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Exploring a Promising Region and Enhancing Decision Space Diversity
for Multimodal Multi-Objective Optimization

Fei Ming and Wenyin Gong�

Abstract: During the past decade, research efforts have been gradually directed to the widely existing yet less

noticed multimodal multi-objective optimization problems (MMOPs) in the multi-objective optimization community.

Recently, researchers have begun to investigate enhancing the decision space diversity and preserving valuable

dominated solutions to overcome the shortage caused by a preference for objective space convergence. However,

many existing methods still have limitations, such as giving unduly high priorities to convergence and insufficient

ability to enhance decision space diversity. To overcome these shortcomings, this article aims to explore a promising

region (PR) and enhance the decision space diversity for handling MMOPs. Unlike traditional methods, we propose

the use of non-dominated solutions to determine a limited region in the PR in the decision space, where the Pareto

sets (PSs) are included, and explore this region to assist in solving MMOPs. Furthermore, we develop a novel

neighbor distance measure that is more suitable for the complex geometry of PSs in the decision space than

the crowding distance. Based on the above methods, we propose a novel dual-population-based coevolutionary

algorithm. Experimental studies on three benchmark test suites demonstrates that our proposed methods can

achieve promising performance and versatility on different MMOPs. The effectiveness of the proposed neighbor

distance has also been justified through comparisons with crowding distance methods.

Key words: multimodal multi-objective optimization; evolutionary algorithms; promising region; neighbor distance;

decision space; coevolution

1 Introduction

Multimodal multi-objective optimization problem
(MMOP) is a type of multi-objective optimization
problem that contains more than one Pareto set
(PS) in the decision space corresponding to the
same Pareto front (PF) in the objective space. It is
widely existent in scientific research and real-world
applications such as credit card fraud detection[1],
multi-objective knapsack problem[2], neural architecture
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search[3], furnace-grouping problem[4], home health
care services[5], and manufacturing scheduling[6]. In
the past decade, solving MMOPs attracted increasing
research attention in the multi-objective optimization
community[7, 8].

Generally, an MMOP can be formulated as follows:
Minimize F.x/ D .f1.x/; f2.x/; : : : ; fm.x//T;
subject to x 2 S (1)

where m represents the number of objective functions,
x D .x1; x2; : : : ; xn/

T represents an n-dimensional
decision vector, n represents the number of decision
variables, and x 2 S and S � Sn represent the search
spaces�, respectively.

� Basic concepts of MMOPs can be found in Section S2.2 in the Electronic
Supplementary Material (ESM).
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Figure 1 depicts an illustration of MMOP features.
The left figure shows two solutions, A and B , which are
marked in black and gray dots, on the PF in the objective
space. The right figure shows three PSs in the decision
space corresponding to the PF and the Pareto optimal
solutions corresponding to A and B . Both A and B have
three corresponding Pareto optimal solutions on each of
the three PSs.

Given that the goal of solving an MMOP is to
provide as many Pareto optimal solutions (i.e., PSs) as
possible for the decision makers to select[9], enhancing
the decision space diversity on the PSs aside from
the objective space convergence and diversity is a
crucial issue. Recent research works focused on
balancing objective space convergence, objective space
diversity, and decision space diversity[10] to better
solve MMOPs. Particularly, some tended to preserve
solutions considering not only the objective space
diversity but also the decision space diversity[9, 11], while
others used auxiliary techniques (i.e., clustering[12],
archive[13], and reference vectors[14]) to maintain the
diversity in the decision space to assist in the search
for the PF and PSs. However, most, if not all, existing
multimodal multi-objective optimization evolutionary
algorithms (MMOEAs) still suffer from the following
two limitations:

First, most existing MMOEAs have an unduly high
priority for convergence, eliminating some valuable
well-spread dominated solutions in the decision space
that can help explore and exploit the PSs[14]. In other
words, dominated solutions are rarely considered to be
preserved in the evolutionary process.

Second, the widely used crowding distance[15] is
designed to enhance the diversity of the PF in the
objective space. However, it is ineffective in some cases
for the PSs in the decision space because the geometric
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Fig. 1 Illustration of MMOP features. The left figure shows
two solutions (A and B) on the PF in the objective space, while
the right figure shows three PSs corresponding to the PF and
the corresponding Pareto optimal solutions to A and B.

characteristic of PSs varies from that of PF�.
To overcome the above limitations, this paper

proposes to explore a promising region (PR) in the
decision space using a neighbor distance diversity metric
for handling MMOPs. The main contributions of this
work can be summarized as follows.

(1) We propose a concept in MMOPs named PR,
which is defined by the obtained non-dominated
solutions. It is a subspace of the decision space where
the PSs can be partially or fully included. Moreover,
we propose an � threshold technique to further restrict
smaller areas named limited region (LR) in the PR
that includes PSs. Furthermore, exploring the LR
evenly (i.e., maintaining a good distribution in the
LR and ignoring objective space convergence and
objective space diversity) can facilitate the exploration
and exploitation of PSs.

(2) We propose a novel diversity metric named
neighbor distance, which utilizes the sum of Euclidean
distances of the solution to a set of its neighbor
solutions, rather than only two adjacent solutions in
each dimension in the crowding distance, to measure its
sparsity in the decision space. The neighbor distance can
favor sparse solutions in dealing with complex (e.g., non-
functional, piecewise, symmetrical, and discontinuous)
geometric shapes of PSs.

(3) Based on the above-mentioned techniques, we
propose a novel dual-population-based coevolutionary
MMOEA. A convergence-prior-guided population can
maintain a non-dominated solution set with an
outstanding degree of diversity in the decision space
as the final output, while a PR-guided population can
explore the decision space to assist the search for PSs by
maintaining a well-distributed solution set in the LR.

Experimental studies on three benchmark test suites
of 40 instances verifies that our proposed methods
can achieve considerably promising performance and
versatility on different MMOPs, indicating that exploring
the PR and LR can facilitate the search for PSs.
Additionally, we verifies that in dealing with MMOPs,
our proposed neighbor distance performs better in
enhancing the decision space diversity than three
crowding distance metrics[9–11].

The remainder of this article is organized as follows.
Section 2 briefly reviews the existing MMOEAs and
presents the motivations of this work. Section 3
elaborates on our proposed methods, including the
PR and LR concepts, the neighbor distance, and

� Detalied analysis are presented in Section 2.2 and Section 3.2.
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the proposed MMOPR algorithm. Furthermore, the
experimental studies are detailed in Section 4. Finally,
the conclusions and future work directions are presented
in Section 5.

2 Existing MMOEA and Motivation

2.1 Existing MMOEAs

Existing MMOEAs can be roughly categorized into two
classes based on whether objective space convergence is
preferred or balanced.

2.1.1 Convergence-prior MMOEAs
The first category of MMOEAs prefers objective
space convergence (i.e., the approximation to the
PF) during the evolutionary process. Liang et al.[11]

proposed the DN-NSGA-II algorithm that considered
crowding distance in the objective and decision spaces
for mating and environmental selections among non-
dominated solutions. Yue et al.[9] proposed a particle
swarm optimizer (PSO) that identifies the niches by
a ring topology and enhanced the decision space
diversity among non-dominated solutions by a special
crowding distance. Tanabe and Ishibuchi[16] introduced
a decomposition-based framework that associated each
non-dominated solution to a reference vector, and then
compared the solutions in the same subproblem based
on their decision space diversity. Liu et al.[13] proposed
the use of two archives to maintain the diversities
in objective and decision spaces, and then tailored a
recombination strategy that detects convergence-related
variables and generates final PSs using the values of
these variables. Lin et al.[12] proposed a dual clustering
method that first uses clustering in the decision space
and then employs clustering in the objective space to
maintain the diversity of non-dominated solutions. Peng
and Ishibuchi[17] proposed the use of a subset selection
method to select a subset from the non-dominated
solutions with an outstanding degree of diversity in
both spaces. Fan and Yan[18] proposed a zoning search
method to divide the entire search space into various
subspaces and then reduce the size of the search space
and the complexity of the problem to better promote
decision space diversity among non-dominated solutions.
Li et al.[19] proposed the use of a self-organizing
quantum-inspired PSO that determines the neighbor
leader of particles and adopts a zone-searching method
to update particles. Further, they proposed a special
archive to maintain Pareto optimal solutions. Li et al.[20]

proposed a two-archive strategy that uses one archive

for maintaining objective space diversity and another
for decision space diversity among non-dominated
solutions. Liang et al.[21] proposed a clustering-based
crowding distance to calculate the diversity metric
to maintain the diversity of non-dominated solutions.
Qu et al.[22] proposed dividing the decision space into
grids and maintaining the decision space diversity of
non-dominated solutions through grid-based density.

2.1.2 Convergence-balanced MMOEAs
The second category of MMOEAs aims to balance
objective space and decision space diversity, and
tries to overcome the shortage of convergence-prior
methods. Compared with the first category, this is an
emerging topic in the field of multimodal multi-objective
optimization. Li et al.[14] proposed a weighted indicator
that considered decision space diversity when evaluating
the convergence performance of solutions. They also
maintained an archive with the aim of approximating
the PF. Zhang et al.[23] proposed a two-stage double-
niched evolution strategy that uses a niching in the
decision space in the first stage and a niching in both
spaces in the second stage. They also proposed a
decision density self-adaptive strategy to balance the
diversities in both spaces. Han et al.[24] proposed an
information-utilization method that randomly extracts
decision variable information from the current optimal
solutions to construct an information vector to generate
elite solutions for MMOEAs. Given that much decision
variable information is used, this method can avoid
quickly converging to and being trapped in easy-to-
find PSs. Liu et al.[25] proposed to consider the local
convergence quality of solutions to evaluate the decision
space distances and estimated the decision space density
values based on the transformed distances. Yue et al.[26]

proposed an improved crowding distance that considers
the objective and decision space diversities, in which if
a dominated solution has a relatively larger crowding
distance, it has a higher chance to survive.

2.2 Motivations

Among the above-mentioned methods, the first category
(i.e., convergence-prior) of MMOEAs always prefers
objective space convergence. These methods discard
all dominated solutions during the evolutionary process.
Nevertheless, dominated solutions with a good degree of
decision space diversity might be valuable in exploring
and exploiting PSs[14, 23, 25]. However, these methods
suffer from the limitation of assigning an absolute
priority to convergence. For the second category, there
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are currently few studies that focus on preserving
promising dominated solutions. Although convergence
and diversity are balanced in these methods, convergence
still has a high priority (e.g., convergence is taken into
consideration either in evaluating solutions or during the
selection procedure). As pointed out in Ref. [14], there
is currently no work that considers solutions of worse
objective values (i.e., dominated solutions). Inspired by
the concept of constraint-ignorance[27] and promising
area[28] in the constrained multi-objective optimization
field, we come up with the idea of maintaining a well-
spread solution set in a potential region where PSs are
included to assist the exploration and exploitation of PSs.
Thus, to fill the above-mentioned research gap and better
balance convergence and diversities in both spaces, we
propose a novel concept named PR.

We can find that many of the above-reviewed
MMOEAs use the original or improved crowding
distance[15] as a metric of decision space diversity. The
crowding distance has been originally proposed for
enhancing the objective space diversity (i.e., diversity
on the PF) and has become considerably popular owing
to its effectiveness in practice. It first calculates the
distance from the solution to its two adjacent solutions
in each objective and sums the distances on all objectives.
In the object space, given that the objects conflict with
each other, the shape of the PF must be a piecewise
continuous manifold that is subject to a functional
relation[29]. However, because the decision variables
do not conflict with each other, the shape of PSs can
be typically more complex and nonfunctional. Thus,
the crowding distance is less effective in enhancing the
decision space diversity on the PSs.

To better illustrate this, Fig. 2 depicts an artificial
scene in a two-dimensional decision space. As shown
in Fig. 2a, there are three PSs and eight solutions. We
assume that four solutions must be selected to survive.
Subsequently, we depict the crowding distance value
of solutions A, B , a, and b. Given that the value of
x2 are equal on each PS, the crowding distances are
represented by the gray lines (for a and b) and black lines
(for A and B). Apparently, solutions a and b have larger
crowding distances than solutions A and B . However,
ideally A and B should also be selected because they
are distributed on sparser PSs and can facilitate better
exploitation of the uppermost two PSs. Furthermore,
solutions A and B (marked in black dots) have better
distance values than a and b if we generate a neighbor
area of each solution and evaluate the diversity of these

𝑥1

𝑥2

a b

Pareto set

Crowding distance of A and B on x1 

Crowding distance of a and b on x2

 B A

(a)

𝑥1

𝑥2 Pareto set 

Neighbor region

(b)

Fig. 2 Artificial scene in a 2D decision space. (a) Illustration
of the shortages of the crowding distance and (b) the
proposed neighbor concept.

solutions using the information of all neighbor solutions,
as shown in Fig. 2b.

In the next section, we present in detail our proposed
methods, including the PR and LR concepts, the
neighbor distance, and the proposed MMOPR algorithm.

3 Proposed Method

3.1 Promising region and limited region

3.1.1 Promising region
We elaborate on the proposed PR and LR concepts in
the first part of this section. The definition of identifying
a solution in the PR can be expressed as follows:

Definition 3.1 Given a non-dominated solution set
S , zmax D max xi ; x 2 S; i D 1; 2; : : : ; n. A solution y
is in the PR if 9yi 6 zmax

i ; i D 1; 2; : : : ; n.
In other words, if the value of any dimension (decision

variable) of a solution is smaller than the maximum value
of the non-dominated solution set in this dimension, it is
in the PR.
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We present two ideal and two general circumstances
in Figs. 3 and 4, respectively, to better demonstrate
the rationale behind the PR concept. The maximum
values on the two dimensions (x1 and x2) are depicted
in blue dashed lines, and the PR is surrounded by blue
dashed lines. Figure 3 presents two ideal circumstances
in which the PSs are fully included in the PR. In these
two situations, the maximum decision variable values
of the obtained solution set define a PR where all the
PSs are included. Thus, exploring the PR not only helps
explore the undetected PSs (Fig. 3a) but also exploits the
sparse or undetected areas on the PSs (Fig. 3b).

Figure 4 depicts two general circumstances in which
using the maximum values on the two dimensions
is insufficient to fully cover the PSs. In Fig. 4a, the
undetected area surrounded by the green dashed lines is
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Fig. 3 Illustration of the proposed promising region concept
under ideal circumstances. The promising region, where all
the PS segments are included, is surrounded by blue dashed
lines.

not covered by the maximum x2. However, given that the
maximum x1 reaches the right side of the PSs, according
to Definition 3.1, the PR is surrounded by the maximum
x1 and the upper boundary of x2 because all the solutions
(represented by xs) satisfy xs

1 6 xmax
1 . Consequently, the

PSs can be fully included in the PR. Figure 4b presents
a more general circumstance where the PSs can be only
partially included in the PR and the upper right segment
of a PS is outside the PR. Nevertheless, in this situation,
exploring the PR can help find undetected areas on the
PSs. The PSs can be gradually detected and covered
if the newly generated solutions in these undetected
areas in the PR can be detected, i.e., the decision space
diversity can be enhanced.

In summary, the PR can partially or fully include the
PSs, and exploring the PR can facilitate a better search
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Fig. 4 Illustration of the proposed promising region concept
under general circumstances. The promising region includes
all the PS segments (a) and can promote the search for
undetected areas (b).
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for the PSs.
3.1.2 Limited region
Although the PR has the above-mentioned outstanding
properties, the PR can be considerably large if the
decision space is large. Consequently, it will be
considerably challenging to locate the PSs when
exploring a large PR. Thus, with the aim of reducing
the search space and facilitating the location of PSs, we
propose an � threshold technique to further restrict an
LR in the PR.

First, we normalize the values of the objective
functions to eliminate the influence of different scales.
The maximum (zmax) and minimum (zmin) values are
obtained from all solutions of the union of the solution
set S and the non-dominated solution set N as follows:

zmax
i D max fi ; x 2 S [N ; i D 1; 2; : : : ; m (2)

and
zmin

i D min fi ; x 2 S [N ; i D 1; 2; : : : ; m (3)

Then the normalization is performing using

Nfi .x/ D
fi .x/ � zmin

i

zmax
i � zmin

i

(4)

Subsequently, we calculate the average sum of
objective function values of the obtained non-dominated
solution set as follows:

objaverage
D

P
x2S C

obj
x

jSj
(5)

where S is the obtained non-dominated solution set. The
convergence metric C obj is calculated using

C obj
x D

mX
iD1

Nfi .x/ (6)

where Nfi .x/ represents the i-th normalized objective
function value of solution x. Then, all solutions in the
solution set that satisfy the following

C obj 6 � � objaverage (7)

are in the LR and � > 1 is a threshold (enlarge scale) to
control the size of the LR.

The rationale of the proposed � threshold-based LR
technique is illustrated in Fig. 5. In Fig. 5a, the red
line (i.e., the PF) can represent objaverage because all non-
dominated solutions are on the PF, and the green dashed
line can represent � � objaverage. Thus, the shaded area
is the LR. In the decision space, the function of LR can
be illustrated in Fig. 5b. The � threshold further restricts
the LR and reduces the search space to explore. The PR
and LR provide a two-round selection. In the first round,
solutions in PR are all selected, and in the second round,
solutions in both PR and LR are selected.

𝑓2 Pareto front

Upper boundary of limited region 

Limited region

y1 y′1
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y2
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Fig. 5 Illustration of the proposed ��� threshold and the LR.
Notably, the objective space has been normalized.

The reason why directly restricting LR is not suitable
can also be illustrated by Fig. 5. As shown in Fig. 5b,
if the PR is not first used, then the solutions outside
the LR (green triangles) will be eliminated and only
solutions in the LR (blue triangles) can be preserved.
Consequently, the upper PS is less likely to be detected.
On the contrary, if we select solutions in PR in the first
round, then these solutions are preserved. Thereafter,
these solutions (green triangles) can possibly be selected
in the second round if the number of solutions in the LR
(blue triangles) does not meet the required size. This
situation is highly possible in the early stage of evolution
as most solutions are not near the PSs.

Figure 6 exhibits the function of restricting LR under
the circumstance of Fig. 4b. In this figure, we use the
gray dashed lines to represent all the areas that satisfy
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Fig. 6 Illustration of the function of the proposed limited
region under the most general situation.

Formula (7), i.e., LR. The intersections of LR and PR
contain many undetected areas on PSs.

3.2 Neighbor distance

The proposed neighbor distance can be calculated
through the procedure of Algorithm 1. First, the
Euclidean distances from a solution x to other solutions
in the solution set S are calculated (line 3) and sorted
in ascending order (line 4). Subsequently, Dneighbor

x is
obtained by summing the former ns distance values (line
5). The Euclidean distance is formulated as follows:

dist.x; y/ D

vuut nX
iD1

.fi .x/ � fi .y//2 (8)

where i D 1; 2; : : : ; n denotes the i -th decision variable.
Notably, fi denotes the value of the i-th decision
variable in Eq. (8).

To better illustrate the advantages of neighbor distance
compared with crowding distance in Fig. 7, we create an
artificial scene wherein the PSs are nonfunctional (two

Algorithm 1 Calculation of the neighbor distance
Input: S (solution set), ns (neighbor size)
Output: Dneighbor (neighbor distance)

1: Dneighbor
 ∅;

2: for each solution x 2 S do
3: d  Calculate the Euclidean distance from x to other

solutions in S;
4: d Sort d in ascending order;
5: D

neighbor
x  

Pns
iD1 di ;

6: end for
7: return Dneighbor

symmetrical segments). In the created scene, we need to
select two solutions from E, F, G, and H. When using
the crowding distance, the comparison is obtained as
follows:

Dcrowding.E/ D .xE
1 � x

f
1/C .x

F
1 � x

E
1 /;

Dcrowding.F/ D .xF
1 � x

e
1/C .x

g
1 � x

F
1 /;

∵ xf
1 D x

e
1 and xE

1 D x
F
1 ;

∴ Dcrowding.E/ D Dcrowding.F/:
Similarly, Dcrowding.G/ D Dcrowding.H/:
However, if we use the proposed neighbor distance,

the comparison is as follows:
Dneighbor.E/ D dist.E; e/C dist.E; g/C .xE

1 � x
f
1/;

Dneighbor.F/ D dist.F; f /C .xF
1 � x

e
1/C .x

g
1 � x

F
1 /;
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Fig. 7 Illustration of the advantages of the neighbor
distance compared with the crowding distance. Solutions
A and C have the same performance as B and D using
crowding distance as the diversity metric (a), and have better
performances using the proposed neighbor distance as the
metric (b).
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∵ .xF
1 � x

e
1/ D .x

E
1 � x

f
1/ and dist.F; f / D dist.E; e/;

∴ Dneighbor.E/ > Dneighbor.F/:
Similarly, Dneighbor.G/ > Dneighbor.H/:

Thus, the neighbor distance can correctly evaluate the
sparsity of solutions in dealing with the non-functional
geometry of PSs.

3.3 MMOPR algorithm

3.3.1 Framework
Based on the above-mentioned techniques, we propose
a novel dual-population-based coevolutionary MMOEA
named MMOPR. The MMOPR procedure is illustrated
in the flowchart in Fig. 8. In MMOPR, Population 1 (the
convergence-prior-guided population) and Population 2
(the PR-guided population) coevolve. The mating
selections of these two populations use different metrics,
and the environmental selections use different priorities.
Finally, Population 1 is output as the final solution set.

The pseudocode of the MMOPR framework is
presented in Algorithm 2. The inputs include two
parameters � and ns, and they are set to 2 and
p
N , respectively. After the initialization of the two

populations, P1 and P2 (line 1), the neighbor distance
and convergence performance must be calculated for
mating selections (lines 2 and 3). In the main loop,
the following steps are performed. First, the mating
pools M1 and M2 of P1 and P2 are selected through
Algorithm 3 based on Dneighbor and Cobj, respectively
(lines 7 and 9). Additionally, their offspring sets
are generated by the genetic algorithm (GA) operator
(lines 8 and 10). Furthermore, P1 is updated by the
convergence-prior-guided environmental selection using
Algorithm 4, while P2 is updated by the PR-guided
environmental selection using Algorithm 5.

3.3.2 Mating selection
The mating selections use double-tournament selection

as the basis, and the pseudocode is presented in
Algorithm 3. At each time two solutions are randomly
selected (line 3), and the one with a better value of the
comparison criterion is added into M (lines 4–7). If
they have the same value according to the comparison
criterion, we randomly add one to M (line 9). The
tournament selection strategy can guarantee that all
solutions, including better and worse-performing ones,
are possibly selected. Furthermore, those elite solutions
(with a considerably outstanding value of the comparison
criterion) may be repeatedly selected. Thus, excellent

Algorithm 2 Framework of MMOPR
Input: N (population size), Gmax (termination condition), �

(enlarge scale of limited region), ns (neighbor size)
Output: P (final solution set)

1: P1;P2  Generate the initial populations randomly;
2: Dneighbor

 Calculate the neighbor distances of solutions in
P1 by Algorithm 1;

3: Cobj
 Calculate the convergence performances of solutions

in P2 by Eq. (6);
4: g Set the current generation zero;
5: while t < Gmax do
6: t  t C 1;
7: M1  Select the mating pool of P1-based on Dneighbor by

Algorithm 3;
8: O1  Generate the offspring solution set of P1-based on

the GA operator;
9: M2  -Select the mating pool of P2-based on C obj by

Algorithm 3;
10: O2  Generate the offspring solution set of C P2-based

on the GA operator;
11: P1;Dneighbor

 Update P1 by the convergence-prior
guided environmental selection by Algorithm 4 using
P1 [O1 [O2;

12: P2; C
obj  Update P2 by the promising region guided

environmental selection by Algorithm 5 using P2 [O1 [

O2;
13: end while
14: return P1

Y

Initialize 

Population 1 and 
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N

Output 

Population 1

Generate 

Offspring 1
Mating selection 
for Population 1

Update Population 1 by 
convergence-prior-guided 

environmental selection using 
Offspring 1 & Offspring 2
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Mating selection 
for Population 2

Generate 

Offspring 2

Update Population 2 by 
promising region-guided 

environmental selection using 
Offspring 1 & Offspring 2

Fig. 8 Flowchart of the MMOPR procedure. The two populations generate offspring independently and evolve using Offspring
1 and Offspring 2.
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Algorithm 3 Mating selection
Input: N (required size), C (candidate solution set), K

(comparison criterion)
Output: M (selected mating pool)

1: M ∅;
2: while jMj 6 N do
3: x; y Randomly select two solution from C;
4: if Kx > Ky then
5: M M [ y;
6: else if Kx < Ky then
7: M M [ x;
8: else
9: M Randomly add x or y to M;

10: end if
11: end while
12: return M

Algorithm 4 Convergence-prior-guided environmental
selection
Input: N (required size), C (candidate solution set)
Output: P1 (updated solution set)

1: F Determine the non-dominated front of solutions in C by
fast non-dominated sorting;

2: Dneighbor
 Calculate the neighbor distances of solutions in

C by Algorithm 1;
3: C  Sort solutions in C based on K in ascending order;
4: C  Further sort solutions in C based on Dneighbor in

ascending order;
5: P1  Select the former N solutions;
6: return P1

genes can be better utilized. For the convergence-prior
population P1, the neighbor distance is adopted as the
comparison criterion. This is because such solutions
distributed in sparse areas in the decision space can aid
in exploring and exploiting PSs. As a consequence of
the fact that convergence is preferred in environmental
selection, preferring decision space diversity in the
mating strategy can better balance convergence and
decision space diversity. The PR-guided population P2

adopts the convergence performance C obj as the criterion
because convergence is ignored in the PR-guided
environmental selection. Thus, preferring solutions
with better objective function values can accelerate
the approximation to the LR and reduce the function
evaluations in invalid areas that are far from PSs.

According to the framework, mating selections and the
generation of offspring sets for P1 and P2 are conducted
separately. In a small decision space, independent mating
and mixed mating may have very small differences.
However, given that the mating strategy of P1 prefers
solutions on PSs while the mating strategy of P2

Algorithm 5 Promising region guided environmental
selection
Input: N (required size), C (candidate solution set), P1 (updated

solution set), � (enlarge scale of limited region)
Output: P2 (updated solution set)

1: P2  ∅;
2: P2  Preselect those solutions of C that locate in the

promising region determined by Definition 3.1;
3: objaverage  Determine the average summary of objective

values of solutions in P1 by Eq. (5);
4: Cobj

 Calculate the convergence performances of solutions
in P by Eq. (6);

5: P2  Select solutions of P that satisfy Formula (7), i.e., in
the Limited Region;

6: C  C n P2;
7: while jP2j < N do
8: Dneighbor

 Calculate the neighbor distances of solutions
in C by Algorithm 1;

9: x D arg max
x2C

D
neighbor
x ;

10: P2  P2 [ x;
11: end while
12: while jP2j > N do
13: Dneighbor

 Calculate the neighbor distances of solutions
in P2 by Algorithm 1;

14: x D arg min
x2P2

D
neighbor
x ;

15: P2  P2 n x;
16: end while
17: return P2

considers solutions in the LR (mostly not on the PSs),
mixed mating may generate many useless offspring
between the PS and outside areas if the decision space is
larger.

3.3.3 Convergence-prior-guided environmental
selection

The pseudocode of convergence-prior-guided
environmental selection is presented in Algorithm 4.
Specifically, two rankings of all solutions in the
candidate solution set (i.e., P1 [O1 [O2) are obtained
first (lines 1 and 2): the non-dominated front and
the neighbor distance. The non-dominated front is
prioritized (line 3) so P1 prefers non-dominated
solutions. Then, the solution set is secondarily sorted by
neighbor distance (line 4); consequently, solutions in
the same non-dominated front will be sorted. Finally,
the former N solutions are selected for P1. Notably,
objective space diversity is not considered in this
selection strategy. This is because P1, which prefers
convergence, will soon be filled with non-dominated
solutions on PF and PSs. On this basis, the PSs will
be well-covered if the decision space diversity is well-
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enhanced. Hence, the PF can also be well-covered. In
the experiments, we evaluated this through comparative
studies in terms of objective space convergence and
diversity.
3.3.4 Promising region guided environmental

selection
The pseudocode of PR-guided environmental selection
is presented in Algorithm 5. The candidate solution
set of this procedure is P2 [O1 [O2. Two rounds of
preselection are performed in this selection procedure.
In the first round, solutions in the PR are preselected
(line 2), after which solutions in the LR are preselected
(lines 3–5) in the second round. If the number of
preselected solutions in P2 is not enough (less than N ),
then the solutions with the best neighbor distance are
selected one by one from the remainder until the number
meetsN (lines 7–11). In the earlier evolutionary process,
many solutions may be distributed outside the LR. By
this deletion strategy, the diversity in the PR can be
guaranteed, and thus, more LRs can be detected then.
On the contrary, if the size exceeds N , then, solutions
with the worst neighbor distance are deleted one by one
until the size meets N (lines 12–16). The two rounds
of preselection guarantee that the preselected solutions
are in LR. Thus, the deletion strategy can enhance the
decision space diversity by the neighbor distance.

3.4 Computational complexity

Suppose N is the population size, and m and
n denote the number of objectives and decision
variables, respectively. The computational complexity
of calculating neighbor distance is O.nN 2/, while the
computational complexity of using Definition 3.1 is
O.nN/. The convergence-prior-guided environmental
selection consumesO.mN 2/ for the fast non-dominated
sorting, and O.nN 2/ for calculating the neighbor
distance. The PR-guided environmental selection
consumes O.n.N /2/ for calculating the neighbor
distance in the deletion strategies. Therefore, the overall
computational complexity is O.nN 2/ or O.mN 2/,
which is determined by the values of n and m (i.e., the
decision variable and the objective function dimensions).

4 Experimental Study

This section presents the details of our experimental
studies, including the experimental settings in
Section 4.1, the comparison studies in Section 4.2, the
ablation and parameter analysis in Section 4.3, and
the discussions on the proposed neighbor distance

in Section 4.4. All experiments are conducted on
PlatEMO[30].

4.1 Experimental settings

4.1.1 Benchmark problems
Three widely used MMOP benchmarks are used in the
experiments: MMF[9], IDMP[25], and MMMOP[13]. The
parameters, features, and challenges of these benchmark
MMOPs are presented in detail in Section S2.3 to
Section S2.5 in the ESM.

4.1.2 Algorithms in comparison
Six state-of-the-art MMOEAs are chosen for comparison
studies. These include three state-of-the-art convergence-
prior MMOEAs: DN-NSGA-II[11], MO-Ring-PSO-
SCD[9], and TriMOEA-TA&R[13]; two highly advanced
convergence-balanced MMOEAs: MMOEADC[12] and
MMEAWI[14]; and one very recently proposed MMOEA:
HREA[10].

4.1.3 Parameter settings
All the algorithms in this work use the operators of GA
to generate offspring. The simulated binary crossover
(SBC)[31] and polynomial mutation (PM)[15] are used
with the following parameter settings:
� The crossover probability is pc D 1; the

distribution index is �c D 20;
� The mutation probability is pm D 1=n; the

distribution index is �m D 20.
The parameter settings about population size

N , maximum iterations Gmax, and maximum
evaluations Emax are presented in Table S1 in the
ESM. All algorithms in comparison and benchmark
problems adopt the same parameters as their original
settings, i.e., the default settings in PlatEMO. The
MMOPR parameters include the � and ns used in the
proposed LR determination and neighbor distance. In
MMOPR, they are set to 2 and

p
N . Their parameter

analysis will be studied in detail in Section 4.3.

4.1.4 Performance indicator
In this work, the IGDX indicator[11] is adopted as the
performance indicator to evaluate the performance of
MMOPR and other methods in terms of decision space
convergence and diversity. The IGDX indicator can be
regarded as IGD[32] in the decision space. To calculate
IGDX, a set of uniformly distributed reference points are
generated on the true PS of an MMOP instance according
to the approach of Ref. [33]. Then, the distances of each
reference point to its nearest solution among the solution
set are summed as the IGDX value. A smaller IGDX
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value indicates a better result. In addition, the HV[32]

indicator is applied to evaluate the performance in the
objective space due to its Pareto-compliant advantage.
Here, .1:1; : : : ; 1:1/ is used as the reference point in the
normalized objective space to calculate the HV value.
The CR[34] indicator is also adopted to measure the
cover rate of the obtained solution set on the true PSs
in the decision space to evaluate the spread. The three
indicators are all used in this work to achieve a fair
comparison[35]. Only IGDX and CR are adopted for
the MMMOP test suite in this work. This is because
this test suite lacks some necessary information, which
results in NaN values in calculating the HV indicator. In
general, the HV indicator can measure the convergence
and objective space diversity, while the IGDX and CR
indicators can measure the decision space diversity.

4.1.5 Statistical analyses
Each algorithm executes 30 independent runs on each
test instance. The mean and standard deviation values of
HV, IGDX, and CR are recorded. The Friedman test with
the Holm correction at a significance level of 0:05 and
the Wilcoxon rank-sum test with a significance level of
0:05 are used to perform the statistical analysis by means
of the KEEL software[36]. Additionally, “C” “�”, and

“�” are used to show that the result of other algorithms
is significantly better than, significantly worse than,
and statistically similar to those obtained by MMOPR
according to the Wilcoxon test, respectively.

4.2 Comparison studies

In the first part of the experiments, we compare the
MMOPR with the selected six state-of-the-art MMOEAs
on the selected benchmarks. Guidance on how to read
the results on PF and PS in this paper is provided in
Section S2.2 in the ESM.

The HV, IGDX, and CR results on the MMF test
suite are reported in Tables 1–3. On the MMF test suite,
MMOPR obtains the best overall results. The final PSs
obtained by MMOPR are depicted in Fig. 1, which shows
that the MMOPR can identify all the PSs and achieve
a good degree of diversity. In Fig, 4, we depict the
PSs obtained by all algorithms on MMF3, MMF7, and
MMF8. Through the detailed comparisons, it can be
clearly seen that the final solution set of MMOPR is
evenly distributed on the PSs, revealing that it obtains the
best convergence, objective space diversity, and decision
space diversity.

The results of HV, IGDX, and CR on the IDMP test
suite are reported in Tables S5–S7 in the ESM. Given

Table 1 Statistical results of HV obtained by MMOPR and other methods on MMF benchmark problems. The best result in
each row is highlighted. “CCC” “���”, and “���” are used to show that the result of other algorithms was significantly better than,
significantly worse than, and statistically similar to those obtained by MMOPR according to the Wilcoxon test, respectively.

Problem DNNSGAII MO-Ring-PSO-SCD TriMOEATAR MMEAWI MMOEADC HREA MMOPR
MMF1 0.9068 (0.0001)� 0.9058 (0.0006) � 0.9058 (0.0020) � 0.9065 (0.0003) � 0.9053 (0.0011) � 0.9053 (0.0015) � 0.9068 (0.0001)
MMF2 0.8585 (0.0028) � 0.8481 (0.0032) � 0.8557 (0.0035) � 0.8596 (0.0002) � 0.8594 (0.0004) � 0.8585 (0.0010) � 0.8600 (0.0001)
MMF3 0.8122 (0.0021) � 0.8019 (0.0041) � 0.8081 (0.0034) � 0.8131 (0.0003) � 0.8126 (0.0004) � 0.8122 (0.0005) � 0.8136 (0.0001)
MMF4 0.7219 (0.0012)� 0.7223 (0.0002)� 0.7017 (0.0387) � 0.7221 (0.0001)� 0.7231 (0.0002)C 0.7212 (0.0010) � 0.7220 (0.0007)
MMF5 0.9687 (0.0002)� 0.9687 (0.0001)� 0.9686 (0.0008) � 0.9688 (0.0001)C 0.9683 (0.0003) � 0.9685 (0.0003) � 0.9686 (0.0004)
MMF6 0.9531 (0.0003)� 0.9531 (0.0002)� 0.9530 (0.0011) � 0.9532 (0.0001)� 0.9525 (0.0006) � 0.9525 (0.0006) � 0.9531 (0.0005)
MMF7 0.8841 (0.0001)� 0.8837 (0.0002) � 0.8838 (0.0011) � 0.8836 (0.0002) � 0.8832 (0.0015)� 0.8832 (0.0009) � 0.8841 (0.0001)
MMF8 0.9703 (0.0004)� 0.9705 (0.0002)� 0.9693 (0.0083) � 0.9702 (0.0004)� 0.9703 (0.0005)� 0.9699 (0.0007) � 0.9704 (0.0003)
C= � = � 0/2/6 0/4/4 0/8/0 1/4/3 1/5/2 0/8/0 –

Table 2 Statistical results of IGDX obtained by MMOPR and other methods on MMF benchmark problems. The best result
in each row is highlighted. “CCC” “���”, and “���” are used to show that the result of other algorithms was significantly better than,
significantly worse than, and statistically similar to those obtained by MMOPR according to the Wilcoxon test, respectively.

Problem DNNSGAII MO-Ring-PSO-SCD TriMOEATAR MMEAWI MMOEADC HREA MMOPR
MMF1 0.0406 (0.0009) � 0.0707 (0.0129) � 0.0487 (0.0028) � 0.0391 (0.0021)� 0.0440 (0.0020) � 0.0442 (0.0031) � 0.0386 (0.0010)
MMF2 0.0405 (0.0297) � 0.0529 (0.0186) � 0.0676 (0.0497) � 0.0127 (0.0041) � 0.0084 (0.0014)� 0.0129 (0.0046) � 0.0082 (0.0007)
MMF3 0.0238 (0.0115) � 0.0422 (0.0224) � 0.0392 (0.0146) � 0.0098 (0.0029) � 0.0081 (0.0017)� 0.0095 (0.0014) � 0.0079 (0.0006)
MMF4 0.0266 (0.0022) � 0.0598 (0.0135) � 0.1197 (0.1679) � 0.0235 (0.0010)� 0.0218 (0.0017)C 0.0289 (0.0021) � 0.0236 (0.0013)
MMF5 0.0815 (0.0045) � 0.1268 (0.0159) � 0.0880 (0.0079) � 0.0688 (0.0024)C 0.0778 (0.0033) � 0.0761 (0.0053)� 0.0751 (0.0046)
MMF6 0.0712 (0.0041) � 0.1039 (0.0142) � 0.0764 (0.0054) � 0.0620 (0.0017)C 0.0677 (0.0025) � 0.0690 (0.0046) � 0.0648 (0.0022)
MMF7 0.0219 (0.0008)� 0.0508 (0.0116) � 0.0370 (0.0266) � 0.0235 (0.0014) � 0.0245 (0.0040)� 0.0243 (0.0019) � 0.0220 (0.0011)
MMF8 0.0670 (0.0127) � 0.1665 (0.0695) � 0.4435 (0.0993) � 0.0519 (0.0056) � 0.0482 (0.0080)� 0.0611 (0.0047) � 0.0480 (0.0046)
C= � = � 0/7/1 0/8/0 0/8/0 2/4/2 1/3/4 0/7/1 –
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Table 3 Statistical results of CR obtained by MMOPR and other methods on MMF benchmark problems. The best result in
each row is highlighted. “CCC” “���”, and “���” are used to show that the result of other algorithms was significantly better than,
significantly worse than, and statistically similar to those obtained by MMOPR according to the Wilcoxon test, respectively.

Problem DNNSGAII MO-Ring-PSO-SCD TriMOEATAR MMEAWI MMOEADC HREA MMOPR
MMF1 0.9992 (0.0008) � 0.9824 (0.0150) � 0.9923 (0.0052) � 0.9987 (0.0016) � 0.9952 (0.0029) � 0.9966 (0.0030) � 0.9998 (0.0004)
MMF2 0.9688 (0.0486) � 0.9163 (0.0443) � 0.9375 (0.0607) � 0.9988 (0.0029)C 0.9972 (0.0080) � 0.9880 (0.0212) � 0.9978 (0.0077)
MMF3 0.9553 (0.0448) � 0.9198 (0.0481) � 0.8900 (0.0683) � 0.9970 (0.0095) � 0.9991 (0.0029)C 0.9902 (0.0117) � 0.9985 (0.0059)
MMF4 0.9999 (0.0003)� 0.9784 (0.0190) � 0.9317 (0.1260) � 0.9992 (0.0013) � 0.9988 (0.0008) � 0.9969 (0.0044) � 1.0000 (0.0000)
MMF5 0.9990 (0.0018) � 0.9783 (0.0189) � 0.9928 (0.0084) � 0.9989 (0.0014) � 0.9958 (0.0026) � 0.9972 (0.0036) � 0.9996 (0.0009)
MMF6 0.9987 (0.0021) � 0.9785 (0.0180) � 0.9945 (0.0073) � 0.9991 (0.0009) � 0.9960 (0.0031) � 0.9974 (0.0023) � 0.9997 (0.0005)
MMF7 0.9994 (0.0010)� 0.9703 (0.0282) � 0.8865 (0.1829) � 0.9970 (0.0047) � 0.9965 (0.0017) � 0.9979 (0.0034) � 0.9996 (0.0007)
MMF8 0.9864 (0.0104) � 0.9594 (0.0267) � 0.8810 (0.0533) � 0.9969 (0.0020)� 0.9912 (0.0063) � 0.9950 (0.0049)� 0.9942 (0.0048)
C= � = � 0/6/2 0/8/0 0/8/0 1/6/1 1/7/0 0/7/1 –

that the IDMP test suite has imbalanced distances in the
objective and decision spaces, some algorithms (DN-
NSGA-II and MMEAWI) performs well on HV, and
some algorithms (MMOEADC and HREA) performs
well on IGDX. However, they are unable to achieve
good results on both indicators (i.e., both spaces). On the
contrary, MMOPR can achieve the best tradeoff between
these two indicators even though it does not have the
best performance on HV and IGDX. This finding reveals
that MMOPR can handle the imbalanced distances in
IDMP. The PSs obtained by MMOPR on IDMP instances
are depicted in Fig. S2 in the ESM. Further, we select
IDMPM2T3, IDMPM3T4, and IDMPM4T1, and the
PSs obtained by all algorithms are depicted in Fig. 9.
The results show that MMOPR and MMEAWI achieve
the best convergence and diversity in these instances.
Furthermore, HREA and MMOEADC obtain better
IGDX values because they obtain better decision space
diversity. However, their HV values are worse because
they include some dominated solutions.

The results of IGDX and CR on the MMMOP
test suite are reported in Tables S8 and S9 in the
ESM. In general, MMEAWA obtains the best overall
performance in terms of IGDX, and HREA obtains
the best in CR. However, they perform poorly on the
other indicator. In addition, MMOPR obtains the best
overall performance of IGDX and CR. Figure S3 in
the ESM depicts the PSs obtained by MMOPR on all
instances of MMMOP. Clearly, MMOPR can find all
the PSs even if there are eight PSs on MMMOP6C.
Figure S5 in the ESM presents the PSs obtained by all
algorithms on MMMOP1B, MMMOP4C, MMMOP5C,
and MMMOP6C. Figure S5 in the ESM clearly shows
that only MMOPR can find all the PSs on any instance.
In summary, MMOPR obtains the best versatility on
MMMOPs.

The convergence profiles of the IGDX values of all
algorithms on MMF3, MMF7, MMF8, MMMOP1B,
MMMOP4C, and MMMOP5C are presented in
Fig. 10. As shown in Fig. 10, MMOPR obtains the
best convergence speed and final values on MMF3,
MMF7, MMF8, and MMMOP4C. In MMMOP1B and
MMMOP5C, MMOPR also obtain the best final values.

Table 4 presents the average rankings of MMOPR and
other methods on the CPU run time in all instances via
the Friedman test. From the rankings, we can see that
MMOPR is more time efficient than all the recently
proposed methods (MMEAWI, MMOEADC, and
HREA). This is because no clustering or decomposition
is needed in MMOPR.

4.3 Ablation and parameter studies

In this part, we conduct ablation studies to investigate
the effectiveness of different components and parameter
studies to test the influence of different settings in
our methods. The detailed features and functions of
all variants are presented in Table 4. The results are
reported in Tables S10–S17 in the ESM. The results
reveal that MMOPR-P1 generally performs worse than
MMOPR in most instances, revealing that the PR-guided
population is helpful. MMOPR-All also performs worse
than MMOPR, demonstrating the necessity of LR. The
results of MMOPR-� demonstrate that � must be larger
than 1, while MMOPR-3� reveals that � D 2 has
the better setting. MMOPR-MSD also demonstrates
that using C obj as the measure of the mating selection
is more effective than other variants. Furthermore,
MMOPR-N=2 and MMOPR-N=10 indicate that the
influence of different neighbor sizes is mainly on IDMP
(i.e., problems with imbalanced distances in the objective
and decision spaces).

Figure 11 depicts the distributions of two populations



Fei Ming et al.: Exploring a Promising Region and Enhancing Decision Space Diversity for : : : 337

-0.5 0 0.5

 x
1

-0.5

0

0.5

 
x

2
DNNSGAII on IDMPM2T3

-0.6 -0.4 -0.2 0 0.2 0.4

 x
1

-0.5

0

0.5

 
x

2

MO_Ring_PSO_SCD on IDMPM2T3

-0.6 -0.4 -0.2 0 0.2 0.4

 x
1

-0.5

0

0.5

 
x

2

TriMOEATAR on IDMPM2T3

-0.5 0 0.5

 x
1

-0.5

0

0.5

 
x

2

MMEAWI on IDMPM2T3

-0.6 -0.4 -0.2 0 0.2 0.4

 x
1

-0.4

-0.2

0

0.2

0.4

0.6

 
x

2

MMOEADC on IDMPM2T3

-0.5 0 0.5

 x
1

-0.4

-0.2

0

0.2

0.4

0.6

0.8

 
x

2

HREA on IDMPM2T3

-0.5 0 0.5

 x
1

-0.5

0

0.5

 
x

2

MMOPR on IDMPM2T3

(a)

-0.5 0 0.5

 x
1

-0.5

0

0.5

 
x

2

DNNSGAII on IDMPM2T3

-0.6 -0.4 -0.2 0 0.2 0.4

 x
1

-0.5

0

0.5

 
x

2

MO_Ring_PSO_SCD on IDMPM2T3

-0.6 -0.4 -0.2 0 0.2 0.4

 x
1

-0.5

0

0.5

 
x

2

TriMOEATAR on IDMPM2T3

-0.5 0 0.5

 x
1

-0.5

0

0.5

 
x

2

MMEAWI on IDMPM2T3

-0.6 -0.4 -0.2 0 0.2 0.4

 x1

-0.4

-0.2

0

0.2

0.4

0.6

 
x

2

MMOEADC on IDMPM2T3

-0.5 0 0.5

 x1

-0.4

-0.2

0

0.2

0.4

0.6

0.8

 
x

2

HREA on IDMPM2T3

-0.5 0 0.5

 x1

-0.5

0

0.5

 
x

2

MMOPR on IDMPM2T3

(b)

-0.6
-0.5-0.55

-0.5

-0.4

 
x

3

DNNSGAII on IDMPM3T4

-0.50
 x1

 x
2

0

-0.3

-0.45

-0.2

0.5

-0.5

-0.5 -0.5

0

MO_Ring_PSO_SCD on IDMPM3T4

 
x

3

 x2  x1

0 0

0.5

0.5 0.5

-0.60004

-0.60002

-0.55

-0.60000

TriMOEATAR on IDMPM3T4

 
x

3

-0.5

 x
1

 x
2

-0.59998

-0.5

-0.59996

-0.45
-0.4

-0.5

-0.5 -0.5

0

MMEAWI on IDMPM3T4

 
x

3

 x
2  x

1

0 0

0.5

0.5 0.5

-0.5

-0.5

-0.5 -0.5

0

HREA on IDMPM3T4

 
x

3

 x
1

 x
2

0 0

0.5

0.5
0.5

-0.5

-0.5 -0.5

0

 
x

3

MMOPR on IDMPM3T4

 x
2

 x
1

0 0

0.5

0.5 0.5

(c)

-0.6

-0.5-0.55

-0.5

-0.4

 
x

3

DNNSGAII on IDMPM3T4

-0.5

 x
1

 x
2

0

-0.3

-0.45

-0.2

0.5

-0.5

-0.5 -0.5

0

MO_Ring_PSO_SCD on IDMPM3T4

 
x

3

 x
2

 x
1

0 0

0.5

0.5 0.5

-0.60004

-0.60002

-0.55

-0.6

TriMOEATAR on IDMPM3T4

 
x

3

-0.5

 x
1

 x
2

-0.59998

-0.5

-0.59996

-0.45
-0.4

-0.5

-0.5

0

MMEAWI on IDMPM3T4

 
x

3

 x
2

 x
1

0 0

0.5

0.5 0.5

-0.5

-0.5 -0.5

0

 
x

3

MMOEADC on IDMPM3T4

 x
1

 x
2

0 0

0.5

0.5 0.5

-0.5

-0.5 -0.5

0

HREA on IDMPM3T4

 
x

3

 x
1

 x
2

0 0

0.5

0.5
0.5

-0.5

-0.5 -0.5

0

 
x

3

MMOPR on IDMPM3T4

 x
2

 x
1

0 0

0.5

0.5 0.5

(d)

1 2 3 4

Number of dimensions

-0.60

-0.55

-0.50

-0.45

V
al

u
e

DNNSGAII on IDMPM4T1

1 2 3 4

Number of dimensions

-0.6

-0.4

-0.2

0

0.2

0.4

V
al

u
e

MO_Ring_PSO_SCD on IDMPM4T1

1 2 3 4

Number of dimensions

-0.60

-0.55

-0.50

-0.45

V
al

u
e

TriMOEATAR on IDMPM4T1

1 2 3 4

Number of dimensions

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

V
al

u
e

MMEAWI on IDMPM4T1

1 2 3 4

Dimension No.

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

V
al

u
e

MMOEADC on IDMPM4T1

1 2 3 4

Dimension No.

-1

-0.5

0

0.5

1

V
al

u
e

HREA on IDMPM4T1

1 2 3 4

Dimension No.

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

V
al

u
e

MMOPR on IDMPM4T1

(e)

1 2 3 4

Dimension No.

-0.6

-0.55

-0.5

-0.45

V
al

u
e

DNNSGAII on IDMPM4T1

1 2 3 4

Dimension No.

-0.6

-0.4

-0.2

0

0.2

0.4

V
al

u
e

MO_Ring_PSO_SCD on IDMPM4T1

1 2 3 4

Dimension No.

-0.6

-0.55

-0.5

-0.45

V
al

u
e

TriMOEATAR on IDMPM4T1

1 2 3 4

Dimension No.

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

V
al

u
e

MMEAWI on IDMPM4T1

1 2 3 4

Number of dimensions

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

V
al

u
e

MMOEADC on IDMPM4T1

1 2 3 4

Number of dimensions

-1.0

-0.5

0

0.5

1.0

V
al

u
e

HREA on IDMPM4T1

1 2 3 4

Number of dimensions

0

0.2

0.4

0.6

V
al

u
e

MMOPR on IDMPM4T1

-0.2

-0.4

-0.6

(f)

Fig. 9 Pareto sets obtained by MMOPR and other methods in dealing with IDMPM2T3, IDMPM3T4, and IDMPM4T1 with
the median IGDX values of 30 runs.
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Fig. 10 Convergence profile of IGDX indicator values obtained by MMOPR and other methods in dealing with MMF3, MMF7,
MMF8, MMMOP1B, MMMOP4C, and MMMOP5C with the median IGDX values of 30 runs.

Table 4 Average rankings of MMOPR and other methods
on the run time obtained using the Friedman test.

Algorithm Ranking
DN-NSGA-II 1.250

MO-Ring-PSO-SCD 4.95
TriMOEAT&R 2.125

MMEAWI 6.125
MMOEADC 5.275

HREA 5.650
MMOPR 2.625

in MMOPR at different stages of the evolution, where
the dots are solutions of the convergence-prior-guided
population and the triangles are solutions of the PR-

guided population. At early stage, the convergence-prior-
guided population cannot detect the whole PSs, however,
the PR-guided population can preserve useful solutions
near the undetected areas. Therefore, the convergence-
prior-guided population achieves better diversity on the
PSs then.

4.4 Discussions on neighbor distance

In this part, we discuss the property of our proposed
neighbor distance through comparison studies with the
three other crowding distances in DN-NSGA-II, MO-
Ring-PSO-SCD, and HREA, respectively. The variants
are introduced in Table 4. The results are reported
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Fig. 11 Distributions of two populations at different stages of the evolutionary process. The blue and red dots represent solutions
on different Pareto set, while the triangles are solutions of the PR-guided population.
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in Tables S18–S25 in the supplementary file. On the
MMF test suite, MMOPR outperforms the three other
variants on all indicators, revealing that the neighbor
distance is useful in MMFs. On the IDMP test suite,
only MMOPR-DN performs better on HV but performs
significantly worse on IGDX. On the MMMOP test suite,
MMOPR obtains at least competitive results. Therefore,
the proposed neighbor distance is more effective than
the three different crowding distances. In Fig. 12, we
present the convergence process of the convergence-prior
population in dealing with IDMPM2T4. Here, Figs. 12a–
12c present the process of using the crowding distance of
DN-NSGA-II, while Figs. 12d–12f present the process
of using the neighbor distance. When the crowding
distance is used, the solutions on the PS in the upper
right corner cannot be detected as sparse region solutions
and are thus deleted. However, if we use the proposed
neighbor distance, they can be preserved and the upper
right corner PS can be found.

5 Conclusion and Future Work

In this article, we explore a so-called LR in a PR, where
PSs can be fully or partially included in the decision
space to assist the search for PSs. We also propose
a neighbor distance measure to enhance the decision
space diversity, thereby overcoming the ineffectiveness

of crowding distance in the complex geometry of PSs
in the decision space. Based on these techniques, we
propose a novel dual-population-based coevolutionary
MMOEA named MMOPR.

In the experiments, we extensively evaluate the
performance of MMOPR and the proposed neighbor
distance. The results reveal that MMOPR achieves
the best overall performance and versatility in dealing
with different MMOPs. Furthermore, the neighbor
distance can overcome the limitation of crowding
distance in dealing with the complex geometry of PSs
in the decision space. The results also reveal that our
methods are more time efficient than most state-of-the-
art MMOEAs.

Nevertheless, the results reveal that MMOPR lacks
improvement in objective space diversity, resulting in
poor HV values in IDMPs. In the future, enhancing
the objective space diversity through some advanced
techniques[37–39] is expected. Moreover, to better reflect
the feature and challenges of real-world optimization
problems, it is necessary to develop constrained
MMOP benchmark test suites since most real-world
optimization problems contain constraints[40–42]. Last
but not least, given the fact that existing MMOP
benchmarks are mostly not scaled, developing a scalable
test suite[43] with multi-objective features[44, 45] or large-
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Fig. 12 Convergence process in the decision space, where the axes represent the first and the second decision vector dimension
of the convergence-prior population in dealing with IDMPM2T4. Figures (a)–(c) use the crowding distance of DN-NSGA-II, Figs.
(d)–(f) use the proposed neighbor distance.
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scale decision vectors[3] is also expected.
The codes of MMOPR can be obtained from the

authors upon request.
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