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Camera, LiDAR, and IMU Based Multi-Sensor Fusion SLAM:
A Survey

Jun Zhu, Hongyi Li, and Tao Zhang�

Abstract: In recent years, Simultaneous Localization And Mapping (SLAM) technology has prevailed in a wide range

of applications, such as autonomous driving, intelligent robots, Augmented Reality (AR), and Virtual Reality (VR).

Multi-sensor fusion using the most popular three types of sensors (e.g., visual sensor, LiDAR sensor, and IMU)

is becoming ubiquitous in SLAM, in part because of the complementary sensing capabilities and the inevitable

shortages (e.g., low precision and long-term drift) of the stand-alone sensor in challenging environments. In this

article, we survey thoroughly the research efforts taken in this field and strive to provide a concise but complete

review of the related work. Firstly, a brief introduction of the state estimator formation in SLAM is presented. Secondly,

the state-of-the-art algorithms of different multi-sensor fusion algorithms are given. Then we analyze the deficiencies

associated with the reviewed approaches and formulate some future research considerations. This paper can

be considered as a brief guide to newcomers and a comprehensive reference for experienced researchers and

engineers to explore new interesting orientations.
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1 Introduction

Simultaneous Localization And Mapping (SLAM)[1]

is a technology that estimates the state (e.g., position,
orientation, velocity, sensor bias, and calibration
parameters) of a robot, and at the same time constructs
a model of the environment where the robot is moving
using data perceived by sensors on the robot. Over the
past 36 years, significant progress has been made by the
SLAM community, enabling wide applications in related
industries. Early SLAM research introduced the main
probabilistic formulations of SLAM[2], then fundamental
properties (observability, convergence, and consistency)
of SLAM were analyzed[3], and nowadays the essential
requirements to consider are robust performance, high-
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level understanding of the environment, resource
awareness and task-driven perception[4]. Nevertheless,
a single sensor is hardly capable of these demands.
Although Global Navigation Satellite System (GNSS)
can provide absolute position, it is not always available
or accurate in the environments like tunnels, caves,
city canyons, etc. Low-cost and light-weight IMU has
been widely used, but its measurements are corrupted
by noise and bias, such that it cannot provide reliable
pose estimates for long-term navigation. The monocular
camera suffers from scale drift, and LiDAR fails in
structure-less environments. Therefore, with multi-
sensor fusion, the deficiencies of stand-alone sensors
can be compensated, and more reliable estimates will be
provided.

Recently, several surveys about multi-sensor fusion
SALM have been proposed. Some reviews[4–7] focus
on multi-sensor fusion in autonomous driving, while
most reviews[8–13] pay attention to visual-inertial SLAM.
There are few surveys about LiDAR-inertial or visual-
LiDAR SLAM[14].
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Reference [5] is mainly focusing on the multi-target
tracking in automated driving but not SLAM in particular.
On the other hand, Ref. [6] is like Ref. [14], focusing on
the visual-LiDAR fusion in SLAM context.

This paper mainly focuses on three types of sensors
(visual sensor, LiDAR, and IMU), which are the most
popular sensors in multi-sensor fusion algorithms. To
make this paper accessible to new researchers on multi-
sensor fusion SLAM, we first present a brief introduction
of the state estimator formation in Section 2. Then,
Section 3 divides the sensor fusion methods into four
categories, i.e., visual-inertial, LiDAR-inertial, visual-
LiDAR, and LiDAR-visual-inertial fusion algorithms,
and presents a comprehensive and systematic review
for each category separately over the last ten years, and
especially attaches attention to deficiency compensation.
We discuss the challenges and future research directions
in Section 4. Finally, we draw our conclusions in
Section 5.

2 Brief Introduction of the State Estimator
Formation

Kalman Filter (KF) and sliding window optimization are
the most commonly used state estimator formations in
multi-sensor fusion. In this section, we will give a brief
introduction to them.

2.1 KF

In SLAM, prior values are usually recursively derived
from sensors, such as IMU and encoder. Measurement
values are usually obtained from sensors, such as GPS,
camera, and LiDAR. The posterior value is the fusion
result, which also is positioning output. In actual robot
state estimation, the posterior probability density with
estimation can be expressed as

p.xkjLx0; v1Wk; y0Wk/ (1)

where k is the index of IMU measurement, xk is robot
position at k-th state vector, Lx0 is the initial state vector,
v1Wk means input vector from 1st to k-th, and y0Wk means
observational vector from the initial state to k-th.

The kinematic equation and observational equation
are as follows:

xk D f .xk�1; vk/C!!!k (2)

yk D g .xk/C nk (3)

where !!!k is the process noise vector that is assumed to
be zero-mean Gaussian noise with the covariance Rk ,
nk is the measurement noise vector that is assumed to
be zero-mean Gaussian noise with the covariance Qk ,

function f . / can be used to compute the predicted state
from the previous estimate, and function h . / can be
used to compute the predicted measurement from the
predicted state.

Using KF to solve robot state estimation is a common
method. It is one of the best Bayesian filters research
technologies, but it can only solve the linear Gaussian
system. The overview of KF is given in Algorithm 1,
where Fk�1 is the state transition model, Bk is the
control-input model, Gk is the observation model, Lxk is
the predicted state estimate, Oxk�1 and Oxk are the updated
state estimates, LPk is the predicted covariance estimate,
OPk�1 and OPk are the updated covariance estimates, and
Kk is the Kalman gain.

2.1.1 Extended Kalman Filters (EKF)
EKF is obtained by extending KF to nonlinear problems.
The overview of EKF is given in Algorithm 2, where
Fk�1 is the Jacobian matrix of f .xk�1; vk/; Gk is the
Jacobian matrix of g. Lxk/.

Algorithm 1 KF
1: Kinematic equation:

xk D Fk�1xk�1 C Bkvk C!!!k ;!!!k � N .0;Rk/ :

2: Observational equation:

yk D Gkxk C nk ;nk � N .0;Qk/ :

3: State propagation:

Lxk D Fk�1 Oxk�1 C Bkvk ;

LPk D Fk�1
OPk�1FT

k�1 C Rk :

4: Kalman gain:

Kk D LPkGT
k

�
Gk
LPkGT

k C Qk

��1
:

5: Update:

Oxk D Lxk C Kk .yk � Gk Lxk/ ;

OPk D .I � KkGk/ LPk :

Algorithm 2 EKF
1: Kinematic equation:

xk � f .Oxk�1; vk/C Fk�1.xk�1 � Oxk�1/C wk :

2: Observational equation:

yk � g .Lxk/C Gk.xk � Lxk/C nk :

3: State propagation:

Lxk D f .Oxk�1; vk/ ;

LPk D Fk�1
OPk�1FT

k�1 C Rk :

4: Kalman gain:

Kk D LPkGT
k

�
Gk
LPkGT

k C Qk

��1
:

5: Update:

Oxk D Lxk C Kk .yk � g .Lxk// ;

OPk D .I � KkGk/ LPk :
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2.1.2 Iterated Extended Kalman Filters (IEKF)
The closer between the linearization operating point and
the truth value, the smaller error will be brought. So
to gradually find the exact linearization point through
iteration, thus improving the accuracy. The overview of
IEKF is given in Algorithm 3, where Lxoption; k is the
linearization operating point.

Unlike EKF, IEKF requires repeatedly calculating
Kalman gain Kk and posterior mean Oxk until the results
change a little, and at last, updates posterior covariance
OPk once.
2.1.3 Error-State Kalman Filter (ESKF)
In error-state filter formulations, denoting as follows:

xt D xC ıx (4)

where xt is true state values, x is nominal state values,
and ıx is error state values. High-frequency IMU data
are integrated into a nominal state x. But It does
not consider noise terms and other possible model
imperfections, leading to accumulated errors. These
errors are collected in the error-state ıx and estimated
with the ESKF, this time incorporating all the noise
and perturbations. The overview of ESKF is given
in Algorithm 4, where ı Lxk is the predicted error state
estimate, ı Oxk�1 and ı Oxk are the updated error state
estimates.

2.2 Sliding window optimization

Sliding window optimization, which optimizes all states
in a sliding window, has been widely used in multi-
sensor fusion algorithms because of its advantage of
bounded computation costs and relatively sufficient
accuracy. For a sliding window of n states, the

Algorithm 3 IEKF
1: Kinematic equation:

xk � f .Oxk�1; vk/C Fk�1.xk�1 � Oxk�1/C wk :

2: Observational equation:

yk � g
�
Lxoption; k

�
C Gk.xk � Lxoption; k/C nk :

3: State propagation:

Lxk D f
�
Oxk�1; vk

�
;

LPk D Fk�1
OPk�1FT

k�1 C Rk :

4: Kalman gain:

Kk D LPkGT
k

�
Gk
LPkGT

k C Qk

��1
:

5: Update:

Oxk DLxk C Kk

�
yk � g

�
Lxoption; k ;nk

��
�

Kk

�
Gk

�
Lxk � Lxoption; k

��
;

OPk D .I � KkGk/ LPk :

Algorithm 4 ESKF
1: Kinematic equation:

ıxk D f .xk�1; ıxk�1; vk ; wk/ � Fk�1ıxk�1 C wk :

2: Observational equation:

yk D g .xt;k/C nk :

3: State propagation:

ı Lxk D Fk�1ı Oxk�1;

LPk D Fk�1
OPk�1FT

k�1 C Rk :

4: Kalman gain:

Kk D LPkGT
k

�
Gk
LPkGT

k C Qk

��1
:

5: Update:
OPk D .I � KkGk/ LPk ;

ı Oxk D Kk Œ yk � g .xt;k/� :

6: Note:

Gk D
@g

@.ıxk/
D

@g
@xt;k

@xt;k

@.ıx/
:

optimal states X D
�
XT

1;X
T
2; : : : ;X

T
n

�T are obtained by
minimizing the residuals,

min
X

(rp .X /
2
C

X
k2I

krI .k;X /k2Pk
I
C

X
k2A

krA .k;X /k2Pk
A

)
(5)

where rI.k;X / is the IMU residual term which
incorporates the relative motion constraints among
frames and is usually computed by preintegration to
avoid repropagating IMU states. rA.k;X / is visual
or LiDAR residual term incorporating geometric
constraints from visual or LiDAR measurements. P k

I
and P k

A are corresponding covariance matrices. I is
the set of all IMU measurements and A is the set of
all visual or LiDAR features in current window. rp.X /
denotes the prior residual term from marginalization
due to window-sliding. Thanks to marginalization, the
sliding window optimization limits the computational
complexity without substantial information loss[15].

3 Multi-Sensor Fusion Algorithms

In this paper, we mainly consider three kinds of sensors:
monocular camera, LiDAR, and IMU. Firstly, we divide
the multi-sensor fusion algorithms into four categories,
i.e., visual-inertial, LiDAR-inertial, visual-LiDAR, and
LiDAR-visual-inertial fusion algorithms. Then, we give
detailed descriptions of the State-Of-The-Art (SOTA)
methods for each category. Representative methods for
each category are shown in Table 1.
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Table 1 SOTA methods of multi-sensor fusion.
Fusion type Year Method Type Loop closure Sensor type Fusion strategy

Visual-inertial
2013 MSCKF 2.0[16] FB – MC+IMU MSCKF
2015 ROVIO[17] FB – MC+IMU EKF-SLAM
2018 VINS-Mono[18] OB FAST + DBoW MC+IMU SWO+PGO

LiDAR-inertial

2021 LION[19] LC – ML+IMU SWO
2019 LIOM[20] TC – ML+IMU SWO
2020 LINS[21] TC – ML+IMU Iterated ESKF
2020 LIO-SAM[22] TC Euclidean distance ML+IMU FGO

2021 LILI-OM[15] TC Euclidean distance ML or SL+IMU
SWO + PGO+

FGO
2021 FAST-LIO[23] TC – SL+IMU Iterated ESKF
2022 Faster-LIO[24] TC – SL+IMU Iterated ESKF

Visual-LiDAR

2017 DEMO[25] LC – ML+RC BA
2020 Method[26] LC ORB + DBoW ML+RC SWO + PGO
2018 LIMO[27] LC – ML+MC BA
2020 Method[28] TC ORB + DBoW ML+MC BA
2021 TVL-SLAM[29] TC ORB + DBoW ML+MC BA
2022 Method [30] TC FAST + DBoW ML+MC PGO

LiDAR-visual-inertial

2020 LIC-Fusion 2.0[31] TC – ML+MC+IMU MSCKF
2021 Super odometry[32] TC – ML+MC+IMU FGO

2021 LVI-SAM[33] TC Euclidean distance
FAST + DBoW

ML+MC+IMU FGO

2022 R3LIVE[34] TC – ML+MC+IMU Iterated ESKF

Note: (1) Type: FB denotes filtering-based method, OB denotes optimization-based method, LC denotes loo-sely-coupled method, and
TC denotes tightly-coupled method. (2) Loop closure: FAST denotes features from accelerated segment test, ORB denotes oriented fast
and rotated brief, and DBoW denotes distributed bag of words. (3) Sensor type: MC denotes monocular camera, ML denotes mechanical
LiDAR, SL denotes solid-state LiDAR, and RC denotes RGB-D camera. (4) Fusion strategy: FGO denotes factor graph optimization, BA
denotes bundle adjustment, SWO denotes sliding window optimization, and PGO denotes pose graph optimization.

3.1 Visual-inertial fusion algorithms

In a navigation system, we want to estimate the six
Degree-Of-Freedom (DOF) poses (orientations and
positions) of a sensing platform. IMU has been widely
used in navigation systems because of its small size,
lightweight, low cost, and, most importantly, the ability
to measure three-axis angular velocities and linear
accelerations of the sensing platform to which it is rigidly
attached at high frequency. However, the navigation
system with IMU-only suffers from unbounded errors
caused by the integration of IMU measurements with
bias and noise, and cannot provide reliable pose
estimates for long-term navigation. Additional sensors
are needed to overcome this problem. A small and
lightweight monocular camera that provides good
tracking and rich map information about the environment
around the sensing platform could serve as one of the
idea complementary sensors to IMU. The fusion of IMU
and camera yields Visual-Inertial Navigation Systems
(VINS) which have attracted significant attention over
the last two decades. Generally, VINS algorithms can

be divided into optimization-based and filtering-based
methods based on the type of data fusion.

3.1.1 Filtering-based methods
To enable efficient estimation, filtering-based methods
usually restrict the inference process to the latest state of
the system, namely the current camera pose and features
observed from it, resulting in the complexity growing
quadratically in the number of features. A structureless
approach, maintaining a window of camera poses to fully
use all features and allow real-time operation, is a good
alternative. And MSCKF[35] is an elegant example of the
structureless approach, in which a static feature is used
to define geometric constraints involving all the camera
poses where it is viewed. When a feature goes out of
the field of view, its position is estimated using all its
measurements by Gauss-Newton minimization. Then
residual equations are established, and the introduction
of left nullspace makes sure that the residual vector is
independent of the feature position errors. The delayed
linearization approach does not need the assumption that
feature positions are Gaussian distributions at each time



Jun Zhu et al.: Camera, LiDAR, and IMU Based Multi-Sensor Fusion SLAM: A Survey 419

step and its complexity is only linear in the number of
features.

However, the MSCKF suffers from inconsistency
in long trajectories. Li and Mourikis[16, 36] proved
that, for a standard EKF-based VINS, the observability
properties of the linearized system do not match
those of the underlying nonlinear system because
of linearizing the measurement models with updated
estimates. Thus they proposed the MSCKF 2.0
algorithm in which the appropriate observability
properties are ensured by using the first available
estimate for each state when calculating Jacobians.
Besides, many other works focus on improving the
consistency of the filtering-based methods, such as
observability constrained algorithm[37–39], optimal-state-
constraint EKF[40], MSCKF-LG[41], robocentric VIO
algorithm[42, 43], invariant Kalman filter[44–46], and so on.

When feature positions are included in the state
vector, the parameterization of feature positions that
have an influence on the consistency has to be
considered. The parameterization could be divided
into two main approaches: delayed and undelayed
initializations. The former usually refers to the
Cartesian-coordinate parametrization, where the feature
depth with high uncertainty cannot be well-represented
by the Gaussian distribution, resulting in degrading
accuracy and consistency[16]. To overcome this problem,
undelayed initializations, such as inverse-depth feature
parametrization, homogeneous feature parametrization,
and anchored homogeneous feature parametrization,
were proposed to enable features newly detected to be
used in filter immediately[47]. The inverse-depth feature
parametrization was firstly proposed in monocular
SLAM[48, 49] before being adopted by several VINS
algorithms[50, 51]. Filtering-based methods have been
applied to many platforms because of their high-accuracy
state estimation and low computational requirement.
Kim and Sukkarieh[52] proposed the first airborne SLAM
implementation with actual flight and observation data,
where the bias in the accelerometers and gyros are
not included in the state vector, and observations
provide the relative locations of the landmarks from the
UAV. The problem of feature position parameterization
and initialization is avoided because of the known
size of the landmarks. Lynen et al.[53] proposed a
framework for large-scale pose estimation and tracking
where the employment of map, descriptor compression
schemes, and efficient search algorithms enable real-time
performance on mobile platforms with limited resources.

Fang et al.[54] proposed a visual-inertial based real-time
motion-tracking approach for mobile AR/VR, where
an adaptive filter was proposed to alleviate the jitter
phenomenon.

3.1.2 Optimization-based methods
Optimization-based methods could be divided into
fixed-lag smoothing algorithms and full smoothing
algorithms based on the number of camera poses
involved in the estimation. The latter estimates all poses
and features in history by solving a large nonlinear
optimization problem to ensure high accuracy with
high computational demand[55–57], while the former only
considers a window of recent states.

Methods like MSCKF, also called EKF-based
fixed-lag smoothing approaches, are fragile to a
gradual accumulation of linearization errors[58], while
optimization-based ones process state estimation by
solving the least square nonlinear problem where
measurements are re-linearized iteratively to treat
nonlinearity better. OKVIS[59] is an optimization-based
fixed-lag smoothing algorithm, which combines IMU
error and the feature reprojection error in a single
cost function, and marginalizes old states to bound
the complexity. The keyframe paradigm is employed
in this method for drift-free estimation, especially
when it is slow or there is no motion at all. The use
of stereo vision in OKVIS makes the metric scale
observable. However, in the monocular case, estimator
initialization is a significant challenge, since acceleration
excitation is needed to have metric scale observable
which implies that monocular VINS estimators cannot
start from a stationary condition. Besides, IMU
processing and camera-IMU extrinsic calibration have
to be considered[60]. And these issues are addressed by
VINS-mono[18], as shown in Fig. 1, including five parts:
measurement preprocessing, estimator initialization,
nonlinear optimization-based VIO, loop closure, and
global pose graph optimization. VINS-mono is a robust
and versatile monocular visual-inertial estimator, which
has been successfully applied to AR[61] and MAVs[62].

State propagation, in the filtering-based methods,
is the most straightforward approach to IMU
processing. While for optimization-based methods,
IMU measurements are typically integrated among
frames to form relative motion constraints[56, 59, 63, 64].
However, the state estimate changes at each iteration
of optimization, resulting in repeated IMU integration
among all frames. To avoid this, Lupton and
Sukkarieh[65] first proposed a reparametrization
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Fig. 1 Pipeline of VINS-mono reproduced from Ref. [18].

of the relative motion constraints, called IMU
preintegration, which parametrizes rotation error
using Euler angles. Then Shen et al.[66] developed an
on-manifold rotation formulation for IMU preintegration
and Forster et al.[67, 68] further brought the theory of
IMU preintegration to maturity.

3.2 LiDAR-inertial fusion algorithms

In recent years, there has been a growing focus on
LiDAR-inertial fusion algorithms, since IMU measures
instant motion at a high frequency, which can be
utilized to recover point clouds from highly dynamic
motion distortion and predict the relative pose between
two LiDAR frames. According to sensor fusion type,
LiDAR-inertial fusion algorithms can be categorized
into either loosely-coupled methods or tightly-coupled
methods. Loosely-coupled methods, appealing for
runtime, consider the estimation of the LiDAR and
the estimation of the IMU separately, resulting in
information loss and inaccurate estimates. While
tightly-coupled methods, aiming at accurate estimates,
fuse point clouds and IMU measurements in an
optimization-based or filtering-based framework with
higher computational cost. The current state-of-the-art
approaches to the two fusion types will be presented in
this part.

3.2.1 Loosely-coupled methods
LOAM[69] is a classical 3D LiDAR SLAM method,
whose structure is composed of three main modules,
namely, feature extraction, odometry, and mapping. The
structure has been typically inherited by existing works.
In LOAM, edge points and planar points extracted in
the growing point cloud of the current sweep are used

to find correspondences in the last sweep to update
the pose transform from the last recursion. With the
assumption of constant angular and linear velocities
during a sweep, the pose transform at different times
within a sweep can be computed by linear interpolation
of the pose transform from the last recursion. However,
when velocity changes fast, LOAM suffers from low
accuracy, which can be mitigated by IMU. Integrating
IMU measurements provides poses of different times
during a sweep, which can effectively compensate for
the motion distortion, leading to considerably increasing
accuracy and robustness[70].

LION[19] is a loosely-coupled LiDAR inertial
odometry algorithm that shares similar odometry with
LOAM without feature extraction and mapping for low
computational cost. The condition number is used in
LION as an observability metric to determine whether
other more reliable odometry sources need to be used. To
make better use of historical frame information, tightly-
coupled LiDAR-inertial methods[15, 20–23] usually adopt
scan-to-local map registration, where the local map
consists of a small number of recent LiDAR frames.
3.2.2 Tightly-coupled methods
LIOM[20] provides the first open-source implementation
for the tightly coupled LiDAR inertial fusion method
inspired by visual-inertial works[18, 59]. With the same
assumption of LiDAR motion as LOAM, the position
of each point during a sweep can be corrected by
linear interpolation of predicted LiDAR motion by
IMU propagation. LIOM maintains a sliding window
consisting of current LiDAR sweep and recent sweeps,
where the frame of pivot LiDAR sweep is used as
the local frame, and all sweeps in the window are
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transformed to the local frame to get the local map.
LIOM optimizes the pivot LiDAR pose and the following
ones rather than the current pose only in the sliding
window via a cost function containing the prior items
from marginalization, and the residual of the relative
LiDAR constraints and IMU constraints. Before carrying
out non-linear optimization within the local window,
the IMU states are initialized by the methods in VINS-
mono[18] with the IMU measurements and the poses of
the LiDAR provided by LOAM in the initialization step.
To improve the runtime efficiency, LINS[21] introduced
an iterated ESKF and robocentric formulation. In LIO-
SAM[22], LiDAR-inertial odometry is formulated atop a
factor graph[71], making it especially suitable for multi-
sensor fusion.

Solid-state LiDAR often has non-repetitive and
irregular scan patterns with small FoVs, for which
common feature extraction methods are not well suitable.
To tackle this, LILI-OM[15] presents the first tightly-
coupled solid-state LiDAR-inertial fusion algorithm
where a new feature extraction method is developed
by performing eigendecomposition for small point patch
split in the time domain. Besides, a keyframe scheme
is used in sliding window optimization to ensure real-
time performance since exploiting all sensor readings is
time-consuming. LILI-OM adopts a similar approach
as LOAM to compensate for motion distortion, while
in FAST-LIO2[23, 70], a back-propagation process is
performed. FAST-LIO2 does not extract any features,
but directly registers raw points to the map maintained
by an incremental k-d tree data structure. The k-
d tree proposes supports downsampling on the tree,
ensuring the sparsity of the map and fast k-nearest search.
Faster-LIO[24], basically develops from the FAST-LIO2,
proposes a sparse and incremental voxel-based LiDAR-
inertial odometry for fast-tracking.

3.3 Visual-LiDAR fusion algorithms

Visual sensors, such as monocular camera, are usually
cheap, and the extraction of visual features enables
loop closure detection. However, the vision-based
navigation system is sensitive to illumination change and
texture deficiency. LiDAR, as an active sensor, shows
better accuracy and robustness to changing environments
but suffers from structure-less scenarios, such as long
corridors, even if rich texture information exists. Due
to the complementary strengths of these two types of
sensors, several works have been proposed, which can
be divided into two categories: loosely-coupled methods
and tightly-coupled methods. Some works focus on the

frontend integration while others pay attention to the
backend optimization, and a detailed discussion about
them will be given in the following.

3.3.1 Loosely-coupled methods

Zhang et al.[25, 72] utilized LiDAR depth information to
enhance visual odometry in DEMO. They utilized the
estimated pose of the camera to register a depth map,
where new points from point clouds in the front of the
camera are added. The map points are converted into
a spherical coordinate system and stored in a 2D k-d
tree based on the two angular coordinates. Then, for
each feature, the depth can be obtained by projecting
onto a planar patch formed by the three nearest points of
the feature in the k-d tree. The LiDAR information
is not fully exploited in this method. Besides, the
undistortion of the LiDAR point cloud is not mentioned.
Loop closure detection, which is not considered in this
method, was addressed later in Ref. [73] by applying
ORB features and bags-of-word. Shin et al.[26, 74] used
a similar strategy as DEMO to enhance visual SLAM
by depth information from LiDAR. They did not extract
features from images like DEMO. Instead, they solved
the problem within DSO[75] framework by projecting
LiDAR points onto the images as features. Then the
same multi-frame photometric optimization as DSO was
performed to estimate the poses of the keyframes. Yan
et al.[76] simply combined the state-of-the-art visual
odometry[77] and LiDAR odometry[69] in a loosely-
coupled way that the LiDAR odometry is used only
when the visual odometry failed.

To deal with challenging environments, learning
methods have been exploited. LIMO[27] levers the power
of deep learning to remove features on dynamic objects.
LIV-LAM[78] proposes unsupervised learning for object
discovery and uses detected features of the objects as
landmark features.
3.3.2 Tightly-coupled methods
Zhang and Singh[79] proposed V-LOAM, based on their
previous work: DEMO and LOAM[69], without the
assistance of IMU measurements to compensate for rapid
motion. In V-LOAM, the frequency of the camera is
much higher than that of LiDAR, such that the enhanced
visual odometry with observable scale could be used to
undistort the LiDAR point cloud. Besides, modeling
the drift of visual odometry with linear motion within
a sweep improves the performance of the undistortion
procedure. Then the undistorted point cloud is matched
and registered to the currently built map to refine the
estimated pose. However, removing distortion heavenly
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relies on the result of visual odometry, making it
susceptible to texture-less or dynamic environments
where visual odometry may fail. Moreover, it is
difficult to achieve a recovery mechanism if the last
estimate goes wrong because of its frame-to-frame
motion estimation[32].

To improve the accuracy and robustness of pose
estimation, other environmental structure features, such
as line features and planar features, have been leveraged
in recent works[28, 80]. Huang et al.[28] introduced a
novel visual-LiDAR odometry method using point and
line features detected by the line segment detector[81]

and described by the line band descriptor[82]. Huang et
al.[80] proposed a grid-based method to explicitly detect
scene planes from the point cloud to include as much
as possible pixel information in the photometric term.
To reduce the deterioration of occluded points, they
exploited a novel method to predict which LiDAR points
would be occluded during the viewpoint change. Seo and
Chou[83] attempted to make full use of visual and LiDAR
measurements in a novel way to avoid the potential issue
of assigning the depths of LiDAR to non-corresponding
visual features. They maintained visual and LiDAR
measurements separately and built two different maps,
an LiDAR voxel map and a visual map, which were used
together when to solve the residuals for pose estimation.
Wang et al.[84] proposed a direct vision LiDAR fusion
SLAM framework, similar to DVL-SLAM[26, 74]. To
get better robustness in various complex environments,
a frame-to-frame tracking strategy, an LiDAR-based
scan-to-map matching method, and a Parallel Global
and Local Search Loop Closure Detection (PGLS-LCD)
module are used in their framework.

Camera-LiDAR extrinsic calibration, which is usually
ignored in existing works, has been considered in
the most recent work. TVL-SLAM[29] is a tightly-
coupled visual-LiDAR fusion algorithm, where the
visual and LiDAR measurements are used independently
in the frontend instead of enhancing one via another,
while all measurements are incorporated in the backend
optimization in a tightly coupled way. It is assumed that
LiDAR point cloud and stereo image pair are acquired
at the same timestamp and the camera-LiDAR extrinsic
is known and fixed before global bundle adjustments,
making it possible to refine the pose using all visual and
LiDAR residuals by solving a bunch optimization. The
camera-LiDAR extrinsic is estimated in global bundle
adjustment when a visual or LiDAR loop is detected, and
each visual map point is matched to the nearest LiDAR

voxel to create a constraint, ensuring good convergence.
Moving object removal in a stop-and-run scenario was
also discussed, but only visual features were considered.
Meng et al.[30] also jointly optimized visual and LiDAR
measurements in a unified framework like TVL-SLAM
except the visual features were enhanced by LiDAR
depth information.

3.4 LiDAR-visual-inertial fusion algorithms

LiDAR-only approaches are vulnerable to environments
with degenerate geometries, such as long tunnels or wide-
open spaces. IMU measurements could be an excellent
supplement to LiDAR-only methods, however, they only
provide reliable pose estimates within a few seconds.
Therefore, LiDAR-inertial methods also suffer from the
degenerate case, especially for solid-state LiDAR, whose
FOV is small. To cope with these issues, fusing with
other sensors, particularly cameras which provide rich
visual information is necessary and has been attached
growing attention. For consistency, we also divide
LiDAR-visual-inertial methods into two categories as
above.

3.4.1 Loosely-coupled methods
Shao et al.[85] proposed a VIL-SLAM, which uses stereo
cameras as visual sensors to achieve better performance
in certain degenerate cases like traveling through a
tunnel, where the pure LiDAR system usually fails.
By fusing stereo matches and IMU measurements in
a tightly-coupled fixed-lag smoothing, the stereo VIO
outputs IMU-rate and camera-rate VIO pose, which is
used to remove motion distortion and perform scan-
to-map registration in LiDAR mapping. They used
pure visual information to detect loop closure and
construct initial loop constraint estimation, which was
further refined by LiDAR measurements. Similar
work was proposed by Wang et al.[86] with additional
consideration about module failure. Camurri et al.[87]

presented a loosely-coupled framework for legged robots
operating in real-world scenarios, and Khattak et al.[88]

presented a complementary multi-modal sensor fusion
approach for aerial robot pose estimation in subterranean
environments.

3.4.2 Tightly-coupled methods
Zhang and Singh[89] presented a sequential, multilayer
processing pipeline, where the motion is firstly predicted
by IMU measurements, then estimated by visual-inertial
odometry, and finally refined by scan-to-map registration.
To compensate for possible calibration variations
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among the un-synchronized sensors, Zuo et al.[90]

proposed a lightweight processing pipeline, called LIC-
Fusion, within the MSCKF framework. To efficiently
and robustly process the LiDAR measurements, they
additionally introduced a novel planar feature tracking
algorithm to LIC-Fusion and proposed LIC-Fusion
2.0[31], where planar points are extracted from LiDAR
points after removing distortion by IMU measurements
and tracked across the sliding window with an outlier
rejection criteria proposed for higher quality data
association by taking into account the uncertainty of
the LiDAR scan transformations.

Loosely-coupled methods are known for their
simplicity, extendibility, and low computational demand,
while tightly-coupled methods show better performance
in terms of accuracy and robustness. To combine the
advantages of loosely-coupled methods with tightly-
coupled methods, Super odometry[32] employs an IMU-
centric data processing pipeline, which consisted of
three parts: IMU odometry, visual-inertial odometry, and
LiDAR-inertial odometry. The IMU bias is constrained
by the pose prior provided by the visual-inertial
odometry and LiDAR-inertial odometry, which receives
the motion prediction from IMU odometry. Besides, a
dynamic octree is applied to ensure high performance
in real-time. The key insight behind their design is that
the estimate of IMU odometry can be quite accurate if
the bias drift is well-constrained by other sensors since
the IMU produces smooth measurements with noise but
little outliers.

By integrating VINS-mono and LIO-SAM, Shan
et al.[33] proposed a publicly-available system, LVI-
SAM, which is built atop a factor graph and composed
of two sub-systems, an Visual-Inertial System (VIS)
and an LiDAR-Inertial System (LIS). Different from
Super Odometry, in LVI-SAM, feature depth could
be optionally extracted from LiDAR scans using a
depth association method, and candidate matches for
loop closure are first identified by the VIS and further
optimized by the LIS. A factor graph is used to optimize
all constraints jointly from VIS, LIS, IMU preintegration,
and loop closure.

To achieve real-time performance, Lin et al.[91]

proposed a framework of error-state iterated Kalman
filter, where the LiDAR point-to-plane residuals, the
image re-projection errors, and the IMU propagation
are fused tightly. For each image of camera input,
fast corners are detected and tracked with a map of
visual landmarks to compute the re-projection error.

Besides, a factor graph optimization is exploited to
further improve the accuracy of visual measurements
within a local sliding window. Instead of extracting
features from LiDAR point clouds and images, Zheng et
al. proposed FAST-LIVO[92], which is composed of two
direct odometry subsystems: an LIO subsystem directly
adapted from FAST-LIO2[70] and a VIO subsystem
similar to Ref. [93]. The points of the map built by the
LIO are additionally attached with image patches and
then used to align a new image in VIO by minimizing
the direct photometric errors, leading to a time-saving
backend. A similar framework is adopted by R3LIVE[34]

with additional the Perspective-n-Point (PnP) projection
error. Loop closure is not enabled in the above three
methods and the LiDAR sensor is solid-state LiDAR.

4 Challenge and Future Research Direction

Although a lot of multi-sensor fusion algorithms with
different frameworks have been proposed in recent years,
there are still several challenges, such as sensor-to-sensor
calibration, efficient data association, good initialization,
and dynamic environments.

In terms of camera-to-IMU calibration, early
methods[16, 94–97] depended on artificial markers or
accurate initialization. To tackle these issues, Yang and
Shen[98] proposed a methodology that is able to get
accurate camera-IMU extrinsic calibration on the fly.
However, their method assumed that sufficient features
could be tracked. For camera-LiDAR calibration, Geiger
et al.[99] proposed an automatic approach using a
single shot by detecting and matching special marker
boards in both camera and LiDAR FOVs. Markerless
calibration by maximizing mutual information among
the sensor-measured surface intensities was introduced
in Ref. [100]. To ensure good convergence, Chou and
Chou[29] made the extrinsic an adjustable variable in
global bundle adjustment by adding pure geometry
constraints via registration between visual map points
and LiDAR voxel maps, while this method needs good
initial values and vision-only methods might not provide
visual map points with accurate scale.

More data can bring higher accuracy, but it usually
demands more computational resources. As shown in
Fig. 2, super odometry[32] consists of three parts: IMU
odometry, visual-inertial odometry, and LiDAR-inertial
odometry, which means that real-time performance
on a limited-resource platform is not guaranteed.
Fusing the results of odometry may take much more
time than directly associating data from sensors. LVI-
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Fig. 2 Overview of super odometry algorithm reproduced from Ref. [32].

SAM[33] takes advantage of accurate LiDAR depth
information to greatly promote the visual-inertial
odometry initialization and R3LIVE[34] directly exploits
the LiDAR point cloud for feature tracking on the image
without feature extraction and triangulation, which
remarkably accelerates the visual-inertial odometry.
However, this approach may fail when mechanical
LiDAR is used. More general and efficient data
association is still challenging in the LiDAR-Visual-
Inertial fusion algorithm.

Due to the nonlinearity of the visual-inertial methods,
a poor initialization can have a dramatic impact on their
performance. By leveraging relative rotations from short-
term IMU pre-integration, Refs. [98, 101] proposed a
linear estimator initialization method without gyroscope
bias, resulting in unreliable initialization when visual
features are far away from the sensor suite[18]. A
closed-form solution to the visual-inertial Structure from
Motion (SfM) problem was derived in Ref. [102] and
improved in Ref. [103] by modeling the gyroscope bias.
Built on top of ORB-SLAM[104], Ref. [105] introduced
an IMU initialization method, which requires a few
seconds for scale convergence. To achieve a fast and
robust initialization, Qin and Shen[60] aligned metric
IMU pre-integration with the visual-only SfM results
to get initial values. Instead of SfM, Cheng et al.[106]

used the ORB-SLAM for faster convergence. Besides,
new methods[107–110] are emerging recently for faster and
more accurate initialization.

Most existing fusion algorithms assume that the
environment is static; however, this is not always the
case in the real world. For example, walking people and
moving vehicles are common dynamic objects existing
in the real world. Point clouds from dynamic objects
will deteriorate the accuracy of scan-to-map registration
or scan-to-scan registration, leading to wrong relative
pose estimation. Compared with mechanical LiDAR, the
field of view of the camera is much smaller, making it
more vulnerable to moving objects. Suppose the tracked
features on the moving objects are not properly rejected.
In that case, the motion estimator will compute a false
motion, which further deteriorates the local or global
optimization and causes the system to fail[29].

According to the literature reviewed and the above
challenges, we propose some future research directions:
� Versatile and efficient fusion framework: The

current state of the art of algorithms are generally
designed for particular platforms, making them hard
to deploy on other platforms with similar sensors.
Automatic sensor-to-sensor calibration is vital and
accurate initialization should be guaranteed, especially
for platforms equipped with visual sensors. Besides,
efficient data association should be exploited to ensure
real-time performance.
� Deep learning aided methods: It is a growing

field in multi-sensor fusion framework to exploit deep
learning, which can be used for feature extraction,
moving objects detection, environment presentation, and
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so on.
� Distributed cooperative methods: Different

robots equipped with different sensors for the same
SLAM task will significantly reduce the burden of the
single robot, while this is a quite challenging problem
and there is little literature about it.

5 Conclusion

The multi-sensor fusion technology has gained growing
attention recently in the field of robotics. This study
provided a brief introduction to famous state estimate
formation and summarized multi-sensor fusion methods
over the last ten years. We firstly divided the multi-sensor
fusion algorithms into four categories according to the
combination of sensors and then classified them based
on data fusion. The most exemplary techniques of each
method are presented. In addition, challenges and future
research directions are discussed to make the technology
versatile, robust, and substantial.
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