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Evolutionary Multi-Tasking Optimization for High-Efficiency
Time Series Data Clustering

Rui Wang, Wenhua Li*, Kaili Shen, Tao Zhang, and Xiangke Liao

Abstract: Time series clustering is a challenging problem due to the large-volume, high-dimensional, and warping
characteristics of time series data. Traditional clustering methods often use a single criterion or distance measure,
which may not capture all the features of the data. This paper proposes a novel method for time series clustering
based on evolutionary multi-tasking optimization, termed i-MFEA, which uses an improved multifactorial evolutionary
algorithm to optimize multiple clustering tasks simultaneously, each with a different validity index or distance measure.
Therefore, i-MFEA can produce diverse and robust clustering solutions that satisfy various preferences of decision-
makers. Experiments on two artificial datasets show that i-MFEA outperforms single-objective evolutionary algorithms
and traditional clustering methods in terms of convergence speed and clustering quality. The paper also discusses
how i-MFEA can address two long-standing issues in time series clustering: the choice of appropriate similarity

measure and the number of clusters.
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1 Introduction

Time series data arises regularly in many fields such
as finance, traffic, and health!"?!. How to dig out
the value behind these data has become a research
hotspot. However, the feature of raw time series data
cannot be easily detected due to the large-volume, high-
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dimensional, and warping characteristics. As is known,
clustering methods, e.g., k-means!®/, DBSCAN!*!, and
hierarchical clustering®®!, can help extract typical and
abnormal patterns. Nevertheless, existing methods are
not specially designed for dealing with time series data
with such high-dimensional and complex datasets, which
therefore may fail when performing on large-scale time
series data.

Clustering methods aim to partition data into
appropriate clusters based on certain objectives or
rules!® 7], such as minimization of the within-classes-
variance or maximization of the between-classes-
variance. Since clustering can be regarded as an
optimization problem, Evolutionary Algorithms (EAs)
as powerful optimizers'®®!, are often applied, e.g.,
Particle Swarm Optimization (PSO) algorithm!'% ' and
Genetic Algorithm (GA)!1% 131,

Despite the popularity of traditional clustering
algorithms and single-objective EA-based clustering
methods, we argue that these methods can achieve
clustering results by optimizing one objective, either
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implicitly or explicitly!'* 13!, may be ineffective. For
instance, the k-means merely minimizes the Sum of
the Square Distance (SSD) between data points and
cluster centroids, though there are various clustering
validity indexes, such as compactness, separation, and
connectivity!®!. Evidently, a single index cannot capture
all the characters of certain datasets, and thus often
results in poor performance when it is not appropriately
used. Moreover, optimization based on different
clustering validity indexes simultaneously can lead to
different results satisfying various preferences, which,
to some extent, could be more appealing to decision-
makers. To do so, clustering methods that adopt the
idea of multi-objective optimization have been proposed.
For example, Handl and Knowles!!”! proposed a two-
objective model, to minimize the overall deviation and
connectivity for clustering problems by EAs. Wang
et al.l"® considered optimizing the number of clusters
and the SSD, which can obtain a set of clustering
results corresponding to different k. Although multiple
clustering results can be found via Evolutionary Multi-
objective Optimization (EMO)!'3:1°1 the use of EMO
requires optimization objectives to be conflicted with
one another. The clustering validity indexes, however,
are not always conflicting. For example, minimizing
the within-variance would not cause an increase of
between-classes-variance exactly. Thus, when obtaining
multiple clustering results by EMO, extra transformation
needs to be performed on objective functions. To avoid
such transformation, the recent Evolutionary Multi-
Tasking (EMT) framework!®”! can be applied. EMT
is inspired by the human brain, which aims to improve
problem-solving ability through implicit synergy among
different (optimization) tasks. By assigning certain
populations to different tasks, the solutions to multiple
tasks can be obtained simultaneously. Specifically, the
genetic segments of different tasks, which are similar
to an extent, can be shared during the evolution, thus,
accelerating the search process. An application of EMT
in real-world problems can be found in Ref. [21].

As for complex high-dimensional time series,
clustering tasks with different objective functions
(corresponding to different clustering validity indexes)
can be constructed based on the EMT framework. There
are many useful validity indexes that can measure the
compactness and connectivity of clustering results, e.g.,
the Total-Within-Cluster-Variation (TWCV)??, Davies-
Bouldin Index (DBI)?*!, and Silhouette Index (SI). Also,
the distance/similarity measures are essential in objective

Tsinghua Science and Technology, April 2024, 29(2): 343-355

function construction, e.g., Euclidean distance, cosine
wavelets, Dynamic Time Warping (DTW), and Pearson
correlation coefficient*!. Since evolutionary clustering
with different validity indexes usually produce different
clustering results, integrating these validity indexes into
the EMT framework may result in more comprehensive
clustering results, which is the major motivation of this
work. Overall, the main contributions of this study are
as follows:

(1) This work proposes a novel method based on EMT
optimization, which can optimize multiple clustering
tasks with different validity indexes or distance measures
simultaneously. This enables the generation of diverse
and robust clustering solutions that can satisfy various
preferences of decision-makers.

(2) An improved multifactorial EA is introduced,
which enhances the vertical cultural transmission
strategy and avoids the loss of high-quality solutions
during the evolution process.

(3) This work demonstrates the effectiveness and
superiority of the proposed method on two artificial
datasets, and shows how it can address two long-standing
issues in time series clustering: the choice of appropriate
similarity measure and the number of clusters.

(4) The paper also discusses how the proposed method
can be applied to anomaly detection by clustering. The
paper thus provides a new perspective and a powerful
tool for time series clustering and analysis.

The rest of this study is organized as follows. In
Section 2, the background of clustering methods and
evolutionary multi-tasking is introduced. In Section 3,
the improved MFEA (i-MFEA) for multi-clustering of
time series data is elaborated. Experimental results and
discussion are presented in Sections 4 and 5, respectively.
Section 6 concludes the paper.

2 Related Work

2.1 Time series clustering

Time series clustering refers to the partition of a
dataset consisting of time series curves according to
certain validity indexes!"?!. Given a dataset D =
{x1,X2,...x,} composed of n unmarked samples, each
sample x; = (xj1,Xj2,...,Xim) is an m-dimensional
vector. Clustering is to divide the dataset D into k
disjoint subsets {C;|/ = 1,2,...,k}. Meanwhile, it
ensures that samples in the same cluster are more similar
than samples in different clusters. Generally, m; is
the centroid of the /-th cluster, and each sample x; is
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assigned to the nearest cluster centroid. The partition
matrix u;;, describing the membership of samples to
centroids, is as follows:

1, ifl = argmin F(i);
. rg () )
0, otherwise,

F(i) = dist (x;, my) (2

where dist (x;, m;) is the distance function that measures
the similarity between x; and m;.

Many distance functions have been proposed to
measure the degree of similarity between two vectors,
e.g., Euclidean distance, DTW, Pearson correlation, and
cosine wavelets!?. Let x; and x; be m-dimensional
vectors, four similarity/distance functions are described
here. Note that the symbol “|” indicates that the smaller
the distance, the more similar the vectors. The symbol
“1” refers to the opposite.

Euclidean distance (}): It is the most widely used
metric to measure the similarity of two vectors, and can
be defined as follows:

m
Dg (xi,x;) = Z |Xir - Xjr|2 3)

r=1
DTW ()?”l: DTW is an improved version of
Euclidean distance. Two time series may be similar
but not aligned along the same time axis. DTW can
be used to twist one of the sequences on the time axis for
better alignment to obtain the shortest warping distance
between two series. Based on dynamic programming,
the match starts from (x;1,x;1), and the distance
is accumulated at each point until (x;p,Xjmn). The

cumulative distance can be calculated as follows:

Dprw(n,m) = Dg (Xin. Xjm) +

min {DDTW(n - 17m)’ DDTW(n,m - 1)’

Dorw(n —1,m = 1) )

Cosine wavelets (1)131:

of [—1, 1]. It has no relationship with the magnitude of
the vectors but only is relevant to the direction of the

Its value is within the range

vectors, which is shown as follows:

m
§ XirXjr
r=1

D cosine (xl" Xj) = " = " )
inzr ijzr
r=1

r=1
Pearson correlation coefficient (1)?: It measures
the degree of correlation between two vectors. Its range

is within [—1, 1]. When Xx; is linearly correlated with
x;j, the correlation coefficient is 1 (perfect positive
correlation) or —1 (perfect negative correlation),

m
Z[(xir — U, ) (Xjr — Uyx;)]
D earson \Xi, Xj) = r=1 (6)
’ ( l ‘]) Sxinj
1 — 1 —
Ux, = I’}_’l leirs Ux; = Z X;Xjr @)
r= r=

where uy; and Sy; are the mean and standard deviation
of x;, respectively, and uy; and Sy , are the mean and
standard deviation of x;, respectively.

2.2 Clustering validity index

Concerning the performance evaluation of different
clustering methods, several clustering validity indexes
have been proposed!!!. Next, we briefly introduce some
representative ones.

SSDU8l: Tt measures the intra-variance of data points
with their nearest centroid. Minimizing SSD leads to
compactness, convex clusters, and representative cluster
centroids. It is defined as follows:

k
SSD=Y" )" dist(x;.m,) =

r=1x;eCy

k
Yo i —mel? )

r=1x;eC,
SIB0I: It is used to evaluate the effectiveness of data
clustering. The larger the SI value is, the better the
clustering result is, which is defined as follows:

1< b, —a
s&:-ZM 10)

n max(ay, , by;)

where ay; is the mean distance of x; to all other samples
in the same cluster, and by, is the mean distance of x; to
other samples in different clusters.

DBI*3: The index combines both the cluster
cohesion (within-variance) and separation (distance
between cluster centroids) information. It is defined

as follows:
1 k
DBI = — max R;; 11
2o maxRi e3Y)
i,j=1
where R;; represents the similarity between two clusters
Ci and Cj.
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In addition, the Adjusted Rand Index (ARI) and
Adjusted Mutual Information (AMD!® are also
commonly used. Specifically, the ARI measures the
similarity of the two assignments, and AMI measures the
consistency of two assignment distributions, ignoring
the absolute value of the labels. Both ARI and AMI
are positive indexes and standardized, with values
range [—1, 1]. The larger the index value the better the
clustering results.

2.3 Evolutionary multi-tasking

Given multiple optimization tasks, EMT[P!321 can
optimize them simultaneously through the unification
of solution encoding (search space) and implicit
genetic transfer. For example, in Fig. 1, the multi-
tasking environment consists of two-tasks with objective
function f; and f,. The two-objective functions have
different landscapes, however, their optimal solutions are
similar. The gene segments of f; can help f> to jump
out of local optima, thus accelerating the optimization
process. Overall, when proper optimization tasks are
constructed, the EMT framework has the potential to
speed up the convergence, and obtain higher quality
solutions thanks to the information exchange between
different landscapes!?!.

The MultiFactorial Optimization (MFO) algorithm is a
paradigm of EMT!??!. Assuming that there are N7 tasks,
each task is labeled as 7; (1 < i < N7). The objective
function of each task is denoted as f; (1 <i < N7).

The MultiFactorial EA (MFEA)P%34 has been
demonstrated effective for MFO. Moreover, it is
reported that the more similar the tasks are, the better
performance MFEA would obtain!?”!. The tasks can
be discrete, continuous, mixed, single-objective, or
multi-objective!®> 36!, For example, in Ref. [37], MFEA
is applied to solve permutation-based combinatorial

06}
04}
P~ /
02F i
b
0 0.2 0.4 0.6 0.8 1.0 1.2

X

Fig. 1 Illustration of the evolutionary multi-tasking, where
solution information of f; can be transferred to help the
searching process of f,.
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optimization problems. Experimental results show that
the travel salesman problem, quadratic assignment
problem, linear ordering problem, and job-shop
scheduling problem can be solved simultaneously with
both efficiency and effectiveness through the EMT
framework by MFEA. In Ref. [37], an improved MFEA
was proposed and applied to twelve multi-tasking
capacitated vehicle routing problems. Permutation-based
unified solution representation and split-based decoding
were proposed to adapt to the problem-specific space.
Nevertheless, there are abundant practical applications
of MFEA in clustering tasks.

3 Multifactorial Evolutionary Algorithm for
Time Series Clustering

This section elaborates on time series clustering via
i-MFEA. First, the general framework of MFEA is
introduced. Then, the clustering tasks based on different
clustering criteria are constructed. Third, the encoding
strategy in i-MFEA is introduced. Lastly, an improved
vertical cultural transmission is proposed, which is
the critical step of i-MFEA and plays the role of
multifactorial inheritance.

3.1 General framework

The framework of i-MFEA is shown in Algorithm 1,
which contains five main steps. First, N7 clustering
tasks with different objective functions are designed
for the dataset D. Then, multi-populations with the
same encoding strategy and skill factors are initialized.
Subsequently, offspring is generated through crossover
and mutation operators, during which vertical cultural
transmission is applied. The knowledge transfer among
populations helps individuals to jump out of local
optima. An improved vertical cultural transmission
is proposed here, see Algorithm 2. After that, the
elitist strategy is designed for population maintenance.
Finally, the best chromosome of each task is selected
and translated into cluster centroids, and time series
curves are assigned to the nearest centroids.

In MFEA, the skill factor 7; is used to split individuals
into different skill groups. It denotes one of the tasks,
and individuals with the same skill factor 7; constitute a
population. The elitist strategy!*®! is employed in each
population with the same skill factor 7; = ¢ to keep
the number of individuals in each population the same.
At each generation, the parent population and offspring
population with the same skill factor are combined to
form a joint population R;—;. The individuals in the
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Algorithm 1 General framework of i-MFEA.

Input: Maximum generation MaxGen, population size N,
dataset D, number of clusters k, number of tasks Np

Output: Clustering results C = {Cy,C3,...,Ck} , centroids

{ml,mz,...,ml}

Pop <« Initialization (N, N7);

Design T clustering tasks for dataset D;

Pop < AssignSkillFactor (z;);

while gen < MaxGen do

Off < Variation (Pop); /* Generate new solutions. */
whiler < T do

uPop, <« MergePop (Pop, Off,¢); /*Merge the
Population and Offspring with the same skill factor 7; =
¥/

8: ¢r <« CalFitness (uPop,); /* Calculate the scalar

fitness.*/
9: Pyen < Select (uPop,, m, ¢ ); /* Select m individuals
with the highest fitness. */

10: Pop = Pop U Pgp;

11: t+=1;

122 end while

13:  gen+=l;

14: end while

15: whiler < T do

16:  BestSol < argmax uPop;;

R U A

17: Get centroids {m,m2, ..., my} from BestSol;
18:  Assign samples to the nearest centroids;
19: end while

Algorithm 2
transmission
Input: Parents P
Output: Offspring O

1. O <« ¢;

2: for P, and P in P do

3:  Generate a random number r;

Offspring generation and vertical cultural

4:  if parents’ skill factor Tp, = tp, orr < 0.3 then

5: Cgy, Cp < Variation (P, Pp);

6: if skill factor tp, = T7p, = 7 then

7: offspring’s skill factor ¢, = 7¢, = 1;

8: else

9: offspring owns two skill factors, réa = réb =
P, réu = réh =1p,;

10: end if

11:  else

12: C, < Mutate (Py);

13: TC, < TP,

14 end if

155 0 <« 0OUC,UCy;

16: end for

joint population are evaluated based on the objective

function f;—, of the task t; = ¢ and are ranked together.

The factorial rank r;—; of individual p denotes the index
of p in the list of population members R;—; sorted

in ascending order with respect to f;—;. The fitness
¢@r=¢ = 1/r;=;. Finally, certain individuals with the
highest fitness are selected as new parents.

3.2 Multi-tasking construction

Three types of clustering task sets are constructed. By
using different objective functions, the landscapes of
tasks in each set are different. However, the optimal
solutions for these tasks (optimization problems) are
consistent. Thus, by co-evolving all tasks with the EMT
framework, the search efficiency could be enhanced.
3.2.1 Clustering validity indexes

Three different cluster validity indexes are used as
objective functions of three tasks,

min SSD,
min DB, 12)
min (1 — SI)

Euclidean distance is adopted as the similarity
measure for all the tasks for fairness. Different objective
functions have different landscapes but should in
principle result in the same optimal solution.

3.2.2 Distance measures

The distance/similarity measure is essential in high-
dimensional time series clustering. Thus, objective
functions based on different distance measures are
constructed as the optimization objectives of tasks.
Considering both the calculation complexity and
clustering performance, the SSD measure is selected
as the objective function. On the one hand, different
tasks can learn from each other to accelerate the
optimization process and obtain diverse results. On the
other hand, different results reveal the characteristics
of time series and help to determine the most suitable
distance/similarity measure. Overall, we choose the
following four distance calculation methods to measure
the SSD: D g (x;, x;), Dprw(Xi, X;j), 1= Deosine (Xi, X;),
and 1 — Dpearson (Xi, Xj)-

3.2.3 Clustering numbers k

As is known, determining an appropriate number of
clusters k is a long-standing issue in clustering methods.
Through the EMT framework, the MFEA can be applied
to find clustering results under different k in a single
run. The best k£ can thus be determined according to the
clustering results in an ad-hoc manner.

3.3 Encoding strategy

There are two typical encoding strategies when
performing clustering by EAs, i.e., point-based
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encoding and prototype-based encoding*. Although
the dimension of the time series is high, the length of
dimension m and the number of clusters k are usually
much smaller than the number of samples n. Thus,
centroid-based encoding (a type of prototype-based
encoding) is chosen here, which also enables to obtain
typical time series patterns. In centroid-based encoding,
each chromosome describes the clustering centroid of the
dataset. The length of the chromosomes is k x m when
clustering an m-dimensional dataset into k subsets!!8!.
Assuming that k = 3 and m = 2, a chromosome is
encoded as {0.2,0.5,0.3,0.6,0.4,0.1}, then the three
clustering centroids are {(0.2,0.5),(0.3,0.6), (0.4,
0.1)}. Furthermore, if k is variable, then the length
of all the chromosomes should be m X k.. The first
m X k points will be taken finally and the others will be
abandoned. The chromosome is initialized within the
range [0, 1]. Then, all the samples are then assigned
to the nearest clustering centroids in the same way
as the k-means method. Finally, k£ clusters and their
corresponding representative time series patterns are
obtained.

3.4 Offspring generation and improved vertical
cultural transmission

The simulated binary crossover (namely SBX) and
Polynomial Mutation (PM) operators are adopted
to generate offspring!®® % since the chromosome
comprises only real numbers. There are two parameters
in each of the operator which determine the probability
and magnitude of the operation. The probability
parameters, P, in SBX and P,, in PM, affect the number
of points on the chromosome to perform crossover or
mutation at each time. The distribution indexes, 7, in
SBX and 7., in PM, determine the variability of the
offspring from their parents. Specifically, given a large
distribution value, offspring solutions are more likely to
be close to their parents. Besides, the chromosome of
the centroid-based encoding could be long, and the two-
point crossover operator which exchanges gene segments
between random intersections of two chromosomes is
incorporated to further enhance the exploration ability
of the algorithm™!.

Vertical cultural transmission is presented in
Algorithm 2, which plays the role of implicit genetic
transfer among solutions during the offspring generation.
Offspring can be categorized into three types based on
different associative mating strategies: (1) offspring
are generated through crossover and mutation on two
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parents from the same population, thus both their skill
factors are the same as their parents, (2) offspring are
generated from one parent through clone and mutation
and inherit its skill factor, and (3) offspring are generated
through crossover and mutation on two parents with
different skill factors with a certain probability, which
leads to vertical cultural transmission. In the original
MFEA, the skill factor of a child would inherit one
of its parents randomly!?’!. It is, however, found in
the experiment that such random task skill assignment
deteriorates the performance of MFEA. To alleviate
this issue, i-MFEA is proposed as depicted in Fig. 2.
Specifically, traditional MFEA generates solutions and
then assign these solutions with a single certain task
according to their parents. For i-MFEA, both tasks from
parents are assigned to the offspring. The offspring
produced in i-MFEA would be accompanied by two
skill factors and be evaluated on both tasks.

The offspring should be evaluated concerning all the
tasks according to the definition of EMT. However, this
may cause large calculations. Therefore, the original
MFEA evaluates offspring only on one task. This clearly
may eliminate some good offspring. Therefore, i-MFEA
makes a trade-off between the computational cost and
good solution retention. When the parents come from
two different task populations, offspring would be
evaluated on both tasks. Only when the parents are
from the same population, offspring are evaluated on
one task.

4 Experiment

4.1 Experimental setting

4.1.1 Competitor algorithms
To verify the effectiveness of i-MFEA in solving

Tz

() (T

vFEA iy

Pb & Ob

Py : o,
e

Py 0y
Fig. 2 Illustration of vertical cultural transmission

comparison between MFEA and i-MFEA. Notably, T},
means that the new solutions O, and O, are suitable for both
Tasks 1 and 2.
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time series clustering problems, Single-Objective EA
(SOEA), MFEA, and traditional clustering methods are
chosen as competitor algorithms. To be specific, we
choose a recently proposed genetic algorithm in Ref.
[41] to represent the SOEA, in which the algorithm
is executed multiple times to obtain all clustering
results. The Euclidean distance is used as the similarity
measure for fairness. To ensure fair comparison, all
algorithms adopt the SBX and PM operators, where
P. = 1and P, = 10/n. For all the algorithms, we
set the population size N = 50, and the maximum
generation G = 200. All experiments are implemented
based on a PC configured with an Intel 19-9900X @ 3.50
GHz and 64 G RAM. To be statistical, 30 independent
runs are conducted for each experiment.

4.1.2 Benchmark

Two simulated artificial time series datasets based on
the sine function are generated in the experiment. As
described in Table 1 and Fig. 3, dataset DS-S (easily
separable) and DS-NS (not easily separable) both contain
four obvious clusters with 200 time series data. The
length of the sequence is 12, which can be described as
follows:
Xi =[x} x7.....x/?].Vi €[1,200]  (13)
The cluster centroid m; = sin (X;) and n time series
data Y; around the centroid are generated through the
following function:

yl-j =sin(xij x (1 —I—ri))—}—pij,
Y, =[ytoyE .02 i=12,...n (14

where p is a random perturbation with a normal
distribution (mean = 0 and variance = §,) to each
data point of time series (at the y-axis), r (mean= 0
and variance =§,) is a random delay percentage to the
sequence X (at the x-axis). Moreover, the min —max
normalization is conducted before clustering, leading the
value to be within [0, 1],
J min
ylj = )Iixl;ax_ yi min
Yi =)
The difference between dataset DS-S and DS-NS is
the values of 8, and 6,. By increasing the values of
8, and §,, the bounds of clusters in the dataset would
become more indistinct.

4.2 Results

15)

The clustering performance is evaluated from two
aspects, i.e., convergence speed and the quality of
the results. Based on the true labels, ARI and AMI
(mentioned in Section 2.2) are used as partition metrics.

4.2.1 Performance comparison

In this experiment, three optimization tasks are set
through objective functions SSD, SH, and DBI. In
addition, Fig. 4 shows the convergence trends on each
task based on DS-S and DS-NS. Note that each point
in the curve is averaged over 30 algorithm runs. It
can be observed that all three tasks optimized by i-
MFEA, SOEA, and MFEA converge quickly, however,
i-MFEA in general performs the best according to the
convergence curves and the median results. Table 2
lists the best results obtained by i-MFEA, MFEA, and

Table 1 Overall information of the series datasets used in this study.

Dataset Size Dimension X Sy Sp
DS-S 200 12 X1 =[-0.5%, 1.5%t], X2 =[0,27%], X3 =[0.57,2.5%], X4 = [m,37] 0.2 0.1
DS-NS 200 12 X1 =[-0.5%, 1.5%t], X3 =[0,2%], X3 =[0.57,2.5n], X4 = [=m,37] 0.3 0.2

Number of time slots

(a) Cluster 1 for DS-S

0 2 4 6 8 10
Number of time slots

4 6 8
Number of time slots

(c) Cluster 3 for DS-S (d) Cluster 4 for DS-S

2 4 6
Number of time slots

Number of time slots

(e) Cluster 1 for DS-NS (f) Cluster 2 for DS-NS

Number of time slots Numbert of time slots

(g) Cluster 3 for DS-NS (h) Cluster 4 for DS-NS

Fig. 3 Distribution of two series datasets used in this study, where different colors are used to distinguish data.



350 Tsinghua Science and Technology, April 2024, 29(2): 343-355
250 1.0
i-MFEA i-MFEA
SOEA SOEA
MFEA MFEA
200 130 0.484 08 048 ——
a @ 0.46 -
%) 125 0.483 Q ) T
0.6 O 0.44
150 170 0.482 170 180 190 200
170 180 190 200 S
0.4
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
Number of generations Number of generations Number of generations
(a) Convergence trends on DS-S dataset
1.3
2207 0.76 , -MFEA
‘ i-MFEA
| SOEA 1.2 SOEA
200 0.74 \ MFEA MFEA
\ 1.1
a 0.72 1\ _ 0.78
T
@ 180 5 810 0771
0.70 076l
0.9
160 0.68 =170
140 0.66 —— 08
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200

Number of generations

Number of generations

Number of generations

(b) Convergence trends on DS-NS dataset

Fig. 4 Convergence trends of SSD, SH, and DBI averaged across 30 independent runs for i-MFEA, SOEA, and MFEA,

respectively.

Table 2 Clustering performance of i-MFEA compared to
SOEA and MFEA, where the best result is highlighted with
bold fonts.

. DS-S DS-NS
Algorithm
ARI AMI ARI AMI
i-MFEA 0.8965 0.8734 0.4059 0.4307
SOEA 0.8843 0.8609 0.4209 0.4253
MFEA 0.8958 0.8717 0.4036 0.4238

SOEA, which also demonstrate the superiority of i-
MFEA. Figure 5 boxplots the optimized objective values
of 30 independent runs. It is observed clearly that i-
MFEA obtains the best results (minimum value) on most
of the tasks for both DS-S and DS-NS datasets. However,

the results obtained by the original MFEA are sometimes
unstable even if the dataset is separable.

4.2.2 Comparison of i-MFEA with traditional
clustering methods

In this section, i-MFEA is compared with three
traditional clustering algorithms, i.e., k-means,
agglomerative clustering, and DBSCAN. Table 3 shows
the results obtained by all the algorithms from which
we can observe that i-MFEA outperforms the three
traditional clustering algorithms according to the RIA
and MIA metrics. Table 3 shows the final clusters of
time series curves. It can be observed that DBSCAN
performs poorly while other methods achieve acceptable
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Boxplots of SSD, SH, and DBI results obtained by i-MFEA, SOEA, and MFEA, respectively.
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Table 3 Clustering performance of i-MFEA compared with
k-means, agglomerative clustering, and DBSCAN.

DS-S DS-NS
Algorithm ARI AMI ARI AMI
i-MFEA 0.8965  0.8734 04059  0.4307
k-means 0.8843  0.8609 0.363 0.393
AGC 0.8568  0.8472  0.4039 04171
DBSCAN 06186  0.6551 0.099  0.2881

solutions for the datasets. Furthermore, as the structure
of the time series dataset is often unknown beforehand,
traditional single-objective-based clustering methods
require many experiments to determine which validity
index (or the number of clusters) to use. The results
confirm the advantage of i-MFEA, being capable of
finding various clustering results simultaneously.

Concerning the clustering centroids, the clustering
task with the objective function SSD can obtain
representative clustering centroids. Although the cluster
centroids obtained by using DBI and SH can be used
to separate time series curves, they cannot represent the
typical patterns of the clusters. The k-means can obtain
smooth clustering centroids. DBSCAN and hierarchical
clustering are not centroid-based clustering and thus
obtain no clustering centroid.

As for objective functions of the tasks, although
clustering tasks with objective function SH have good

convergence and stability of solutions as observed in
Figs. 4 and 5, the results show that the curves are
divided into three distinct clusters rather than four. The
clustering tasks with objective function SSD evenly
divide the dataset, and the dissimilarity among the
clusters is relatively obvious. The performance of the
DBI is between the use of SH and SSD.

5 Discussion

5.1 Effect of different distance measures

This section investigates i-MFEA for clustering based
on different distance measures. Amongst all tasks with
different distance measures, the task built on the DTW
distance performs the worst according to the clustering
results shown in Fig. 6 and the convergence curves
shown in Fig. 7. The reason may be that time series data
in the experiment not only have time delays at the x-axis,
but also own large perturbations at the y-axis. Pearson
correlation coefficient has the best effect and can capture
time-varying characteristics. (It can be attributed that
the datasets here are generated using the sine function,
and the trend of increase and decrease is predominant).
The Euclidean distance and the cosine wavelets have
medium effects. Overall, from the results, we can
conclude that i-MFEA can obtain clustering solutions of
time series corresponding to different distance measures
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Fig. 6 Time series clustering by i-MFEA using different distance measures (Euclidean distance, DTW, cosine, and Pearson) as
the objective function, where different colors are used to distinguish data.
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Fig. 7 Convergence trends (averaged across 30 independent runs) of objective functions, ARI, and AMI obtained by i-MFEA

based on different similarity measures.

simultaneously. This is helpful for users to capture the
features of the dataset.

5.2 Anomaly detection by clustering

i-MFEA can find multiple clustering results under
different settings of k in a single algorithm run. The
best clustering results (the best k and the centroids) are
therefore can be identified through an ad-hoc validation.
These results can further be used for anomaly detection.
Here, we investigated multi-tasking clustering with
different k. The Pearson correlation coefficient based
SSD is used as the objective function. The clustering
results for DS-S and DS-NS are shown in Table 3.

From the results, we can see that for DS-S, the best k is
4. For DS-NS, though the best k is not evident, decision-
makers can choose amongst the clustering results
according to their preferences. Moreover, anomaly
detection can be achieved when clustering against
different k. As the number of clusters k increases, the
abnormal data would be detected as a separate cluster for
dataset DS-S, while the four well-clustered subsets will
not be further divided. For the DS-NS, the artificial
abnormal curve and curves that are similar to it are
identified and grouped into a separate cluster on the
tasks with a large k.

6 Conclusion

Time series data clustering is a long-standing and
challenging issue!**%. Since the feature of time
series data is complicated and diverse, the dataset
structure and clustering objective are fuzzy. EMT
can achieve various clustering results under different
clustering criteria in a single run, which provides great
convenience for decision-makers. Motivated by this,
this study investigates time series clustering via the
EMT framework. Since there are similarities between
tasks, under the EMT framework a better solution

would be obtained with the help of the information
exchange amongst neighboring solutions (tasks) during
the evolution process.

MFEA, an effective method for multi-tasking
optimization, however, shows unstable performance for
time series clustering. This study, therefore, proposes
a novel vertical cultural transmission strategy that
can greatly improve the performance of MFEA for
time series clustering. To examine the efficiency and
effectiveness of the improved MFEA, namely, i-MFEA,
several experiments are conducted. The results show
that i-MFEA shows better or at least competitive
performance compared to the single-objective EA-
based clustering method and the three state-of-the-art
traditional methods (k-means, agglomerative clustering,
and DBSCAN). Moreover, clustering results based on
different distance measures, or different number of
clusters k can be obtained by i-MFEA in a single run.

For future studies, experiments based on real-world
time series datasets would be conducted. In addition,
other encoding strategies, e.g., polynomial coding,
would be studied for higher-dimensional time series data
to make clustering more effective. Moreover, self-paced
learning would be considered to improve the robustness
of the algorithm**. Lastly, it is reported that the
optimization of data clustering shows apparently multi-
modality!®=#8!_ Therefore, focusing on obtaining more
global optimal solutions by multi-tasking optimization
is an interesting topic.
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