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Abstract: Anti-spoofing is becoming a crucial technique for applications with high navigation accuracy and reliability

requirements. Anti-spoofing technique based on Receiver Autonomous Integrity Monitoring (RAIM) is a good choice

for most Global Navigation Satellite System (GNSS) receivers because it does not require any change to the hardware

of the receiver. However, the conventional RAIM method can only detect and mitigate a single spoofing signal.

Some improved RAIM methods can deal with more spoofing signals, but the computational complexity increases

dramatically when the number of satellites in view increase or need additional information. This paper proposes a

new RAIM method, called the SRV-RAIM method, which has a very low computation complexity regardless of the

number of satellites in view and can deal with any number of spoofing signals. The key to the new method is the

spatial distribution characteristic of the Satellites’ Residual Vectors (SRV). In replay or generative spoofing scenarios,

the pseudorange measurements of spoofing signals are consistent, the residual vectors of real satellites and those

of spoofing satellites have good separation characteristics in spatial distribution. Based on this characteristic, the

SRV-RAIM method is proposed, and the simulation results show that the method can separate the real signals and

the spoofing signals with an average probability of 86.55% in the case of 12 visible satellites, regardless of the

number of spoofing signals. Compared to the conventional traversal-RAIM method, the performance is only reduced

by 3.59%, but the computational cost is reduced by 98.3%, so most of the GNSS receivers can run the SRV-RAIM

algorithm in time.
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1 Introduction

Spoofing is becoming a serious threat to the Global
Navigation Satellite System (GNSS) receivers and
is regarded as being more malignant than jamming.
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Compared to jamming, spoofing intends to deceive the
receiver to generate false Positioning, Velocity, and
Time (PVT) solutions, while jamming intends to make
the receiver unable to generate PVT solutions. The
spoofer can transmit or generate Global Navigation
Satellite System (GNSS) signals with higher power to
let the receiver catch and track the fault signals. The
pseudorange measurements of the spoofing signals are
different from the real ones, which can cause the receiver
to get wrong PVT solutions. When the satellites in the
receiver tracks are all spoofing satellites, the spoofer can
control the PVT solutions of the receiver. Therefore,
a spoofer can control the vehicles like unmanned
aerial vehicles, which rely heavily on the GNSS



458 Tsinghua Science and Technology, April 2024, 29(2): 457–468

receiver. For those applications which require navigation
information to be extremely accurate and reliable,
spoofing interference must be taken into consideration,
and the anti-spoofing technique becomes essential.
Although many researchers have proposed plenty of anti-
spoofing techniques, there does not exist a technique that
is fit for all spoofing scenarios. Most of the anti-spoofing
techniques require hardware support, such as methods
based on noise level monitoring[1, 2], Signal Quality
Monitoring (SQM) techniques[3–5], methods based on
multi-correlator[6], methods based on multi-antenna[7, 8],
methods based on Inertial Navigation System (INS)[9],
and so on. Compared to these anti-spoofing methods,
anti-spoofing techniques based on Receiver Autonomous
Integrity Monitoring (RAIM)[10–17] are fit for most
GNSS receivers, for they do not require any change
to the hardware or require additional devices like INS.
Therefore, RAIM is a good choice for most general
receivers.

The least-square residual method, parity vector
method, and range-comparison method are three
basic RAIM methods and are proved to be almost
equivalent[12]. The main idea of these methods is to
compare the test statistic with the threshold. If the
test statistic exceeds the threshold, the existence of
fault pseudorange is declared. If there only exists
one single spoofing signal, the pseudorange with the
characteristic bias line nearest to the parity vector
is regarded as the fault pseudorange[13]. If there is
more than one spoofing signal, the conventional RAIM
can only detect the existence of spoofing, but cannot
exclude spoofing signals. To deal with multi-spoofing
situations, some improved methods were proposed,
such as NIORAIM[14], MHSS[15], Random Traversal-
RAIM[17], and so on. The NIORAIM algorithm can
reduce integrity levels and improve RAIM availability by
lowering the slope. The algorithm calculates the optimal
weights used in a conventional weighted least-squares
algorithm to minimize the integrity level. To calculate
the optimal weights, all the possible combinations
of fault satellites need to be considered. The MHSS
algorithm also considers all the fault-free cases and
needs to calculate the partial position solutions of each
fault-free case. The Random Traversal-RAIM can be
considered as an advanced use of the conventional RAIM
(cRAIM) algorithm. The Random Traversal-RAIM uses
cRAIM to test all possible combinations of fault-free
satellites until the cRAIM is effective. All these three
algorithms consider every possible combination of fault

satellites, so their computations can increase rapidly
when the number of satellites in view or the number of
fault satellites increases.

In the previous studies, only the numerical value of
the pseudorange residual is considered. However, the
pseudorange residual of each satellite is not a scalar
but a vector, which is called the Satellites’ Residual
Vector (SRV) in this paper. This paper focuses on the
spatial distribution of the pseudorange residual vector
of each satellite and based on this, a new anti-spoofing
method, called the SRV-RAIM method, is proposed. In
replay or generative spoofing scenarios, the pseudorange
measurements of spoofing signals are consistent, the
residual vectors of real satellites and those of spoofing
satellites have good separation characteristics in spatial
distribution according to the simulation. Based on this,
the SRV-RAIM algorithm can quickly find five signals
that are all real or spoofing, and based on these five
signals, the rest of the signals can be easily divided into
two groups: the real group and the spoofing group. The
SRV-RAIM makes no assumptions about the number of
spoofing signals and does not traverse all the possible
combinations of spoofing signals, so the algorithm
has a very low computational complexity, regardless
of the number of satellites in view or the number of
spoofing signals. According to the simulations, the
computational cost of the SRV-RAIM method is reduced
by 98.7%, compared with the conventional traversal-
RAIM, and with only a 3.59% of performance loss. The
low computational complexity allows the SRV-RAIM
algorithm to be able to run in time on most of the GNSS
receivers.

The remainder of this paper is organized in the
following way. In Section 2, the definition of the SRV
is introduced and the spatial distribution characteristic
of SRVs is studied. In Section 3, the SRV-RAIM
method is proposed, and simulations are done to evaluate
the performance of the SRV-RAIM method. Section
4 summarizes the research and puts forward some
prospects for future research.

2 Spatial Distribution Characteristic of
Residual Vectors

2.1 Definition of SRV

In this subsection, the definition of the SRV is proposed.
Firstly, the mathematical expression of the pseudorange
residual of each satellite in the spoofing situation is
derived. Then, the expression of the SRV is given.
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The linear positioning equation can be expressed as
�y D G�x C " (1)

where �y is the pseudorange residual vector, �x is the
positioning error, " is the measurement error, and G is
the geometric matrix defined as
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is the estimated receiver position; ri is the
geometric distance between the i-th satellite and the
estimated receiver position;N is the number of satellites.
For simplicity, the measurement error " is ignored in the
following mathematical derivation.

Equation (1) can be solved according to the iterative
least squares method. In normal situations, the position
can be exactly solved, so �y is a zero vector. In the
spoofing situation, the position is deceived to a false
solution, and �y is no longer a zero vector, defined as8̂̂̂̂
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where subscript a represents authentic signals and
subscript s represents spoofing signals. xa is the
positioning result (including the user clock bias) solved
from real pseudorange measurements. xs is the
positioning result solved from spoofing pseudorange
measurements. xp is solved from real and spoofing
pseudorange measurements. �xap D xa � xp is
the relative position between the real position xa and
the estimated position xp. �xsp D xs � xp is the
relative position between the spoofing position xs and
the estimated position xp .

Equation (1) is usually solved by the iteration method.
The estimate of �x is expressed as

� Ox D
�
GTG

��1
GT�y (4)

Then, we have
GT�y D GT

a�ya CG
T
s�ys D G

TG� Ox (5)

According to Eqs. (3) and (5), �xap and �xsp can be
expressed as(
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where �xas D ��xsa D xa � xs is the relative
position between real position and spoofing position.
� Ox is usually solved by iteration method, and when the
iteration converges,� Ox is approximately a zero vector or
the magnitude of � Ox is very small comparing to �xap

or �xsp . Therefore, Eq. (6) can be approximated as(
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According to Formula (7), �ya and �ys can be
expressed as(
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Equation (8) shows that the pseudorange residual
vectors �ya and �ys depend on the constellation of the
real satellites and spoofing satellites, and also depend
on the relative position �xas . Although Eq. (2) shows
that G depends on the estimated position xp, G is not
sensitive to xp , that is, the value ofG at xp and the value
of G at xa are considered approximately equal.

In the previous studies, �y is usually called
pseudorange residual vector. In this paper, SRV is
defined as follows:(
SRVai D �yaigai D gaig

T
ai

�
GTG

��1
GT

sGs�xas;

SRVsj D �ysjgsj D gsjg
T
sj

�
GTG

��1
GT
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(9)
where SRVai and SRVsj are the SRVs of the i-th real
satellite and the j -th spoofing satellite, respectively;
�yai is the i-th element of the �ya, refers to the least-
square residual of the i -th real satellite; �ysj is the j -th
element of the �ys , refers to the least-square residual of
the j -th spoofing satellite; gT

ai is the i-th row of matrix
Ga, and gT

sj is the j -th row of matrix Gs .
The SRV of the i-th satellite, defined as SRVi D

�yigi , indicates that there exists a pseudorange
estimation error of �yi in the direction of gi . If we
do not take into account of all the measurement errors,
the SRV of all satellites (SRVs) are zero vector. If the
measurement errors are Gaussian errors, �yi is also a
Gaussian error, usually small. In this condition, the SRVs
are small vectors. If there exists spoofing pseudorange,
the value of j�yi j is usually very large, which means
that SRVi is a large vector.

2.2 Spatial distribution characteristic of the SRV

In this subsection, the spatial distribution of the SRVs is
studied, and it is proved that the pseudorange residual
vector �y in previous papers is actually just the
projection value of SRVs in the dimension of clock bias.



460 Tsinghua Science and Technology, April 2024, 29(2): 457–468

According to Eq. (9), and considering that � Ox is a
small vector comparing to the SRVs, Eq. (5) can be
rewritten as

GT�y D
XNa

iD1
SRVai C

XNs

jD1
SRVsj � 0 (10)

where Na and Ns are the numbers of real satellites and
spoofing satellites, respectively.

Formula (10) shows that the sum of the SRVa (the
residual vectors of real satellites) is opposite to the sum
of the SRVs (the residual vectors of spoofing satellites).
The sum of SRVa can be expressed as GT

aGa�xap , and
it is obviously not a zero vector. When there exists
spoofing pseudorange, the positioning result will usually
be deceived to a false one (xp), which is far from the
real position xa, that is, �xT

ap�xap is usually large.
Therefore, the sum of SRVa is usually a large vector.
The sum of a series vector usually reflects the direction
in which these vectors are concentrated. Therefore,
Formula (10) indicates that the SRVa and the SRVs

may be distributed in different regions of space. Note
that Formula (10) does not guarantee that the SRVa

and the SRVs are separated, but there may exist a high
probability that the SRVa and the SRVs are separated.
If there are no spoofing signals, the sum of SRVa is a
zero vector, and the SRV of each satellite is also a small
vector. This indicates that the SRVa are distributed near
the zero vector.

The ideal condition is that the SRVa and the SRVs

can be divided by a plane, that is, there exists a unit
vector v that meets the following Formula:
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Formula (11) can be transformed into the following

expression:
8i; j; 9v; s.t.; P

�
SRVai ; SRVsj ; v

�
> 0 (14)

Formula (14) indicates that all of the vectors
Qi;j�xas are distributed at a side of a plane. The
distribution of Qi;j�xas depends on the constellation
of the real satellites and spoofing satellites, and also
depends on �xas . To be more precise, the length of
�xas (the 2-norm of vector �xas) has no effect on the

distribution of Qi;j�xas , instead, the direction of �xas

has a big effect on the distribution.
It is difficult to describe the distribution of vectors

Qi;j�xas in 4-dimensional space. In this paper, a metric
is proposed to describe the distribution of Qi;j�xas .

The projection of SRVi (the SRV of the i -th satellite)
onto the vector v is defined as follows:

pi .v/ D v
TSRVi ; i D 1; 2; : : : ; N (15)

Assume that p1.v/ > p2.v/ > � � � > pN .v/, and
the minimum projection of real satellites is pma.v/, the
maximum projection of spoofing satellites is pms .v/.
The Number of Hybrids (NH) at direction v is defined as

NH .v/ D ma �ms C 1 (16)

where ma is the subscript of the minimum projection of
real satellites, and ms is the subscript of the maximum
projection of spoofing satellites. The metric is defined as

NH0 D min
v
NH .v/ (17)

When NH0 D 0, the distribution of Qi;j�xas is
considered excellent, that is, the SRVa and the SRVs

are spatially separated. The distribution of Qi;j�xas

is considered becoming worse as the value of NH0

increases.
NH0 is a function of Ga (the constellation of

real satellites), Gs (the constellation of spoofing
satellites), and �xas (the relative position), but it
is hard to mathematically express it. In this paper,
simulations are done to analyze the statistical properties
of NH0. The simulation conditions are shown in
Table 1. The simulation tries to go through all the
possible values of Ga, Gs , and �xas to cover all the
possible spoofing scenarios. The spoofing pseudorange
measurement differs from the real one by more than
100 m, considering it is a common condition in
spoofing scenarios. Measurement error, ionospheric
error, tropospheric error, etc., are not considered here.
The simulation results are shown in Figs. 1 and 2, and

Table 1 Simulation conditions.
Simulation condition Value

Number of satellites in view 12
Number of spoofing satellites 4094 situations

Distance between real position and
spoofing position

Range from 100 m to
4 km; 100 random

samples
Measurement error, ionospheric

error, tropospheric error, etc.
0 m

Spoofing pseudorange minus real
pseudorange

>100 m
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Fig. 1 Distribution of NH0 in different spoofing satellite
constellations when there are two spoofing satellites.

Fig. 2 Distribution of NH0 versus the relative position
between spoofing and real in a certain spoofing constellation.

Table 2. Note that it is not advisable to solve the Eq. (17)
by traversing the vector v in the whole 4-dimentional
space. In the simulations, Eq. (17) is solved by traversing

Table 2 Relationship between the probability distribution of
NH0 and the number of spoofing satellites.

(%)
Number of

spoofing satellites
NH0

0 2 3 4 > 5

1 100.0 0 0 0 0
2 94.5 2.4 1.7 0.8 0.6
3 87.1 5.0 3.6 2.7 1.6
4 81.9 6.9 5.3 3.6 2.3
5 78.9 7.7 6.4 4.1 2.9
6 77.6 8.4 6.3 4.3 3.4
7 78.2 8.0 6.4 4.2 3.2
8 80.5 7.4 5.8 3.7 2.6
9 84.9 6.0 4.3 3.0 1.8
10 92.7 2.1 2.4 1.1 1.7
11 100.0 0 0 0 0

Average 80.4 7.3 5.7 3.8 2.8

the vector v in a subspace S0,

S0 D

(
NX

iD1

aiSRVi

)
; ai 2 f0; 1g (18)

It is difficult to give a clear figure of the distribution
of NH0 of every spoofing constellation, because there
are too much. Figure 1 only shows the distribution
of NH0 in different spoofing satellite constellations
with two spoofing satellites. The spoofing satellite
constellations are labeled from 1 to 66. The result shows
that although the number of spoofing signals is the
same, the distribution of NH0 changes with Gs . Note
that NH0 depends on Ga and Gs , but here only Gs is
considered because in the simulationG (the constellation
of all satellites in view) is definite, that is, once Gs is
determined, Ga is also determined.
NH0 also depends on �xas . Figure 2 shows the

distribution of NH0 versus �xas (the clock bias is
ignored in the figure) in a certain spoofing constellation.
The result shows thatNH0 only depends on the direction
of �xas , but does not depend on the length of �xas .
According to the results shown in Figs. 1 and 2, it is
verified that the spoofer can deliberately set the value
of Gs ,Ga, and �xas to make the SRVa and the SRVs

can not be spatially separated, but in most scenarios, the
SRVa and the SRVs are spatially separated.

Table 2 shows the probability distribution of NH0

with the different number of spoofing satellites, and
shows two main pieces of information: the one is that,
when the number of spoofing signals approaches 6 (half
the number of satellites in view), the distribution ofNH0

becomes worse, indicating that the spatial separation
condition become worse; the other is that the average
probability of NH0 D 0 is 80.37%, which means that
in most of the spoofing conditions, the SRVa and the
SRVs are spatially separated. This spatial distribution
characteristic of SRV makes the receiver able to separate
real satellites from spoofing satellites. Another thing to
point out here is that, the distribution of NH0 improves
when the number of spoofing satellites in more than
6. This is because the pseudorange of spoofing signals
are also consistent, and the GNSS receiver cannot tell
which group of signals is real or spoofing (only by the
pseudorange measurements), but can tell they belong to
different groups.

In the previous studies, only the residual vector �y is
considered. In this paper, according to the definition of
SRV in Eq. (9), the residual vector �y is equivalent to
the time-dimension of SRV, as shown in the following:
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�y D ŒSRV1; SRV2; : : : ; SRVN �
Te4 (19)

where e4 D Œ0; 0; 0; 1�
T.

According to Eqs. (16) and (19), the distribution of
�y can be measured by NH.e4/. Table 3 shows the
simulation result of NH.e4/.

Table 3 shows that, if only considering the value of
�y (the time-dimension of the SRV), there are only
43.31% of spoofing conditions, in which the residuals of
real satellites and the residuals of spoofing satellites
are separated. However, Table 3 shows that, in the
4-dimensional space, there are 80.37% of spoofing
conditions, in which the SRVa and the SRVs are
spatially separated. This suggests that when viewed in
higher dimensions, the pseudorange residuals will have
better spatial separation properties. This opens up more
possibilities for separating real satellites from spoofing
satellites.

3 SRV-RAIM Method

In this section, the main idea of the SRV-RAIM method
is introduced and a basic algorithm based on this idea
is proposed. Simulations are also done to evaluate the
performance of the SRV-RAIM algorithm and compared
with the performance of the conventional traversal-
RAIM.

According to the previous section, the SRVa and the
SRVs are spatially separated in most of the spoofing
conditions. However, in order to make full use of this
characteristic to achieve the purpose of separating the
real and spoofing signals, two problems remain to be
solved: the one is that the best projection vector v0 D

arg minvNH.v/ is unable to be solved mathematically
because there is no prior knowledge about Gs and xas,
only G is known; the other is that even though the v0 is
given, it is also difficult to directly separate real satellites
from spoofing satellites because the number of spoofing
satellites is unknown.
SRVa and SRVs are discretely distributed in the space,

which means that the set of vectors that satisfies Eq. (17)

Table 3 Average probability distribution of NH(e4).
(%)

NH.e4/ Average probability
0 43.3
2 9.2
3 8.0
4 7.3

> 5 32.2

is the union of continues subspaces and v0 is the vector
in this set. Therefore, the basic strategy to solve the first
problem is searching the value of v in a subspace Sv with
a finite number of vectors, instead of the whole space,
to find v0. This strategy may reduce the probability
to find NH0 D 0, but it is a necessary sacrifice to
reduce the amount of computation. If v0 is a uniform
distributed random vector in space, then a good strategy
for choosing a subspace Sv is as follows: the vectors in
the subspace should be as uniformly distributed in space
as possible.

To solve the second problem, instead of finding
all real satellites at once, finding 5 real satellites
or 5 spoofing satellites is easier. If v0 is given
and NH0 D 0, the biggest five projections D1 D

fpi .v0/gi65 correspond to five real satellites (Na 6 5)
or the smallest five projections D2 D fpi .v0/gi>N�4

correspond to five spoofing satellites (Ns > 5). After
the five real (or spoofing) satellites are found, the
rest of real (or spoofing) satellites can be found
easily, because the pseudorange measurements of
real (or spoofing) satellites are consistent, but the
pseudorange measurements of real satellites are not
consistent with those of spoofing satellites. Therefore,
if a vector v on which the biggest five projections
D1 D fpi .v/gi65, or the smallest five projections
D2 D fpi .v/gi>N�4 correspond to five satellites, whose
pseudorange measurements are consistent, can be found,
the real satellites and the spoofing satellites can be
separated. Based on this idea, it is not necessary the find
the best vector v0, which is impossible. That also means
that even if the SRVa and the SRVs are not spatially
separated (NH0 > 0), it may also be possible to separate
the SRVa from the SRVs . That gives another chance to
reduce the number of vectors in the subspace Sv .

Based on the above analysis, the problem of separating
the SRVa and the SRVs can be simplified as a hypothesis
test problem as follows:

(1) H0 W 9 v 2 Sv; s.t., D1 � Sa;D1 � Ss;D2 �

Sa; or D2 � Ss;
(2) H1 W 9= v 2 Sv; s.t., D1 � Sa;D1 � Ss;D2 �

Sa; or D2 � Ss .
Sa is the set of projections of real satellites, and Ss is

the set of projections of spoofing satellites.
In this paper, four projection vector subspaces (Sv)

are considered, and p.H0/ of each subspace is given
by simulations. The simulation conditions are shown in
Table 1, and simulation results are shown in Table 4.
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Table 4 Simulation results of p (H0) about the four
subspaces. p0 (H0 ) = p (H0; Sv = S0/, p1 (H0) = p (H0; Sv = S1),
p2 (H0) = p (H0; Sv= S2), and p3 (H0) = p (H0; Sv = S3).

(%)

Number of
spoofing satellites

p0.H0/ p1.H0/ p2.H0/ p3.H0/

1 100.00 100.00 100.00 100.00
2 100.00 99.27 99.95 100.00
3 99.89 97.60 99.28 99.83
4 99.66 94.83 97.67 99.10
5 98.57 89.01 93.55 96.49
6 97.42 85.58 90.69 94.15
7 98.27 89.25 93.62 96.53
8 99.55 94.63 97.52 99.06
9 99.81 97.26 99.26 99.70
10 100.00 99.00 99.91 100.00
11 100.00 100.00 100.00 100.00

Average 98.72 90.98 94.74 97.08

Assume that v0 is evenly distributed in the 4-
dimentional space, in this case, the vectors in Sv

is suggested to be also evenly distributed in the 4-
dimentional space, but it is not easy to construct such
a perfect subspace Sv. An easier way to construct a
subspace is that the coordinates of the vectors in the
subspaces are lattice points (the value of coordinate axis
is �1, 0, or 1) near the origin, and the lattice points are
as far away as possible. Except for S0, this paper gives
three subspaces, defined as follows:8̂̂̂̂

ˆ̂̂̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂:

S1 D

(
e1; e2; e3; e4;

4X
iD1

aiei

)
;

S2 D S1 [

(
4X

iD1

biei

)
;

S3 D S2 [

(
4X

iD1

ciei

) (20)

where ei .i D 1; 2; 3; 4/ is a 4�1 vector, whose i-th
element is 1 and other elements are 0; a1 D 1; ai 2

f�1; 1g.i D 2; 3; 4/; Œb1; b2; b3; b4�
T is the column of

the matrix B D ŒB1; B2�; Œc1; c2; c3; c4�
T is the column

of the matrix C D ŒC1; C2�,

B1 D

26664
1 1 0 0 0 0

1 �1 1 1 0 0

0 0 1 �1 1 1

0 0 0 0 1 �1

37775 ;

B2 D

26664
1 1 0 0 1 1

0 0 1 1 0 0

1 �1 0 0 0 0

0 0 1 �1 1 �1

37775
(21)

C1 D

26664
1 1 1 1 1 1 1 1

1 �1 1 �1 1 �1 1 �1

1 1 �1 �1 0 0 0 0

0 0 0 0 1 1 �1 �1

37775 ;

C2 D

26664
1 1 1 1 0 0 0 0

0 0 0 0 1 1 1 1

1 �1 1 �1 1 �1 1 �1

1 1 �1 �1 1 1 �1 �1

37775
(22)

Table 4 shows that the average p .H0ISv D S0/

is 98.72%, much larger than 80.37% (the average
p .NH0 D 0/ in Table 2). That is because even
if NH0 > 0, H0 could also be possibly true. S0

contains 4094 vectors, so it will take a large amount
of computation to find the right v0. S1 only contains
12 vectors, but the average p1.H0/ is reduced to
90.98%, comparing to p0.H0/. By expanding S1 to
S2, the average p .H0/ can arise to 94.74% (p2.H0/),
but the number of vectors in subspace only increases
12. By expanding S2 to S3, the average p .H0/

arises to 97.08% (p3.H0/), and the number of vectors
increases to 40. Table 4 shows that by expanding the
set Sv, the probability of p.H0/ will increase, but
the computational cost will also increase. p3.H0/ is
very close to p0.H0/, so the performance gained from
expanding the S3 is no longer significant, but the
computational cost will continue to increase. Therefore,
in this paper, S3 is considered a good balance between
performance and computational complexity, and is
chosen for further simulations.

According to the simulation results, the two problems
mentioned at the beginning are almost solved. However,
in the previous discussion, a question is ignored: How to
test D1 � Sa, D1 � Ss , D2 � Sa, or D2 � Ss . In this
paper, we assume that the pseudorange measurements
of real (or spoofing) satellites are consistent, but the
pseudorange measurements of real satellites are not
consistent with those of spoofing satellites. Based
on this assumption, the question is translated to test
if the pseudorange measurements of five satellites,
whose projections are D1 or D2, are consistent. A
common method to test the consistency of pseudorange
measurements is to use SSE as the test statistic, which is
defined as

SSE D

r
�yT�y

n � 4
(23)

where �y is the least squares residuals, n is the number
of pseudorange measurements.



464 Tsinghua Science and Technology, April 2024, 29(2): 457–468

Based on the above discussion, an SRV-RAIM
algorithm is proposed, as shown in Algorithm 1.

Note that the method only divides the pseudorange
measurements into two groups. Extra information is

Algorithm 1 SRV-RAIM algorithm
Define:

vk : the k-th vector of Sv;
NSv : number of vectors in Sv;
TH.n/: thresholds of SSE with different satellite number n;
SSE.S/: SSE test statistic calculated according to the
satellites in set S ;

1: F lag 0;
2: for k D 1; 2; : : : ; NSv do
3: for n D 1; 2; : : : ; N do
4: pi  SRV T

i
vk ;

5: end for
6: .p�1 ; p�2 ; : : : ; p�N / sorted .p1; p2; : : : ; pN /;
7: G1  f�i gi65;
8: G2  f�i gi>5;
9: m 2;

10: while m > 0 do
11: if SSE.G1/ < TH.5/ then
12: for each �j 2 G2 do
13: if SSE.G1 [ f�j g/ < TH.NG1 C 1/ then
14: G1  G1 [ f�j g;
15: NG1  NG1 C 1;
16: Throw out �j from G2;
17: NG2  NG2 � 1;
18: end if
19: end for
20: if NG2 < 5 or SSE.G2/ < TH.NG2/ then
21: F lag 1;
22: m 0;
23: else
24: G1  f�i gi>N�4;
25: G2  f�i gi<N�4;
26: m m � 1;
27: end if
28: else
29: G1  f�i gi>N�4;
30: G2  f�i gi<N�4;
31: m m � 1;
32: end if
33: end while
34: if F lag D 1 then
35: break;
36: end if
37: end for
38: if F lag D 1 then
39: Check if the pseudorange measurements in G1 and G2

keep consistent for some seconds, respectively;
40: else
41: Algorithm is failed;
42: end if

needed to identify which group is real, and in this paper,
the identification is ignored. Step 39 in Algorithm 1 is
a detailed supplement of the SRV-RAIM algorithm, but
not the core idea of it. Therefore, in this paper, only
steps before Step 39 of the method are evaluated by
simulations. The simulation conditions are basically the
same as in Table 1, except that the measurement error
is considered as a Gauss noise with mean being 0 and
standard deviation being 4 m. According to Ref. [12],
the test threshold TH in the SSE method is calculated in
the alarm rate of 95%. The simulation result is shown in
Table 5.

The method is considered�success�if real signals
and spoofing signals are successfully separated. The
method is considered �false�if the Flag is 1, but
there is a group that contains both real signals and
spoofing signals. The method is considered�fail�if
Flag is 0. Table 5 shows that the SRV-RAIM algorithm
has an average of 86.55% success rate, 3.01% of false
rate, and 10.44% of failure. Comparing to the ideal
performance 97.08%, shown in Table 4, the practical
performance is decreased by 10.53%. The main reason
for the obvious performance reduction is the high miss
detection and false alarm rate of the SSE method. When
a miss detection of the SSE method happens, the SSE test
statistic may still be smaller than the threshold even if
there exist both spoofing signals and real signals. When
the SSE method arises a false alarm, the SRV-RAIM
algorithm may loss the right projection vector vk or fail
in dividing the real signals and spoofing signals (Steps 9–
33 in Algorithm 1). From Algorithm 1, it is obvious

Table 5 Successful rate, false rate, and failed rate of the
SRV-RAIM algorithm.

(%)

Number of
spoofing satellites

Success rate False rate Fail rate

1 93.08 6.92 0
2 93.83 5.86 0.30
3 93.61 5.35 1.04
4 92.01 1.34 6.65
5 84.55 1.93 13.52
6 82.22 2.61 15.17
7 83.24 2.84 13.92
8 90.21 3.41 6.38
9 91.85 6.92 1.24
10 91.91 7.95 0.14
11 92.75 7.25 0

Average 86.55 3.01 10.44
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that the SSE method takes a very important part, so the
performance of SSE will greatly affect the performance
of the algorithm. Both the miss detection and the false
alarm of the SSE method can cause a false separation or a
failure of the SRV-RAIM algorithm. The performance of
the SSE method decreases significantly in the following
two scenarios:

(1) The real pseudorange is close to the spoofing one;
(2) The quality of satellite geometry is inferior[18, 19].
The first case can be avoided because, in normal

spoofing situations, the spoofing pseudorange will not
always be close to the real one over time. Therefore,
Step 39 in Algorithm 1 can correct the false separation.
The second case happens because, in the SRV-RAIM
method, the first step is testing the consistency of
only five pseudorange measurements. The quality of
satellite geometry may be inferior when the number
of satellites is small. In this case, the false separation
and failure probability can be reduced only when the
difference between the spoofing pseudorange and the
real pseudorange is large enough. Therefore, Step 39
in Algorithm 1 is very important for the reliability of
the SRV-RAIM method, but in this paper, it will not be
discussed further.

The computational effort of the method is mainly
focused on the search for the correct vector vk 2 Sv,
and frequent positioning calculations to separate the
pseudorange measurements into two groups. In this
paper, the amount of computation is measured by
the number of positioning calculations (ns) needed to
separate real signals from spoofing signals, because it is
the most computationally expensive part of Algorithm 1.
The amount of computation of the SRV-RAIM is shown
in Table 6. The result shows that the computational cost
of Algorithm 1 is very low, regardless of the number of

Table 6 Amount of computation of the SRV-RAIM method.
Number of spoofing satellites Mean (ns)

1 11.6
2 15.0
3 18.8
4 22.0
5 24.2
6 26.9
7 24.1
8 22.3
9 18.7
10 15.2
11 11.5

Average 23.2

spoofing satellites. The computational cost only arises
a little when the spoofing number grows to 6. This is
because the separation conditions of SRV worsens when
the spoofing number increases, as shown in Table 2,
leading to the need to search more vectors vk 2 Sv to
find the first five signals that have consistent pseudorange
measurements.

In order to further analyze the advantages and
disadvantages of the SRV-RAIM algorithm, the
performance of the conventional traversal-RAIM is also
proposed. The main idea of the conventional traversal-
RAIM method to solve multi-spoofing situations is to
go through all the possible fault-free cases, and use SSE
method to test if there exist fault signals until find the
right one that pass the SSE test. Simulations are done to
evaluate the conventional traversal-RAIM method, and
the results are shown in Tables 7 and 8.

Table 7 shows that the conventional traversal-RAIM
has an average success probability of 90.14%, an average

Table 7 Successful rate, false rate, and failed rate of the
conventional traversal-RAIM.

(%)
Number of

spoofing satellites
Success rate False rate Fail rate

1 94.92 5.08 0
2 95.15 4.85 0
3 94.80 5.13 0.08
4 95.10 0.33 4.58
5 90.24 0.38 9.38
6 86.29 4.00 9.71
7 87.32 3.14 9.54
8 91.99 3.29 4.72
9 93.05 6.84 0.12
10 93.70 6.30 0
11 94.50 5.50 0

Average 90.14 2.87 6.99

Table 8 Amount of computation of the conventional
traversal-RAIM method.

Number of spoofing satellites Mean (ns)
1 8.4
2 52.1
3 205.0
4 549.5
5 1590.0
6 2784.0
7 1549.4
8 537.2
9 200.6
10 52.2
11 8.2

Average 1361.1
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false separation probability of 2.87%, and an average
failure probability of 6.99%. The reasons that cause
the false separation and failure of the traversal-RAIM
are almost the same as SRV-RAIM method. Table 8
shows the amount of computation of the conventional
traversal-RAIM method. It shows that the amount of
computation increases rapidly when the number of
spoofing satellites grews to 6, because of the increase
number of possible combinations of fault satellites.
The average computational cost of the traversal-RAIM
method is 1361.1.

According to Tables 6 and 8, the amount of
computation of the conventional traversal-RAIM is
smaller than that of the SRV-RAIM method when
the spoofing satellite number is 1 or 11. In this case,
the SRV-RAIM method firstly tries to find 5 real
(or spoofing) satellites, which requires several times
of positioning calculations. After finding 5 real (or
spoofing) satellites, the SRV-RAIM method needs 6
more times of positioning calculations (Step 12–19
in Algorithm 1) to find other 5 real (or spoofing)
satellites. Comparing to the SRV-RAIM method, the
conventional traversal-RAIM only needs to traverse 12
fault conditions. If lucky enough, the conventional
traversal-RAIM only needs 1 time of positioning
calculation, but the SRV-RAIM method needs 7 times of
positioning calculation. When the number of spoofing
satellites increases, the amount of computation of the
SRV-RAIM method only increases a little, but the
amount of computation of the conventional traversal-
RAIM increases rapidly. The average computational
cost of the SRV-RAIM method is only 1.7% of the
conventional traversal-RAIM.

By comparing the simulation results of the
conventional traversal-RAIM method and the SRV-
RAIM method, it can be found that the effective
probability of the SRV-RAIM method is 3.59% lower
than that of the conventional traversal-RAIM, but the
computational cost is reduced by 98.3%. This low
computational complexity allows the algorithm to be
run in-time on most of the GNSS receivers, and it
greatly improves the availability of the GNSS receiver
in spoofing environment.

4 Conclusion

In this paper, the SRV is defined for the first time and
a metric, called the number of hybrids, is defined to

reflect its spatial distribution. Simulations are done to
analyze the spatial distribution characteristic of SRV
in some spoofing scenarios, in which the pseudorange
measurements of spoofing signals are consistent. The
results show that, when there are 12 satellites (including
spoofing satellites and real satellites) in view, there
is 80.37% of spoofing situations, in which the SRV
of spoofing satellites and the SRV of real satellites
can be spatially separated by a plane. Based on this
spatial distribution characteristic, the SRV-RAIM
method is proposed, and simulation results show
that its’ performance is only 3.59% lower than that
of the conventional traversal-RAIM method, but the
computational cost is only 1.7% of the conventional
one, and the computational cost is almost independent
of the number of spoofing satellites and the number of
all satellites. The low computational complexity of the
SRV-RAIM algorithm allows it to be run in-time on
most GNSS receivers, and only 3.59% performance loss
is acceptable.

The main advantage of the SRV-RAIM algorithm
is the extremely low computational complexity, with
only little performance loss, comparing to the traversal-
RAIM. However, there are two main limitations
of the SRV-RAIM method. The first is that the
simulations only verify the effectiveness of the SRV-
RAIM method in specific spoofing scenarios, in which
the pseudorange measurements of spoofing signals are
consistent. Therefore, when the number of spoofing
signals is more than 4, the spoofing pseudorange
measurements may be not consistent, and in this
condition, the SRV-RAIM method may not work. The
second limitation is that the SRV-RAIM method is
strongly affected by SSE method, which means that
the SRV-RAIM method inherits all the weaknesses of
the SSE method. The SRV-RAIM tries to find out 5
real or spoofing signals, and SSE method is used to
check if their pseudorange measurements are consistent.
However, when there are only 5 satellites, the quality
of satellite geometry is likely to be inferior, that is, the
Position Dilution Of Precision (PDOP) may be very
large. In this condition, the SSE method is not so trustful.
The SRV-RAIM method will perform better in dynamic
scenarios, in which the relative position between the
real position and the spoofing position changes over
time. That is because in dynamic scenarios, the spatial
distribution of SRVs changes over time, and if the
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method fails in the current epoch, it may success in the
next epoch. Beside this, the false separation probability
will also decrease in dynamic scenarios, because the
difference between the authentic pseudorange and the
spoofing pseudorange will increase with time.

Although the SRV-RAIM method proposed in this
paper has an excellent performance, the research is still
insufficient. The following points need further study:

(1) The simulation results show that the SRV of
authentic satellites and the SRV of spoofing satellites
have good spatial separation characteristics, but the
reason for this characteristic is still unclear.

(2) The influence of the number of satellites in view
and the test threshold on the SRV-RAIM method needs
to be further studied. In addition, the performance of
the method in other spoofing scenarios, in which the
pseudorange measurements are not consistent or there
exist multiple groups of spoofing satellites, also needs to
be further studied.

(3) In this paper, simulation experiments are quite
ideal, and the effects of multi-path, ionospheric
anomalies, etc., are ignored. The performance of SRV-
RAIM method in harsher and more realistic environment
needs to be further studied.
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