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Towards Data-Driving Multi-View Evaluation Framework for Scratch

Xiaolin Chai, Yan Sun�, and Yan Gao

Abstract: As one of the most popular visual programming languages, Scratch has a lot of evaluation around it.

Reasonable evaluation can help programmers understand their projects better. At the same time, it can also provide

a reference for them to browse other projects in the online community. Most of the existing evaluations on Scratch

are carried from three perspectives: Computational Thinking (CT) ability, visual presentation aesthetics, and code

quality. Among them, the assessment of CT and code quality is mainly carried out from the program script, while the

evaluation of visual aesthetics is analyzed from the perspective of image sequences generated by project execution.

The single-view evaluation focuses on the performance of a program in a certain aspect and is one-sided. In this

paper, we propose a multi-view evaluation framework to integrate various evaluations using different policies. We

quantitatively analyze the assessment of different views driven by data. Combined with overall evaluations that

represent human opinions, we analyze their differences and connections. Through experiments, we determine the

weights of different integration policies, the proposed multi-view evaluation method can generate evaluation results

similar to human opinions.

Key words: Scratch; Computational Thinking (CT); visual aesthetic; static analysis; integration policy; machine

learning

1 Introduction

Scratch is a popular visual programming language. On
the Scratch online community, programmers can freely
share their projects, view other people’s public projects,
and express their opinions through likes, favorites, or
adaptations. In December 2022, the Scratch online
community had 676 440 870 page views with 31 590 430
unique visitors. The Scratch community currently has
120 480 903 publicly shared projects and 101 588 578
registered users. Programmers can use Scratch to create
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stories, games, and animations, and share them with
others around the world. Appropriate evaluations can
help programmers examine their projects and gain a
preliminary understanding of other people’s projects.

Much of the early evaluation of Scratch revolves
around Computational Thinking (CT)[1, 2]. CT is a
thinking ability, which refers to using concepts, methods,
techniques, and logical reasoning of computing and
computer science to solve problems in various fields[3].
A Dynamic Weighted Evaluation System (DWES) based
on CT[4] considers the impact of different project types
on CT ability for the first time and evaluates the CT
embodied in Scratch projects from 8 dimensions and 5
ability levels. With the development of the field of image
aesthetic evaluation[5–9], there are also studies evaluating
the visual execution results of Scratch projects from an
aesthetic perspective. Scratch projects are accompanied
by cartoon clips playing on stage during execution. The
visual aesthetic analysis of visual programming can
be seen as the evaluation of the aesthetic presented
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by cartoon clips. Code quality is one of the most
fundamental components of the program evaluation.
The building-block programming model allows Scratch
to avoid common code problems in other languages.
However, after a long follow-up investigation, we
find some bugs and smells in Scratch that cannot be
automatically avoided. These problems can be more
insidious and have serious consequences. The semantic
information contained in visual code images can be used
for static analysis of programs.

Although many studies have evaluated Scratch
programs from CT, visual aesthetics, and code quality,
few studies have focused on the connections and
differences between these different perspectives. The CT
ability and code problem evaluations of the project are
all based on the analysis of program scripts. What are
the difference and connections between them? Does
the visual presentation of Scratch have a significant
impact on the overall evaluation of the project? These
are the questions we are interested in. Through analysis,
we find that there is little correlation between single-
view evaluations and overall evaluations given by
humans. How to predict human true opinions on projects
through evaluations from different perspectives, and
provide programmers with comprehensive and multi-
dimensional evaluation results as a reference are exactly
what we are concerned about.

Aiming at the above problems, we propose a multi-
view comprehensive evaluation framework for Scratch
in this paper. The overall idea of the paper is shown
in Fig. 1. First, the CT ability evaluation model,
visual aesthetics evaluation model, and code problem
evaluation model are used to evaluate the project
from multiple perspectives. We infer overall ratings
of projects from human opinions collected in the
online community. Then, analyze the differences and
connections between them driven by data. Finally, the
evaluations from the different views are synthesized into
a comprehensive assessment of the project by trying
various integration policies.

In summary, our main contributions are as follows:

Fig. 1 Overview of our work.

� Under the data-driven, compare the differences and
connections among Scratch evaluation methods from
different views, and analyze the relationship between
them and the overall evaluation.
� A multi-view comprehensive evaluation method

is proposed, integrating evaluations from different
perspectives through various policies to form a
comprehensive assessment of the project.
� The weights of each evaluation of different

integration policies are determined through experiments,
and the connection between the generated overall
evaluation and human opinions is compared.

The rest of the paper is organized as follows. In
Section 2, we review Scratch evaluation methods
from different perspectives. In Section 3, we analyze
the relationship between various evaluations and their
connections to human opinions. Then in Section 4,
we introduce the multi-view evaluation method.
Experimental and comparative results are given in
Section 5. The conclusion of this paper is in Section 6.

2 Related Work

2.1 Computational thinking evaluation

Dr. Scratch is a web tool that helps analyze Scratch
projects and assign CT scores using Hairball plug-ins[10].
It infers the CT abilities demonstrated by users from
the following seven concepts: abstraction and problem
decomposition, logical thinking, synchronization,
parallelism, algorithmic notions of flow control, user
interactivity, and data representation. In order to solve
the defects of high failure rate and low efficiency in Dr.
Scratch, Chang et al.[11] proposed a Scratch program
analysis tool based on ANother Tool for Language
Recognition (ANTLR). Their assessment of CT skills
contains some basic concepts in computer science, such
as stacks, queues, and recursive methods.

Considering the diversity of projects, we propose a
DWES based on CT for Scratch[4]. This is a relatively
comprehensive and flexible CT evaluation method. We
focus on the CT ability shown by the combination of
some blocks and add code organization to the evaluation
dimension. Each CT concept is divided into five
competency levels, as shown in Table 1. We add up
the score of each dimension to get the total score of
the project in CT, out of 40 points. DWES is mainly
composed of two modules: project automatic analysis
and score dynamic weighting, as shown in Fig. 2. The
inputs of the system are the project and its type, and
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Fig. 2 Dynamic weighted evaluation system based on CT for
Scratch.

the output is the dynamic weighted CT score. First,
we generate the Abstract Syntax Tree (AST) of the
project based on ANTLR. According to the proposed
evaluation criteria, we traverse and analyze the AST to
obtain the original CT score. Then, by analyzing the
performance of each dimension of CT in different types
of projects and the usage of blocks, we dynamically
adjust the weights of each dimension of CT. This
dynamic adjustment method is based on the fact that
different types of projects focus on different CT skills.

2.2 Visual aesthetic evaluation

The running results of the Scratch project are presented
on the stage in the form of cartoon clips. Therefore,

the aesthetic evaluation of visual programming projects
can be regarded as the visual aesthetic analysis of
sequence cartoon images. In recent years, more and
more researchers have focused on evaluating image
quality from an aesthetic perspective. There are already
some datasets for visual aesthetic analysis by collecting
people’s feedback about image quality and aesthetics
on websites. The Aesthetic and Attribute DataBase
(AADB)[12] and the Aesthetic Ratings from Online Data
(AROD)[13] database collect images from the Flickr
website. The images in AADB are scored by multiple
human raters for overall aesthetics and assigned 11

attributes related to image aesthetic judgment, but the
final dataset only contains 10 000 images. The AROD
infers the pleasingness of an image by the number of
times it has been visited and favored. The Aesthetic
Visual Analysis (AVA) database contains more than
250 000 images from www.dpchallenge.com and is
recognized as the benchmark dataset in the field of image
aesthetic evaluation[14]. The AVA provides three types of
annotations, where the aesthetic annotations of images
are voted by an average of 200 amateur and professional
photographers.

The emergence of large-scale datasets makes it

Table 1 CT evaluation criteria.

Competence
level

Abstraction
and problem

decomposition
Parallelism Logical

thinking
Synchronization Flow control User

interactivity
Data

representation
Code

organization

Basic
(1 point)

More than
one sprite
and more
than one

script

Two scripts
on green flag

If Wait or stop all Sequence of
blocks

Say or
think

Modifiers
of

object
properties

Initialization
of object
properties

Developing
(2 points)

Switch
costumes

or backdrops

Two scripts
on key
pressed
or on

the same
sprite

clicked

If else

A script on
keyboard or

mouse operation;
a script when
backdrop or

custom switches

Repeat
or

forever
Green flag Join

Rename
sprites,

backdrops,
or

costumes

Familiar
(3 points)

Make a
new block

Two scripts
when

backdrop
switches

Logic
operations

A script on
touching color,
loudness, video,
timer, or object

properties

Repeat until Keyboard or
mouse

Variables Use of
comment

Mastered
(4 points)

Use of
clones

Two scripts
on loudness

or video
motion

Nest
logical

Wait until
Loop condition
contains logic

operations

Webcam,
input sound

Lists No dead
code

Proficient
(5 points)

Use of
recursion

Two scripts
when receiving

message

Logical
nest loop

Broadcast;
broadcast and
wait; a script
when receive

message

Nest if or
if else in

a loop; nest
loop statements

in a loop

Ask and
wait,

answer

Queues or
stacks

No useless
broadcast
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possible to use deep learning to evaluate image
aesthetics. Lu et al.[15] proposed a double-column deep
convolutional neural network to obtain global and local
features of images, and combine style and semantic
attributes to classify image aesthetics. Hosu et al.[16]

proposed a deep learning method relying on Multi-
Level Spatially Pooled (MLSP) features to evaluate
the aesthetic quality of full-resolution images. Talebi
and Milanfar[17] proposed a Natural Image Assessment
(NIMA) method based on deep object recognition
networks to predict the distribution of human opinion
scores. The NIMA achieves comparable performance to
other methods using a simple architecture.

To analyze and evaluate the execution results of visual
programming, we proposed a model that predicts human
opinion scores of sequence cartoon images[18]. Most
existing research on visual aesthetics focuses on natural
images, so we first construct a Cartoon Aesthetic Visual
Analysis (CAVA) dataset. We propose ScratchGAN to
convert photos in the AVA dataset into Scratch cartoon
style and use labels reflecting relative aesthetic relations
as aesthetic annotations. Based on CAVA, we propose
an aesthetic evaluation method for visual programming,
as shown in Fig. 3. First, the relative aesthetic prediction
of a single cartoon image is obtained through the image
classifier network. The image classifier network is
based on Inception-Resnet-v2[19], and the last layer is
replaced with a fully connected layer with 10 neurons
to predict aesthetic scores in the range of 1 to 10.
To verify the relative aesthetic relationship among
sequence images and map them to an absolute scale,
we feed the images and their relative aesthetic prediction
scores into the image encoding learning network for
feature extraction. On this basis, the aesthetic space is
constructed to perform fine-grained sorting of images
in a high-dimensional space. The l2-norm of the sorted
image features is normalized to obtain the final aesthetic
evaluation of the sequence image in the range of 1 to 10.

2.3 Code problem detection

In addition to evaluating code from the perspective of
CT, some research focuses on code problems in Scratch.
Quality Hound[20] is an online analyzer of Scratch code

Fig. 3 Artistic analysis model based on sequence cartoon
images for Scratch.

smells implemented using JastAdd. It parses the code
recorded in the JSON file of the Scratch project into an
AST for analysis. Quality Hound can detect 12 code
smells including broad variable scope, duplicated string,
duplicated code, etc. LitterBox is a linter for static
analysis of Scratch programs[21]. It summarizes possible
code problems in Scratch from four aspects: syntax
errors, scratch-specific bugs, general bugs, and code
smells. The patterns of these problems are discovered
from the perspective of AST. By matching the specific
patterns of these problems on the AST, the analysis
results of the program are obtained.

Most methods need to convert the code of the program
into an AST before analyzing, but it is time-consuming
and complicated to construct the AST and traverse it
once or several times to obtain the analysis results. The
code images of visual programming projects contain
rich semantics, which makes it possible to mine code
problem patterns from the perspective of code images.
We summarize the patterns of possible quality problems
in Scratch from the perspective of code images, as shown
in Table 2. To detect these problems, we propose a static
method for visual programming languages based on
code images, as shown in Fig. 4. The inputs of the
method are the Scratch project and its JSON file, and
the output is the analysis results of the code quality.
First, code images are extracted from the project and
fed into the object detection network. If no potentially
problematic code patterns are detected, the static analysis
is complete. If code objects are detected, we need to
combine the generated AST for further analysis. Based
on the code proposals, the regions in the AST that need
to be analyzed are identified. Finally, we only need to
analyze the important areas in the AST to get the analysis
results of code problems.

3 Towards Data-Driving Quantitative
Analysis

We download more than 2500 projects from the Scratch
online community during December 2022 according to
their popularity. They are public and can be accessed by
id. We evaluate the projects from three perspectives: CT,
visual aesthetics, and code problems.

3.1 Data preprocessing

When using DWES[4] to evaluate CT, we need to
dynamically adjust the weight of each dimension of CT
according to the type of project, which requires the tag
of the Scratch project to be correct and single. The type
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Table 2 Problems and image patterns.
Problem Code image Problem Code image

Ambiguous
custom
function

name

Ambiguous
parameter

name

Parameter
out of
scope

Unsent
message

Unreceived
message

Missing
clone

initialization

Missing
clone call

Recursive
cloning

Illegal
arithmetic
operation

Missing
loop

Missing
sound

resources

Missing
backdrop
resources

Missing
costume
resources

Missing
pen up

Missing
pen down

Incorrect
pen order

Empty
custom
function

Unused
custom
function

Ambiguous
variable

name
–
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Fig. 4 Static analysis approach for visual programming.

of Scratch project is determined based on the tags
selected by the user when uploading the project. We need
to eliminate mislabeled projects as well as composite-
type projects from the downloaded 2500 projects. After
the judgment of the project classifier is combined with
the selection of three domain experts, we finally choose
500 projects for analysis. The 500 projects are from
animations, games, simulations, music, and stories, 100
in each category. The number of code blocks that build
the program ranges from a few tens to twenty thousand.

The Scratch online community encourages users to
upload their creations and share them. On the project
page, visitors can run the project and express their liking
for it by clicking the “like” button. Inspired by Ref. [13],
we get ground-truth rating labels based on the number
of views and likes of projects. The behavior of a user
clicking on a project to enter the detail is counted as
a view, and the behavior of a user clicking the “like”
button is regarded as they love the creation. These two
indicators are closely related to the overall evaluation
of the project, so this is a low-threshold way to collect
human feedback. We approximate the true evaluation of
project pi by

T .pi / D
logL .pi /

logV .pi /
(1)

where L .pi / is the number of likes of pi and V .pi / is
the number of views.

The evaluation we obtained using DWES is developed
from 8 dimensions of CT and the total score is 40.
The visual aesthetics scores obtained using the artistic
analysis model range from 1 to 10. When using the static
analysis method to detect code problems, the results
obtained are the problems in the code and the number
of times they occur. In order to conduct quantitative
analysis, we need to unify the scores of these three
evaluation methods in the same interval. We adjust the
CT scores for a category of projects by

Sct.pi / D

8X
kD1

.CTk � PWt;k/ � dim

40
� ˛ (2)

where k indicates which dimensions of CT, t denotes the

type of the project, and PW is the weight matrix. dim
represents the dimension of CT involved in weighting,
which is 8 here. ˛ is used to control the score interval.

We adjust the aesthetic score interval by

Saes.pi / D

NX
kD1

An

10N
� ˇ (3)

where N denotes the number of cartoon images
composing the Scratch clip, An represents the aesthetic
score of the n-th image, and ˇ is used to control the
score interval.

When the values of ˛ and ˇ are 100, we have unified
the CT and aesthetic score of project pi into the range
of 0 to 100. As for the quantification of code quality
detection results, we prescribe a score of 100 for projects
without any problems. The static analysis score for
project pi is

Spro.pi / D 100 �

MX
mD1

Tm (4)

where M represents the number of code issues detected
in pi , and Tm represents the number of occurrences of
the m-th problem.

3.2 Findings

We quantitatively analyze the CT mastery scores,
aesthetic scores, code quality scores, and human opinion
scores of 500 projects, as shown in Fig. 5. CT mastery
scores range from 20 to 100, aesthetic scores range from

(a) CT mastery scores distribution frequency
histogram

(b) Aesthetic scores distribution
frequency histogram

(c) Static analysis scores distribution
frequency histogram

(d) Human opinion scores distribution
frequency histogram

Fig. 5 Frequency histograms of score distributions for the
three evaluation methods and human opinions.
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35:10 to 63:76, code quality scores range from 0 to 100,
and human-true evaluation scores range from 30:56 to
80:14. The mean and median of CT mastery scores are
69:86 and 75, respectively. The mean and median of
aesthetic scores are 53:02 and 52:81, respectively. The
mean of code quality scores is 81:79 and the median
is 95. The mean of human opinion scores is 64:3
and the median is 66:24. The medians of CT mastery
scores, code quality scores, and human opinion scores
are all greater than their means, which indicates that
the distribution of scores is negatively skewed to some
extent. The median and mean values of aesthetic scores
are relatively close, indicating that the distribution of
scores is symmetrical to a certain extent. The skewness
of the distributions of the three evaluations and human
opinions are all less than 0, which indicates that the
distributions are skewed to the left. The absolute value
of the skewness of the code quality scores is the largest,
which is 1:91, indicating that the degree of left skew
of the evaluation is the most serious, and the shape
of the distribution is left long tail. The skewness of
the human opinion scores and the CT scores are �1:20
and �0:48, respectively, which also shows that the data
on the left side of the mean are more dispersed than
the data on the right side. The skewness of aesthetic
scores is �0:16, which is closest to 0, indicating that
the data distribution is relatively symmetrical. As for
data’s kurtosis, the distribution of aesthetic scores is
0:46, which is relatively close to 0. The kurtosis of the
CT scores is �0:83, indicating that the distribution has a
gentle kurtosis and a dumpy shape. The kurtosis of the
human opinion scores and the code quality scores are
1:47 and 2:68, respectively, indicating that the kurtosis
of the distribution is relatively steep and pointed. Thus,
it can be preliminarily judged that the distributions of CT
mastery scores, code quality scores and human opinion
scores do not satisfy the normal distribution, while
the aesthetic scores basically conform to the normal
distribution.

We further verify the normality of the distribution
using the Kolmogorov-Smirnov (K-S) test[22], and the
results are shown in Table 3. The p-value of the aesthetic
scores is 0:63, which is greater than 0:05, satisfying the

Table 3 Results of the K-S test.
Evaluation p-value

CT mastery score 1:72 � 10�7

Aesthetic score 0:63

Code quality score 7:84 � 10�29

Human opinion score 3:43 � 10�5

H0 hypothesis. Therefore, the data can be considered
to be normally distributed. However, the p-values of
CT scores, code quality scores, and human opinion
scores are 1:72 � 10�7, 7:84 � 10�29, and 3:43 � 10�5,
respectively, which are much smaller than 0:05 and
satisfy the H1 hypothesis, so they do not conform to
normal distribution.

Since CT scores, code quality scores, and human
opinion scores do not conform to the normal distribution,
we conduct spearman correlation analysis. The
correlation between various evaluation methods and real
human views is shown in Table 4, and the correlation
coefficients between them and real human evaluations
are 0:02, 0:11, and �0:02, respectively. The absolute
values of the correlation coefficients are close to 0, so
we believe that there is almost no correlation between
a single evaluation and the real human evaluation.
This prompts us to integrate evaluations from different
perspectives in a way, so that the comprehensive
evaluation can be close to human opinion.

We explore the relationship between different
evaluation methods and Scratch blocks, and the results
are shown in Fig. 6. It can be seen that there is a strong

Table 4 Correlation between different evaluation methods
and human views.

Correlation coefficient Human opinion score
CT mastery score 0:02

Aesthetic score 0:11

Code quality score �0:02

Fig. 6 Heatmap of correlation coefficients between different
evaluation methods and Scratch blocks.
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positive correlation between CT mastery scores and
Scratch blocks with a correlation coefficient of 0:72.
Quality scores for detecting code issues are strongly
negatively correlated with blocks, with a correlation
coefficient of �0:73. Code quality scores correlate
negatively with CT scores, with a correlation coefficient
of �0:71. This shows that programmers may use more
CT when writing complex programs with more code
blocks, but it may also cause more code problems.
The artistic aesthetic score is a subjective evaluation
generated by human visual perception and has nothing
to do with code blocks, so the correlation coefficient is
�0:01. Meanwhile, there is little relationship between
aesthetic evaluation and CT or code quality evaluation.

4 Multi-View Evaluation Method

In this section, we propose a multi-view evaluation
method for the visual programming language Scratch.
This method obtains the overall score of the project by
integrating the CT ability, artistic aesthetic, and code
quality evaluation.

4.1 Framework

The proposed framework is shown in Fig. 7, where
the input is the Scratch project and the output is the
overall evaluation score of the project. First, the projects
are extracted and preprocessed to generate scripts,
sequence cartoon images, and code images required for
analysis. Then, they are used as the input of various
evaluation methods, and the evaluation is carried out
from three views: CT ability, visual aesthetic, and code

quality. Finally, the various scores are fed into the
evaluation integration module for combination. We use
three integration policies: simple weighted sum policy,
dynamic weight policy, and machine learning-based
policy. We introduce different integration policies in
the following subsection.

4.2 Integration policies

The emphasis of evaluations varies from project to
project, and some evaluations always play a more
important role than others. For example, if a project uses
a small amount of code to achieve frequent switching of
backdrops and sprites, visitors will pay more attention
to the visual presentation of the project and downplay
its performance in terms of CT and code quality. For
a project implemented with complex logic code, its
visual presentation may only be a separate sprite, and
the overall evaluation at this time may focus more on
the functionality and quality of the code. Therefore,
after using DWES, aesthetic evaluation model, and static
analysis method to obtain the multi-view evaluation of
the project, we propose three policies to combine them
into a multi-view comprehensive evaluation of Scratch.

The first policy performs a simple static weighted sum
of CT scores, aesthetic scores, and code quality scores.
The overall evaluation score can be defined as

Ssta.pi / D

ı�Sct.pi /C��Saes.pi /C .1�ı��/�Spro.pi / (5)

where ı and � are fixed weights set according to
experience. ı and � range from 0 to 1, and ı C � also
ranges from 0 to 1.

Fig. 7 Multi-view evaluation framework for Scratch.
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Although the overall evaluation of projects can be
obtained simply and directly through static weighted
summation, there are two problems. One is that setting
ı and � may empirically is difficult. It is difficult for
us to empirically set their optimal values. The other is
to weight all projects with a fixed weight, ignoring the
different contributions of various evaluations in different
projects. Aiming at the above problems, combining
with the findings in Section 3:2, we propose a second
integration policy that dynamically assigns weights.
Since there is a strong correlation between CT skills,
and the number of code blocks in a project, projects
with more code statements are likely to have higher CT
mastery scores. There is a strong negative correlation
between code quality and the number of code blocks,
that is, projects with more code statements are likely to
have more code problems. And the visual presentation
of the project has little to do with the code blocks. We
normalize the code number of the project as the weight,

WB.pi / D
B.pi /

Bmax � Bmin
(6)

where Bmax is the number of code blocks of the project
with the most codes in the dataset, and Bmin is the
number of code blocks of the project with the least
code. B.pi / is the number of code blocks of project pi .
According to the use of code blocks in Scratch projects,
we dynamically assign weights to the CT mastery scores,
aesthetic scores, and code quality scores. The dynamic
weighted overall evaluation score can be defined as

Sdyn.pi / D WB.pi /
Sct.pi /C Spro.pi /

2
C

.1 �WB.pi //Saes.pi / (7)
The intuition behind this dynamic weighting policy is

that projects with little or no code should be evaluated
primarily around the visual presentation. For projects
with a considerable amount of code, we should focus on
observing the CT ability or existing problems reflected
in the code.

Even though the above two policies are simple and
intuitive, they both need to assign weights directly
and are indirectly based on experience. Artificially
specifying these weights requires a lot of experience

to be reasonable, which is often expensive and difficult.
Some evaluation methods play a more important role
than others in the comprehensive evaluation of the
project. Therefore, we propose a machine learning-
based approach to integrate these evaluations. We
use the evaluations of all methods as input features,
and train the model based on the real feedback of
users on the projects in the Scratch online community.
Given a Scratch project, we perform dynamic weighted
CT evaluation, visual aesthetic evaluation, and code
quality evaluation on it to obtain scores from various
perspectives. Assuming that there are a total of n projects,
the evaluation of CT ability is carried out from i

dimensions, the aesthetic evaluation is carried out from
j dimensions, and the code quality evaluation is carried
out from k dimensions. We can construct an evaluation
score matrix M D S.pi /q�.iCjCkC1/, as shown in
Fig. 8. q represents the number of projects. i; j; and
k represent the number of evaluation dimensions of CT,
visual aesthetic, and code quality, respectively, TL is
the ground truth label of the evaluation. Except the last
column is the true evaluation of the collected projects,
each row is the score of each dimension of a project,
and each column is the score of one dimension for all
projects. The value of each cell is obtained through
different evaluation methods, that is, the evaluation score
of a certain dimension.

After constructing the matrix M , the learning
problem of the comprehensive evaluation is transformed
into a regression problem in machine learning, that
is, predicting the overall score of a project within
100 through various input evaluations. We can use
any machine learning model for regression training,
such as decision trees[23], random forests[24], Back-
Propagation (BP) neural network[25], Gradient Boosted
Decision Trees (GBDT)[26], XGBoost[27], etc. We
choose XGBoost and LightGBM[28]. XGBoost is
an efficient implementation of GBDT, which has
strong generalization ability, high scalability, and
fast computing speed. And LightGBM is an efficient
implementation of XGBoost. It uses a histogram-
based decision tree algorithm that discretizes continuous

Fig. 8 Evaluation score matrix M.



526 Tsinghua Science and Technology, April 2024, 29(2): 517–528

floating-point features into k discrete values and
constructs a histogram with a width of k. Although
we use XGBoost and LightGBM in our experiments,
when more powerful regression methods are available,
we only need to make a simple replacement according
to the proposed framework to use the new method. We
denote the evaluation score obtained by learning as Sml .

5 Experiment

We use static-weighted, dynamic-weighted, and machine
learning based weighted policies to integrate the
evaluation of CT, artistic aesthetics, and code quality of
projects. The obtained overall evaluations are compared
with real human opinions.

5.1 Static weighted policy

We perform a simple static weighted sum of CT mastery
scores, aesthetic scores, and code quality scores for the
500 projects. ı represents the weight of the CT score
in the overall evaluation, � represents the weight of
the aesthetic score, and 1 � ı � � is the weight of the
code quality. The results obtained using different values
of ı and � are shown in Fig. 9. It can be seen that
when CT accounts for 20% of the overall evaluation,
and visual aesthetics and code quality account for 65%
and 15%, respectively, or when CT accounts for 30% of
the evaluation, and visual aesthetics and code quality

account for 50% and 20%, respectively, the overall
evaluation is relatively close to the human opinions. The
correlation coefficient values between the overall scores
and human opinions are 0 W 65 and 0 W 62, respectively.

5.2 Dynamic weighted policy

According to the use of blocks in Scratch projects in
the dataset, we combine Eq. (6) to obtain the weight of
each project dynamically adjusted according to its own
code quantity. When the code size is large, we focus
on the CT ability embodied by the code and the code
quality. When the code is less, we pay more attention to
the visual presentation of the project. The results after
dynamic weighting of 500 projects are shown in Fig. 10.
It can be seen that part of the dynamic weighted scores
is slightly lower than those of human opinions. But they
are generally related and the correlation coefficient is
0:66.

5.3 Machine learning based weighted policy

We divide 500 projects into a training set and test set by
8 W 2, and use XGBoost and LightGBM for regression
training, separately. The training time of XGBoost
is 0:183 s. In the overall evaluation, CT accounts for
29:4%, artistic aesthetics accounts for 35:7%, and code
quality accounts for 34:9%. LightGBM takes 0:026 s
to train. In terms of feature importance, CT is 25:6%,

(a) ıD 0:1 (b) ıD 0:2 (c) ıD 0:3

(d) ıD 0:4 (e) ıD 0:5 (f) ıD 0:6

(g) ıD 0:7 (h) ıD 0:8 (i) ıD 0:9

Fig. 9 Correlation of the evaluations from various perspectives with human opinions after weighted summation with different
weights.
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Fig. 10 Distribution of dynamically weighted scores and
human opinions scores for 500 projects.

artistic aesthetics is 50:1%, and code quality is 24:3%.
The prediction results of XGBoost and LightGBM on the
test set are shown in Fig. 11. On the test set, the highest
human truth opinion score is 76:57, the lowest is 49:68,
the average is 66:20, and the median is 66:41. In the
prediction results using XGBoost, the maximum value
is 75:37, the minimum value is 49:95, the mean value
is 65:76, and the median value is 66:07. In the overall
evaluation predicted by LightGBM, the maximum is
73:51, the minimum is 54:16, the mean is 65:02, and the
median is 65:59. It can be seen that the overall rating
of the projects predicted by the machine learning based
weighted method is roughly similar to that of the human
opinion. Although the training time of LightGBM is less,
the prediction results of XGBoost are generally more
accurate. The correlation coefficients between XGBoost
and LightGBM, and human opinions are 0:78 and 0:74,
respectively.

6 Conclusion

This paper proposes a multi-view evaluation framework
for Scratch. Through data analysis, we quantitatively

Fig. 11 Overall scores predicted with XGBoost and
LightGBM versus human opinions.

analyze the difference and connections among the CT
ability, visual aesthetics, and code quality evaluations of
the projects, and compare them with human evaluations.
Driven by data, three policies are proposed to integrate
evaluations from different views. The weights of each
component of various integration policies are determined
and compared through experiments. Experiments show
that our proposed multi-view evaluation method can
generate overall evaluations for projects, which is
close to human opinions. Such multi-dimensional
comprehensive evaluation results can provide users with
a more comprehensive reference.

As part of our future work, we plan to use
this approach to design and implement a multi-view
evaluation plugin for Scratch. The plugin can be easily
integrated into any scene where project analysis is
required.
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Scratch: Automatic analysis of scratch projects to assess and
foster computational thinking, RED. Revist. Edu. Distan,
vol. 46, no. 10, pp. 1–23, 2015.

[11] Z. Chang, Y. Sun, T. Y. Wu, and M. Guizani, Scratch
analysis tool (SAT): A modern scratch project analysis
tool based on ANTLR to assess computational thinking
skills, in Proc 14th Int. Wireless Communications & Mobile
Computing Conf. (IWCMC), Limassol, Cyprus, 2018, pp.
950–955.

[12] S. Kong, X. Shen, Z. Lin, R. Mech, and C. Fowlkes,
Photo aesthetics ranking network with attributes and content
adaptation, in Proc. 14th European Conf. Computer Vision,
Amsterdam, The Netherlands, 2016, pp. 662–679.

[13] K. Schwarz, P. Wieschollek, and H. P. A. Lensch, Will
people like your image? Learning the aesthetic space, in
Proc. 2018 IEEE Winter Conf. Applications of Computer
Vision (WACV), Lake Tahoe, NV, USA, 2018, pp. 2048–
2057.

[14] N. Murray, L. Marchesotti, and F. Perronnin, AVA: A
large-scale database for aesthetic visual analysis, in Proc.
IEEE Conf. Computer Vision and Pattern Recognition,
Providence, RI, USA, 2012, pp. 2408–2415.

[15] X. Lu, Z. Lin, H. Jin, J. Yang, and J. Z. Wang, Rating image
aesthetics using deep learning, IEEE Trans. Multimedia, vol.
17, no. 11, pp. 2021–2034, 2015.

[16] V. Hosu, B. Goldlucke, and D. Saupe, Effective aesthetics
prediction with multi-level spatially pooled features, in
Proc. 2019 IEEE/CVF Conf. Computer Vision and Pattern
Recognition, Long Beach, CA, USA, 2019, pp. 9375–9383.

[17] H. Talebi and P. Milanfar, NIMA: Neural image assessment,
IEEE Trans. Image Process., vol. 27, no. 8, pp. 3998–4011,
2018.

[18] X. Chai, Y. Sun, H. Luo, and M. Guizani, An artistic
analysis model based on sequence cartoon images for
scratch, Int.J . Intellig. Syst., vol. 37, no. 11, pp. 9598–9619,
2022.

[19] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi,
Inception-v4, inception-ResNet and the impact of residual
connections on learning, in Proc. Thirty-First AAAI Conf.
Artificial Intelligence, San Francisco, CA, USA, 2017, pp.
4278–4284.

[20] P. Techapalokul and E. Tilevich, Quality hound—an
online code smell analyzer for scratch programs, in Proc.
2017 IEEE Symp. Visual Languages and Human-Centric
Computing (VL/HCC), Raleigh, NC, USA, 2017, pp. 337–
338.

[21] G. Fraser, U. Heuer, N. Körber, F. Obermüller, and E.
Wasmeier, LitterBox: A linter for scratch programs, in Proc.
IEEE/ACM 43rd Int. Conf. Software Engineering: Software
Engineering Education and Training (ICSE-SEET), Madrid,
Spain, 2021, pp. 183–188.

[22] F. J. M. Jr, The Kolmogorov-Smirnov test for goodness of
fit, J . Am. Stat. Assoc., vol. 46, no. 253, pp. 68–78, 1951.

[23] J. R. Quinlan, Induction of decision trees, Mach. Learn.,
vol. 1, no. 1, pp. 81–106, 1986.

[24] L. Breiman, Random forests, Mach. Learn., vol. 45, no. 1,
pp. 5–32, 2001.

[25] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, Learning
representations by back-propagating errors, Nature, vol.
323, no. 6088, pp. 533–536, 1986.

[26] J. H. Friedman, Greedy function approximation: A gradient
boosting machine, Ann. Stat., vol. 29, no. 5, pp. 1189–1232,
2001.

[27] T. Q. Chen and C. Guestrin, XGBoost: A scalable tree
boosting system, in Proc. 22nd ACM SIGKDD Int. Conf.
Knowledge Discovery and Data Mining, San Francisco, CA,
USA, 2016, pp. 785–794.

[28] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q.
Ye, and T. Y. Liu, LightGBM: A highly efficient gradient
boosting decision tree, in Proc. 31st Int. Conf. Neural
Information Processing Systems, Long Beach, CA, USA,
2017, pp. 3149–3157.

Xiaolin Chai received the BEng degree
from Beijing University of Posts and
Telecommunication, China in 2017. She
is currently a PhD candidate at Beijing
University of Posts and Telecommunication,
China. Her main research interests include
data analysis, evaluation systems, and
AIOps.

Yan Gao received the MEng degree
from Dalian University of Technology,
China in 2007. He is currently working
as an associate professor at Shandong
Polytechnic College. His main research
fields include automatic control, pattern
recognition, and intelligent agricultural
machinery.

Yan Sun received the PhD degree
from Beijing University of Posts and
Telecommunication, China in 2007. She
is currently a professor at Department
of Computer Science, Beijing University
of Posts and Telecommunication, China.
She is also a research member of the
Beijing Key Laboratory of Intelligent

Telecommunication Software and Multimedia. Her research
interests include big data, IoT, SDN, and AIOps.


