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Mathematical Modeling and a Multiswarm Collaborative Optimization

Algorithm for Fuzzy Integrated Process Planning
and Scheduling Problem

Qihao Liu, Cuiyu Wang, Xinyu Li*, and Liang Gao

Abstract: Considering both process planning and shop scheduling in manufacturing can fully utilize their
complementarities, resulting in improved rationality of process routes and high-quality and efficient production.
Hence, the study of Integrated Process Planning and Scheduling (IPPS) has become a hot topic in the current
production field. However, when performing this integrated optimization, the uncertainty of processing time is a
realistic key point that cannot be neglected. Thus, this paper investigates a Fuzzy IPPS (FIPPS) problem to minimize
the maximum fuzzy completion time. Compared with the conventional IPPS problem, FIPPS considers the fuzzy
process time in the uncertain production environment, which is more practical and realistic. However, it is difficult to
solve the FIPPS problem due to the complicated fuzzy calculating rules. To solve this problem, this paper formulates
a novel fuzzy mathematical model based on the process network graph and proposes a MultiSwarm Collaborative
Optimization Algorithm (MSCOA) with an integrated encoding method to improve the optimization. Different swarms
evolve in various directions and collaborate in a certain number of iterations. Moreover, the critical path searching
method is introduced according to the triangular fuzzy number, allowing for the calculation of rules to enhance the
local searching ability of MSCOA. The numerical experiments extended from the well-known Kim benchmark are
conducted to test the performance of the proposed MSCOA. Compared with other competitive algorithms, the results

obtained by MSCOA show significant advantages, thus proving its effectiveness in solving the FIPPS problem.

Key words: Integrated Process Planning and Scheduling (IPPS); fuzzy processing time; fuzzy completion time;

MultiSwarm Collaborative Optimization Algorithm (MSCOA)

1 Introduction

Process planning and shop scheduling are two
independent subsystems that are carried out sequentially
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in a conventional manufacturing system!' =3/, However,
minimal coordination between the two subsystems may
result in process and production fragmentation, which in
turn, may lead to the generation of bottleneck resources,
conflicting optimization objectives, and unbalanced
machine loads!*!. Integrated Process Planning and
Scheduling (IPPS) could achieve better process routes
than process planning alone; it can also provide more
efficient scheduling solutions than shop scheduling
alonel®!. Therefore, due to the urgent need to investigate
the IPPS problem, this has become a hot research topic
in the field of industrial engineering.

Khoshnevis and Chenl®! are the first to propose
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the concept of integrating process planning and shop
scheduling by demonstrating a methodology and the
potential benefits of the integration. Jain et al.l”! tried
to solve the Job-shop Scheduling Problem (JSP) with
multiple process routes in a Flexible Manufacturing
System (FMS). Chan et al.®! proposed a genetic
algorithm with dominant genes to solve the scheduling
problem in FMS with optional process routes. Li et al.l"’
proposed a hybrid algorithm for solving the Kim dataset,
which refreshes most of the results. Zhang and Wong!!?!
proposed an enhanced ant colony optimization algorithm
to solve the Kim benchmark and refreshed 17 out of 24
problems, including four new solutions reaching the
lower bound. Li et al.'!l subsequently developed a
GA and variable neighborhood search algorithm and,
once again, updated nine solutions of this dataset, of
which three reaches the lower bound. Liu et al.["?! first
built a new MILP model based on the network graph’s
OR-nodes, and established four submodels with less
flexibility through a flexibility decomposition strategy.
They then combined this with the model collaboration
framework to achieve the rapid search over a large-scale
IPPS problem, thus creating one of the most effective
methods for solving the IPPS problem.

In the above studies, the production parameters
13-171 " However, a
variety of uncertain factors may lead to the uncertainty
of production parameters!'®2%1.  Specifically, one of
the characteristics that cannot be neglected in actual
production is the uncertainty of the processing time
of the workpiecel?"-??1. Therefore, investigating the
shop scheduling problem considering fuzzy or uncertain
processing time is of great practical significance!?® 24,

Related to the problem,
Behnamian®! presented an extensive review of
the fuzzy shop scheduling problem according to shop
types, including single machines, parallel machines,
flowshop, job shop, and open shop. Among them, fuzzy
job shop scheduling and flow shop scheduling problems
were studied the most, while parallel machines and open
shop fuzzy scheduling were studied the least. Abdullah
and Abdolrazzagh-Nezhad®® conducted a review of
the fuzzy JSP, focusing on the meta-heuristics of the
solution methods and found that 63% of the approaches
for solving fuzzy JSP are GA related. Wang et al.*”]
proposed a hybrid artificial bee colony algorithm for
solving the fuzzy flexible job-shop scheduling problem.
Wang et al.l®®! further designed a hybrid adaptive
differential evolution algorithm to solve a multiobjective

are treated as deterministic values!

abovementioned
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fuzzy JSP.

Gao et al.”®®! enhanced the classic differential
evolution algorithm through a selection mechanism
to solve JSP with fuzzy execution time and fuzzy
completion time. Cai and Lei®” proposed a solution
to the distributed fuzzy hybrid flow shop scheduling
problems with fuzzy processing time by designing a
cooperated shuffled frog-leaping algorithm to optimize
the objective of fuzzy makespan, total agreement index,
and fuzzy total energy consumption simultaneously.
For the FISP in the type-2 fuzzy logic system, Li et
al.B" proposed an improved artificial immune system
algorithm to solve a special case of FJSP with the
processing time, which is the nonsymmetric triangular
Interval T2FS (IT2FS) value.

Although there are relatively more studies on fuzzy
scheduling problems for flow shop and job shop
types!®?!, very few studies have investigated the FIPPS
problem[®3!. In fact, Wen et al.**! used the Triangular
Fuzzy Number (TFN) to represent uncertain processing
time and proposed a multiobjective GA to solve the
multiobjective IPPS problem by minimizing makespan,
maximal machine workload, total machine workload,
and total flow time. Zhang et al.!*! also used the TFN
to represent the processing time and the transportation
time in the distributed manufacturing environment, after
which they proposed an extended GA with a three-class
encoding method, improved crossover, and mutation
to optimize the FIPPS problems. Wen et al.!’¢! further
improved the encoding based on previous research and
proposed a multilayer collaborative optimization method
to solve the fuzzy multiobjective IPPS problem while
including customer satisfaction as one of the optimizing
objectives.

In accordance with the research status on the
fuzzy shop scheduling problem presented above, we
can conclude that, first, the current mainstream
solving approach is still the intelligent optimization
algorithm!® 1. Among them, the swarm intelligence
algorithm is one of the most common methods“>*3,
Second, fewer studies have been conducted on the
FIPPS problem, of which modeling research is urgently
required. Third, the encoding methods based on the
problem characteristics have not yet been significantly
improved. Furthermore, most studies fail to effectively
increase the integration of process planning and shop
scheduling.

Therefore, the current paper establishes a new
mathematical model for the FIPPS problem based on
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the process network graph, and designs a MultiSwarm
Collaborative Optimization Algorithm (MSCOA) with
a novel integrated encoding approach. The integrated
encoding approach can improve the integration degree
of process planning and shop scheduling, extend the
original solution space, and provide the possibility of
finding more candidate solutions with better quality. The
collaboration and interaction among multiple swarms
enable the algorithm to achieve a global and local search
balance.

The remainder of this paper is organized as follows:
Section 2 presents the problem description and the
mathematical model; Section 3 introduces the proposed
MSCOA; Section 4 shows the comparative experiments
and discussions; and finally, Section 5 discusses the
conclusions and future research directions.

2 Problem Formulation

2.1 Problem description

The FIPPS problem can be defined as follows: N jobs
with pending process routes are assigned to M machines
for processing with fuzzy processing time. The FIPPS
aims to plan proper process routes for each job and to
assign reasonable machines to meet specific constraints
and optimize the objective, such as maximum fuzzy
completion time.

The process information of the jobs is usually

represented by network graphs, as shown in Fig. 1.

The corresponding values 9 of processing time of the
operations are in the form of TFNs, as shown in
Table 1. The three numbers in the bracket are the
minimum, most probable, and maximum values of the
processing time, respectively. Every job of the IPPS
has its process network graph from which the process
routes are planned. The network graph comprises five
types of nodes: (1) the start node, which is virtual
and represents the start of a job’s production process;

Job 1 Job 2 Job 3

Start

Operation|

Fig. 1 Network graphs of three jobs.

Table 1 Processing time of the three jobs in Fig. 1.

Job No. Operation Alterngtlve Processing time
machine
1 1,2 1,2,4),(2,3,5)
1 2 2,4 1,1,2),(1,2,2)
3 2,3 2,4,5),(2,3,5)
1 3,5 (2,3,5),(2,4,6)
) 2 3,4 (1,4,5),(1,2,4)
3 1,5 1,2,3),(2,3,5)
4 1,4,5 1,2,3),(1,2,4),(2,3,5)
1 2,3 (2,3,5),(1,2,4)
2 2,4 (1,3,5),(1,2,4)
3 3 1,5 (2,4,6),(5,6,9)
4 1,3 1,2,4),(2,3,6)
5 1,3,4 (2,3,4),(1,2,4),(1,2,3)
6 2,4 (3,4,6),(2,3,5)

(2) the end node, which is also virtual and indicates
the end of the production process; (3) the intermediate
nodes, which imply operations; and (4) the OR-nodes,
which are combined with (5) the JOIN-node to represent
the process flexibilities. The arrows connecting the
operation nodes represent the precedence relationships
between operations. For example, the arrow connecting
operation nodes 3 and 4 in Job 2’s network indicates
that Operation 3 of Job 2 should be processed before
Operation 4. Furthermore, only one of the two links
between a pair of OR-node and JOIN-node would be
selected, and the operations inside the selected link will
be chosen as well. The time unit in the paper is omitted.

The operating rules on the TFN values of fuzzy
processing time, P = (p1.p», p3) and P’ =
(P}, D5, D), are introduced below.

(1) Addition rule:

P+ P' = (p1+ Py b2+ Py B3 + B3).

(2) Subtraction rule:

P —P' = (pr— py. P2 — D5 3 — P3)-

(3) Comparing rule:

Situation 1:
+2p; + P

4

P1+2p2 + p3

7
2R (9

If , then P>

(<)P'.

Situation 2:

pr+2p2+ ps Py +2py + ps
4 4 ~
D2 and p5. If pr > (<) pj, then P > (<) P’.

If

, then compare

Situation 3:
If p» = pj, then compare (p3 — p1) and (p; — p}).
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If (53 — p1) > (<)(ps — p}), then P > (<) P'.
(4) Max rule:
If P> P/, then P v P/ = P; otherwise, P v P/ =
P'.
2.2 Mathematical model of FIPPS
The FIPPS mathematical

below!!% 44431 and the notations used in this model are
shown in Table 2.

model 1is introduced

Objective:
min Cp,x QY
Constraints:
ZRirl =1,Vi,r )
I
Wijr1) + M X Ry Vi, jorl (3)

Xi; <M x(1-
X,'j > I—MXZZI’Vijrl X(I_Rirl)’\ﬁ’j “
ro 1

Zzijk = X;;, Vi, j )

k
M x (2= Xij = Xij0) +Yijijr 2 Uijjr. Vis o j' J # '
(6)

Table 2 Definition of notations in the FIPPS model.

Notation Definition

N Set of jobs

Ji Operation set of Job i

R; OR-node set of Job i

M Set of machines

i,i’”  Job, 1 <i,i’ <|N|

J.Jj’ Operation, 1 < j, j’ < |J;]
O;;  Operation j of Job i
Machine, 1 < k < |M|
r,r’ OR-node, 1 < r < |R;|
Link

@l-J"b Operation set of Job i
cDiLaS‘ Possible last operation set of Job i
1, O;; is processed before O;;  according to the
Uijj precedence relationship represented by the network
of Job i; 0, otherwise
P; jk  Fuzzy processing time of O;; on Machine k
1, O;; is located in the /-th link of the r-th OR-node;
Wijri 0, otherwise
Rint 1, if the /-th link of the r-th OR-node of Job i is

selected; 0, otherwise

Xi; 1, if O;; is selected; 0, otherwise

1, if O;; is processed on Machine k; 0, otherwise
1, if O;; is processed before O;;/; 0, otherwise
Sij  Fuzzy start time of O;;

Ci;  Fuzzy completion time of O;;

Maximum fuzzy completion time
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Sijr> S~ij+z Pijie X Ziji—M x (3=X;;=X;j—Yijij) .
k
Vioj.j' i # 7' )

Sij 2)  Pijicx Zije=M x (2=Xij=Xij +Yijijr)
k
Vioj.jlj# ]’ ®)
Sirjr = Sij+Pije—M x (3= Zije—Zirjic—Yijirjr) -
Vii',j, il i #ilorj # Lk 9)
Sij=Sirjr+ Py j—Mx (2= Zijk—Z jc+Yijir )
Vii' jjli#iorj# ik (10)
Cmax > Sij—l—z Pi’j’k X Zijk — M x (1 — Xl'j) S
k
Vi, j Y

Constraint in Eq. (2) means that only one link of an
OR node can be selected. Constraints in Formulas (3)
and (4) are the OR-node’s link-selecting conditions,
while constraint in Eq. (5) indicates that one operation
would only be assigned to one machine for processing.
Constraint in Formula (6) corresponds to the precedence
relationships in the process network. Meanwhile,
constraints in Formulas (7) and (8) denote that the two
operations of the same job are supposed to be processed
sequentially according to the precedence relationships
of the corresponding networks. Similarly, the operations
assigned to the same machines should also be arranged
according to the precedence constraints in the process
networks that are formulating constraints in Formulas
(9) and (10). Finally, constraint in Formula (11) is
the maximum fuzzy completion time constraint. The
TFN calculation rules make the model nonlinear, which
means it cannot be solved and verified by a general
mathematical solver. Therefore, the above model is only
used for the problem description function.

3 Multiswarm Collaborative Optimization
Algorithm for FIPPS

The proposed MSCOA framework is shown in Fig. 2.
The main steps of MSCOA are described below.

Step 1: Randomly generate three swarms named
swarm_1, swarm_2, and swarm_3, and set the generation
number Gen=1.

Step 2:  Perform crossover and mutation operator on
swarm_2 and update its individuals.

Step 3: Perform crossover and mutation operator on
swarm_3 along with the modified N8 searching on it to
update its individuals.
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< Begin )
]

Initialize three populations: swarm_1,
swarm_2, and swarm_3; Gen =1

I
*ﬂ
Perform crossover and mutation
Gen=Gen + 1
on swarm_2
¥ Perform crossover on two

individuals seperately from
swarm_2 and swarm_1, and
update swarm_1

Perform crossover and mutation on
swarm_3; then perform the modified
N8 searching on swarm_3 A

N
Cycle reaches 20 times?

Perform crossover on two
individuals seperately from
swarm_3 and swarm_1, and

update swarm_3
A

‘ Output the best solution ‘

v
Cm

Fig.2 MSCOA framework.

Step 4: Repeat Steps 2 and 3 20 times and set Gen =
Gen + 20.

Step 5: Evaluate the three swarms and determine
whether the termination criteria are satisfied. If “Yes”,
go to Step 7; if “No”, go to Step 6.

Step 6: Execute crossover on individuals between
swarm_3 and swarm_1, and update the individuals of
swarm_3. Execute crossover on individuals between
swarm_2 and swarm_1 and update the individuals of
swarm_1. Gen = Gen + 1. Go to Step 2.

Step 7: Output the best solution.

Once the three swarms are generated randomly,
swarm_1 does not undergo any evolution during the
20 iterations of Steps 2 and 3 to preserve the original
status and to provide a basis for swarm backtracking.
Instead, swarm_2 and swarm_3 are evolved differentially:
crossover and mutation are executed for swarm_2, and a
modified critical path-based N8 searching is additionally
performed for swarm_3[4®!, which can enhance the local
search capability of the MSCOA. Next, inter-swarm
interactions are executed once sufficient differentiation
between the various swarms has been generated (20
generations of evolution in each). These interactions
are as follows: individuals from swarm_1 and swarm_3
are selected separately to perform crossover operators
to update the two swarms; then, the same is done to
individuals from swarm_1 and swarm_2 to update the

two swarms.

The purpose of differential evolution is to increase
the diversity of individuals and improve the overall
global search ability of the algorithm. At present, the
N8 neighborhood searching in swarm_3 is the most
effective critical path structure for solving JSP 9], as
it can effectively enhance the local searching ability.
Finally, we can achieve a balance between the global
and local searching of the MSCOA after following the
above two mechanisms.

3.1 Encoding and decoding method

The paper adopts the integrated encoding approach
proposed by Liu et al.l*”! There are three coding strings
for the corresponding three subproblems of the FIPPS
problem. The first string is the OR-node string, which
represents the link-selecting state of each OR-node. This
is arranged according to the job number order. The inside
numbers “1” and “2” represent the options of selecting
either the left or the right link. As for the operation string,
it is arranged according to the processing sequence.
A pair of numbers “i-j” in the block represents the
operation O;;, as shown in Fig. 3. The third string is the
machine string, which represents the processing machine
assignment plan. This string is also arranged according
to the job numbers from left to right. For example, the
number “2” in the second block means that operation
2 of Job 1 selects Machine 2 for processing. We adopt
the semiactive schedule decoding method to obtain the
production scheme. Here, the operations are arranged
one by one on the corresponding machines according
to the processing sequence and the machine assignment
plans.

3.2 Initialization and selection

In accordance with the abovementioned encoding
rules, we adopt the random initialization method to
initialize different strings of individuals. Thus, the OR-
node strings are initialized by randomly selecting the
corresponding links. Machine strings are initialized

Job 1 Job2, Job 3

OR-node ‘1 2 2‘2‘

string

Operation
string

| |
3-4]1-2]2-1]1-1[3-1[3-2]2-3[2-2[3-3[3-5[1-3]2-43-6
[} [}

v [1]2]2]5]3[1]4[3[2[1]3]1]4]

string
Job1 | Job 2 Job 3

Fig.3 Example of an encoding individual.
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by randomly selecting the processing machine for each
operation. As for the operation string, this is initialized
by randomly sequencing the operations under the
constraint of precedence relationships in the networks.
Next, we adopt the tournament selection method to

select individuals that can carry evolutionary operators.

Two individuals in the swarm are chosen randomly, and
the one with better fitness will be selected if the randomly
generated value (between 0 and 1) is greater than the
predefined reproduction probability value P,. Otherwise,
the individual with the worse fitness will be selected. In
the paper, the reproduction probability P, is set to 0.8.

3.3 Crossover and mutation

The crossover for the OR-node string is shown in Fig. 4.
One crossover point a is randomly selected. Parents 1
and 2 pass the left part of the blocks to the corresponding
Offspring 1 and 2, after which they pass the right half
of the blocks to the other one. The mutation operator
for the OR-node string is a single-point shifting action,
in which a mutation point is randomly selected, and the
state of that point is shifted, as shown in Fig. 5.

The crossover operator for the operation string is
shown in Fig. 6. Two crossover points, a and b, are
randomly selected. The blocks outside the two points of
Parent 1 are transferred to offspring individual 1, and the
blocks outside the two points of Parent 2 are transferred
to offspring individual 2. Then, Parent 2 passes the
different blocks to Offspring 1, and Parent 1 passes the
different blocks to Offspring 2. There are three steps

Crossover point a
Parent 1
Offspring 1
Parent 2
Offspring 2

Parent 1

Fig.4 Crossover for OR-node string.

Mutation point

Before
L
After

Fig. 5 Mutation for OR-node string.
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Crossover pointa  Crossover point b

1-2{1-3]2-3[3-1]2-4[3-2[3-4[3-5

2-1

1-1

3322

Parent 1 3-6

Offspring 1 |2-1|1-1|1-2{3-4(3-1|2-3|3-2|2-4|1-3(3-5|3-3|2-2(3-6

Parent 2

1-2[3-4]3-12-11-1 2-4[1-3[3-5

vy vy

Offspring 2 |1-2|3-4|3-1(2-1{1-1|2-3|3-2|3-3|2-2|3-6|2-4|1-3(3-5

2-3

2-2

3-2

3-3)3-6

2-1

1-1

1-2[1-3)2-3

3-1

2-4

3-2

3-4[3-5

3322

3-6

Parent 1

Fig. 6 Crossover for the operation string.

involved in conducting mutation on an operation string,
as shown in Fig. 7. First, a mutation point is randomly
chosen, after which the mutation range of the chosen
point is determined according to the corresponding
network. Finally, one of the available positions inside
the mutation range is randomly selected, and the chosen
operation is inserted.

Given that the position orders of their blocks in
the machine string contain the corresponding job and
operation information, the crossover operator transfers
the blocks at the same positions from the parent to
offspring individuals, as shown in Fig. 8. The mutation
operator of the machine string is similar to the action
of the OR-node string. Then, one mutation point is
randomly selected, and the current state is shifted to
another one, as shown in Fig. 9.

3.4 TFN-based critical path searching

The critical path-related approach was first applied in a
study on JSP in Ref. [48]. Previous studies have proven

Mutation point
I |
2-1)1-1]1-2)1-3[2-3|3-1]p-4{3-2[3-4]3-5]3-3]2-2[3-6

"¢——Mutation range—»

Before

After

2-1]1-1

2-3]1-2[1-3[3-1]2-4[3-2[3-4[3-5[3-3]2-2]3-6

Fig. 7 Mutation for the operation string.

Crossover point @ Crossover point b

Parent1 [2[2[3]3|3[1|5[3]2]1]3][1]4]

Offspring1 [2[2[3[3|3[5]4[3]4[1[3]1]4]

Parent2 | 1]2[2[3|3[5]4[3]4][1]1]3]2]

Offspring2 | 1]2[2]3|3[5|4[3]4]1]1]3]2]

Parent1 [2]2[3]3|3[5]4[3]4][1]3][1]4]

Fig. 8 Crossover for the machine string.
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Mutation point

Before |2[2[3[3[3[1[5]3][2]1]3][1]4]

After [2]2|3[3]3[5]5]3][2]1]3][1]4]

Fig. 9 Mutation for the machine string.

that movements on noncritical paths do not change the
makespan. In common shop scheduling problems, the
critical path is defined as the longest path from the first
operation of the first job to the last operation of the final
jobl*!, The maximum and comparing calculations are
achieved according to the normal number rather than the
TEN. Therefore, the calculation method of the critical
path in the TFN way must be introduced.

A scheduling scheme of the FIPPS can be represented
in the form of a disjunctive graph, as shown in Fig. 10.
One disjunctive graph consists of a set of nodes and
a set of arcs. The nodes correspond to the operations,
while the arcs connect pairs of nodes, each representing
one precedence relationship. The two nodes, Og,e and
Oend, represent the start and the end of the processing,
respectively. The two consecutive operation nodes of the
same job are connected by the conjunctive arcs indicated
by the solid arrows, while the operation nodes assigned
successively on the same machines are connected by the
disjunctive arcs indicated by the dashed arrows!>’!. The
length of the arc between O;; and O, j, is denoted as
D(0;j, Oy j,), and the maximum fuzzy completion time
of the scheme is equal to D(Ogart, Oend). In explaining
the critical path calculation, we introduce the head
length I:Ii ; and the tail length 7~", 7 of O;; in the form
of TFN. The critical path is the longest path from node
Ogtart to node Ogpq, and the nodes within this range are
considered critical operations®™®!. According to this
definition, the critical operation in fuzzy scheduling
has the following attribution: H ij + ﬁi i+ Tl =
L(Ogtarts Oena), where P;; is the fuzzy processing time

Fig. 10 Disjunctive graph of an FIPPS example.

of O;; on its assigned machine, and the head and tail
lengths can be obtained,

I:Istart = ’fend = (0’ 00) (12)

Hi; = maX{FIJP,-,- + ISJP,-J-,EMPI-J- + ISMP,-,-} (13)

T;j = max{Tys,; + Pis;;. Tus;; + Pus;;} (14)

In Egs. (13) and (14), JP;; is the predecessor operation
of O;; of the same job, and JS;; is the successor
operation of O;; of the same job. In addition, MP;;
is the predecessor operation of O;; on the same machine,
and MS;; is the successor operation of O;; on the same
machine. The critical path of one FIPPS scheme can
be determined based on the abovementioned definition.
Similarly, the effective movements on the operation
nodes can also be applied to this fuzzy critical path. The
most advanced neighborhood structure is N8, proposed
by Xie et al.*!, which mainly has three types of
movement: (1) moving operation in the critical block out
to the noncritical path parts, (2) inserting the first or the
last operation of the critical block into the inner segment,
and (3) moving operation inside the critical block to the
head or the tail of the block (see Fig. 11).

To increase the disturbance extent on the critical path,
this paper modifies the three movements of the N8
neighborhood by (1) swapping the critical operation in
the critical block with the operation on the noncritical
path and by (2) swapping the head or tail operation
with the inner operation of the critical path, as shown in
Fig. 12.

4 Experimental Study and Discussion

In testing the effectiveness of the MSCOA, we performed
comparative experiments with the classical GA and
Particle Swarm Optimization (PSO) algorithm. The
testing instances are extended from the most well-
known Kim benchmark, which has been widely used in
IPPS-related research since its introduction in 20031°!,
The benchmark contains 24 instances comprising 18
jobs and 15 machines. Each instance consists of a
different combination of jobs. For follow-up researchers
using a new benchmark, the fuzzy processing time
data of the 18 jobs are presented in Tables A1-A6 in
Appendix A. The minimum and maximum values are
obtained from the processing time in Kim’s original data
with a random deviation of +(10—40)%. The original
processing time is treated as the most probable value of
the fuzzy processing time, and the iteration number is
set to 500. The parameters are the Swarm_Size = 200,
the reproduction probability P, = 0.8, the crossover
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2) Operation

Critical path

(1) Moving operation in the critical block out to the non-critical path parts
(2) Inserting the first or last operation of the block into the inner segment
(3) Moving operation inside the critical block to the head or tail of the block

Fig. 11 N8 neighborhood structure schematic.

(2

Critical path
(1) Swapping the critical operation with the operation on the non-critical path
(2) Swapping the head or tail operation with the inner operation of the critical path

Fig. 12 New neighborhood structure adopted in MSCOA.

Operation

probability P, = 0.8, and the mutation probability
P,,=0.2. The experiment platform is a PC with an i7-
8700 CPU and 16 GB RAM. The Gantt chart of the best
solution (391, 522, 663) of Kim 24 is shown in Fig.
13. The results are obtained by running the algorithms
independently 20 times in Tables 3-6.

Table 3 shows the best results that can be obtained
upon using the three algorithms. The proposed MSCOA
can find better results on all 24 problems than the best
results of GA and PSO. From a statistical perspective,

we analyze the results of 20 independent runs. As
shown by the results, the proposed MSCOA has a
greater advantage in the minimum, most probable,
and maximum values of (:’max with better average and
standard deviation values, thus indicating the superiority
and stability of the results. In Table 5, all 24 results
of the most probable value are found to be superior to
those of GA and PSO, thereby proving that the MOSCA
outperforms the other two algorithms.

Observing the results in Tables 3-6, we can see
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Fig. 13 Gantt chart of the best solution pertaining to Kim_24 (time unit is omitted according to the original data).
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Table 3 Best results (maximum fuzzy completion time) of 20 independent runs of the three algorithms.

Number MSCOA GA PSO
Minimum Most probable Maximum Minimum Most probable Maximam Minimum Most probable Maximum
1 306 428 529 319 429 533 313 428 526
2 250 343 411 257 348 425 255 345 414
3 249 346 430 270 352 428 265 349 426
4 226 306 373 234 306 368 217 305 388
5 229 314 385 226 318 378 227 314 397
6 313 427 527 331 451 559 323 437 545
7 262 372 468 266 372 467 265 375 460
8 250 339 423 264 339 429 257 345 415
9 315 428 520 318 430 527 313 427 527
10 317 424 534 358 464 571 340 437 541
11 273 350 424 285 371 454 275 354 424
12 234 322 388 247 337 408 236 336 404
13 317 431 530 355 471 575 351 467 585
14 273 378 474 298 403 510 295 392 473
15 313 427 527 341 445 555 322 436 537
16 328 432 537 363 494 613 363 483 576
17 291 384 449 348 466 569 316 432 538
18 246 349 419 284 390 496 283 386 484
19 331 445 546 399 505 624 376 490 601
20 301 394 501 342 464 570 320 448 572
21 317 436 539 369 482 602 363 462 583
22 358 481 616 423 568 702 388 543 674
23 326 440 558 378 528 635 348 490 626
24 391 522 663 445 619 776 445 590 726

Note: Highlighted values are the best ones of the same types of results.

that, on the one hand, the PSO can obtain better
fuzzy values than the conventional GA algorithm,
mainly due to the adoption of a more advanced
evolutionary framework. The proposed MSCOA, on
the other hand, can achieve better results than the two
compared algorithms, benefiting from the enhanced
swarm collaborative framework and the critical path-
based neighborhood search. The experimental results
also demonstrate the effectiveness of the improvements
at the level of the algorithmic framework and the
operators.

5 Conclusions and Future Research

Directions

The current study focuses on the FIPPS problem
considering fuzzy processing time and builds a process
network based mathematical model. Then, we propose
the MOSCA based on an integrated encoding method
with critical path neighborhood searching. In this work,
we sufficiently consider the advantages of the critical
path-based N8 neighborhood searching and apply it
to the FIPPS problem by modifying the calculation

procedure according to the TFN rules. The experimental
results on the extended famous benchmark indicate the
outstanding performance of the proposed MSCOA in
terms of its searching capability and stability.

Furthermore, by guiding the searching and evolving
of each swarm in different directions, we ensure the
diversity of all individuals and prevent the premature
maturity of the algorithm. The proposed integrated
encoding can also effectively promote the integration
of the two systems of process and production, thus
providing more candidate solutions with better quality.
Combined with the modified critical path N8 searching,
the proposed approach effectively reduces the invalid
searching actions, enabling the proposed MSCOA to
demonstrate significant superiority on famous open
problems.

In the comparison results on the minimum values of
C‘max, MSCOA had three small-scale instances that did
not perform best. Therefore, exploring more adaptive
swarm collaboration strategies in future works might
improve the above situation. Furthermore, developing
new critical path structures according to the TFN
calculation rules is another important research direction
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Table 4 Minimum values in Cpax by T-test (p<0.05).
MSCOA GA PSO Significant?
Number Average Stapda}rd Average Starllda}rd Average Star.1d2.1rd MSCOA better MSCOA better
deviation deviation deviation than GA than PSO
1 314.30 517 330.70 10.08 327.95 9.36 Yes Yes
2 253.45 4.41 264.40 7.38 262.60 8.42 Yes Yes
3 263.25 6.96 278.70 12.24 277.90 9.69 Yes Yes
4 231.75 5.64 235.40 5.61 234.85 7.11 No No
5 230.85 5.23 238.10 7.22 235.95 7.19 Yes No
6 326.70 8.35 352.65 13.76 337.45 8.70 Yes Yes
7 269.50 5.69 274.55 6.35 271.50 6.80 No No
8 253.60 4.08 265.00 8.01 265.15 11.22 Yes Yes
9 320.05 7.69 330.10 11.62 324.10 7.35 Yes No
10 325.80 7.04 364.20 14.45 348.50 12.44 Yes Yes
11 275.60 9.52 304.15 7.00 296.60 14.35 Yes Yes
12 239.40 8.69 272.60 13.73 262.15 13.22 Yes Yes
13 335.90 10.94 376.35 16.05 363.65 12.66 Yes Yes
14 280.90 9.69 316.80 14.15 306.90 14.48 Yes Yes
15 324.50 9.43 354.05 8.86 344.40 16.07 Yes Yes
16 343.85 15.38 395.20 21.52 374.80 15.02 Yes Yes
17 303.60 12.92 363.05 17.56 352.70 15.31 Yes Yes
18 264.35 12.29 322.50 20.37 300.60 8.15 Yes Yes
19 354.90 15.18 413.30 19.21 395.25 2242 Yes Yes
20 311.30 15.66 367.30 17.09 344.80 17.58 Yes Yes
21 342.65 9.65 395.40 15.76 374.35 15.34 Yes Yes
22 382.30 13.00 444.60 16.80 428.30 19.11 Yes Yes
23 342.65 11.63 421.05 17.19 395.30 20.29 Yes Yes
24 411.15 11.94 494.05 25.55 467.85 22.22 Yes Yes

Note: Highlighted values are the best ones of the same types of results.

that should be explored.

Appendix A

Table Al
Table A2
Table A3
Table A4
Table A5
Table A6

Fuzzy processing time of Jobs 1-3.
Fuzzy processing time of Jobs 4-6.
Fuzzy processing time of Jobs 7-9.
Fuzzy processing time of Jobs 10—12.
Fuzzy processing time of Jobs 13-15.
Fuzzy processing time of jobs 16—18.
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Table A1  Fuzzy processing time of Jobs 1-3.
Job No. Operation Alternative machine Processing time
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Table A2 Fuzzy processing time of Jobs 4-6.

Job No. Operation Alternative machine Processing time

1 2 (13, 18, 23)
2 8,12 (33, 38, 44), (27, 30, 35)
3 9 (16, 20, 26)
4 5,11 (6,8,9),(7,9,13)
5 3 (21, 29, 40)
6 2,4,5 (23, 36, 44), (27, 33, 41), (33, 39, 50)
7 1, 10 (15,23, 31), (17, 20, 25)

4 8 6 (32, 45, 50)
9 3,12 4,5,7),(5,9, 12)
10 5,9 (30, 39, 47), (27, 33, 39)
11 7,11 (24, 36, 40), (30, 41, 57)
12 14, 15 (19, 31, 35), (18, 29, 39)
13 1,2,6 (19, 28, 33), (18, 22, 27), (16, 21, 24)
14 10, 14 (16, 18, 24), (20, 28, 39)
15 12 (20, 24, 27)
16 7,9 (18, 23, 27), (17, 25, 29)
1 3,4,5,11 (29, 35, 48), (21, 29, 33), (23, 36, 45), (27, 31, 38)
2 1,3,5,10, 15 (35, 40, 45), (30, 34, 39), (36, 44, 51), (36, 41, 48), (34, 39, 45)
3 11, 15 (12,15, 17), (9, 13, 15)
4 2,6,7,10, 14 (27, 31, 42), (26, 33, 43), (21, 29, 40), (22, 27, 37), (19, 25, 34)
5 6,12, 13, 14 (9,13, 16), (6,9, 12), (6, 8, 11), (11, 14, 17)
6 11,12 (24, 28, 34), (21, 29, 37)
7 2,4,10, 12, 14 (24, 31, 37), (20, 24, 27), (25, 28, 34), (21, 26, 36), (28, 32, 38)
8 6,10, 11,13 (27, 34, 38), (25, 33, 40), (23, 30, 38), (24, 29, 40)

5 9 3,4,13 (34, 41, 55), (24, 37, 45), (25, 40, 45)
10 1,4,5,8,9 (33, 38, 51), (21, 29, 38), (21, 35, 45), (26, 30, 35), (23, 31, 39)
11 6,10, 11, 14,15 (41, 48, 65), (41, 50, 68), (32, 44, 59), (29, 41, 57), (35, 47, 53)
12 6,7,9,12,13 (18, 26, 33), (26, 32, 39), (28, 38, 42), (19, 29, 36), (23, 30, 39)
13 6, 10, 13, 14, 15 (18, 23, 25), (13, 20, 25), (19, 25, 34), (12, 18, 24), (17, 22, 25)
14 2,8,10,12 (11, 14, 17), (9, 11, 14), (14, 17, 20), (10, 13, 17)
15 3,5,13 (20,27, 38), (17, 24, 31), (17, 26, 30)
16 4,8,13 (14, 20, 23), (13, 19, 23), (12, 14, 16)
17 2,3,4,7, 14 (17,27, 34), (14, 21, 28), (24, 28, 37), (20, 30, 36), (23, 29, 39)
18 3,7,10, 14 (34, 39, 53), (29, 34, 46), (27, 40, 50), (26, 35, 41)
1 3,4,11 (31, 38, 49), (27, 33, 40), (32, 36, 44)
2 2,3,6 (14, 22, 26), (14, 21, 26), (12, 19, 23)
3 5 (11, 14, 16)
4 58 (15, 17, 22), (15, 20, 22)
5 3,6,11 (22, 36, 40), (27, 33, 38), (31, 39, 54)
6 2,3,10 (16,24, 31), (16, 20, 25), (12, 18, 21)
7 3,9,15 (16, 21, 23), (15, 17, 19), (16, 24, 32)
8 8 (33, 38, 44)
9 4,11 (15, 19, 22), (9, 15, 20)

6 10 8,10, 15 (11, 14, 18), (15, 19, 23), (11, 17, 23)
11 1,4,9,13 (22, 25, 30), (14, 21, 27), (15, 19, 23), (21, 28, 36)
12 7,12 (29, 42, 52), (30, 43, 58)
13 1,2,6 (41, 48, 67), (27, 42, 58), (29, 46, 54)
14 7,10 (7,10, 13), (11, 14, 18)
15 2,13, 14 (10, 14, 19), (14, 16, 20), (11, 13, 15)
16 1,4,5,8 (22, 36, 48), (24, 33, 44), (20, 31, 37), (26, 34, 45)
17 1,12 (30, 47, 56), (27, 44, 48)
18 9,10, 13 (25, 30, 36), (21, 26, 34), (18, 29, 33)
19 1,5, 12 (11, 18, 24), (14, 19, 25), (11, 15, 17)
20 9,11 (17, 24, 30), (22, 25, 28)
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Table A3 Fuzzy processing time of Jobs 7-9.

Job No. Operation Alternative machine Processing time
1 7,8 9,12, 15), (12, 17, 20)
2 2,5,8,12 (5,7,9),(5,6,8),(6,8,11), (8, 11, 13)
3 11,15 (21, 30, 34), (24, 27, 30)
4 7 (24,27, 35)
5 2,3,9 (7,10, 12), (8, 11, 14), (13, 16, 19)
6 4,11, 13 (32, 46, 58), (45, 50, 67), (44, 49, 67)
7 3 (18, 22, 28)
8 5,10 (7,9,12), (7,10, 11)
9 1,2,6 (20, 27, 37), (17, 28, 36), (19, 24, 31)
10 6,12, 13 (7,8,10), (4,5,7), (8, 11, 14)
7 11 2,9 (31, 47, 65), (40, 48, 56)
12 1,8 (22,27, 37), (24, 30, 40)
13 9,13, 14 (12, 18, 24), (15, 19, 22), (16, 20, 28)
14 7,11 (14, 22, 29), (15, 20, 25)
15 7,8,13 (10, 13, 16), (8, 11, 13), (9, 14, 19)
16 6, 14 (12, 15, 19), (7, 10, 12)
17 4,5,7 (15, 21, 26), (20, 26, 35), (17, 20, 25)
18 4,5,13 (19, 29, 34), (26, 30, 35), (19, 26, 30)
19 1,2 (23, 35, 46), (24, 31, 41)
20 5,6,11 (15, 22, 25), (15, 18, 22), (14, 23, 32)
21 1,7, 10 (22, 32, 40), (25, 33, 43), (24, 28, 39)
1 4 (33, 50, 57)
2 8,15 (15, 23, 28), (17, 21, 24)
3 12 (22, 35,42)
4 4,7,8 (7,11, 13), (11, 13, 16), (13, 16, 22)
5 2,11 (14, 18, 22), (15, 20, 25)
6 4,13 (32, 36, 49), (20, 33, 44)
7 1,3 (24, 38, 49), (25, 35, 44)
8 6, 15 (12, 16, 20), (15, 17, 21)
9 9 (20, 24, 32)
g 10 5,14 (17, 23, 27), (20, 26, 29)
11 1,5,8 (11, 15, 19), (12, 16, 18), (10, 17, 20)
12 3,10 (38, 43, 47), (32, 49, 58)
13 10 (29, 44, 59)
14 13,14 (20, 32, 44), (27, 31, 41)
15 10, 13 (28, 36, 45), (27, 38, 42)
16 14 (21, 28, 38)
17 2,10 (26, 39, 54), (24, 34, 39)
18 5,7 (12, 18, 22), (11, 15, 18)
19 11 (14, 16, 20)
20 3,12 (33, 45, 53), (36, 48, 53)
1 5,9,12,13, 14 (28,31, 35), (24, 27, 37), (14, 21, 29), (23, 28, 34), (17, 23, 28)
2 7 (18,21, 27)
3 7,9,10,13 (19, 21, 26), (16, 22, 27), (17, 25, 33), (17, 20, 24)
9 4 3,15 (12, 13, 16), (12, 15, 18)
5 3,6,9,12,13 (4,6,7),4,5,6),(6,7,8), (7, 10, 12), (7,9, 12)
6 1,2,5,6,10 (23, 37, 50), (20, 33, 43), (32, 39, 53), (22, 29, 38), (20, 32, 36)
7 4,10, 11, 13,15 6,7,8),(6,8,9),(6,9,12), (4,5, 7), (4,6,7)

(To be continued)
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Table A3 Fuzzy processing time of Jobs 7-9.
(Continued)
Job No. Operation Alternative machine Processing time
8 1,4,8,9,12 (35, 42, 49), (34, 41, 49), (35, 39, 47), (31, 45, 61), (34, 44, 57)
9 4,7, 14 (8,10, 14), (8,9, 12), (10, 14, 19)
10 4,5,7,8, 14 (13, 19, 22), (12, 14, 17), (11, 15, 18), (11, 12, 16), (8, 10, 14)
11 3,9,10, 11, 15 (23, 28, 39), (15, 24, 32), (18, 27, 32), (14, 22, 31), (17, 20, 25)
12 4,6 (34, 45, 58), (29, 41, 51)
13 2 (40, 44, 51)
9 14 4,5,14,15 (34,47, 52), (33, 43, 59), (29, 44, 57), (33, 42, 48)
15 2,5,6,9, 14 (12, 17, 19), (11, 14, 15), (15, 20, 25), (18, 21, 26), (14, 18, 24)
16 2,4,13 (39, 45, 55), (28, 42, 48), (34, 46, 58)
17 1,3,5,6,15 (20, 27, 30), (20, 25, 28), (17, 23, 30), (24, 28, 35), (17, 20, 24)
18 2,7,9,10, 11 (8,10, 11), (8, 12, 16), (14, 17, 21), (13, 16, 21), (7, 11, 13)
19 2,13 (6,9, 12), (8, 10, 13)
20 4,6,8,12 (12, 18, 21), (15, 23, 31), (18, 21, 28), (22, 25, 30)
Table A4 Fuzzy processing time of Jobs 10-12.
Jobs No. Operations Alternative machines Processing time
1 1,2,3,4 (22, 34, 47), (27, 39, 45), (34, 40, 54), (24, 33, 42)
2 6,15 (19, 27, 33), (18, 20, 24)
3 1,13 (13, 22,27), (16, 24, 27)
4 10, 13 (15, 22, 29), (16, 20, 23)
5 4,7 (33, 37,41), (31, 35, 48)
10 6 5,9 (8,10, 12), (8, 12, 15)
7 8,12, 14 (32, 39, 44), (24, 32, 40), (23, 36, 50)
8 12 (32, 44, 53)
9 2,3,6,9 (19, 23, 27), (15, 24, 30), (15, 21, 29), (15, 19, 26)
10 3,12 (42, 48, 66), (30, 45, 53)
11 14 (11, 17,22)
1 1,6 (30, 38, 47), (20, 30, 41)
2 5,8,14,15 (33, 39, 48), (33, 40, 51), (22, 36, 45), (27, 44, 59)
3 3,5,11,12, 13 (8,11, 13), (9,13, 15), (8,9, 10), (10, 12, 13), (6, 8, 11)
4 5,6,8,13, 14 (16, 21, 26), (16, 23, 29), (18, 29, 37), (20, 27, 35), (18, 25, 28)
11 5 3,4,6 (22, 33, 39), (28, 31, 37), (23, 29, 36)
6 2,10 (21, 28, 33), (19, 27, 38)
7 1, 14,15 (30, 40, 49), (28, 42, 53), (35, 46, 63)
8 2,7,9,11, 14 4,6,7),(5,8,10), (7, 10, 13), (9, 11, 12), (6, 7, 8)
9 5,9,13 (30, 40, 45), (27, 39, 50), (31, 36, 40)
1 1,11 (22, 31, 36), (24, 29, 36)
2 8,15 (33,46, 63), (27, 44, 57)
3 5,11 (4.5,6), (7,11, 13)
4 12 (29, 41, 53)
5 15 (19, 24, 32)
6 2,13 (27,42, 52), (39, 45, 62)
7 8,11 (14, 19, 22), (11, 15, 21)
8 3,12 (14, 18, 22), (17, 20, 27)
12 9 6, 14 4,5,6),(5,7,9)
10 4 (15, 18, 22)
11 7 (25, 39, 53)
12 6,10 (12,13, 16), (5,7,9)
13 2,3 (22, 26, 35), (16, 22, 25)
14 1,8,13 4,5,6),(5,8,10), (7,9, 11)
15 9 (27, 39, 44)
16 7,10 (6,10, 13), (11, 13, 14)
17 4,12 (25, 41, 46), (25, 38, 48)
18 5,9,13 (17, 21, 29), (16, 22, 29), (15, 19, 23)
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Table A5 Fuzzy processing time of Jobs 13-15.

Job No. Operation Alternative machine Processing time
1 3,4,10, 11, 13 (35,46, 61), (31,47, 57), (31, 44, 57), (34, 41, 54), (35, 50, 59)
2 5,7,10, 12, 15 5,8,9),3,5,7), (8,10, 14), (10, 11, 13), (6,9, 11)
3 2,7 (13, 16, 19), (8, 12, 15)
4 1,3,4,6, 15 5,7,8),4,5,7), (8, 13, 16), (11, 12, 15), (7, 8, 10)
5 6,8, 10 (21, 26, 36), (17, 24, 29), (24, 28, 37)
6 1,9,12,15 4,5,6),3,4,5),(5,7,8),(8,9,11)
7 2,8,10,12 (23,27, 34), (21, 30, 36), (28, 33, 42), (23, 29, 35)
8 2 (32, 40, 47)

13 9 3,6,7,9 (19, 23, 26), (16, 24, 33), (18, 29, 33), (16, 21, 29)
10 1,2,5,9,10 9,12, 15), (12, 14, 17), (14, 19, 26), (11, 18, 21), (13, 17, 20)
11 10, 11, 12 (30, 47, 53), (43, 49, 61), (42, 50, 60)

12 4,6,13 (39, 44, 57), (29, 38, 47), (27, 41, 48)

13 1,9,10, 12 (16, 22, 26), (15, 21, 29), (14, 16, 21), (14, 18, 22)
14 1,4,6,13, 14 (11, 15, 18), (15, 18, 22), (10, 13, 15), (12, 14, 17), (13, 19, 21)
15 3,4,6,13 (5,6,7),3,4,5),(4,5,6), (8,9, 12)

16 5,11, 14 (11, 15, 19), (13, 18, 21), (9, 13, 15)

17 8,9,11 (13, 15, 21), (11, 16, 22), (12, 19, 22)

18 2,15 (32,44, 59), (41, 50, 64)

1 3,9 (38, 46, 63), (28, 43, 59)

2 1,2,7,12 (7,10, 12), (13, 17, 23), (9, 11, 14), (9, 13, 18)
3 4,7,8 (6,8,9),(6,9,11), (8, 10, 11)

4 3,6 (11, 18, 20), (18, 25, 30)

5 4 6,9, 12)

6 3,4,13 (25, 29, 35), (22, 27, 37), (20, 33, 37)

14 7 5,9 (22, 30, 33), (23, 29, 32)

8 2,3 (7,9, 10), (5, 8, 11)
9 5,12, 15 (12, 18, 23), (8, 10, 14), (14, 19, 26)
10 9,15 (22, 28, 32), (16, 25, 32)
11 4,14, 15 (26, 42, 54), (31, 43, 49), (37, 47, 55)
12 9,10, 14 (22, 35, 47), (26, 31, 38), (26, 29, 38)
13 6, 10 8,9, 10), (5,7, 10)
1 1,11 (17, 20, 25), (14, 18, 23)
2 12,13 (27, 41, 50), (27, 43, 58)
3 6 (12, 17, 23)
4 7 (5,8, 11)
5 2,15 (8,12, 16), (13, 15, 18)
6 4,5 (29, 48, 63), (35, 43, 52)
7 9 (35, 47, 58)
15 8 8,12 (17, 28, 34), (22, 30, 36)
9 2,8 (16, 18, 23), (19, 22, 30)
10 14 (37, 50, 55)
11 8,13 (5,6,8),4,7,9)
12 5,7 (35, 48, 67), (33, 45, 56)
13 1,5,6 (7,9, 12), (8, 10, 14), (10, 11, 14)
14 3,6,9 (17,22, 26), (17, 24, 28), (19, 21, 28)
15 1,12 (31, 42, 50), (31, 47, 65)
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Table A6 Fuzzy processing times of Jobs 16-18.
Job No. Operation Alternative machine Processing time
1 1,2, 11 (35,43, 52), (31, 45, 53), (35, 41, 52)
2 7 (26, 32, 43)
3 3,6,13 (25, 33, 46), (27, 39, 50), (26, 35, 48)
4 4,5,7,9,15 (32,40, 51), (28, 43, 49), (30, 41, 48), (37, 44, 51), (42, 49, 61)
5 1,2,6 (16, 25, 30), (24, 30, 39), (19, 31, 35)
6 6,12 4,5,6), (7,10, 12)
7 3,5,6,11, 14 6,7,9),4,5,6),(8,9,11), (6, 8,9), (7, 10, 13)
8 5,7,9 (10, 16, 22), (14, 19, 24), (14, 18, 20)
9 1,4,9,10, 13 (10, 12, 15), (11, 18, 25), (12, 14, 16), (6, 9, 12), (9, 15, 18)
10 6,11,12,13,14 (17, 19, 25), (8, 11, 13), (14, 16, 20), (14, 20, 27), (19, 21, 25)
16 11 4,7,8,10, 15 (24, 31, 35), (32, 39, 47), (19, 30, 39), (26, 33, 39), (32, 40, 48)
12 58,14 (22, 28, 35), (20, 27, 36), (17, 24, 27)
13 1,4,7,8,15 (42, 50, 60), (37, 44, 50), (30, 47, 64), (40, 49, 67), (35, 48, 62)
14 1,2,8,9 (11,17, 19), (13, 19, 21), (12, 20, 25), (16, 21, 28)
15 1,2,4,5,7 (6, 8,10),(6,7,8), (4,6,7),(8,9, 12), (8, 10, 12)
16 9,12 (3,5,6),(4,6,7)
17 1,3,8,13, 15 (18, 21, 26), (15, 20, 26), (16, 24, 30), (17, 19, 21), (18, 23, 26)
18 4,5,10, 11 (21, 26, 30), (23, 27, 30), (15, 24, 28), (15, 18, 21)
19 3,11 (16, 19, 21), (16, 20, 23)
20 7,8,14,15 (16, 19, 26), (13, 20, 28), (11, 15, 20), (20, 23, 27)
21 2,12, 14 (23,27, 33), (23, 29, 35), (12, 14, 16)
1 10, 11 (29, 46, 59), (30, 44, 53)
2 5,10 (12, 16, 20), (10, 13, 17)
3 4 9,11, 13)
4 12,13 (11, 13, 16), (10, 14, 18)
5 7,12 (10, 11, 13), (15, 17, 21)
6 13 (41, 46, 64)
7 2,11 (17,23, 31), (16, 19, 22)
8 1,5,9 (14, 20, 22), (16, 18, 24), (13, 17, 23)
9 2,12 (20, 29, 40), (19, 30, 39)
10 13,15 (12, 16, 20), (9, 13, 17)
17 11 1 (17,24, 33)
12 4,8 (13, 21, 29), (13, 17, 20)
13 6 (28, 33, 38)
14 1,3,6 (13,17, 21), (9, 12, 15), (12, 14, 15)
15 5,8 (5,8,11),(4,7,9)
16 1,8 (3,5,6),(6,8,9)
17 2 (34, 42, 50)
18 2,10 (13, 15, 19), (15, 18, 21)
19 1,6 (4,6,7),(5,7,8)
20 9,10, 11 (3,5, 6), (8, 10, 12), (6, 9, 10)
21 3,12 (10, 15, 18), (13, 18, 23)
22 6,11, 14 (13,19, 26), (11, 17, 22), (14, 20, 25)
1 3,8 (5,8, 11), (11,13, 17)
2 5,6,8 (14, 16, 20), (8, 12, 16), (10, 13, 15)
18 3 2 (19, 21, 28)
4 1,5,10 (8,13, 16), (12, 16, 21), (14, 18, 22)
5 9 (13,17,24)
6 5,8 (40, 46, 64), (42, 47, 65)

(To be continued)
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Table A6 Fuzzy processing times of Jobs 16-18.

(Continued)
Job No. Operation Alternative machine Processing time

7 3,7, 10 (39, 44, 55), (36, 48, 64), (38, 49, 64)
8 5,6,13 (14, 17, 22), (10, 14, 16), (7, 10, 12)
9 8,15 (11, 16, 19), (9, 13, 15)
10 3,11, 15 (20, 28, 34), (17, 27, 34), (20, 30, 42)
11 10, 13 (40, 48, 54), (43, 50, 56)

18 12 5,13,15 (25, 31, 40), (25, 32, 43), (25, 36, 41)
13 3,6,9 (27, 30, 38), (23, 28, 36), (20, 26, 35)
14 2 (8,11, 12)
15 1,14 (10, 16, 18), (12, 18, 22)
16 4,15 (14, 18, 24), (16, 19, 24)
17 3,10, 14 (28, 36, 40), (22, 32, 41), (23, 35, 48)
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