dealing with
copyrighted data that may have restricted sharing or
distribution rights. Since few-shot learning requires only
a small number of labeled examples, it reduces the need
to share the entire dataset, thus minimizing the risk of
copyright infringement.

The success of FSL in image processing has
paved the way for its application in diverse fields,
including graph analytics. Although humans can quickly
distinguish between images, distinguishing between
complex graphs is still challenging, which makes graph
learning crucial. Graph Neural Networks (GNNs), a
powerful machine learning tool, utilize graph structure
and node content information as inputs to perform
various tasks related to graph analytics, such as edge-
level, node-level, or graph-level tasks[8, 9]. The graph
classification problem, which relates to GNNs with
graph-level outputs, often employs pooling and readout
operations. The pooling layer[10, 11] coarsens a graph into
a subgraph, with node representations on the coarsened
graph representing a higher graph-level representation.
Subsequently, the readout layer aggregates the hidden
representations of the subgraphs, computing a compact
graph representation that serves as the class label(s) for
the entire graph.

In a recent study[12], researchers compared various
GNN methods for graph classification in a standardized
and uniform evaluation framework. They pointed out
that structure information has not been fully utilized in
chemical and social datasets, and offered two possible
reasons: either an effective solution exists without using
topological information, or GNNs are not exploiting
graph structure adequately. Since structural features
are known to correlate with molecular properties in
chemistry, a common binary classification task of
chemical compounds (active or inactive) can be solved
without GNNs if provided with sufficient molecular
information (i.e., large node-attribute dimensions).
However, this approach is unsuitable for FSL due to
the few new classes. Therefore, we focus on FSL
for social graphs, whose complex topology has an

uncertain relationship with its nodes’ attributes[13]. When
performing multi-class classification tasks, the graph
embedding generated by the model often needs to
cover more comprehensive node information including
its attributes and adjacency relationships with other
nodes (i.e., graph structure). When the graph label
is more closely related to the graph structure, some
part of the high-dimensional node attributes that is
inconsistent with the graph structure will affect the
result of graph classification. However, we usually
input the complete node attributes, as prepossessing
and filtering high-dimensional node attributes are not
suitable. Figure 1 illustrates that node attributes may
harm graph classification accuracy if graph structure
is not adequately considered. In Fig. 1, we use graphs
to represent two customers’ consumption records over
a period (the link indicates that the products are
purchased together). If we only consider the product
features (i.e., node attributes), we may find that the
two users have similar consumption habits for footwear.
While through learning graph topology, we can acquire
differentiable graph embeddings as more comprehensive
and representative user profiles with high-similarity node
attributes retained. The left customer shows a diversified
consumption habit, while the right customer is more like
a sneakerhead. The practical significance of this problem
can be seen, for instance, in the cold-start issue caused
by the small sample size limit in a recommendation

Fig. 1 A simple example that shows node attributes may
hurt classification accuracy without adequately considering
the graph structure. Strengthening graph structure learning
can generate more distinguishable graph embedding while
retaining high-similarity node information.
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system[14].
Introducing a novel learning framework, Structural-

Enhanced Graph Contrastive Learninig (SE-GCL), we
aim to enhance the capabilities of GNNs in leveraging
graph structure and addressing the challenges mentioned
above. By utilizing meta-learning and contrastive
learning techniques, our proposed framework achieves
accurate graph classification results in an end-to-
end process. The contributions of our work can be
summarized as follows:
�We investigate a general scenario for few-shot graph

classification tasks, and present a learning framework
that integrates meta-learning and contrastive learning
techniques. This integration allows us to achieve accurate
graph classification results while ensuring the protection
of data copyright.
� We construct two benchmark graph datasets with

large node-attribute dimensions, designed for multi-class
classification tasks. These datasets serve as valuable
resources for future research in the field of few-shot
graph classification. They enable researchers to evaluate
and compare various algorithms and techniques within a
context that respects data copyright protection.
� Through extensive experiments on ground truth

datasets, we demonstrate the effectiveness of using
contrastive learning techniques to enhance the utilization
of graph topological information. Our framework
achieves competitive performance when compared to
other state-of-the-art methods.

2 Related Work

2.1 Few-shot learning and meta-learning

Wang et al.[15] defined FSL as a type of machine
learning problem (specified by E , T , and P), where
the machine learns from experience E having limited
supervised information to solve task T by improving
the performance measure P . Recently, meta-learning,
also known as learning-to-learn, has become the most
popular framework for FSL[16], as it has the significant
benefit of discovering the consistency between the
training objective and the test objective, allowing
the model to learn from few-shot classification tasks
directly[17]. Two meta-learners, matching network[18]

and prototypical network[19], generate a memory
component using the neural network. The former
learns common representations for the labeled examples
and matches the new test instance to the memorized
examples via cosine similarity. The latter learns a

prototype vector space for each class and assigns the
test instance to the prototype by calculating the soft-max
likelihood of the distance metric.

2.2 Few-shot learning on graph classification

Model-Agnostic Meta-Learning (MAML)[20] gains
knowledge of a specific model parameter initialization
that generates strong generalization performance on a
new task with a limited number of gradient steps and a
modest amount of training data. Ma et al.[21] extended
this approach to a graph meta-learner, which uses GNN-
based modules for fast adaptation on graph data and a
step controller for the robustness and generalization of
the meta-learner. Based on the spectrum of the graph’s
normalized Laplacian, Chauhan et al.[22] proposed
few-shot graph classification using the latent inter-
class relationships made by the super-graph, where
the Lp Wasserstein distance serves as the metric for
clustering the super graphs from prototype graphs.
SMF-GIN[23] is another metric-based meta-learning
framework for few-shot graph classification based on
the graph isomorphism network[24], which explicitly
considers the global structure and local structure of
the input graph by the attention mechanism. Lately,
Hassani[25] proposed an attention-based graph encoder
that uses three congruent views of graphs to learn
representations of task-specific information for fast
adaptation as well as task-agnostic information for
knowledge transfer.

2.3 Data copyright protection in graph contrastive
learning

As its name suggests, Graph Contrastive Learning
(GCL) contrasts graph samples and forces those with
the same distribution toward one another in embedded
space. Conversely, samples from different distributions
are pressed against each other. Because contrastive
learning[26] is the backbone of GCL, recent researches
focus on exploring the design of graph augmentation
schemes. Meanwhile, GCL must be employed within a
framework that respects data ownership and copyright
protection to ensure that the usage of graph data
aligns with legal and ethical considerations. GCL[27]

studies four graph augmentations to incorporate various
priors for learning unsupervised representations of
graph data. Based on their previous work, the
authors proposed joint augmentation optimization[28]

later, a unified bi-level optimization framework for
automatically performing data augmentations. Similarly,
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GCA[29] is another adaptive augmentation method that
incorporates various priors for topological and semantic
aspects of the graph. To generate more meaningful
graph views, GRACE[30] develops a hybrid scheme on
both structure and attribute levels to provide diverse
node contexts, InfoGCL[31] follows the Information
Bottleneck principle to reduce the mutual information
between contrastive parts, and AD-GCL[32] avoids
capturing redundant information in the graph views by
optimizing adversarial graph augmentation strategies.
The sampling bias is another common issue in GCL. Lin
et al.[33] proposed a prototype-based clustering approach
to mitigate the issue, while Yu et al.[34] discarded the
graph augmentations and instead added uniform noises
to enhance the uniformity of learned representations.
With the increasing research on GCL, PyGCL[35]

is developed as a bench-marking library to provide
empirical evidence of the practical GCL algorithms
and future research. It is essential to emphasize that
advanced graph augmentation strategies can play a role
in protecting data copyright by reducing the reliance on
original data and generating synthetic data that reduce
the reliance on a limited dataset, including copyrighted
content, and enable the creation of larger, more diverse
datasets. By having access to a broader range of
data, organizations can reduce the need to use specific
copyrighted content and minimize the risk of copyright
infringement.

3 Proposed Framework

3.1 Problem definition

FSL is usually applied in supervised learning for
object classification, also considered as N -way-K-shot
classification. During the few-shot training phase, N
categories (ways) with K samples (shots) per category
are constructed as the support set. Then another batch
of samples in N categories, named query set, is selected
from the remaining data as the model’s prediction object.
The task is to distinguish these query set samples from
the N �K support sets.

We formulate our few-shot graph classification
problem as a standard N -way-K-shot classification task
with appropriate data copyright protection measures,
where a set of graphs fG1; G2; : : : ; Gmg and their
labels fy1; y2; : : : ; ymg are given. Let G D .U;E;A; y/
denote an undirected unweighted graph, where U is the
set of nodes, E is the set of edges, A is the set of node-
attributes, and y is the label associated with the graph.

According to the labels, fG1; G2; : : : ; Gmg is split into
f.Gtrain; ytrain/g and f.Gtest; ytest/g as the training set
and test set, respectively. Notice that ytrain and ytest

must have no common classes for the meta-learning
setting. In the meta-training phase, we construct the
support dataset DS .Gtrain; ytrain/ by randomly selecting
K samples from each of the N classes and the query
dataset DQ.Gtrain; ytrain/ containing other M samples
from the same N classes. The goal is to predict the label
of each graph in the query dataset by giving a limited
number of support graphs (i.e., N� M), which restricts
access to the graph data to authorized individuals
or entities involved and helps prevent unauthorized
distribution or misuse of copyrighted data. At the meta-
testing stage, the same classification task is performed
on DS .Gtest; ytest/ and DQ.Gtest; ytest/ with the disjoint
label ytest, which verifies the result of knowledge transfer
and adaptation.

3.2 Proposed framework

Figure 2 illustrates the framework of our proposed
method. Two complementary classification tasks are
performed simultaneously to learn the main encoder
F� .�/, which is a GNN for projecting a graph into an
embedding. The first learning module is metric-based
meta-learning, which utilizes explicit label information
to generate the graph embedding and compute the
similarity between the support set and query set. The
second learning module is contrastive learning, which
is a self-supervised instance-level classification task to
improve the representation result. For self-supervised
learning, we design a strategy to generate a pair of
positive and negative augmentation views of the input
graph automatically, which contributes to data copyright
protection by mitigating the risk of unauthorized
reproduction or misuse of the original data.

During meta-learning, the main encoder F� .�/ maps
each graph into a latent representation as its graph
embedding hGi D F� .Gi /. Specifically, GNNs compute
graph embedding via a message-passing framework:

h.lC1/u D COM
�
h.l/u ;

�
AGG

�˚
h.l/u0 j8u

0
2 U0

	���
(1)

hG D READOUT
�
h.l/u j8u 2 U

�
(2)

where h.l/u denotes the embedding of node u at the
l-th GNN layer; U0 is the neighbor set of node u;
AGG.�/ is the neighbor aggregation function; COM.�/
is the combination function; and READOUT.�/ is the
graph-level pooling function. Then all support graph
embeddings in the same class yn are aggregated into one
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Fig. 2 Overview of SE-GCL. The framework consists of two main processes: graph meta-learning and contrastive learning.
Given a support set of input graphs, we use a graph encoder to extract robust feature representation and derive reliable
prototypes for each class. The Wasserstein metric measures the similarity between the query graph and the prototype. Further,
we impose the contrastive loss on the query set to improve the model’s generalizability. The complete workflow of all modules is
an end-to-end solution. More details could be in the section of the proposed framework.

prototype representation zn by computing the average,
which is formulated as

zn D
1

K

KX
iD1

hGi .Gi 2 DS .G; yn/; n 2 Œ1; N �/ (3)

To predict the label of the query graph, the similarity
between query graph embedding and the prototype
representation is measured by the p-th Wasserstein
distance following the work in Ref. [36], which is
the optional cost of moving mass between two graph
embeddings. The classification loss LMeta is defined
as the average cross entropy between true labels and
predictions based on the similarity, which can be
formulated as

LMeta.DS ;DQ; �/ D

�
1

M

X
.G;y/2DQ

log
esim.F� .G/; zy/PN
iD1 esim.F� .G/; zi /

(4)

where sim denotes the Wasserstein similarity metric.
Because contrastive learning can maximize the

agreement between the input data and its positive view
while minimizing the agreement with the negative view,
two automatic augmentations are employed to generate
a pair of differentiable views for the respective goals,
which reduces the need to unauthorized operations of

the original data. Expressly, the positive augmentation
operation preserves the original topology of the sample
graph Gi and masks all the node features to form
a positive view Gmask

i , which aims to mediate the
overwhelming of the node features over the graph
structure information in the representation learning. On
the other hand, the negative augmentation operation
generates a negative view G

neg
i by random node-

dropping and edge-perturbation. Both operations follow
an i.i.d. uniform distribution with node-dropping ratio �
and edge-perturbation ratio 1��. For edge-perturbation,
it randomly drops 1 � � existing edges, then adds the
same amount of random edges back into Gi . To form
G

neg
i as a small subgraph fromGi with a few noisy edges,

� is set to 0.8 by default. Moreover, it is stated in Ref.
[23] that the structural information of graph data consists
of both local and global dimensions, which means
some attributes of a graph depend on the substructure
of the graph while some consider the global structure
more. As generalization is the main challenge for meta-
learning to test novel domains, randomly treating a
small subgraph as the negative example helps predictive
models generalize beyond the limited training data. It
should be noted that the negative view of one sample
graph is also treated as the negative view of the rest
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samples (i.e., for a query set containing M samples, there
are M negative views for each sample graph). Introduced
in Ref. [37], we apply a momentum encoder F!.�/
for projecting the contrastive views, which behaves
similarly as the main encoder as its parameter ! is a
moving average of � . Given F� .Gi /, the contrastive
loss aims to maximize its agreement with F!.Gmask

i /

while minimizing the agreement with all the negative
views F!.Gneg

j /; j 2M , which can be formulated as

Lcon.DS ;DQ; �; !; �/ D

�
1

M

X
G2DQ

log
esim.F� .G/;F!.Gmask//PM
jD1 esim.F� .G/;F!.G

neg
j
//

(5)

where M denotes the size of the query set, and �

is the perturbation ratio. By minimizing Lcon w.r.t.
� , we force the main encoder F� .�/ to maintain the
complete structural information in the embedding and
produce more generalized prototypical networks. Thus,
the overall loss is the combination of the classification
loss and the contrastive loss:
Ltotal D LMeta.DS ;DQ; �/C ˇLcon.DS ;DQ; �; !; �/

(6)
where ˇ is a hyper-parameter that balances two terms.
The detailed learning process is described in Algorithm 1.
And all notations used in this paper are listed in Table 1.

4 Experiment

In this section, we present the experiments developed by
PyTorch Geometric and conducted on a workstation with
an Intel Core i7 2.80 GHz CPU and an NVIDIA GeForce

Table 1 List of notations used in this paper.
Symbol Description
G Undirected unweighted graph
U Set of nodes
U0 Set of node’s neighbors
E Set of edges
A Set of node attributes
y Graph label

DS Support dataset
DQ Query dataset
F� .�/ Main graph encoder
F!.�/ Momentum graph encoder

hG Graph embedding
h.lC1/u Node embedding at the l-th GNN layer

zn Graph prototype representation
Gmask Graph positive augmentation view
Gneg Graph negative augmentation view
� Perturbation ratio of Gneg

ˇ Regularization hyper-parameter

GTX 1070 GPU. Our proposed method is evaluated on
standard few-shot learning benchmarks with real-world
datasets. We also conduct an ablative study about the
effectiveness of the contrastive learning module in our
framework.

4.1 Dataset

In the experiments, we use a variety of large and
small attributed networks that are collected from
different domains, including e-commerce networks,
citation networks, and morphological networks. It is
worth noting that meta-learning tasks often demand
a considerable number of classes, whereas some
commonly employed graph datasets[38] have limited
classes or small node-attribute dimensions. Therefore,
to validate the effectiveness of the proposed framework,
we construct graph datasets from two large attributed
networks with lots of node classes, Amazon-Clothing
and DBLP, and use the node-label distribution as the
label of the new graph. Meanwhile, we adapt two
small attributed networks Letter-High and TRIANGLES,
which are used in GSM[22] for a fair comparison. To
ensure that appropriate data usage agreements are in
place with the data owners or providers, we specify

Algorithm 1 Learning process of SE-GCL
Input: Graph dataset: fG1; G2; : : : ; Gmg,

graphs’ labels: fy1; y2; : : : ; ymg,
task: Ttest=fDS .Gtest; ytest/;DQ.Gtest; ytest/g,
training episodes: T, perturbation ratio: �,
learning rate: ˛, momentum coefficient: �.

Output: Predicted labels of Gtest in DQ
1: while i < T do
2: //Meta-training process
3: Sample a meta-training task:

T itrain=fDS .Gtrain; ytrain/;DQ.Gtrain; ytrain/g;
4: Compute the prototype representations ztrain of support set

DS .Gtrain/ according to Eq. (3);
5: //Contrastive process
6: Generate the augmentation views Gmask and Gneg of

DQ.Gtrain/ with �;
7: Update the main encoder by minimizing loss in Eq. (6):

� iC1 D � i � ˛r� iLtotal;
8: Update the momentum encoder with �:

!iC1 D �!i C .1 � �/� iC1;
9: //Meta-testing process

10: Compute the prototype representations ztest of support set
DS .Gtest/ from Ttest according to Eq. (3);

11: Predict the labels of DQ.Gtest/ from Ttest using the
prototypical networks.

12: end while
13: return Predicted labels of Gtest in DQ
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the scope and limitations of data usage. The detailed
descriptions of these datasets are as follows:

Amazon-Clothing. The dataset was originally
collected by Ref. [39] and has been preprocessed
by Ref. [12] for the FSL study. In our constructed
dataset, each graph represents a customer’s shopping
history, where each node corresponds to a product, and
different products are connected if the same customer
browses them. The product descriptions are used as node
attributes. We customize 2000 graphs with 20 types of
shopping habits from 77 kinds of products for FSL.

DBLP. The citation network is extracted from Ref.
[40] with node features generated by Ref. [41] using
the Bag-of-Words model. For this dataset, we follow
the same construction method to customize 2000 graphs
with 20 graph classes, where each node represents a
paper and edges represent citations.

Letter-High. Each graph is a distorted alphabetic
prototype graph with undirected edges and vertices
representing lines and ending points of lines[42]. More
specifically, Letter-High contains 15 categories from the
English alphabet: A, E, F, H, I, K, L, M, N, T, V, W, X,
Y, and Z.

TRIANGLES. This dataset contains 10 different
graph classes numbered from 1 to 10, corresponding
to the number of triangles in the graphs of each class.
The partial version is used in the experiments in Ref.
[22] that reduces the graph sample size from 45 000 to
2000.

All statistic information of these datasets are listed in
Table 2.

4.2 Baselines and implementation

We compare our method with the following five types of
baselines:

Weisfeiler-Lehman graph kernels[43], based on the
Weisfeiler-Lehman (WL) test of graph isomorphism, is
considered as the state-of-the-art in graph classification.

Table 2 Statistics of datasets. We show each dataset with the
number of graphs jjjGjjj, the average number of nodes Avg.jjjUjjj,
the average number of edges Avg.jjjEjjj, the dimensions of node
attributes jjjAjjj, and the number of classes for training over
testing jjjytrainj=jj=jj=jytestjjj.

Dataset jGj Avg.jU j Avg.jEj jAj
jytrainj

jytestj

Amazon-Clothing 2000 32.15 192.50 9034 10/10
DBLP 2000 47.25 318.45 7202 10/10

Letter-High 2250 4.67 4.50 2 11/4
TRIANGLES 2000 20.85 35.50 1 7/3

We skip the unsuitable meta-training phase for this
method and perform N -way-K-shot graph classification
directly on the testing dataset.

GIN[24] uses injective neighbor aggregation
to approximately conceive through WL test,
which considers performing better than GCN and
GraphSAGE[44] in case of graph classification. Thus,
we train a naive GIN + MLP classifier directly on the
testing dataset to verify the knowledge transfer ability in
meta-learning.

MAML[20] is an optimization-based meta-learning
method that tries to learn better model initialization
from a series of meta-training tasks. For the few-shot
graph classification task, we extend it by the same graph
encoder backbone in our framework.

GSM[22] clusters the graph classes based on the graph
spectral measures into groups named super-classes and
uses the constructed super-classes for few-shot learning.

PN has the identical architecture of our framework but
without the contrastive learning module, which can be
considered a variant of a prototypical network.

For either baselines or our framework, we implement
the graph encoder consisting of three GCN layers[45]

or GAT layers[46] with dimension sizes 32, 32, and 16,
respectively. All the layers are activated with the ReLU
function. We choose Mincut pooling[47] as the readout
operation because it coarsens a graph by taking into
account both the connectivity structure and the node
features. The loss is trained with Adam optimizer,
whose learning rate is set to 0.001 initially with a weight
decay of 0.0001. We adjust the dropout rate and the
perturbation ratio � for each dataset to achieve the
best performance, and train the model with an early-
stopping strategy across 300 episodes. Moreover, we
set the regularization hyperparameter ˇ to 1.0 and the
momentum coefficient � to 0.99 by default.

4.3 Result analysis

We evaluate the performance by 5-way-5-shot, 5-way-10-
shot, and 8-way-5-shot tasks on both Amazon-Clothing
and DBLP datasets, whose metrics Accuracy (ACC)
results are presented in Table 3. For Letter-High and
TRIANGLES containing few node information, we
perform 4-way and 3-way tasks, respectively, and only
compare them with GSM’s best results in Table 4.
From a comprehensive view, we have the following
observations:
.1/ For WL kernel and GIN baselines, we perform

N -way-K-shot graph classification directly over the
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Table 3 Accuracy with a standard deviation of baselines and our method. We tested 100 N-way-K-shot tasks on both Amazon-
Clothing and DBLP datasets. The best results are highlighted in bold.

Method
Accuracy (%)

Amazon-Clothing DBLP
5-way 5-shot 5-way 10-shot 8-way 5-shot 5-way 5-shot 5-way 10-shot 8-way 5-shot

WL kernel 56.40˙ 2.23 65.24˙ 1.37 49.47˙ 2.64 57.12˙ 2.44 65.52˙ 1.71 50.35˙ 2.39
GIN 63.25˙ 1.63 71.24˙ 1.57 55.47˙ 3.34 66.10˙ 2.41 72.38˙ 1.44 57.13˙ 2.88

MAML (GCN) 70.72˙ 3.88 76.62˙ 2.35 60.70˙ 4.53 73.12˙ 4.65 77.69˙ 2.89 63.19˙ 5.12
MAML (GAT) 70.66˙ 3.53 76.68˙ 2.51 60.27˙ 4.49 74.10˙ 4.19 78.03˙ 3.44 62.80˙ 3.99

PN (GCN) 70.18˙ 1.19 77.43˙ 1.87 63.17˙ 2.14 74.32˙ 2.49 79.79˙ 2.19 64.49˙ 3.19
PN (GAT) 71.22˙ 2.43 77.06˙ 2.15 63.89˙ 2.94 74.91˙ 3.29 80.29˙ 2.34 64.52˙ 3.52

SE-GCL (GCN) 74.98˙ 2.01 80.22˙ 1.55 66.37˙ 1.99 77.31˙ 2.17 83.40˙ 1.14 67.59˙ 2.86
SE-GCL (GAT) 75.02˙ 2.90 81.76˙ 2.36 66.92˙ 2.43 78.16˙ 3.09 84.75˙ 1.82 68.25˙ 3.20

Table 4 Accuracy of GSM and our method. We tested
100 N-way-K-shot tasks on both Letter-High (4-way) and
TRIANGLES datasets (3-way).

Method
Accuracy (%)

K-shot Letter-High TRIANGLES

GSM
5 69.91˙ 5.90 71.40˙ 4.34
10 73.28˙ 3.46 75.60˙ 3.67
20 77.38˙ 1.58 80.04˙ 2.20

SE-GCL
5 74.34˙ 1.03 77.36˙ 1.25
10 79.42˙ 0.84 83.14˙ 1.07
20 84.15˙ 0.77 89.17˙ 0.85

test classes. It is clear that the sample size restricts
the accuracy of the prediction results. When there are
insufficient samples for training, the model is prone to
overfit, which leads to unsatisfactory test results. GIN
incorporates node features while generalizing the WL
test, so the effect is better than the WL kernel, which
shows that node features play a vital role in graph
learning.
.2/ Both MAML and PN achieve superior

performances on three types of graph classification
tasks over GIN, indicating that for Amazon-Clothing
and DBLP datasets, meta-learning can improve the
learning process of new tasks using the experience
gained from solving predecessor problems. MAML
and PN have similar performance on 5-way tasks, but
PN obtains about 3.5% performance gains on 8-way
tasks. The reason is twofold: as an optimization-based
approach, the generalization ability of MAML is getting
poor when the number of classification labels increases
and the difference in sample data becomes large. The
performance suffers from its fine-tuning process. While
as a metric-based approach, PN learns generalizable
matching metrics by taking the mean vector of support
examples, which is simple but stable with favorable
distance metrics.

.3/ It is worth noting that SE-GCL extends the PN
basis with the contrastive learning method, further
enhancing the model’s generalization ability. Forged by
contrastive learning, the positive and negative samples
strengthen the graph structure learning and make up for
the insufficient number of few-shot samples to a certain
extent. Overall, SE-GCL outperforms the baselines
in all the tasks on both Amazon-Clothing and DBLP
datasets. At the same time, we also find that as the
encoder backbone, the gap between GCN and GAT is
not apparent, which means that the aggregation function
(i.e., the main difference in message passing between
GCN and GAT) has much less impact on the graph-level
than the pooling and readout operations.
.4/ As shown in Table 4, SE-GCL outperforms GSM

by 5% for both datasets, though both SE-GCL and
GSM use metric-based approaches to solve the few-
shot problem. This is because GSM assumes that the
test classes could belong to the same super-classes built
from the training classes. However, training and test
classes typically do not overlap in the few-shot setting.
On the other hand, we believe the ability of the GNN
encoder to learn graph representation in a top-down
way is more critical when encountering unseen classes,
where the effectiveness of the Mincut pooling strategy
on unsupervised node clustering helps in the simple-
graph dataset with few nodes information. Moreover,
SE-GCL can alleviate the overfitting problem caused
by simple graph topology through contrastive learning;
even SE-GCL is more suitable for graph datasets with
complex topology and excessive node information. By
incorporating such complexities into the graph data, it
becomes more challenging for unauthorized individuals
to extract or identify specific sensitive information from
the copyrighted data.
.5/ We visualize the DBLP dataset in 2-dimensional
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space by applying the t-SNE algorithm to the graph
embeddings, which are learned from 5-way-10-shot
classification tasks using the baselines and our method.
The results shown in Fig. 3 validate our assertions in
the previous section through a meaningful layout. We
can see that our method creates better clusters with low
intra-cluster and high inter-cluster distances.

4.4 Parameter analysis

In this section, extensive experiments are conducted to
analyze the influence of the perturbation ratio � to SE-
GCL, whose results are shown in Fig. 4. We review
the negative augmentation operation as a combination
of node-dropping and edge-perturbation with ratios �
and 1-�, respectively. A small � renders a negative
view having similar nodes in the sample graph but
connected by different edges, while a hefty � generates a
subgraph of the sample graph with a few random edges.
According to Fig. 4, the performances are better with
large values of � in datasets DBLP, TRIANGLES, and
Amazon-Clothing, while the performance deteriorates
in dataset Letter-High with � increasing. There are

two main reasons behind this phenomenon: First, the
graphs of Letter-High are sparse with a moderately low
number of nodes. With a large node-dropping ratio, the
negative view may only have 1 or 2 nodes, which cannot
provide valuable information for contrastive learning.
Moreover, these small attributed graphs are more
sensitive to individual edges, leading edge-perturbation
to generate meaningful negative views. Second, the
graphs of DBLP, TRIANGLES, and Amazon-Clothing
have a large number of nodes with complex topology.
Negative views generated by extensive edge-perturbation
disturb the contrastive module due to being incompatible
with node attributes and are empirically unhelpful for
downstream performance. In contrast, node-dropping
and subgraphs are beneficial across datasets by enforcing
the consistency and generality of local sample graphs
and global prototypes.

5 Conclusion
In this study, we address a practical issue in few-shot
graph classification concerning the copyright protection
of graph data. We observe an imbalance in the utilization

Fig. 3 t-SNE visualization comparison for the DBLP dataset. Each class is represented in a different color.
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Fig. 4 Influence of the perturbation ratio ���. The range of ��� is set from 0.1 to 0.9.

of node attributes and graph structure during the learning
process and propose a novel meta-learning framework
with a contrastive learning module to enhance the
learning of graph structure. On one hand, the prototype
networks based on the Wasserstein similarity metric
allow the uncertainty distribution to encompass task
embeddings beyond the training set, which enables the
model to generalize to unseen test tasks after meta-
training. On the other hand, the contrastive module
introduces meaningful positive and negative views,
which regularize the model to prioritize the global
structure of the graph over partial node attributes or
subgraph features. The experimental results demonstrate
that our framework achieves outstanding performance
compared to other baselines, whether applied to large or
small attributed graph datasets. As a future direction, we
aim to develop automatic augmentation strategies within
the contrastive learning module to prevent unauthorized
use of original works and copyright infringement.
By defining the objectives and parameters of data
augmentation, organizations can exercise control over
synthetic data to ensure compliance with copyright and
privacy regulations.
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