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A Constraint Adaptive Multi-Tasking Differential Evolution Algorithm:
Designed for Dispatch of Integrated Energy System in Coal Mine

Canyun Dai, Xiaoyan Sun�, Hejuan Hu, Yong Zhang, and Dunwei Gong

Abstract: The dispatch of integrated energy systems in coal mines (IES-CM) with mine-associated supplies is vital

for efficient energy utilization and carbon emissions reduction. However, IES-CM dispatch is highly challenging

due to its feature as multi-objective and strong multi-constraint. Existing constrained multi-objective evolutionary

algorithms often fall into locally feasible domains with poorly distributed Pareto front, which greatly deteriorates

dispatch performance. To tackle this problem, we transform the traditional dispatch model of IES-CM into two tasks:

the main task with all constraints and the helper task with constraint adaptive. Then we propose a constraint adaptive

multi-tasking differential evolution algorithm (CA-MTDE) to optimize these two tasks effectively. The helper task

with constraint adaptive is developed to obtain infeasible solutions near the feasible domain. The purpose of this

infeasible solution is to transfer guiding knowledge to help the main task move away from local search. Additionally,

a dynamic dual-learning strategy using DE/current-to-rand/1 and DE/current-to-best/1 is developed to maintain task

diversity and convergence. Finally, we comprehensively evaluate the performance of CA-MTDE by applying it to a

coal mine in Shanxi Province, considering two IES-CM scenarios. Results demonstrate the feasibility of CA-MTDE

and its ability to generate a Pareto front with exceptional convergence, diversity, and distribution.
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1 Introduction

The integrated energy system (IES) has gained popularity
in recent years due to the rapid development of
Internet technology and renewable energy. IES aims to
coordinate the production, conversion, and consumption
of multiple energy sources, such as electricity,
heat, and cooling. This structure revolutionizes the
traditional energy usage scenario, where different energy
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infrastructures typically operate separately[1]. As a result,
IES is a more effective approach to improving energy
efficiency, promoting the utilization of renewable energy,
and reducing environmental pollution compared to
traditional paradigms.

The dispatch of IES has a significant impact on
promising the system safety, economy, and environment
protection. Among the existing IES, the dispatch
of integrated energy systems in coal mines (IES-
CM) is of utmost importance due to its high energy
consumption and high emissions. For this purpose, Hu
et al.[2] first proposed a coal mine integrated energy
system and established a multi-objective dispatch model
with objectives as economic operation cost, carbon
transaction cost, and degree of consumer dissatisfaction.
Moreover, the traditional solver CPLEX is used to
solve the problem. Huang et al.[3] constructed a two-
stage robust stochastic dispatch model in the coal
mine integrated energy system and used the robust
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stochastic optimization method to solve it. Wang et al.[4]

developed a multi-scenario operation model for IES-CM
and suggested an autonomous intelligence to effectively
solve it.

The IES-CM dispatch is a new type of multi-
constrained and multi-objective optimization problem.
This is because the problem involves a large number of
constraints, including equality ones such as electrical,
cooling, and heat balance constraints, and inequality
constraints such as device capacity constraints, operation
constraints, and ramp rate constraints. These constraints
make the problem highly coupled and temporally
dependent. Currently, some multi-objective evolutionary
algorithms (MOEAs) have been developed for the IES
dispatch in different scenarios. For example, Wang et
al.[5] used the non-dominated sorting genetic algorithm
II (NSGA-II) to optimize the model of electro-thermal
IES. Wu et al.[6] presented an improved multi-objective
multifactorial evolutionary algorithm to address multi-
objective dispatch of IES considering biogas-solar-wind
renewables. Qiao et al.[7] proposed an "-constraint
fruit fly optimization algorithm to solve the IES multi-
objective model considering installation configurations.
Dong et al.[8] developed a constrained multi-objective
state transition algorithm to solve the IES planning
model containing uncertainty. Compared with traditional
solvers (such as CPLEX and Gurobi) or mathematical
programming methods, the MOEAs can obtain a set of
non-dominated solutions for decision makers to choose.
However, due to the lack of efficient constraint handling
method, the diversity, convergence, and uniformity of
Pareto front (PF) generated are insufficient.

The development of constrained MOEAs (CMOEAs)
provides an effective way to deal with constrained
problems. Representative outcomes include multi-
population based[9–11] and multi-stage based ones[12, 13].
In the last two years, a new type of CMOEAs
with evolutionary multi-tasking (EMT)[14] method is
developed for constrained multi-objective problems
(CMOPs). The EMT proposed by Gupta et al.[14] in
2015 is a new research paradigm, and its feasibility and
effectiveness have been verified in various real-world
problems[15–17]. Based on the EMT method, Qiao et
al.[18] suggested a novel EMT-based constrained multi-
objective optimization framework. This framework
assigns two populations to optimize these two tasks
in parallel. This is the first study to use EMT to
solve CMOPs. Later, Qiao et al.[19] proposed a new
multi-tasking constrained multi-objective optimization

framework, in which a dynamic auxiliary task is created
to assist in solving the CMOPs (the main tasks).
Ming et al.[20] developed a tritask framework with
constrained dominance principle (CDP) based, Pareto
dominance based, and constraint relaxation based tasks,
and designed a new algorithm. Compared with methods
based on multi-population and multi-stage, the EMT-
based methods have great attraction and novelty in
dealing with constraints. However, these corresponding
studies have not been extended to serve the IES dispatch
problems.

Motivated by the above observation and analysis,
we here develop a constraint adaptive multi-tasking
differential evolution algorithm (CA-MTDE) to handle
strong coupling and timing constraints in the multi-
constraint and multi-objective IES-CM dispatch problem.
First, a multi-objective dispatch model for the IES-CM
that aims to minimize the cost on system operation and
abandoned energy is introduced. Second, the CA-MTDE
using a helper task with constraint adaptive (HT-CA)
under the multi-tasking framework to help the main
task (original problem) find the feasible optimal PF
is proposed. Additionally, a dynamic dual-learning
(DDL) mutation strategy is developed based on two well-
known differential evolution (DE) operators, DE/current-
to-rand/1 and DE/current-to-best/1[21], to balance the
diversity and convergence of the two tasks at different
stages of evolution. DE proposed by storn and price[22],
as a simple yet powerful method, is chosen because
of its successful application in a large number of
optimization problems[23, 24]. Finally, the proposed
algorithm is verified using an example of a coal mine
located in Shanxi. The results indicate that the proposed
CA-MTDE algorithm outperforms CPLEX and six
representative CMOEAs in terms of obtaining the best
extreme and compromise solutions. The algorithm also
achieves optimal values for two performance indicators,
inverted generation distance (IGD) and hypervolume
(HV). Furthermore, the Wilcoxon signed ranks test
is conducted for IGD and HV in both scenarios to
demonstrate the significant superiority of the proposed
algorithm. The major contributions of this paper are
highlighted as follows:

(1) Propose a CA-MTDE for IES-CM dispatch
problem

To handle the strong coupling and timing constraints
in IES-CM, this paper transforms the multi-constraint
and multi-objective IES-CM dispatch problem into a
multi-tasking optimization problem by using the idea of
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EMT. Therefore, a CA-MTDE is proposed.
(2) Design an HT-CA for the proposed CA-MTDE
In CA-MTDE, a helper task with constraint adaptive

known as HT-CA is developed to assist the main task in
discovering globally viable PF. The HT-CA dynamically
adjusts the constraint boundaries of the helper task based
on the number of iterations. This feature enables the
HT-CA to continuously generate possible infeasible
solutions near feasible domains throughout evolution,
providing diversified evolutionary paths for the main
task through knowledge transfer.

(3) Develop a DDL strategy for the proposed CA-
MTDE

In CA-MTDE, a DDL strategy is further developed to
effectively balance the diversity and convergence of the
two tasks at different evolutionary stages. Specifically,
the DDL strategy combines the DE/current-to-rand/1 and
DE/current-to-best/1 operators to dynamically update
individuals to learn search characteristics from different
individuals. The performance of the two mutation
operators shows that the DDL strategy can not only
promote the diversity by learning from randomly
selected population individuals but also accelerate
convergence by utilizing information from optimal
individuals in the population.

(4) Verify effectiveness and competitiveness of CA-
MTDE on actual IES-CM

Two system scenarios are carried out with the
integrated energy system of a coal mine in Shanxi
Province as an example. The optimization results show
that our CA-MTDE algorithm is competitive in acquiring

a PF with a good distribution and broad diversity in two
scenarios, when compared with the CPLEX solver and
six representative CMOEAs.

The paper is organized as follows. Section 2
introduces the multi-objective dispatch model for IES-
CM and provides a detailed description of the model
development. Section 3 addresses the proposed CA-
MTDE for solving the IES-CM model, including a
thorough explanation of the methodology. Section 4
demonstrates the results of our experimental study,
including statistical analysis and visual explanations.
Finally, in Section 5, we summarize our findings, discuss
their implications, and outline directions for future
research.

2 Multi-Objective Dispatch Model for IES-
CM

2.1 IES-CM description

A schematic representation of an IES-CM structure is
depicted in Fig. 1. It comprises four key components:
energy supply, energy conversion, energy storage, and
energy demand. The energy supply component consists
of three sub-components: energy market, renewable
energy sources, and coal mine-associated energy. The
energy market sub-component primarily encompasses
grid supply and gas supply. Renewable energy sources
include photovoltaic (PV) and wind turbines (WT).
Coal mine-associated energy comprises ventilation air
methane (Vam), air heat, mine water, and geothermal
energy. The energy conversion component incorporates
various units such as combined heating and power

Fig. 1 Structure of the IES-CM.
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(CHP), Vam oxidation heat pumps (VOHP), water
source heat pumps (WSHP), ground source heat pumps
(GSHP), air source heat pumps (ASHP), absorption
chillers (AC), and electric chillers (EC). Energy storage
encompasses electric storage (ES) and heat storage
(HS). Finally, the energy demand component includes
electrical load, cooling load, and heat load for industrial
and domestic purposes.

The IES-CM has unique features that distinguish
it from general IESs. Firstly, the associated energy
generated in the coal mine production process is fully
converted into heat energy, thereby avoiding energy
wastage and reducing environmental pollution. Secondly,
the associated energy exhibits strong coupling properties,
as it serves as both a consumer of electrical energy and a
supplier of thermal energy. Thirdly, the energy demand
in IES-CM has distinct characteristics, encompassing
flexible loads required by the domestic sector and rigid
loads required by the coal mine production process.
Consequently, the study of the IES-CM dispatch problem
and the development of effective solving algorithms hold
significant practical significance.

2.2 IES-CM dispatch model

In this section, we construct a two-objective day-ahead
dispatch model that comprehensively considers various
operational constraints. The acronyms and notations
used here are listed in Table 1.

2.2.1 Optimization objectives
Objective 1: The daily comprehensive operational
cost (OC) of the IES-CM[2] is expressed below, which
includes the energy purchase cost (PC) and the cost of
equipment operation and maintenance (OM):

MinOC D PCC OM (1)

PC D
TX

tD1

.c
grid
t �E

grid
t C c

gas
t �Q

CHP
t / (2)

OM D
TX

tD1

NX
kD1

cmaint
k �Ek

t (3)

where T D 24 is the total number of time periods; N
represents the total number of devices; Egrid

t and cgrid
t are

the electricity provided by grid and the price of electricity
at time t , respectively; QCHP

t and cgas
t mean natural gas

consumption and gas price at time t , respectively; cmaint
k

denotes the operating and maintenance cost factor of the
k device; and Ek

t indicates energy output of the k device
at time t . The devices considered in this paper include
WT, PV, CHP, VOHP, WSHP, EC, and AC.

Objective 2: The abandoned energy cost (AE)
objective is defined as follows, which comprises the
cost of abandoning renewable energy and coal mine-
associated energy.

AE D
TX

tD1

NX
kD1

cabandon
k � .Ek

t;max �E
k
t / (4)

where cabandon
k

represents the penalty factor for
abandoning energy of the k device; and Ek

t;max is the
maximum output of the k device. Related devices
include WT, PV, VOHP, and WSHP.

2.2.2 Constraint
In ensuring the safety of a system, it is important to
satisfy the operational constraints. These constraints
include inequality ones that limit the acceptable
operating range for each device and equality constraints
that describe the balance between supply and demand.

Energy balance constraints. In the electro-thermal
IES-CM, energy balance constraints include electricity,
heat, and cooling balances between energy supply and
demand.

(1) Electric balance constraint
E

grid
t CE

PV
t CE

WT
t CE

CHP
t D E load

t CE
VOHP
t CEWSHP

t CEEC
t

(5)
where E load

t represents the electric load of the system at
time t .

(2) Heat balance constraint
HCHP

t CHVOHP
t CHWSHP

t D H load
t CHAC

t (6)

where H load
t represents the heat load of the system at

time t .
(3) Cooling balance constraint

QEC
t CQ

AC
t D Q

load
t (7)

where Qload
t represents the cooling load of the system at

time t .
Energy conversion constraints. The energy

conversion constraints are expressed as follows:
HCHP

t D �e2h
CHP �E

CHP
t (8)

HVOHP
t D �VOHP

�EVOHP
t (9)

HWSHP
t D �WSHP

�EWSHP
t (10)

QEC
t D �

EC
�EEC

t (11)

QAC
t D �

AC
�EAC

t (12)

where �e2h
CHP represents the thermoelectric ratio; �VOHP

and �WSHP represent the conversion efficiency of VOHP
and WSHP from electricity to heat, respectively; �EC

is the conversion efficiency of EC from electricity to
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cooling; and �AC represents the conversion efficiency of
AC from heat to cooling.

Device operation constraints. The power output
range of each device must be kept within the maximum
and minimum limits to ensure the safety and reliability
of the system. This is because the characteristics of the
device play a crucial role in determining the constraints
of its operation.

Ek
t;min 6 Ek

t 6 Ek
t;max (13)

whereEk
t;min andEk

t;max are the lower and upper limits of
the output power of the k device, respectively, including
PV, WT, CHP, VOHP, WSHP, EC, and AC.

Grid operational constraints. The electricity
purchasing from the power grid should satisfy the
following grid operational constraints:

E
grid
t;min 6 E

grid
t 6 E

grid
t;max (14)

where Egrid
t;min and Egrid

t;max are the minimum and maximum
power of the grid, respectively.
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CHP ramp rate constraint. The CHP is a highly
efficient way of generating heat and electricity
simultaneously. The system uses natural gas to produce
both forms of energy, but it is important to ensure that
the power output of each generator does not vary too
much. This is because excessive stresses on the boiler
and combustion equipment can occur if the change rate
of power output is too high. Therefore, it is necessary
to impose a ramp rate constraint to avoid drastic power
variations of CHP between adjacent timeslots.

ECHP
t �ECHP

t�1 6 RCHP
up (15)

ECHP
t�1 �E

CHP
t 6 RCHP

low (16)

where RCHP
low and RCHP

up are the ramp down and ramp up
limits of the CHP unit, respectively.

2.3 Pareto optimization formulation

The aforementioned dispatch of IES-CM can be
formulated as a constrained multi-objective Pareto
optimization problem as follows:8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂:

minF.x/ D .OC.x/;AE.x//I
x D ŒEgrid

t ; ePV
t ; EWT

t ; eCHP
t ;HVOHP

t ;

HWSHP
t ;QEC

t ;Q
AC
t �I

s.t., energy balance constraints, Eqs. .5/–.7/I
energy conversion constraints, Eqs. .8/–.12/I
device operation constraint, Formula .13/I
grid operational constraint, Formula .14/I
CHP ramp rate constraints, Formulas .15/
and .16/

(17)
where x represents a variable to be optimized of the
IES-CM problem and time t D 1; 2; : : : ; 24.

Discussion: our problem vs. constrained multi-
objective benchmark functions. In essence, the IES-
CM dispatch problem is a constrained multi-objective
problem. However, unlike the constrained multi-
objective benchmark functions proposed so far, our
problem has practical physical significance. There are
three specific differences as follows. (1) Dynamic
characteristic: In our problem, the optimization variables
change in each hour, i.e., depending on time t. So our
problem can be thought of as dynamic. (2) Strong
coupling characteristic of decision space: From the
expression of Eq. (17), the number of constraints is
greatly more than the number of objectives, besides, it is
clear that our constraints strongly separate the decision
space in many sub-spaces, which is in sharp contrast to
the benchmark function in limiting the target space. In
addition, as shown in Eqs. (5)–(12), variables are

represented linearly by equality constraints. Compared
with the existing benchmark functions, the strong
coupling of decision space further increases the difficulty
in solving the problem. (3) Timing characteristic: Under
the influence of ramp rate constraint, the optimization
variables related to CHP will be further restricted by
the up and down time, resulting in a greatly reduced
search domain of the variable (as shown in Formulas
(15) and (16)). However, timing characteristics are not
reflected in the current benchmark functions. Therefore,
a more effective algorithm in dealing with both multiple
objectives and strong constraints must be developed to
fit these characteristics of this kind of problem.

3 Proposed CA-MTDE for Solving IES-CM
Dispatch Problem

In this section, we propose a CA-MTDE to effectively
optimize the IES-CM dispatch. Equation (17) is
first reformulated into two tasks, i.e., a main task as
Eq. (17) and an HT-CA. The HT-CA is developed
here to powerfully handle strong coupling and timing
constraints. The main idea of HT-CA gradually reduces
the constraint boundaries according to the evolutionary
generations of DE, and some infeasible solutions nearest
to the adjusted feasible domain are explored. These
solutions will be used in the knowledge sharing of CA-
MTDE to maintain a high correlation between the main
and helper tasks. With HT-CA, the evolutionary paths of
the main task can be well guided to escape from the local
optimum search. Moreover, to maintain the balance of
diversity and convergence between the two tasks during
different search stages, a dynamic dual-learning (DDL)
mutation strategy is designed. The DE/current-to-rand/1
or DE/current-to-best/1 is dynamically selected in the
entire evolution process to generate offspring individuals,
which learns the search performance of different DE
operators in the distinctive tasks. In the early stage,
this maintains the diversity of the population to explore
more feasible domains, while in the late stage, it
improves the convergence to locate the optimal solution.
Furthermore, we introduce an environment selection
mechanism integrating multiple constraint handling
techniques and a compromise solution selection strategy
with fuzzy decision into the proposed algorithm. This
ensures that the algorithm can handle various constraints
effectively and select the best solution that balances the
trade-off between different objectives. Figure 2 plots the
framework of the proposed CA-MTDE.
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Fig. 2 Framework of the proposed CA-MTDE.

3.1 A novel helper task with constraint adaptive

In this section, the helper task with constraint adaptive
is created to help solve the main task with all constraints.
HT-CA adaptively reduces the constraint boundary
during evolution, resulting in some infeasible solutions
close to multiple feasible domains. Such infeasible
solutions then are transferred to the main task through
individual-based knowledge transfer[19], which helps the
main task escape from the locally feasible domain. The
formulation of HT-CA can be described as follows:

minF.x/ D .OC.x/; AE.x//; s:t:; V .x/ 6 �g (18)

�g D �.0/ � e.tt�g=G/ (19)

where g and G are the current and maximal generations,
respectively; V.x/ is the total constraint violation value
for x; �.0/ is the initial constraint violation value which
equals to the maximal V value of both initial main
population and helper population; and tt is the parameter
that controls the rate of descent of �g and is set to �12.

Discussion: Equations (18) and (19) show that the
two tasks have the same objective. However, unlike the
main task, the constraint boundary �.g/ of the helper
task gradually decreases with the number of iterations.
Therefore, auxiliary tasks can not only explore some
infeasible solutions close to the feasible domain in the
evolutionary but also gradually push the population into
the feasible domain by constraining dynamic changes.
Overall, the two tasks have different evolutionary
trajectories that can provide useful information to each
other via knowledge transfer.

3.2 Dynamic dual-learning mutation strategy

The DDL mutation strategy is developed to balance the
diversity and convergence of the two tasks in the entire
evolution. It combines two DE operators with different

search characteristics, namely DE/current-to-rand/1 and
DE/current-to-best/1, and designs a dynamic parameter.
In DE/current-to-rand/1, each target vector learns from
a randomly selected individual, thus promoting the
diversity. By making use of the information of the
best individual, DE/current-to-best/1 can speed up the
convergence. Additionally, a parameter decreasing with
the number of iterations is designed to dynamically
select one of the two operators to produce the offspring.
In the early stage, two tasks select the DE/current-to-
rand/1 with greater probability to increase the population
diversity and explore more feasible domains. In the
late stage, two tasks select the DE/current-to-best/1 to
improve the convergence and find the optimal solution.
The formulation of the DDL mutation strategy is as
follows:

OffiD

8̂̂̂̂
<̂
ˆ̂̂:

Popi C rand � .Popr1
� Popi /C

F � .Popr2
� Popr3

/; if rand < dg I

Popi C F � .Popbest � Popi /C

F � .Popr1
� Popr2

/; otherwise (20)

dg D .1 � g=G/
D=20 (21)

where Popi and Popbest are the i-th individual and best
individual of the current population, respectively; r1,
r2, and r3 are mutually distinct target vectors randomly
selected from the population; and F is randomly selected
from a scaling factor pool f0:6; 0:8; 1:0g. The reasons
for the above random parameters setting are that they
are simple and their effectiveness has been validated in
Ref. [25]. “rand” is a uniformly distributed random
number between 0 and 1; and D is the population
dimension. It can be noted from Eq. (21) that the
parameter dg dynamically reduces from 1 to 0 as the
number of iterations increases.
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3.3 Environment selection mechanism

In a multi-tasking framework, the environment selection
mechanism plays a significant role in determining the
algorithm’s performance[26, 27]. In this paper, we adopt
several powerful constraint handling strategies to assist
different task evolution in achieving efficient search.
The CDP[28] and the improved " constraint method[29, 30]

are the most classical and efficient constraint handling
mechanisms. However, they pay different attention to
the objective and constraint. The CDP has an inherent
preference for constraints, thus attracting a population
towards the feasible region promptly. In contrast, the
improved " constraint method tends to focus on the
objective, using the information on infeasible solutions
to guide the population search. Therefore, for the two
tasks constructed in this paper, the main task chooses the
CDP method to quickly locate multiple feasible regions,
and the helper task uses the improved " constraint
method to balance the conflict between the objective
and constraint.

3.4 Fuzzy-based decision-making strategy

An optimal compromise solution must be selected
after the PF of IES-CM dispatch is obtained. However,
accurately describing the judgment of decision-makers
is difficult. Accordingly, a fuzzy-based decision-making
strategy[31] is used here to recommend a promising
solution to the decision-maker by taking full account of
the fuzziness of human decision-making. To be specific,
the satisfaction degree of each Pareto optimal solution is
calculated using the formula as follows:

�i D

PM
mD1 �imPNt

iD1

PM
mD1 �im

(22)

�imD

8̂<̂
:
1; if fim 6 f min

m I

f max
m �fim

f max
m �f min

m
; if f min

m 6 fim 6 f max
m I

0; if fim > f max
m

(23)

where M denotes the number of objective functions
(M D 2 in this paper); Nt is the number of the PF point;
fim is the m-th objective function value of the i-th PF
point; and f max

m and f min
m are maximum and minimum

of the m-th objective, respectively. The solution with
the greatest satisfaction will be selected as the best
compromise solution.

3.5 Pseudo-code of CA-MTDE

The pseudo-code of CA-MTDE is presented in
Algorithm 1. Initially, two populations with N

individuals are randomly initialized in the search space

Algorithm 1 Pseudo-code of CA-MTDE
Input: N : size of the population, D: dimension of the

population, G: maximum number of iterations, ux : upper
limit of problem, and lx : lower limit of problem

Output: Op: feasible Pareto optimal solutions
1: % Initialization Pop1 and Pop2

2: Pop1 Randomly generate N individuals
3: Pop2 Randomly generate N individuals
4: % Evaluate individuals
5: Evaluate Pop1 on the main task
6: Evaluate Pop2 on the helper task
7: % The main loop
8: for g D 1 W G do
9: % Update �.g/

10: �g D �.0/ � e.�12�g=G/

11: % Generate offspring based on DDL mutation strategy
12: Update dynamic threshold dg D .1 � g=G/

D=20

13: if rand < dg then
14: Off1 Use DE/current/to/rand/1 operator to generate

offspring based on the Pop1

15: Off2 Use DE/current/to/rand/1 operator to generate
offspring based on the Pop2

16: else
17: Off1  Use DE/current/to/best/1 operator to generate

offspring based on the Pop1

18: Off2  Use DE/current/to/best/1 operator to generate
offspring based on the Pop2

19: end if
20: % Evaluate new individuals
21: Evaluate Off1 on the main task
22: Evaluate Off2 on the helper task
23: % Knowledge transfer for different tasks
24: Pop1 Pop1

S
Off1

S
Off2

25: Pop2 Pop2

S
Off2

S
Off1

26: % Environmental selection
27: Pop1 SelectN solutions from Pop1 by the CDP method
28: Pop2 Select N solutions from Pop2 by the improved "

method
29: % Elite solution selection
30: Op  The best compromise solution by fuzzy-based

strategy in Pop1

31: end for
32: Output the optimal dispatch result

and evaluated under the corresponding task. The main
loop begins with updating �.g/ according to HT-CA.
Then, each population uses the DDL mutation strategy
to generate the offspring population, which is then

evaluated. Additionally, two offspring populations are
merged with the main task and helper task populations,
respectively, to complete the knowledge transfer. Finally,
the environment selection mechanism described in
Section 3.3 is used to generate new populations, and the
best compromise solution is obtained by a fuzzy-based
strategy.
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4 Application and Analysis

To demonstrate the effectiveness of our proposed
algorithm in solving the IES-CM dispatch problem,
we have applied our algorithm to a typical IES-CM in
Shanxi Province, China, by considering two dispatch
scenarios, i.e., electricity-heat and electricity-heat-
cooling. Shanxi Province, located in the northwest of
China, experiences higher heat demand during winter,
which makes the dispatch more complex and challenging.
Accordingly, we here experimentally demonstrate the
dispatch results of the IES-CM on a randomly selected
day during winter. Our experiments and analysis will
focus on the following aspects:

(1) The performance of our proposed CA-MTDE
algorithm with that of the CPLEX solver is compared
to demonstrate the feasibility of our approach in solving
the IES-CM dispatch.

(2) The distribution, diversity, and convergence of
our algorithm are evaluated by comparing it with six
popular and representative CMOEAs. Additionally, the
quantitative metrics to measure the multi-objective
optimization performance are presented.

(3) The real energy dispatch of the selected solutions
obtained using our CA-MTDE algorithm with the
decision-making strategy is illustrated, which intuitively
exhibits the results of the optimized objectives on
operation and energy abandon costs. These results will
be addressed in detail in the following subsections.

4.1 Problem scenarios and parameter settings

In this paper, two different dispatch scenarios are
considered to verify the feasibility and effectiveness of
the proposed algorithm in solving IES-CM problems of
different difficulties. The differences between the two
scenarios are described below:

Scenario 1: Electric-heat IES-CM including 6 � 24
decision variables and 10 � 24 constraints.

Scenario 2: Electric-heat-cooling IES-CM including
8 � 24 decision variables and 13 � 24 constraints.

The parameter settings include system parameters
and algorithm parameters. The system parameters are
set as follows. Each energy load demand, wind,
and solar forecast data of the coal mine[2] are shown
in Fig. 3. Figure 4 provides the electricity price
and gas price. Thereinto, the real-time electricity
price for power purchase is adopted, while the gas
price is fixed at 0.2 RMB/kW � h. Moreover, Table
2 provides the related parameters, mainly including

Fig. 3 Wind power, solar power, electrical load, heat load,
and cooling load curves in IES-CM.

Fig. 4 Energy purchase price of each period.

device technical and economic parameters. The system
parameters of the two scenarios are consistent. The
algorithm parameters are given below. The population
size is set to 100, and the maximal number of
function evaluations is set to 300 000. Comparison
of algorithms contain constraint NSGA-II (C-NSGA-
II)[32], constraint NSGA-III (C-NSGA-III)[33], IGD-NS-
based MOEA with reference point adaptation (AR-
MOEA)[34], co-evolutionary CMOEA (CCMO)[9], multi-
stage CMOEA (MSCMO)[12], and dual-population-
based evolutionary algorithm (c-DPEA)[10]. All methods
apply these settings for a fair comparison. The parameter
settings of all the compared algorithms are the same as
suggested in their corresponding original papers. Each
algorithm runs independently 20 times on each scenario
to ensure reliability. We use the PlatEMO platform[35] to
carry out a series of simulation experiments on a personal
computer with an Intel (R) Core i7-11700 2.5 GHz CPU
and 16.00 GB of RAM.
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Table 2 Device technical and economic parameters.
Device Parameter Value

PV

Operational and maintenance cost (RMB/kW � h) cmaint
PV D0.3

Abandoned energy cost (RMB/kW � h) cabandon
PV D0.8

Minimum output (kW) EPV
min D0

Maximum output (kW) EPV
max Dpredicted value

WT

Operational and maintenance cost (RMB/kW � h) cmaint
WT D0.25

Abandoned energy cost (RMB/kW � h) cabandon
WT D0.6

Minimum output (kW) EWT
min D0

Maximum output (kW) EWT
max Dpredicted value

CHP

Operational and maintenance cost (RMB/kW � h) cmaint
CHP D0.1

Minimum output (kW) ECHP
min D0

Maximum output (kW) ECHP
max D300

Ramp down (kW) RCHP
low D50

ramp up (kW) RCHP
up D �50

Efficiency of gas to electricity of CHP �e
CHP D0.4

Thermoelectric ratio of CHP �e2h
CHP D1.25

VOHP

Operational and maintenance cost (RMB/kW � h) cmaint
VOHP D0.55

Abandoned energy cost (RMB/kW � h) cabandon
VOHP D0.7

Minimum output (kW) EVOHP
min D10

Maximum output (kW) EVOHP
max D150

Conversion efficiency of VOHP �VOHP D3.3

WSHP

Operational and maintenance cost (RMB/kW � h) cmaint
WSHP D0.6

Abandoned energy cost (RMB/kW � h) cabandon
WSHP D0.75

Minimum output (kW) EWSHP
min D10

Maximum output (kW) EWSHP
max D120

Conversion efficiency of WSHP �WSHP D3.5

Grid
Minimum output (kW) M

grid
low D0

Maximum output (kW) M
grid
up D800

EC

Operational and maintenance cost (RMB/kW � h) cmaint
EC D0.2

Minimum output (kW) EEC
min D0

Maximum output (kW) EEC
max D 280

Conversion efficiency of EC �EC D0.65

AC

Operational and maintenance cost (RMB/kW � h) cmaint
AC D0.3

Minimum output (kW) EAC
min D0

Maximum output (kW) EAC
max D260

Conversion efficiency of AC �AC D0.7

4.2 Feasibility of CA-MTDE: Comparing with
CPLEX

The feasibility of the proposed CA-MTDE is first
verified by comparing its performance with that of the
CPLEX solver. We here select the CPLEX as a basis
for comparison because it is one of the most popular
and successful methods for solving IES dispatch[36].
Additionally, a global optimum can be guaranteed
with CPLEX for a single-objective dispatch. For multi-
objective dispatch, a weighted sum is often used to
convert it into a single object to fit CPLEX. If the
solution obtained using our algorithm is no worse than
that of CPLEX with the same weight setting, then it is

rational to conclude that our CA-MTDE algorithm is
feasible in solving the CM-IES dispatch problem.

The solution with the weight of (0.5, 0.5) for the
two objectives in CPLEX is selected to compare with
the compromise solution of the proposed algorithm.
Figure 5 shows the best PF obtained by CA-MTDE in
20 independent runs. In Fig. 5, the endpoints of the
PF marked with pink diamond symbols are the extremal
objective values, and their corresponding solutions are
called extremal solutions. The green square represents
the solution of CPLEX at the weight of (0.5, 0.5). The
compromised solution selected with the fuzzy-based
method is marked with a red star.
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(a) Comparison for Scenario 1

(b) Comparison for Scenario 2

Fig. 5 Comparison of CA-MTDE and CPLEX in two
scenarios.

From Fig. 5, the solutions obtained by CPLEX
in two scenarios are (OCD14 090.00 RMB and
AED1905.40 RMB) and (OCD17 381.00 RMB
and AED1552.80 RMB), respectively. While the
compromised solutions obtained by CA-MTDE
in two scenarios are (OCD14 568.20 RMB and
AED 1579.59 RMB) and (OCD17 922.50 RMB and
AED1113.52 RMB), respectively. By comparing the
above results, it can be found that the solutions obtained
by CPLEX and CA-MTDE are non-dominated by each
other, which shows the feasibility of our method. More
importantly, extremal solutions of our method in a single
run, i.e., OCD13 854.60 RMB and AED1279.09 RMB
for Scenario 1, and OCD17 044.70 RMB and
AED304.58 RMB for Scenario 2, indicate that it is more
superior than CPLEX solutions. These insights show
that our proposed method is not only feasible but also
more competitive in a single run.

4.3 Performance of CA-MTDE in convergence,
diversity, and distribution: Comparing with six
competitors

In this section, the performance and effectiveness of the
proposed CA-MTDE in solving the IES-CM problem are
investigated by experimental study in the two scenarios
and comparison with six representative CMOEAs. First,
two commonly used metrics, i.e., IGD[37] and HV[38],
are adopted to evaluate the convergence, diversity, and
distribution of the competing methods. Second, the PF
results covering the extreme solutions and compromised
solutions of all the algorithms are further demonstrated
and compared to validate the efficiency of CA-MTDE.

The IGD focuses on measuring how close the obtained
PF is to the real optimal one, reflecting the convergence
of the algorithm. A smaller IGD value indicates better
convergence. It is worth noting that the reference sets of
all comparison algorithms for calculating IGD metrics
are the same. Tables 3 and 4 show the comparison results
among seven different algorithms for two scenarios
in terms of IGD, including the best IGD, worst IGD,
median IGD, average IGD, and standard deviation (Std)
obtained in 20 independent runs. The best values are
marked in bold.

From Tables 3 and 4, the following observations can
be made. For Scenario 1: (1) The proposed CA-MTDE
achieves the optimal values for the best IGD, the worst
IGD, the median IGD, and the average IGD. These

Table 3 Statistical results of the IGD for Scenario 1.

Approach
IGD

Best Worst Median Average Std
C-NSGA-II[32] 260.4955 463.5850 351.7192 353.1253 51.0919
C-NSGA-III[33] 424.9600 721.3459 624.2890 587.0626 109.3484
AR-MOEA[34] 295.3867 611.8954 445.9509 457.0581 89.3221

CCMO[9] 295.5503 721.9138 474.5953 484.1106 128.8969
MSCMO[12] 250.1973 580.4449 353.2276 385.1867 102.3591
c-DPEA[10] 347.0088 773.0050 466.9761 494.6345 122.7260
CA-MTDE 8.6495 21.4439 12.4785 12.3608 2.7359

Table 4 Statistical results of the IGD for Scenario 2.

Approach
IGD

Best Worst Median Average Std
C-NSGA-II[32] 882.79351980.79001421.42161358.1275325.0488
C-NSGA-III[33] 903.23271767.45431076.49711160.7775246.4176
AR-MOEA[34] 735.5289 1886.219 1200.67201266.4509360.1127

CCMO[9] 950.31191968.34911385.71961367.5746306.1954
MSCMO[12] 661.95842148.74221417.59731331.4550411.2590
c-DPEA[10] 634.69702143.28121312.52461396.1636428.8972
CA-MTDE 626.8547 797.4544 746.7169 736.2671 53.4987
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values are 1/30, 1/27, 1/28, and 1/29 of the corresponding
sub-optimal algorithms MSCMO, MSCMO, C-NSGA-
II, and C-NSGA-II, respectively. (2) Move eyes on the
Std values, the proposed algorithm has the minimum one
as 2.7359, which is about 1/25 of that of C-NSGA-II,
the second better algorithm. For Scenario 2: (1) Our
method improves by 5%, 55%, 31%, and 37% compared
to the suboptimal algorithms c-DPEA, C-NSGA-III,
C-NSGA-III, and C-NSGA-III in the best IGD, worst
IGD, median IGD, and average IGD, respectively. (2)
The proposed algorithm has the minimum Std value
of 53.4987, which is about 1/5 of that of the second
better algorithm C-NSGA-III. (3) Comparing the IGD
values in Scenario 1, it is evident that the IGD value
of our method in Scenario 2 is much larger than that
in Scenario 1, because Scenario 2 is more complex,
which increases the difficulty of algorithm optimization.
However, CA-MTDE obtains the optimal values in both
scenarios, indicating that the distance between true
PF points achieved by the proposed algorithm and the
optimal solutions is relatively closer. Moreover, our
algorithm has higher robustness and stability than the
other algorithms in the two scenarios, which is greatly
beneficial to solving practical IES dispatch. According
to the above analysis, it is rational to conclude that the
proposed algorithm achieves an outperformed PF with
the best convergence, robustness, and efficiency than
other popular CMOEAs.

The HV reflects the diversity and distribution of
the algorithm by calculating the volume enclosed by
the solutions found by the algorithm and reference
point. A smaller HV value indicates better diversity and
distribution. Tables 5 and 6 list the HV results among
seven different algorithms under two scenarios. For
Scenario 1: (1) The best HV value of CA-MTDE is
1.0092, which is 16% higher than the second-ranked
algorithm MSCMO. (2) The worst HV value of CA-
MTDE is 0.9897, which is 36% higher than the second-

Table 5 Statistical results of the HV for Scenario 1.

Approach
HV

Best Worst Median Average Std
C-NSGA-II[32] 0.8114 0.7300 0.7839 0.7808 0.0220
C-NSGA-III[33] 0.7306 0.5831 0.6590 0.6634 0.0513
AR-MOEA[34] 0.7859 0.6472 0.7273 0.7221 0.0378

CCMO[9] 0.7788 0.6157 0.7245 0.7147 0.0528
MSCMO[12] 0.8417 0.6704 0.7806 0.7683 0.0456
c-DPEA[10] 0.7262 0.5651 0.6911 0.6784 0.0463
CA-MTDE 1.0092 0.9897 0.9980 0.9993 0.0062

Table 6 Statistical results of the HV for Scenario 2.

Approach
HV

Best Worst Median Average Std
C-NSGA-II[32] 0.6962 0.3920 0.5409 0.5468 0.0902
C-NSGA-III[33] 0.7714 0.4139 0.6131 0.6105 0.0822
AR-MOEA[34] 0.7895 0.3464 0.5696 0.5713 0.1220

CCMO[9] 0.7153 0.4063 0.5146 0.5314 0.1050
MSCMO[12] 0.8136 0.4185 0.5823 0.6181 0.1323
c-DPEA[10] 0.7467 0.3289 0.5001 0.4942 0.1192
CA-MTDE 0.8530 0.7868 0.8058 0.8118 0.0214

ranked algorithm C-NSGA-II. (3) The median and
average HV values of CA-MTDE are the best among
all algorithms, which are 21% and 22% higher than the
second-ranked algorithm C-NSGA-II. (4) The minimum
Std value of the proposed algorithm is 0.0062, which is
94% lower than the second-ranked algorithm C-NSGA-
II. For Scenario 2: (1) The best, the worst, and the
average HV values of CA-MTDE are 0.8530, 0.7868,
and 0.8118, respectively, which are 4%, 47%, and 24%
higher than the second-ranked algorithm MSCMO. (2)
The median HV value of CA-MTDE is 24% higher than
the second-ranked algorithm C-NSGA-III. (3) Observing
the Std values, the minimum one of CA-MTDE is 0.0214,
which is 73% lower than the second-ranked algorithm
C-NSGA-III. (4) Similar to the IGD value, the HV
value of our method in Scenario 2 is worse than that in
Scenario 1 due to the increased difficulty of the problem.
Nevertheless, our approach still achieves the best HV
metric in Scenario 2. The Std results in the two scenarios
show that our approach can operate in a more secure
manner, which is critical to IES dispatch. Based on
the above analysis, it can be easily concluded that the
proposed algorithm has better diversity and distribution
for solving the IES-CM.

To demonstrate the significant differences between the
proposed algorithm CA-MTDE and its equivalents, we
conduct a Wilcoxon signed ranks test[39] for IGD and
HV metrics on two scenarios, with a significance level
of 0.05. The results of the Wilcoxon signed ranks test
are presented in Table 7. All p-values are less than 0.05,
indicating a significant difference between CA-MTDE
and each of the compared algorithms. In conclusion, the
proposed CA-MTDE is more suitable for solving the
IES-CM problem than the other comparison algorithms.

Table 8 displays the statistical results of extreme
solutions obtained by all methods for Scenario 1. The
elaborate discussion and analysis are provided below. (1)
Objective 1: OC objective. The proposed CA-MTDE
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Table 7 Wilcoxon signed ranks test of IGD and HV metrics
under two scenarios.

CA-MTDE vs.
p-value

Scenario 1 Scenario 2
IGD HV IGD HV

C-NSGA-II[32] 0.00 0.00 0.00 0.00
C-NSGA-III[33] 0.00 0.00 0.00 0.00
AR-MOEA[34] 0.00 0.00 0.00 0.00

CCMO[9] 0.00 0.00 0.00 0.00
MSCMO[12] 0.00 0.00 0.00 0.00
c-DPEA[10] 0.00 0.00 0.00 0.00

obtains the optimal extreme solution of 13 854.60 RMB.
The OC value of C-NSGA-II is second only to that
of CA-MTDE, with a difference of 166.07 RMB. The
OC value of c-DPEA is the worst, and the difference
in OC value between c-DPEA and CA-MTDE is
191.58 RMB. (2) Objective 2: AE objective. The
proposed CA-MTDE acquires the optimal value of the
AE objective, which is 1279.09 RMB. The AE value of
MSCMO is slightly worse than the proposed algorithm,
while c-DPEA performs the worst AE value among all
the comparison algorithms, with 590.49 RMB more
abandoned energy cost than the proposed CA-MTDE.
In conclusion, our algorithm obtains optimal extremal
solutions for both objectives in Scenario 1, showing a
wider PF distribution obtained by CA-MTDE.

Table 9 presents the statistical results of extreme
solutions obtained by seven methods for Scenario 2.
The analysis is as follows. (1) Objective 1: OC

objective. The OC values obtained by CA-MTDE
are compared with those obtained by C-NSGA-II,
C-NSGA-III, AR-MOEA, CCMO, MSCMO, and c-
DPEA. The difference between the OC values is
as follows: C-NSGA-II: 192.03 RMB, C-NSGA-
III: 663.31 RMB, AR-MOEA: 910.66 RMB, CCMO:
1134.58 RMB, MSCMO: 1562.56 RMB, and c-DPEA:
1033.33 RMB. This result shows the competitiveness
of the proposed algorithm in the OC objective. (2)
Objective 2: AE objective. The proposed algorithm
obtains the optimal value of 304.58 RMB for the AE
objective. MSCMO is 665.86 RMB which is second only
to our method, while c-DPEA with 1466.86 RMB is the
worst performer. Overall, our approach achieves optimal
extremal solutions for the OC and AE objectives in
Scenario 2. The above analysis of the extreme solutions
in the two scenarios concludes that our method can
jump out of the locally feasible domain and obtain more
diverse PF.

Tables 8 and 9 also present the optimal compromise
solutions obtained by all algorithms through the
fuzzy-based decision method. Further, to compare the
compromised solutions of different algorithms, the
average satisfactory degree (ASD)[40] is calculated. The
bold values indicate the best results obtained. Based
on the ASD value, the proposed CA-MTDE attains
the best ASD value among seven algorithms (0.692 for
Scenario 1 and 0.843 for Scenario 2). In other words,
our method provides the best compromise solutions

Table 8 Extreme solutions and compromised solution obtained by different methods for Scenario 1.

Approach
OC objective AE objective Compromised solution

ASD
OC (RMB) AE (RMB) OC (RMB) AE (RMB) OC (RMB) AE (RMB)

C-NSGA-II[32] 14 020.67 2298.24 14 628.88 1675.18 14 207.62 1883.32 0.679
C-NSGA-III[33] 14 023.53 2265.02 14 324.65 1832.36 14 111.29 1983.75 0.679
AR-MOEA[34] 14 035.20 2271.24 14 324.43 1836.49 14 125.99 1989.04 0.667

CCMO[9] 14 038.14 2284.72 14 370.81 1824.96 14 123.58 2000.65 0.680
MSCMO[12] 14 021.42 2267.62 14 626.06 1665.80 14 181.08 1909.21 0.665
c-DPEA[10] 14 046.18 2242.61 14 297.08 1869.58 14 143.92 1965.38 0.676
CA-MTDE 13 854.60 2423.26 15 878.37 1279.09 14 568.15 1579.59 0.692

Table 9 Extreme solutions and compromised solution obtained by different methods for Scenario 2.

Approach
OC objective AE objective Compromised solution

ASD
OC (RMB) AE (RMB) OC (RMB) AE (RMB) OC (RMB) AE (RMB)

C-NSGA-II[32] 17 236.76 2095.48 17 804.46 1362.14 17 588.58 1401.84 0.663
C-NSGA-III[33] 17 708.04 1902.46 18 088.19 1229.08 17 765.50 1414.06 0.787
AR-MOEA[34] 17 955.39 2093.76 18 474.09 1335.39 18 044.71 1622.56 0.724

CCMO[9] 18 179.31 1849.01 18 548.47 1415.30 18 282.95 1488.61 0.775
MSCMO[12] 18 607.29 880.89 19 205.77 665.86 18 970.27 713.15 0.586
c-DPEA[10] 18 078.06 1779.19 18 525.37 1466.86 18 310.93 1484.64 0.754
CA-MTDE 17 044.73 2191.18 20 139.31 304.58 17 922.50 1113.52 0.843
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for Scenario 1 (OC D 14 568.15 RMB and AE D
1579.59 RMB) and Scenario 2 (OCD17 922.50 RMB
and AED 1113.52 RMB). These results indicate that
our method can provide more rational dispatch results
for decision-makers.

Figure 6 presents the distribution of the PF achieved
by our algorithm and the comparison algorithms in
two different scenarios. Figure 6 clearly illustrates
that the comparison algorithm performs better in
Scenario 1 compared to Scenario 2. This difference
may be attributed to the increased difficulty of the
model in Scenario 2, which results in a narrower global
feasible domain and an increased likelihood of the
algorithm converging to local optima. However, our
algorithm obtains an extensive and well-distributed PF
in both scenarios. The comprehensive evaluation of
various metrics, including IGD, HV, extreme solutions,
compromised solutions, and PF distribution, across the
two scenarios demonstrates that CA-MTDE outperforms
the other six CMOEAs in terms of convergence, diversity,
and distribution. Consequently, our algorithm proves
to be more efficient in solving the IES-CM dispatch
problem. In conclusion, the comparative analysis of

(a) PF of all algorithms for Scenario 1

(b) PF of all algorithms for Scenario 2

Fig. 6 PF of all algorithms in two scenarios.

CMOEAs for the IES-CM dispatch problem reveals that
our algorithm outperforms other comparison algorithms
in terms of convergence, diversity, and distribution. This
study provides a valuable contribution to the field of the
IES-CM dispatch problem.

4.4 Real energy analysis: Compromised solutions
for two IES-CM scenarios

To further demonstrate the feasibility and effectiveness
of our algorithm in solving practical IES-CM dispatch,
the energy input/output of each device in the two IES-
CM scenarios is analyzed by selecting the compromised
solutions of the two systems. The dispatch results of
24 h are shown in Figs. 7 and 8. The following will
analyze the output of each device in each period from the
supply end and demand end of multiple energy sources
to explain the rationality and balance of the output of
each device.

(1) Scenario 1: Electricity and heat balance
analysis

Figure 7a illustrates the input/output results of
electricity of each device. The electric input includes
grid power (Egrid), CHP (Echp), WT (Ewt), and PV

(a) Electricity input/output

(b) Heat input/output

Fig. 7 Electricity and heat input/output of CA-MTDE for
Scenario 1.
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(a) Electricity input/output (b) Heat input/output (c) Cooling input/output

Fig. 8 Electricity, heat, and cooling input/output of CA-MTDE for Scenario 2.

(Epv). The electric output includes not only the electrical
load (Eload) but also the electricity required by the
electrothermic coupled conversion device VOHP and
WSHP (Evohp and Ewshp). Several conclusions can be
drawn from Fig. 7a. (1) During the 1–6 t and 18–24 t
dispatch periods, the Egrid output is high, while in other
periods, the Egrid output is less. This is reasonable
because it is affected by the real-time electricity price
shown in Fig. 4. (2) The outputs of Ewt and Epv are
almost as high as predicted, indicating that renewable
energy is fully utilized. (3) The energy input is equal
to the output, indicating that the electricity balance
constraint is satisfied.

The heat input mainly consists of three electrothermic
coupled devices: CHP, VOHP, and WSHP (Hchp, Hvohp,
and Hwshp), while the heat output only is the heat load
(Hload). Several observations can be deduced from
Fig. 7b. (1) The Hchp output is consistent with that of
Echp in each period because the CHP is affected by the
characteristic of fixing heat based on electricity. (2) The
output of Hvohp reaches the maximum output in each
period. This can be attributed to two reasons. Firstly,
the VOHP has lower operation and maintenance costs,
which means greater output can save economic costs.
Secondly, the larger output of VOHP can make full use
of the Vam generated in the coal mine production process
to reduce energy waste and protect the environment. (3)
The heat balance constraint is satisfied, so the output of
Hwshp is affected by Hchp and Hvohp.

(2) Scenario 2: Electricity, heat, and cooling
balance analysis

Figure 8a shows that the electricity input in Scenario 2
is consistent with that in Scenario 1, while the electricity
output includes not only Eload, Evohp, and Ewshp but
also Eec to meet the cooling load. From Fig. 8a, we
can draw several conclusions. (1) During the period of
7–17 t , Egrid purchased from the grid decreases due to

the rise in electricity prices. (2) When electricity prices
peak, the output of Echp is increased to compensate for
the lack of Egrid. (3) Ewt and Epv reach the maximum
output of electricity because they aim to make full
use of renewable energy sources. (4) The output sum
of Egrid, Echp, Ewt, and Epv is equal to the Eload,
indicating that the electrical balance is met. (5) The
output characteristics of Egrid, Echp, Ewt, and Epv are
similar to those of Scenario 1. However, the Qec output
in Scenario 2 will increase the power demand and thus
increase the power output. Therefore, the objective value
of OC will increase compared to Scenario 1.

Figure 8b illustrates the input/output results of heat
of each device. The heat input includes Hchp, Hvohp,
and Hwshp, while the heat output contains not only
the required heat load (Hload) but also the heat energy
required by AC (Hac). The analysis is as follows.
(1) Hvohp operates at maximum power due to lower
operating costs and greater penalty costs. (2) During the
period of 7–22 t , the output of Hwshp is higher to meet
the cold demand of Hac. (3) The output of Hchp in each
period is affected by the electricity price, and the output
changes from less to more to less. (4) Heat balance is
satisfied. (5) The output characteristics of Hvohp and
Hwshp are similar to those of Scenario 1. Qac output
further utilizes the associated energy generated in the
coal mine production process, thereby reducing energy
waste, so the AE objective is correspondingly reduced
in Scenario 2.

Figure 8c is the input/output results of cooling of
each device. The cooling load (Qload) has two sources:
Qac and Qec. The heat for Qac comes from Vam
and underground wastewater, while Qec uses electric
energy from renewable sources. Some conclusions can
be observed from Fig. 8c. (1) Qec provides most of the
cooling load during periods 1–6 t and 23–24 t due to low
electricity prices. (2) Qac provides most of the cooling
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load during the 7–22 t period to reduce economic costs.
(3) The cold balance is satisfied.

5 Conclusion

A new algorithm CA-MTDE is proposed to optimize
the dispatch of IES-CM. This algorithm effectively
addresses the multi-objective nature and strong multi-
constraints of the problem by leveraging the concept
of EMT. The proposed CA-MTDE optimizes two
tasks: the main task with all constraints and the
helper task with adaptive constraint. The HT-CA in
CA-MTDE adaptively decreases constraint boundaries
to preserve infeasible solutions near the feasible
domain and employs knowledge transfer to continuously
explore potentially feasible domains for the main
task. This approach addresses strong coupling and
timing constraints with efficiency. To balance population
diversity and convergence of the two tasks, a DDL
strategy is designed based on DE/current-to-rand/1 and
DE/current-to-best/1. The DDL maximizes the potential
of different individuals to search for characteristics. The
effectiveness of our proposed algorithm is demonstrated
by considering two dispatch scenarios based on a typical
IES-CM in Shanxi Province, China. The comparison
with CPLEX shows the feasibility of our approach in
solving the IES-CM dispatch. Additionally, compared
with six CMOEAs in terms of the IGD, HV, extreme
solutions, and compromised solutions, our algorithm
achieves better convergence, diversity, and distribution.
Furthermore, we illustrate the real energy dispatch based
on the compromised solutions obtained by CA-MTDE
to intuitively showcase the energy output results of each
device.

However, when the IES-CM model incorporates
more devices, the complexity of solving the model
will increase, potentially affecting the feasibility and
effectiveness of our proposed method. Therefore, for
future research, we plan to develop a new multi-tasking
framework and design a knowledge transfer strategy that
integrates domain knowledge to address the dispatch
problem of large-scale and strongly constrained IES-CM
systems.
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