
TSINGHUA SCIENCE AND TECHNOLOGY
ISSNll1007-0214 21/24 pp576–588
DOI: 10 .26599 /TST.2023 .9010035
Volume 29, Number 2, Apri l 2024

C The author(s) 2024. The articles published in this open access journal are distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

Fault Analysis on AES: A Property-Based Verification Perspective

Xiaojie Dai, Xingxin Wang, Xue Qu, Baolei Mao, and Wei Hu�

Abstract: Fault analysis is a frequently used side-channel attack for cryptanalysis. However, existing fault attack

methods usually involve complex fault fusion analysis or computation-intensive statistical analysis of massive fault

traces. In this work, we take a property-based formal verification approach to fault analysis. We derive fine-grained

formal models for automatic fault propagation and fusion, which establish a mathematical foundation for precise

measurement and formal reasoning of fault effects. We extract the correlations in fault effects in order to create

properties for fault verification. We further propose a method for key recovery, by formally checking when the

extracted properties can be satisfied with partial keys as the search variables. Experimental results using both

unprotected and masked advanced encryption standard (AES) implementations show that our method has a key

search complexity of 216, which only requires two correct and faulty ciphertext pairs to determine the secret key, and

does not assume knowledge about fault location or pattern.

Key words: side-channel attack; fault analysis; fault propagation model; property extraction; fault verification

1 Introduction

Side channel analysis (SCA) has become the most
practical cryptanalysis technique since Kocher’s
pioneering work in timing attack[1] and over two decades’
research efforts in other SCA methods such as power,
electronic magnetic (EM), thermal, and fault analysis[2].
Among various SCA techniques, fault attack takes an
active approach, which injects faults into the execution
process of cryptographic implementations rather than
merely collecting and analyzing side channel traces.
Carefully crafted fault attacks can be far more efficient
than passive SCA methods, requiring only a small
number of fault injections to recover the entire key.
In addition, typical SCA countermeasures, such as

�Xiaojie Dai, Xingxin Wang, Xue Qu, and Wei Hu are
with School of Cybersecurity, Northwestern Polytechnical
University, Xi’an 710072, China. E-mail: fdaixiaojie, weihug@
nwpu.edu.cn; fw2x, quxueg@mail.nwpu.edu.cn.
�Baolei Mao is with School of Cyber Science and Engineering,

Zhengzhou University, Zhengzhou 450001, China. E-mail:
maobaolei@zzu.edu.cn.
�To whom correspondence should be addressed.

Manuscript received: 2023-03-07; revised: 2023-04-28;
accepted: 2023-05-03

randomization, blinding, and masking, which can be
effective for mitigating timing, power, as well as EM side
channels, may not provide sufficient protection against
active SCA through fault injection[3].

However, existing fault attack methods usually need
to precisely inject desired patterns of faults at specific
locations or rely on knowledge of faults occurred. Such
assumptions are hard to satisfy in physical attacks
considering the randomness in fault behaviors. Thus,
these methods usually require a large number of fault
injections in order to filter out enough useful fault traces
for key recovery. In addition, most methods need to
perform mathematically complex fault fusion analysis,
computation-intensive statistical analysis or massive
trace processing to create a template or model for key
selection. Little research work has taken fault related
properties as a design constraint beyond functional
correctness. Especially, there is a lack of precise model
for automated fault fusion and formal fault verification.

Motivated by the recent advances in property driven
security solutions[4, 5], we propose to perform fault
analysis through property-based formal verification
in this work. We derive a formal model for precise
measurement of fault effects, which provides the



Xiaojie Dai et al.: Fault Analysis on AES: A Property-Based Verification Perspective 577

mathematical foundation for formal fault verification.
We automatically extract fault correlation related
properties for fault verification and develop a fault attack
method by formally checking the extracted properties to
search for the correct key. Specifically, this work makes
the following contributions:
� Deriving a formal model for precise fault

propagation and fault effect measurement;
� Proposing a fault attack method through fault

correlation related property extraction and formal
verification;
� Presenting experimental results using both

unprotected and masked cryptographic implementations
to demonstrate the effectiveness of the proposed method.

The remainder of this paper is organized as follows.
In Section 2, we summarize different fault analysis
methods. A brief overview of attack and fault models
is provided in Section 3. Section 4 provides our
formal model that precisely measures fault effects. We
discuss fault related property extraction in Section 5
and describe our fault analysis method through formal
verification in Section 6. We present experimental results
to demonstrate the effectiveness of the proposed method
in Section 7 and conclude the paper in Section 8.

2 Related Work

The concept of fault analysis was first introduced by
Boneh et al.[6] using the RSA-CRT crypto-system as a
demonstration. Over the last two decades, researchers
have developed a variety of fault attack methods,
including differential fault analysis (DFA)[7], algebraic
fault analysis (AFA)[8], ineffective fault analysis (IFA)[9],
fault rate analysis (FRA)[10], statistical fault analysis
(SFA)[11], statistical ineffective fault analysis (SIFA)[12],
and persistent fault analysis (PFA)[13], as summarized
in Table 1. Among these, DFA, AFA, and IFA precisely
model the propagation of fault effects and leverage the
characteristics in fault behaviors to search for the correct
key. The remaining methods measure how faults change
the distribution of intermediate results or the ciphertext
and perform statistical analysis to determine the correct
key.

DFA[7] was proposed by Biham and Shamir in
1997. It takes correct and faulty ciphertext pairs as
inputs, which makes guesses about the key, performs
differential cryptanalysis to determine the fault status
of intermediate encryption results, and leverages the
characteristics in fault patterns to distinguish the correct
key guess from incorrect ones. It has been shown to

Table 1 Summary of fault attacks.
Method Description Technical approach

DFA
Analyze the difference between the
correct and faulty ciphertexts to
recover the key

Mathematical
analysis

AFA
Combine differential fault attack
and an algebraic technique to
search for the key

Algebraic or
Boolean analysis

IFA
Leverage faults that have no effect
on ciphertext

Mathematical
analysis

FRA
Use clockwise collision to retrieve
the key

Statistical analysis

SFA
Exploits statistics of faulty
ciphertexts

Statistical analysis

SIFA
Combine statistical fault analysis
and ineffective fault analysis

Statistical analysis

PFA
Inject persistent faults based on
statistical analysis for key recovery

Statistical analysis

be effective in attacking the data encryption standard
(DES)[7], PRESENT[14], and advanced encryption
standard (AES)[15–19] implementations. Momeni et al.[15]

performed a single-byte fault injection attack on an
field program gate array (FPGA) implementation of
AES, and filtered out the key using differential S-
Box tables. Ali and Mukhopadhyay[16] successfully
implemented DFA on AES-128 key expansion with a
single fault injection. Other researchers[17–19] leveraged
the correlation between different faulty locations to
obtain multiple key bytes per analysis. Wang et al.[17]

successfully attacked AES for all key lengths using
no more than four correct and faulty ciphertext pairs
through correlation fault analysis. Similarly, an attacker
can exploit the fault correlation in key expansion to
conduct fault analysis to search for the key[18, 19], which
can be slightly more complex than attacking the round
function. Although DFA is simple yet effective, it
requires precise fault injection at specific locations and
complex mathematical derivation.

AFA[8] was proposed by Courtois et al. in 2010 to
attack DES. They showed that obtaining 24 key bits
using a single faulty ciphertext with two bits flipped
in round 13 only takes 0.01 h. AFA combines the
benefits of mathematical analysis and conventional fault
attack, which establishes a fault model and derives the
algebraic formulation of the cryptographic algorithm to
check for the correct key. Such mathematical derivation
can be complex and challenging. Zhang et al.[20]

established a framework for evaluating AFA from three
levels on lightweight block ciphers. They implemented
fault injection attacks against Lblock, targeting both



578 Tsinghua Science and Technology, April 2024, 29(2): 576–588

encryption transformation and key extension. Gay et
al.[21] created a framework for automated construction
of fault attacks on hardware implementation of block
ciphers using AFA, which supports multiple fault
injections.

Early fault attacks often require one or several pairs
of correct and faulty ciphertexts or different faulty
ciphertexts corresponding to the same plaintext, which
is somewhat demanding in realistic attack scenarios.
As an alternative approach, an adversary can realize
ciphertext-only attacks using faulty ciphertexts from
different plaintexts through SFA[11]. SFA first establishes
a fault model, and then uses statistical analysis to find
key values that match the characteristics of the model,
which can be the key candidates. Both SIFA and PFA
fall into the category of SFA methods.

IFA[9] was proposed to account for ineffective
fault injections, where faults injected do not cause
any observable effects, e.g., on the ciphertext. In
cryptograph hardware and embedded systems (CHES)
2018, statistical ineffective fault analysis[12] was
proposed to combine IFA and SFA, which exploited
statistical characteristics of both faulty and correct
(i.e., when a fault is ineffective) ciphertexts to recover
the key. Saha et al.[22] proposed a deep learning-
based SIFA method, which demonstrated the possibility
of employing recent machine learning and artificial
intellegence techniques for fault analysis.

Fault attack models usually assume random faults,
which mean that an adversary needs to repeatedly
inject faults in order to filter out enough desired fault
patterns. In CHES 2018, PFA was proposed by Zhang
et al.[13] to take advantage of persistent faults, which
exist until power off once a fault is successfully injected.
This method makes it possible to bypass dual modular
redundancy protection, but requires a large amount of
faulty ciphertexts and complex mathematical analysis.
In a successive work, the authors further improve the
analysis method so that PFA can support attacks on AES
and PRESENT with or without knowing the details of
the S-Box design[23]. Xu et al.[24] proposed an improved
PFA that allows faults to propagate through two levels
of faulty S-Boxes before reaching the ciphertext output
while the original PFA only supports one level. The
benefit is that the distribution of the faulty ciphertexts
will become more biased, making it possible to recover
the key with fewer ciphertexts.

Fault analysis is a very effective method against

unprotected cryptographic implementations. In addition,
it has been shown that cryptographic designs with
mask protection can also be vulnerable to fault attack.
Although Bae et al.[25] have proved that the AES design
using Akkar and Giraud’s mask can be secure against
fault attack, it is generally accepted that masking does
not provide sufficient protection against fault attack[3, 26].
FRA has been proposed to break masked AES by Wang
et al.[10] They inject clock glitches into the critical path
of S-Box so that the mask fails to protect the byte
substitution, which would make it easier to attack the
protected design. Dobraunig et al.[27] have demonstrated
that SIFA can also break masked AES.

Although there are various fault analysis methods,
they typically require collecting a large number of faulty
ciphertexts, perform complex algebraic or statistical
analysis to determine the correct key. This work takes
a formal approach to fault analysis. It automatically
extracts fault related properties using a small amount of
faulty ciphertexts. It employs a formal solver to verify
the extracted property and automatically search for the
correct key that satisfies the property.

3 Attack and Fault Model

We assume that an attacker has full knowledge of the
cryptographic algorithm as well as the implementation
details. He/she can send plaintexts to the cryptographic
core and observe the ciphertext outputs. We also assume
that the attacker can inject random faults into desired
encryption rounds. He/she can collect correct and faulty
ciphertext pairs or faulty ciphertexts under different fault
patterns corresponding to the same plaintext for fault
analysis to recover the secret key.

We adopt the fault model frequently employed in
DFA on AES [17]. When faults are injected between the
MixColumns operations of rounds Nr�2 and Nr�1, we
consider the cases where at most one single-byte random
fault occurs in each column of the state matrix. There can
be multiple (at most four) faulty bytes distributed across
different columns of the state matrix. When faults are
injected between the MixColumns operations of rounds
Nr � 3 and Nr � 2, only a single-byte random fault
is allowed. In these two cases, the linear correlation
in fault effects would be significant by column at the
input of round Nr . In other cases, there are either a
large number of possible combinations in fault locations
or the linear correlation in fault effects would become
non-significant.



Xiaojie Dai et al.: Fault Analysis on AES: A Property-Based Verification Perspective 579

4 Modeling Fault Propagation Effect

In this section, we first derive a formal model for precise
fault propagation and then demonstrate how the model
can be used for measuring fault effects.

4.1 Formal model for precise fault propagation

Fault propagation aims to understand which design
components and regions will be influenced by a fault
source. Existing methods usually change the value at
the fault source while keeping other inputs untouched,
and observe which design nets will flip consequently.
These methods require testing two design instances and
performing an XOR of the observed values to determine
the fault status, which are ineffective for testing internal
design points. As an alternative solution, one can mark
the fault source as ‘X’ and perform X-propagation to
determine the fault status of different design components.
Such methods have the problems of X-optimism and
X-pessimism. Few research work has investigated
dedicated models for precise fault propagation.

In order to create a formal model for understanding
the propagation of fault effects, we associate each signal
bit in a hardware design with a fine-grained fault label.
Specifically, for a signal bit S , we add a fault label bit Se

to represent its fault status. Specifically, Se D 1 when
S is in a faulty state; otherwise, Se D 0. For example,
the fault label at the fault source should be logical 1.
A fault model calculates the fault labels of intermediate
signals and primary outputs upon the input values as well
as their fault labels. It can be defined as the following
Boolean function:

Oe D fm.I 0; I 1; : : : ; I n; I 0
e ; I 1

e ; : : : ; I n
e / (1)

where I 0; I 1; : : : ; I n are the original inputs and
I 0

e ; I 1
e ; : : : ; I n

e are their fault labels, respectively.
Consider the two-input AND (AND-2) gate. Let the

logic function of AND-2 be O D A & B . Given the
original inputs A and B as well as their fault labels Ae

and Be , the fault propagation model calculates the fault
label of O .

Figure 1a shows a partial truth table for deriving the
formal fault propagation model of AND-2. We eliminate
the entries where both A and B are fault free since the
output will certainly be fault free in these cases.

Take the third row as an example, where A D 1; B D

0; Ae D 0, and Be D 1. This indicates that A is fault
free while B is faulty, i.e., B should actually take the
value of logical 1 and thus the output O would flip to 1
as well. In other words, the fault in B propagates to the

Fig. 1 Deriving fault propagation model for AND-2. (a)
Partial truth table for calculating the fault label of AND-2
output, (b) formal fault propagation model for AND-2.

output. Now consider the fifth row, where A D 0; B D

0; Ae D 1, and Be D 0. In this case, the output will stay
logical 0 because the fault free 0 in input B prevents the
fault in A from propagation.

From the full truth table for calculating the output
fault label, we can derive the following formal fault
propagation model for AND-2.

Oe D ABeAe C BAeBe C A BAeBe C ABBe (2)
Since the two-input OR gate (OR-2) is the dual of

AND-2, it is easy to derive its fault propagation model
using the DeMorgan’s Law by simply inverting the
original inputs. One can verify the correctness of the
model by enumerating a truth table similar to the one
shown in Fig. 1b.

Oe D ABeAe C BAeBe C ABAeBe C A BBe (3)
The fault propagation model for the inverter is straight-

forward to specify since any faults in the input would
cause the output to be faulty.

Oe D Ie (4)
Similarly, we can create the formal fault propagation

models for other Boolean gates. From the above
examples, it is not necessarily any faults in inputs would
cause the output to be faulty; certain input conditions
will prevent fault from propagation. Our method can
precisely model fault propagation behaviors.

4.2 Measuring fault propagation effects

We use AES as an example to illustrate how the formal
model developed in Section 4.1 can be used to measure
fault propagation effects.

The first step is to create the fault propagation model
for the entire AES design. With the fault propagation



580 Tsinghua Science and Technology, April 2024, 29(2): 576–588

models for primitive gates, we can compose more
complex models in a constructive manner. Specifically,
we can synthesize the AES design into gate netlist
and then instantiate the corresponding fault propagation
model for each primitive gate in the netlist. In this
way, we can generate fault propagation models for large
circuit designs in polynomial time.

Figure 2 demonstrates how our formal model can
measure fault propagation effects in one AES round.
As shown in Fig. 2a, our model associates an addition
fault label for each signal to indicate the fault status
of that signal, e.g., sbox e represents the fault label of
the S-Box output. Note that each signal bit has its own
label bit in order to differentiate the fault status across
different signal bits. We use fault propagation models
denoted as FM(�) to measure fault effects. The models
calculate the outputs as well as their fault status upon
the original inputs and their fault labels.

From Fig. 2b, a word in the round input is
32’hEA835CF0 and its fault label is 32’h01000000,
indicating that the lowest bit of the first byte is faulty.
After S-Box, the fault status of the corresponding byte
becomes 8’h6E. The ShiftRows transform does not affect
the fault status. After MixColumns, the fault in that
byte spreads into a column and the fault status becomes
32’hDC6E6EB2.

Our fault propagation model can be used to calculate
the fault labels of arbitrary intermediate signals and
outputs. This automates fault fusion analysis and allows
retrieving the fault status of any internal signal at runtime.
Since our model can be described using Boolean
function like those formalized in Eqs. (2) to (4), we
can use standard hardware description language (HDL)
to describe the model and perform fault simulation under
standard EDA tools such as ModelSim. Figure 2c shows
the fault simulation results, which are identical with
theoretic analysis.

5 Fault Related Property Extraction

In order to perform formal fault verification, we need
high quality fault related properties since verification
is usually a property driven process. We define that
a fault related property is an invariant fault related
design behavior over a set of fault traces. For a better
understanding, consider the invertor, where a fault in the
input always propagates to the output. We can formalize
this invariant design behavior as the following property.

assert Oe D Ie (5)
Existing formal verification solutions usually require

manual specification of properties. This puts heavy
burdens on verification engineers while providing
no guarantee on the quality or completeness of the
properties generated. We aim to automate the fault
related property generation process. In the following
subsections, we describe our property extraction and
checking procedures, respectively.

5.1 Property extraction

We consider two types of fault related properties, namely
fault propagation property and fault correlation property.

A fault propagation property describes the relationship
in fault status between a fault source and an observation
point. It specifies if the fault in a source node could
propagate to a specific destination. Formula (6) shows
two example properties regarding if a fault in the AES
key could propagate (the ! operator) or not (the 6!
operator) to two primary outputs.

assert aes key ! ciphertext;

assert aes key 6! cipher ready
(6)

Given the source and destination points, fault
propagation properties can be automatically generated.
In addition, such properties can be mapped to
standard assertion languages and verified using our
formal fault propagation model. Formula (7) shows

Fig. 2 Fault fusion in one AES round using our fault propagation model.



Xiaojie Dai et al.: Fault Analysis on AES: A Property-Based Verification Perspective 581

the translated assertion properties, where aes keye,
ciphertexte, and cipher readye are the fault labels
of the corresponding signals.

assume aes keye D 1;

assert ciphertexte D 1;

assert cipher readye D 1

(7)

A fault correlation property describes the correlation
in fault status among multiple fault locations.
Oftentimes, such correlation is implicit, making this type
of property harder to extract. We follow the definition
of fault related properties and extract them from fault
traces. Figure 3 shows our property mining process.

Given a cryptographic hardware design, we use the
constructive method introduced in Section 4 to generate
its formal fault propagation model. Since the model can
be described using standard HDL, we are able to perform
random simulation on the model to collect a set of fault
traces for property extraction.

An important step in the property extraction process
is to mine invariant properties from the fault simulation
traces. We consider a single fault source each time and
perform random simulation to identify the intermediate
nodes that are influenced by the designated fault
source. The fault status at different locations should
be correlated due to the identical fault origin. We specify
the corresponding fault status as truth tables and recover
the correlation through regression analysis or logic
minimization.

Consider the AES round shown in Fig. 2, a fault in
the S-Box input would cause four bytes to be faulty at
the round output. These four bytes are considered to be
correlated in fault status. We denote these four bytes as
rdo0, rdo1, rdo2, and rdo3, respectively. Take rdo0

and rdo1 as an example. The following programmable
logic array (PLA) describes their corresponding fault
status, where rdo0e and rdo1e are the fault labels of
rdo0 and rdo1, respectively.

.module p01

.i rdo0-e

.o rdo1-e

.pla

00000000 00000000
00000001 00000010
...
11011100 01101110
...

We then use logic minimizers such as Espresso
to perform logic simplification and retrieve the fault
correlation. However, the fault correlation extracted
usually depends on the number of fault traces collected.
As we increase the number of fault traces, the fault
correlation gradually converges to the most accurate
one.

As an example, when using 128 fault traces, the fault
correlation recovered from the above PLA is shown in
Eq. (8).

assert rdo1e DD frdo0eŒ6 W 0�; 0g (8)
When increasing the number of fault traces to 256, the

fault correlation recovered is shown in Eq. (9), which is
more accurate than Eq. (8). Here,˚ is the exclusive OR
operator.

assert rdo1e DD frdo0eŒ6 W 0�; 0g ˚ f30b0;

rdo0eŒ7�; rdo0eŒ7�; 0; rdo0eŒ7�; 0g
(9)

In order to check if the generated property is complete
in covering all possible fault patterns, we further perform
a property checking and refining step to increase the
coverage of incomplete properties.

5.2 Property checking and refining

For properties that only cover a small or moderate
scale state space, we can perform exhaustive testing
and enumerate full truth tables for property generation.
For properties that involve a huge state space, we can
only perform limited test and obtain a partial truth table.
In such cases, we employ regression analysis or do not
care based logic minimization techniques for deriving
higher-quality properties. This would also lead to more
expressive properties. In addition, we need to check if
the properties generated could accurately cover the fault
behaviors of the design.

Consider the fault traces collected for the AES round
output bytes rdo1 and rdo2. The following shows the
PLA that describes the corresponding fault status of
these two signals over 32 traces.

Fig. 3 Fault related property mining process.



582 Tsinghua Science and Technology, April 2024, 29(2): 576–588

.module p12

.i rdo1-e

.o rdo2-e

.pla
00000000 00000000
00000001 00000001
...
00011111 00011111
...

Linear regression analysis yields the property shown
in Eq. (10).

assert rdo2e D rdo1e (10)

Since this property is extracted from a limited number
of fault traces, we need to check if the property holds
under all possible fault events. This can be formally
verified under our formal fault propagation model. In
order to use a Boolean Satisfiability analysis tool to
prove the property, we create a tag signal, where

tag D rdo2e ˚ rdo1e (11)

We then employ the Yosys verification tool to prove
that tag is always 0. Figure 4 shows the formal proof
result. It indicates that the extracted property is complete
to cover all possible fault behaviors.

In case the proof fails, Yosys will return a counter
example, corresponding to fault events that cannot be
covered by or should be excluded from the property. We
further incorporate the counterexample into the PLA for
property refining. Such iterations should continue until
no additional counter example is returned or a maximum
iteration limit is reached.

Our property extraction and refining idea is motivated
by the recent progress in template matching and machine
learning-based side channel analysis methods. By
comparison, those methods typically create a template or
model as a distinguisher for correct key selection. They

Fig. 4 Formal verification result for fault property related
to rdo0 and rdo2.

are generally lack of a formal analysis step to verify the
effectiveness and completeness of the template or model
created. Our method employs a formal solver to perform
such a proof step, which provides the theoretic bias for
our method.

Using our property extraction method, we can
generate three properties for the AES round shown in
Fig. 2 as formalized in Eqs. (9), (10), and (12). In our
successive analysis, we denote these properties as P01,
P12, and P123, respectively.

assert rdo3e D rdo0e ˚ rdo1e (12)
The properties extracted when injecting faults into

round eight of AES are similar to those generated by
injecting faults into round nine. The difference lies in
the byte orders in property mapping, which we will
discuss in the following section. In addition, a single
byte fault injected before Mixcolumns in round eight
will spread to all 16 state bytes that can be divided into
four independent groups for property mapping.

6 Fault Attack Through Formal Analysis

This section describes our fault analysis method through
formal verification. We focus on single random faults
and do not require knowledge about the location or type
of fault injected. We assume the design components
beyond the fault location correctly propagate fault effects.
We collect correct and faulty ciphertexts pairs for fault
analysis. Our method can recover the key and determine
the fault location as well as the actual fault occurred
through formal solver assisted property checking.

6.1 Property mapping

We have verified the completeness of the extracted
properties for covering single-byte faults injected
into the SubBytes, ShiftRows, and MixColumns
transformations of round nine at different locations.

Table 2 shows the fault injection locations in round
nine, the corresponding faulty bytes at S-Box inputs (i.e.,
rdo0, rdo1, rdo2, and rdo3) in round ten and the fault
related property mapping relations. We can discover that
there are four different property mapping patterns, which
differ in byte order at the input of round ten.

From an attacker’s perspective, the only observable
information is the ciphertext. Thus, we need to further
understand how the transforms in round ten would
affect the fault patterns, locations, and correlations in
the ciphertext output. According to the transforms
of the AES algorithm, SubBytes would change the
fault pattern in a state byte; ShiftRows only changes



Xiaojie Dai et al.: Fault Analysis on AES: A Property-Based Verification Perspective 583

Table 2 Fault locations and satisfied properties at the S-Box input of round ten.
Faulty location

Faulty byte of round 10 input Corresponding property
SubByte ShiftRow MixColumn

S0 S0 S0 S0; S1; S2; S3 P01(rdo0; rdo1),
P12(rdo1; rdo2),

P123(rdo0; rdo1; rdo3)

S4 S4 S4 S4; S5; S6; S7

S8 S8 S8 S8; S9; S10; S11

S12 S12 S12 S12; S13; S14; S15

S1 S13 S13 S12; S13; S14; S15 P01(rdo1; rdo2),
P12(rdo2; rdo3),

P123(rdo1; rdo3; rdo0)

S5 S1 S1 S0; S1; S2; S3

S9 S5 S5 S4; S5; S6; S7

S13 S9 S9 S8; S9; S10; S11

S2 S10 S10 S8; S9; S10; S11 P01(rdo2; rdo0),
P12(rdo0; rdo3),

P123(rdo0; rdo2; rdo1)

S6 S14 S14 S12; S13; S14; S15

S10 S2 S2 S0; S1; S2; S3

S14 S6 S6 S4; S5; S6; S7

S3 S7 S7 S4; S5; S6; S7 P01(rdo3; rdo0),
P12(rdo0; rdo1),

P123(rdo0; rdo3; rdo2)

S7 S11 S11 S8; S9; S10; S11

S11 S15 S15 S12; S13; S14; S15

S15 S3 S3 S0; S1; S2; S3

the position of a faulty byte without affecting its fault
status; AddRoundKey does not have an effect on fault
propagation. Table 3 shows the fault locations, fault
correlations, and property mapping patterns at the
ciphertext output.

Table 3 shows the four types of faulty ciphertext
byte distributions and the corresponding properties
satisfied. We can use the distribution patterns to select
the ciphertext bytes for property mapping and leverage
these properties for fault verification.

6.2 Fault analysis through formal verification
Figure 5 illustrates the design flow of our fault attack

Fig. 5 Fault attack method through formal analysis.

method through formal property checking. We select
correct and faulty ciphertext bytes according to the fault
combinations given in Table 3 as input constraints of
the formal fault verification model. The fault related
properties are specified as SystemVerilog assertions,
which will be checked by formal solvers. We leave

Table 3 Faulty locations and satisfied properties at the ciphertext output.
Fault location in round 9

Fault in ciphertext Corresponding property
SubByte ShiftRow MixColumn

S0 S0 S0 C0; C7; C10; C13 P01(rdo1; rdo2),
P12(rdo2; rdo3),

P123(rdo1; rdo3; rdo0)

S2 S10 S10 C2; C5; C8; C15

S9 S5 S5 C1; C4; C11; C14

S11 S15 S15 C3; C6; C9; C12

S1 S13 S13 C3; C6; C9; C12 P01(rdo3; rdo0),
P12(rdo0; rdo1),

P123(rdo0; rdo3; rdo2)

S3 S6 S6 C1; C4; C11; C14

S8 S8 S8 C2; C5; C8; C15

S10 S2 S2 C0; C7; C10; C13

S4 S4 S4 C1; C4; C11; C14 P01(rdo2; rdo0),
P12(rdo0; rdo3),

P123(rdo0; rdo2; rdo1)

S6 S14 S14 C3; C6; C9; C12

S13 S9 S9 C2; C5; C8; C15

S15 S3 S3 C0; C7; C10; C13

S5 S1 S1 C0; C7; C10; C13 P01(rdo0; rdo1),
P12(rdo1; rdo2),

P123(rdo0; rdo1; rdo3)

S7 S10 S10 C2; C5; C8; C15

S12 S12 S12 C3; C6; C9; C12

S14 S6 S6 C1; C4; C11; C14



584 Tsinghua Science and Technology, April 2024, 29(2): 576–588

the round key as an unconstrained variable and employ a
formal solver to search over the possible state space.
When formal verification completes, the solver will
return the correct key value.

The fault related properties are extracted from the
correlations in fault effects within each column of the
state matrix. Thus, we leverage the properties to recover
the round key matrix column by column, which is
32 bits in width. If we construct a formal verification
instance to retrieve 32 round key bits directly, the search
complexity is O.232/. Instead, we can take a divide
and conquer solution to this search problem. We can
first search for two round key bytes (i.e., 16 round key
bits) using property P12 as the constraint, which has a
search complexity of O.216/. With these two key bytes
determined, we can subsequently use them to reduce the
search complexity of verifying properties P01 and P123
from O.216/ and O.224/, respectively, to O.28/. This
results in an overall complexity of O.216/ + O.28/ +
O.28/, which is at the scale of O.216/.

As we will show in Section 7, using a single pair of
correct and faulty ciphertext as input constraints may
lead to multiple possible key candidates. We can create
multiple parallel proof instances under different correct
and faulty ciphertext pairs to prune out the incorrect key
guesses. Figure 6 shows such a solution.

In practice, two or at most three proof instances are
enough to find the unique correct key. The correct and
faulty ciphertext pairs can be from different plaintexts
or the same plaintext under different fault patterns.
However, for the latter case, the fault location should
be identical, i.e., faults should be injected into the same
byte. Otherwise, more property mapping trails and proof
runs are needed.

Our method does not need to perform fault diffusion
analysis or use a huge number of fault traces to train
a template or model as the key distinguisher. Instead,
it implements fault attack through property extraction
and checking. The attack only needs correct and faulty

Fig. 6 Creating multiple proof instances to reduce the
number of candidate keys.

ciphertext pairs as input constraints for key search. The
property set satisfied (i.e., the actual property mapping
order) reveals the fault injection location.

7 Experimental Result

In this section, we present fault simulation and attack
results. We perform fault attack on both unprotected and
masked AES using our formal approach.

7.1 Fault fusion analysis

We use the AES core from the Aoki Laboratory to
demonstrate how our formal model can be used to
measure fault propagation effects. We first use a logic
synthesis tool to convert the AES design into gate-level
netlist and then create the formal fault propagation
model for the design by discretely instantiating fault
propagation models for the primitive gates in the netlist.
In our model, each signal is augmented with a fault label
denoted as �e to reflect the fault status of the signal.
Since our model is described using standard HDL, we
perform fault simulation under the ModelSim simulation
tool. We inject faults into the input of round nine and
observe the propagation of the faults all the way to the
ciphertext output. Figure 7 shows the fault simulation
results.

Consider the first test vector where we inject fault
into the highest byte of the round nine input, i.e.,
Din9eD8’h47. After the SubBytes operation, the output
of S-Box is 8’h87 while its fault status is 8’h12. This
indicates that the faulty S-Box output should actually
be 8’h87 ˚ 8’h12 D 8’h95. The ShiftRows operation
does not change the location of the faulty byte in the first
row of the state matrix. The successive MixColumns
operation spreads the fault into the first column, resulting
in a fault status of 32’h24121236. The non-linear
SubBytes transform in round ten changes the fault
status to 32’h75DA324E. The next ShiftRows operation
changes the fault locations to four discrete bytes in
the ciphertext without changing the fault status. The
simulation results precisely reveal the fault propagation
behavior through the AES transforms.

We also inject faults into other locations in the first row
of the state matrix of round nine input. Fault simulation
shows the propagation of faults to different ciphertext
bytes, which well agrees with the fault distributions and
property mapping patterns as shown in Tables 2 and 3.

7.2 Fault attack on unprotected AES

We use the same AES core used in fault simulation



Xiaojie Dai et al.: Fault Analysis on AES: A Property-Based Verification Perspective 585

Fig. 7 Fault fusion simulation results.

for fault attack. We inject random faults before the
MixColumns operation of round nine. We collect correct
and faulty ciphertext pairs for the attack. The first step
is to classify the faulty ciphertexts into four different
groups according to the fault locations. We only need
two correct ciphertexts denoted as Dout and Dout2 as
well as their fault labels Dout e and Dout e2, where
the fault labels are the exclusive OR of correct and
faulty ciphertexts. The correct ciphertexts and their fault
labels as mapped as input constraints of the formal
fault propagation model of AES. The tag is a flag that
indicates if both mapped properties are satisfied. We
use the Yosys tool to prove the mapped properties and
search for the key. Figure 8 shows the fault attack results
through formal proof.

tag is 1 as shown in Fig. 8, it implies that both
properties mapped with the correct ciphertexts and their
fault labels as constraints are satisfied. By checking the
property mapping patterns according to Table 3, we can
determine the locations where the faults are actually
injected. The sub, shf , and mix signals in Fig. 8
show the fault locations in the intermediate results of
the SubBytes, ShiftRows, and MixColumns transforms,
respectively.

We also injected faults into round eight of AES and

Fig. 8 Fault attack results on round nine of AES.

successfully recovered the last round key. When faults
are injected before the MixColumns operation of round
eight, we can recover 128 key bits with two pairs of
correct and fault ciphertexts. By comparison, 32 key
bits can be recovered if faults only propagate through a
single MixColumns operation. For the latter case, we
need additional fault injections at different locations to
recover the entire key.

Once the properties are exacted and verified using
the method described in Section 5, we do not rely
on knowledge about the input values of intermediate
encryption results during fault analysis. We only need
correct and faulty ciphertext pairs as input constraints
to search for the round key by formally checking which
properties can be satisfied.

We perform additional tests to understand how the
number of key candidates changes when using different
numbers of pairs of correct and faulty ciphertexts. The
experimental results are shown in Fig. 9.

From Fig. 9, when using a single pair of correct and
faulty ciphertexts, searching for 32 key bits only returns
2077 candidates in the worst case while 866 candidates
in the best case. On average, around 1000 key candidates
will be reported. With an additional pair, the number of
key candidates is no more than three. When using three

Fig. 9 Number of key candidates using different number of
pairs of correct and faulty ciphertexts.



586 Tsinghua Science and Technology, April 2024, 29(2): 576–588

pairs, the key candidate is unique.

7.3 Fault attack on RSM AES

We further use the RSM AES core[28] for fault
analysis. We create the formal fault propagation model
for the masked AES core in a similar way. We then inject
faults before the MixColumns operation in round eight
of the masked design. Two correct and faulty ciphertext
pairs are randomly selected as input constraints to the
fault verification model and the Yosys tool is employed
to prove the mapped properties and search for the
last round key. As shown in Fig. 10, the 128-bit
key can be successfully recovered with two pairs of
correct and faulty ciphertexts by proving four groups of
properties associated with four tag bits, i.e., tag D 1111.
In the meanwhile, the fault location is automatically
determined. Specifically, location1 and location2 are
both zero, indicating that faults are both injected into the
first byte.

We make a comparison with other common fault
attack methods in Table 4.

The proposed formal analysis based fault attack
approach has relatively lower attack efforts and key
search complexity. In addition, it does not need
to perform complex fault fusion analysis or require
knowledge about the location or type of fault injected.

In our tests, we use a static analysis tool (SAT)
to search for the key, which can be insufficient
for sequential implementations of cryptographic
functions. To overcome such a drawback, we unroll the
round iterations of a given sequential implementation
as a fully pipelined architecture and then remove the
registers to make the entire design combinational for
SAT analysis. Another possible solution is to use more
powerful commercial formal solvers that can better
support sequential designs.

In addition to the unprotected and masked AES
cores, we have also successfully attacked other block

ciphers such as SM4 and the lightweight cipher LED64
using our fault related property extraction and formal
verification approach. The attack implementation details
vary slightly due to the difference in fault fusion
characteristics of these block ciphers.

8 Conclusion

This paper proposes a new fault analysis method
through formal verification. We establish a formal
fault propagation model for precisely measuring the
fault propagation effects and exploit the correlation in
fault effects as properties to guide a formal solver to
search for the key. The proposed method does not
require knowledge about the location or type of fault
injected. Instead, it can determine these two pieces
of information by checking the properties satisfied.
Experimental results using both unprotected and masked
AES implementations show that our method has a key
search complexity below 216, requiring only two pairs
of correct and faulty ciphertexts to recover the key. We
will explore this fault analysis approach on more block
ciphers such as PRESENT and IDEA in our future work.

Acknowledgment

This research is supported by the National Key R&D
Program of China (No. 2021YFB3100901) and the
National Natural Science Foundation of China (Nos.
62074131 and 62004176).

Table 4 Performance comparison of different fault attack
methods.

Metric This work CFA PFA DFA
Pairs of ciphertexts 2 2 1641 2

Search complexity using
a pair of ciphertexts

216 216 – 216

Search complexity using
two pairs of ciphertexts

216 217 – 217

Algorithmic details required No Yes Yes Yes
Fault fusion analysis required No Yes Yes Yes

Fig. 10 Fault attack results on round eight of RSM AES.



Xiaojie Dai et al.: Fault Analysis on AES: A Property-Based Verification Perspective 587

References

[1] P. C. Kocher, Timing attacks on implementations of diffie-
hellman, RSA, DSS, and other systems, in Advances in
Cryptology—CRYPTO’96, N. Koblitz, ed. Berlin, Germany:
Springer, 1996, pp. 104–113.

[2] R. Spreitzer, V. Moonsamy, T. Korak, and S. Mangard,
Systematic classification of side-channel attacks: A case
study for mobile devices, IEEE Commun. Surv. Tutor., vol.
20, no. 1, pp. 465–488, 2018.

[3] A. Boscher and H. Handschuh, Masking does not
protect against differential fault attacks, in Proc. 2008
5th Workshop on Fault Diagnosis and Tolerance in
Cryptography, Washington, DC, USA, 2008, pp. 35–40.

[4] W. Hu, A. Althoff, A. Ardeshiricham, and R. Kastner,
Towards property driven hardware security, in Proc. 2016
17th Int. Workshop on Microprocessor and SOC Test and
Verification (MTV), Austin, TX, USA, 2017, pp. 51–56.

[5] H. Wang, H. Li, F. Rahman, M. M. Tehranipoor, and F.
Farahmandi, SoFI: Security property-driven vulnerability
assessments of ICs against fault-injection attacks, IEEE
Trans. Comput. Aided Des. Integr. Circuits Syst., vol. 41, no.
3, pp. 452–465, 2022.

[6] D. Boneh, R. A. DeMillo, and R. J. Lipton, On the
importance of checking cryptographic protocols for faults,
in Advances in Cryptology — EUROCRYPT’97, W. Fumy,
Ed. Berlin, Germany: Springer, 1997, pp. 37–51.

[7] E. Biham and A. Shamir, Differential fault analysis of
secret key cryptosystems, in Advances in Cryptology—
CRYPTO’97, W. Fumy, Ed. Berlin, Germany: Springer,
1997, pp. 513–525.

[8] N. T. Courtois, K. Jackson, and D. Ware, Fault-algebraic
attacks on inner rounds of DES, in Proc. the Strategies
Telecom and Multimedia, Montreuil, France. 2010.

[9] C. Clavier and A. Wurcker, Reverse engineering of a
secret AES-like cipher by ineffective fault analysis, in
Proc. 2013 Workshop on Fault Diagnosis and Tolerance
in Cryptography, Los Alamitos, CA, USA, 2013, pp. 119–
128.

[10] A. Wang, M. Chen, Z. Wang, and X. Wang, Fault rate
analysis: Breaking masked AES hardware implementations
efficiently, IEEE Trans. Circuits Syst. II, vol. 60, no. 8, pp.
517–521, 2013.

[11] T. Fuhr, E. Jaulmes, V. Lomné, and A. Thillard, Fault
attacks on AES with faulty ciphertexts only, in Proc.
2013 Workshop on Fault Diagnosis and Tolerance in
Cryptography, Los Alamitos, CA, USA, 2013, pp. 108–118.

[12] C. Dobraunig, M. Eichlseder, T. Korak, S. Mangard,
F. Mendel, and R. Primas, Sifa: Exploiting ineffective
fault inductions on symmetric cryptography, IACR Trans.
Cryptogr. Hardw. Embed. Syst., vol. 2018, no. 3, pp. 547–
572, 2018.

[13] F. Zhang, X. Lou, X. Zhao, S. Bhasin, W. He, R. Ding, S.
Qureshi, and K. Ren, Persistent fault analysis on block
ciphers, IACR Trans. Cryptogr. Hardw. Embed. Syst.,
vol. 2018, no. 3, pp.150–172, 2018.

[14] G. Wang and S. Wang, Differential fault analysis on
PRESENT key schedule, in Proc. 2010 Int. Conf.
Computational Intelligence and Security, Nanning, China,

2011, pp. 362–366.
[15] H. Momeni, M. Masoumi, and A. Dehghan, A practical fault

induction attack against an FPGA implementation of AES
cryptosystem, in Proc. World Congress on Internet Security
(WorldCIS-2013), London, UK, 2014, pp. 134–138.

[16] S. S. Ali and D. Mukhopadhyay, A differential fault
analysis on AES key schedule using single fault, in Proc.
2011 Workshop on Fault Diagnosis and Tolerance in
Cryptography, Nara, Japan, 2011, pp. 35–42.

[17] X. X. Wang, H. Wei, T. Jing, Z. Jiacheng, and T. Shibo,
Correlation fault attack on aes, Journal of Xidian University,
vol. 48, no. 4, pp. 192–199, 2021.

[18] J. Takahashi and T. Fukunaga, Differential fault analysis
on AES with 192 and 256-bit key, in Proc. 2010 Workshop
on Fault Diagnosis and Tolerance in Cryptography, Santa
Barbara, CA, USA, 2010, pp. 3–9.

[19] L. Han, N. Wu, F. Ge, F. Zhou, J. Wen, and P. Qing,
Differential fault attack for the iterative operation of AES-
192 key expansion, in Proc. 2020 IEEE 20th Int. Conf.
Communication Technology (ICCT), Nanning, China, 2020,
pp. 1156–1160.

[20] F. Zhang, S. Guo, X. Zhao, T. Wang, J. Yang, F. X. Standaert,
and D. Gu, A framework for the analysis and evaluation of
algebraic fault attacks on lightweight block ciphers, IEEE
Trans. Inf. Forensics Secur., vol. 11, no. 5, pp. 1039–1054,
2016.

[21] M. Gay, T. Paxian, D. Upadhyaya, B. Becker, and I. Polian,
Hardware-oriented algebraic fault attack framework with
multiple fault injection support, in Proc. 2019 Workshop on
Fault Diagnosis and Tolerance in Cryptography (FDTC),
Atlanta, GA, USA, 2019, pp. 25–32.

[22] S. Saha, M. Alam, A. Bag, D. Mukhopadhyay, and P.
Dasgupta, Leakage assessment in fault attacks: A deep
learning perspective, https://eprint.iacr.org/2020/306, 2020.

[23] F. Zhang, Y. Zhang, H. Jiang, X. Zhu, S. Bhasin, X. Zhao, Z.
Liu, D. Gu, and K. Ren, Persistent fault attack in practice,
IACR Trans. Cryptogr. Hardw. Embed. Syst., vol. 2020, no.
2, pp. 172–195, 2020.

[24] G. Xu, F. Zhang, B. Yang, X. Zhao, W. He, and K. Ren,
Pushing the limit of PFA: Enhanced persistent fault analysis
on block ciphers, IEEE Trans. Comput. Aided Des. Integr.
Circuits Syst., vol. 40, no. 6, pp. 1102–1116, 2021.

[25] K. Bae, S. Moon, D. Choi, Y. Choi, H. D. Kim, and J.
Ha, A practical analysis of fault attack countermeasure on
AES using data masking, in Proc. Int. Conf. Computing
and Convergence Technology (ICCCT), Seoul, Republic of
Korea, 2012, pp. 508–513.

[26] X. Wang, J. Zheng, L. Wu, J. Zhu, and W. Hu, A correlation
fault attack on rotating S-box masking AES, in Proc.
2021 Asian Hardware Oriented Security and Trust Symp.
(AsianHOST), Shanghai, China, 2022, pp. 1–6.

[27] C. Dobraunig, M. Eichlseder, H. Gross, S. Mangard, F.
Mendel, and R. Primas, Statistical ineffective fault attacks
on masked AES with fault countermeasures, in Proc.
24th Int. Conf. Theory and Application of Cryptology and
Information Security, Taipei, China, 2018, pp. 315–342.

[28] Description of the masked AES of the DPA contest v4,
https://www.dpacontest.org/v4/data/rsm/aes-rsm.pdf, 2022.



588 Tsinghua Science and Technology, April 2024, 29(2): 576–588

Xiaojie Dai received the MS degree
from Tsinghua University in 2013. She
is currently pursuing the PhD degree
in Northwestern Polytechnical University,
China. Her current research interests
are hardware security, formal security
verification, and cryptanalysis.

Xingxin Wang received the MS degree
from Northwestern Polytechnical
University in 2023. She is currently
pursuing the PhD degree with School of
Cybersecurity in the same university. Her
current research interests are hardware
security, including side channel analysis,
fault injection attack, and cryptanalysis.

Xue Qu received the BS degree in network
engineering from Qufu Normal University
in 2021. She is currently pursuing the
MS degree at the School of Cybersecurity
in Northwestern Polytechnical University,
China. Her current research interest is
hardware security with a focus on side
channel analysis.

Baolei Mao received the PhD degree in
network and information security from
Northwestern Polytechnical University in
2018. He is currently with Zhengzhou
University, China. He is a recipient
of Internet Security Graduate Student
Award from China Internet Development
Foundation. His research interests are side

channel analysis, hardware information flow analysis, and formal
verification.

Wei Hu is a full professor with the
School of Cybersecurity, Northwestern
Polytechnical University, China. He
received the PhD degree in control science
and engineering from the same university
in 2012. His research interests are hardware
security, cryptography, formal security
verification, and reconfigurable computing.


