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DCVAE-adv: A Universal Adversarial Example Generation Method
for White and Black Box Attacks

Lei Xu and Junhai Zhai�

Abstract: Deep neural network (DNN) has strong representation learning ability, but it is vulnerable and easy to be

fooled by adversarial examples. In order to handle the vulnerability of DNN, many methods have been proposed.

The general idea of existing methods is to reduce the chance of DNN models being fooled by observing some

designed adversarial examples, which are generated by adding perturbations to the original images. In this paper,

we propose a novel adversarial example generation method, called DCVAE-adv. Different from the existing methods,

DCVAE-adv constructs adversarial examples by mixing both explicit and implicit perturbations without using original

images. Furthermore, the proposed method can be applied to both white box and black box attacks. In addition, in

the inference stage, the adversarial examples can be generated without loading the original images into memory,

which greatly reduces the memory overhead. We compared DCVAE-adv with three most advanced adversarial

attack algorithms: FGSM, AdvGAN, and AdvGAN++. The experimental results demonstrate that DCVAE-adv is

superior to these state-of-the-art methods in terms of attack success rate and transfer ability for targeted attack. Our

code is available at https://github.com/xzforeverlove/DCVAE-adv.
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1 Introduction

Deep learning[1] has made incredible progress since
AlexNet[2] was first proposed and won the ImageNet
Large Scale Visual Recognition Competition (ILSVRC)
by a big margin in 2012. Since then, many deep neural
networks are proposed and some of them have become
benchmark backbones in computer vision, such as
VGG[3], ResNet[4], ZFNet[5], SENet[6], GoogleNet[7],
Xception[8], and EfficientNet[9]. Although deep neural
networks (DNNs) have shown great performances in
many computer vision tasks, it is found that DNNs
are vulnerable to adversarial examples[10], which are
designed elaborately by attackers to fool deep learning
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models. This finding[10] sparked a hot research topic:
adversarial machine learning[11–15].

In adversarial machine learning, attackers use
adversarial examples to attack deep learning models.
An adversarial example is a sample of input data which
has been modified very slightly in a way that is intended
to cause a deep learning model to misclassify it. These
modifications are so subtle that it is hard for a human
observer to find the difference between an adversarial
example and the original images. Based on attacker’s
knowledge, attacks can be categorized into white box
attacks and black box attacks[11]. For white box attacks,
the attackers know everything related to trained DNNs,
including training data, model architectures, hyper-
parameters, model weights, etc. Whereas for black box
attacks, the attackers only know the outputs and do not
have any other information of the DNNs. Based on
attack targets, attacks can be categorized into targeted
attacks and non-targeted attacks[11]. Targeted attacks aim
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at misguiding DNNs to classify adversarial examples to
a target class. Whereas non-targeted attacks have no
target class, the adversarial examples can be incorrectly
classified into arbitrary classes except for the correct
class. Obviously, black box and targeted attacks are
more difficult than white box and non-targeted attacks,
respectively.

Most existing methods[16–20] generate adversarial
examples by elaborately designing perturbations and
adding them to the input examples, and the imperceptible
perturbations are usually obtained by solving the
corresponding optimization problems. Moreover,
solving the optimization problems requires repeated
iterations, resulting in high computational time
complexity and difficulty in generating adversarial
examples quickly and effectively. Inspired by the idea of
generative models (e.g., generative adversarial network
(GAN)[21] and variational autoencoder (VAE)[22]),
some generative models based adversarial example
generation methods have been proposed in recent years,
such as Rob-GAN[23], MAG-GAN[24], CGAN-Adv[25],
AdvGAN[26], and AdvGAN++[27]. Among these
generation based models, there are relatively few
VAE based adversarial example generation methods
compared with the GAN based ones. To the best of our
knowledge, there are only two prior works that are VAE
based[28, 29].

Different from prior iterative approaches, generation
based methods can take advantage of generative models
and generate perturbations or even the adversarial
examples directly. There are two types of representative
adversarial example generation methods[26, 27]. One
type of approaches first constructs the adversarial
perturbations (also called explicit perturbations), then
adds the constructed adversarial perturbations to the

original images to achieve the adversarial examples.
The other type of approaches directly converts the
original examples into the corresponding adversarial
examples through the generator. This type of approaches
does not construct adversarial perturbations and thus
is also called implicit disturbances. The differences
between adversarial examples generated with explicit
perturbations and implicit disturbances are given in
Fig. 1. We find that by adding explicit perturbations to
generate adversarial examples, the success rate of attack
mainly depends on the perturbation amplitude. Larger
scale perturbations usually bring higher success rate of
attack, but it is relatively easier to be detected by human
visual system. If the amplitude of perturbations is too
small, the effect of attack cannot be achieved. In the
case of transfer attacks, this kind of methods performs
well on the dataset with simple distribution. However,
the adversarial example generation methods based on
implicit perturbation perform well on more complex
datasets, but the results are often difficult to control.

In order to deal with the above problems, this paper
proposes an adversarial sample generation method
based on improved VAE named DCVAE-adv. Different
from previous methods, instead of modeling the
mapping between original examples and corresponding
perturbations or adversarial examples, DCVAE-adv
generates adversarial examples from scratch with the
help of the powerful generation ability of variational
autoencoder, further expanding the search domain
of adversarial samples. More specifically, DCVAE-
adv applies both explicit and implicit methods by
generating perturbation xnoise and adversarial sample
xadv simultaneously and the final adversarial sample
is constructed by adding them together. Using the
combination of explicit and implicit perturbations not

(a) Diagram of the explicit generation method (b) Diagram of the implicit generation method

Fig. 1 Difference between explicit and implicit adversarial example generation methods.
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only reduces the difficulty of adversarial example
generation but also improves the success rate of transfer
attack. Moreover, class information is added in the
training process, which can alleviate the mode collapse
problems and ensure high diversity of the generated
adversarial examples. It can also help achieve the goal
of generating adversarial examples of the specified
class. Another advantage of DCVAE-adv is that during
the adversarial example generation stage, adversarial
examples can be generated from random noises and
do not need to load original examples into memory,
which can greatly reduce the memory and time cost
of adversarial example generation and significantly
improve the efficiency of the proposed algorithm.

To sum up, the main contributions of the proposed
method contain the following three aspects:

(1) We propose a novel method DCVAE-adv to
generate adversarial examples, which can significantly
improve the success rate of attacks and transfer attacks
by combining both explicit and implicit perturbations.
Compared with prior methods which require iterative
updates or original examples as inputs, DCVAE-adv is
more time efficient and memory efficient.

(2) DCVAE-adv is based on an improved VAE. The
improvement for VAE includes three aspects: (a) A
better similarity measurement criterion is introduced
to VAE, which not only brings better generation results
compared with norm measurement criterion but also
reduces the query times of target network and improves
training efficiency in semi-black box attack. (b) Class
information is introduced to VAE, which not only
achieves the purpose of generating adversarial examples
of the specified class but also enables the adversarial
example generation when the original examples cannot
be obtained, thus reducing the memory overhead. (c)
A discriminator is introduced to VAE to constrain the
quality of the generated adversarial examples.

(3) Extensive experiments are conducted, and the
proposed method is compared with three state-of-the-
art approaches. The experimental results showed that
the adversarial examples generated by DCVAE-adv are
of high quality, have better transfer ability, and can be
adapted to more difficult black box attack scenario.

The rest of this paper is organized as follows. In
Section 2, we review the related work of adversarial
example generation. In Section 3, we describe the
details of the proposed methods. In Section 4,
extensive experiments compared DCVAE-adv with three
most advanced adversarial attack algorithms (FGSM,

AdvGAN, and AdvGAN++) are carried out to verify the
effectiveness of the proposed approaches. At last, we
conclude our work in Section 5.

2 Related Work

Since the concept of adversarial attack was proposed by
Szegedy et al.[10], many adversarial example generation
methods have been proposed in the literature, which can
be roughly classified into two categories: optimization-
based methods and generation-based methods.

The optimization-based approaches solve an
optimization problem to find the minimum perturbations
to be added to the input image, and the added
perturbations are so subtle that it is hard for a
human observer to notice the modification to the
input image, while the deep learning model would
classify the modified input image incorrectly. The
pioneering work of this category is L-BFGS[10],
which generates adversarial examples x0 by solving
the optimization problem min

ııı
kx � x0 k2, where x

is the input image. Goodfellow et al.[30] improved
L-BFGS by constraining the perturbations in gradient
direction, replaced k �k2 with k �k1, and proposed fast
gradient sign method (FGSM). The corresponding
optimization problem becomes min

ııı
k x � x0 k1, where

ııı D " � sign.OxJ.x; y//, y is the class label of x, and
" is a hyper-parameter. Based on the state-of-the-art
algorithm FGSM, many improved algorithms have
been proposed by researchers, such as IGSM[16],
JSMA[17], and DeepFool[18]. Some other representative
algorithms based on optimization models are reported in
Refs. [31–35]. Athalye et al.[31] introduced a concept
named expectation over transformation (EOT) and
proposed an adversarial example generation method
based on the EOT. Deng and Zeng[32] introduced the
attention mechanism based on gradient-weighted class
activation mapping to generate adversarial examples.
Concretely, the attention mechanism is used to find
the meaningful attack area for generating high quality
adversarial examples. Similar to Ref. [32], Xu et
al.[33] introduced the self-attention mechanism to deep
learning model and proposed a self-attention network
to enhance robustness of the deep neural networks
for hyperspectral image classification. Vidnerová and
Neruda[34] proposed an evolutionary algorithm to
generate adversarial examples, which is generic and can
be used for any machine learning model in the black box
attack scenario.

Since generative models, such as generative
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adversarial network (GAN)[21] and its variants[23, 35–38]

as well as variational autoencoder[22, 38–41] and its
variants, can generate samples according to some
probability distribution, it is a natural idea to use
generative models to generate adversarial examples.
The pioneering work of this category is AdvGAN[26],
which generates adversarial examples using GANs.
The advantage of AdvGAN is that it can learn and
approximate the distribution of original instances using
the approximation capability of GAN. Jandial et al.[27]

improved AdvGAN and proposed AdvGAN++ by
employing latent features as priors for generating
adversarial examples. Chen et al.[24] proposed a novel
GAN model with a massive attack generator that is used
for generating adversarial examples, and the advantage
of their method is that the generated examples have
strong attack ability with small perturbations. Zhao et
al.[42] observed that common malicious perturbations
are often unnatural, not semantically meaningful, and
not applicable to complicated domains. To this end,
they proposed a framework to generate natural and
legible adversarial examples that lie on the data
manifold. Song et al.[43] proposed an approach to
synthesize unrestricted adversarial examples. Different
from most existing methods that generate small norm-
bounded perturbations, the proposed approach constructs
adversarial examples from scratch using generative
adversarial network with an auxiliary classifier. Sharif
et al.[44] proposed a general framework, adversarial
generative nets (AGNs), to generate adversarial
examples satisfying desired objectives by training a
generator in AGNs. Liu et al.[45] proposed a two-stage
generative adversarial networks with semantic content
constraints to generate adversarial examples satisfying
predefined semantic constraints. Tang et al.[46] proposed
a distance constrained adversarial imitation network
(AIN). AIN can generate both targeted and non-targeted
examples with an explicit distance constraint. Hu et
al.[47] proposed an elastic-net regularized boundary
equilibrium generative adversarial network (ERBEGAN)
for generating adversarial examples. ERBEGAN
improves the diversity and robustness of adversarial
examples by introducing both L2-norm and L1-norm
of perturbation as regularizations to the objective
function of ERBEGAN. Zhang[48] viewed the problem
of generating adversarial examples as an image-to-
image translation problem and proposed an adversarial
example generation method in one shot with image-to-
image translation GAN. To overcome the drawback that

the existing GAN based adversarial sample generation
methods can not be effectively adapted to the black
box scenario, Yu et al.[28] proposed an adversarial
examples generation method based on conditional
variational autoencoder. Based on ˇ-VAE, Upadhyay
and Mukherjee[29] proposed a novel adversarial example
generation method, in which different from the common
perturbation-based methods, the actual manipulation
takes place in latent space. The latest research progress
and challenges on adversarial examples and attacks can
be found in Refs. [12–15, 49].

3 Proposed Method

3.1 Problem formulation

The goal of the proposed method DCVAE-adv is to
generate adversarial examples of a given class. The
encoder network is used to extract the distribution
information of the original samples, and then znoise

is sampled from a learned distribution. The decoder
receives the noise vector znoise and the class information
and generates the adversative example. The problem can
be formulated as follows:

xadv D Decoder.znoise; T .x// (1)

T .x/ ¤ T .xadv/ (2)

sim.x; xadv/ > � (3)
In Eq. (1), znoise D ��� � z C ��� , where z � N.0; I/,

.���;���/ D Encoder.x/, and T .x/ is the attack network
which predicts the class of x. Formula (2) indicates
that the classes of original sample x and the generated
adversarial sample xadv are different. The sim.�; �/ is a
similar measure, and Formula (3) indicates that x and
xadv are very similar.

3.2 DCVAE-adv

VAE is a type of deep generative models (see Fig. 2)
optimised via variational inference, which allows
for the approximation of intractable distributions.
Specifically, VAE approximates the distribution p��� .zjx/
with distribution q���.zjx/ by minimizing the Kullback–
Leibler (KL)-divergence between them:

Fig. 2 Architecture of VAE.
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KL
�
q���.zjx/jjp��� .zjx/

�
D

X
z

q���.zjx/ log
�
q���.zjx/
p��� .zjx/

�
D

logp��� .x/ �
�
E .logp��� .xjz// � KL

�
q���.zjx/jjp��� .z/

��
(4)

Since KL.�jj�/ > 0, we have
logp��� .x/ > E .logp��� .xjz// � KL

�
q���.zjx/jjp��� .z/

�
(5)

The left term of Formula (5) is known as the
evidence lower bound (ELBO), which is the objective
function that will be optimized by VAE. The first
item E .logp��� .xjz// is the reconstruction loss, and the
second item KL

�
q���.zjx/jjp��� .z/

�
measures the similarity

between the distribution of the latent space and the target
distribution p��� .z/. Accordingly, the objective of VAE is
to minimize
L���;��� D Eq���.zjx/ .logp��� .xjz// � KL

�
q���.zjx/jjp��� .z/

�
(6)

If the sample size of z is L, then we have
LVAE.xI���;���/ D Lreg C Ldis D

1

L

LX
lD1

logp��� .xjzl/ � KL.q���.zjx/jjp��� .z// (7)

Suppose that p��� .zjx/ � N.���x; ���
2
x/, and p.z/ �

N.0; I/, then p��� .zjx/ � N.G��� .z/;���2/, and the first and
second terms on the right side of Eq. (7) will become
Eqs. (8) and (9), respectively.

Lreg D
1

L

LX
lD1

1

2�2
jjG��� .z/ � xjj2 C log.

p
2 �2/ (8)

Ldis D �KL.q���.zjx/jjp��� .z// D

1

2

dX
iD1

.�2i C �
2
i � log �2i � 1/ (9)

where d is the dimension of the latent variable space.
The proposed DCVAE-adv is based on an improved

VAE. The improvements over VAE include three
aspects:

(1) A better similarity measurement criterion is
introduced to VAE, which not only brings better
generation results compared with norm measurement
criterion but also reduces the query times of target
network and improves training efficiency in semi-black
box attack. The introduced similarity criterion is pixel
cross entropy (PCE) that measures the similarity between
x and xadv, i.e., the PCE.x; xadv/ is used to calculate
the sim.x; xadv/. It should be noted that the smaller
the PCE.x; xadv/ is, the more similar x and xadv are;
Conversely, the greater the value of PCE.x; xadv/ is, the

less similar x and xadv are. The definition of PCE.x; xadv/

is given in Eq. (10).

sim.x; xadv/ D PCE.x; xadv/ D

mX
iD1

nX
jD1

xij �

Œ� log.xijadv/�C .1 � x
ij / � Œlog.1 � xijadv/� (10)

where xij represents the value of a pixel point on
the feature map with the size of m � n. In our
experiments, the value of each pixel of each input sample
is transformed into [0; 1] before training.

(2) Class information is introduced to VAE, which
brings two advantages. First, it helps achieve the goal
of generating adversarial examples of the specified class.
Second, it can generate adversarial examples when the
original examples are not provided or cannot be obtained,
thus reducing the memory overhead. Concretely, we
input the class information y into the encoder and
decoder network and generate the samples of the
specified class by controlling the class. Accordingly,
the Lreg becomes Eq. (11):

Lreg D
1

L

LX
lD1

logp��� .xjy; zl/ (11)

(3) A discriminator is introduced to VAE to constrain
the quality of the generated adversarial examples.
When traditional VAEs are used to generate adversarial
examples, the generated adversarial examples are often
blurry. And the vanilla VAE can not achieve the purpose
of generating the specified class against the sample.
The ACGAN proposed by Odena et al.[50] combines
and reconstructs the class information, and it can not
only generate forged examples of specified classes but
also greatly improve the generation quality, as a result
avoiding the phenomenon of mode collapse effectively.
Inspired by ACGAN, DCVAE-adv takes the class
information y as auxiliary input to the decoder network,
and the adversarial examples of the specified class
can be generated by controlling the class information.
Also, a discriminator is introduced to guarantee that (a)
the class label information can be reconstructed from
real examples and forged adversarial examples, and (b)
adversarial examples are distinguished from the real
samples.

The structure of the proposed DCVAE-adv is shown
in Fig. 3. DCVAE-adv consists of four components:
encoder, decoder, attack network, and discriminator. In
the training phase, the encoder learns the distribution
p.znoisejx/ and outputs znoise which is the feature
representation of the original sample in the latent space.
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reg

Fig. 3 Structure of DCVAE-adv.

The decoder generates adversarial example xadv and
adversarial perturbation xnoise by sampling from the
learned distribution p.xjznoise; c/ and attacks the target
network T with adversarial example to ensure the attack
ability of the adversarial example, where c is the class of
the samples. This step constructs the adversarial samples
based on implicit perturbations. Finally, xnoise is added
to xadv to construct the final counter sample xadv, which
further improves the attack and migration ability of the
adversarial samples. We clip the perturbation xnoise to
a small range, so that the visual difference between the
original sample and the adversarial sample can be as low
as possible. This step constructs the adversarial samples
based on explicit perturbations. The decoder learns the
real data distribution using the gradient information
provided by the discriminator network which identifies
whether the input samples are from the original sample
or from the adversarial sample. And the discriminator is
also responsible for classifying the inputs and assigning
higher penalty loss to the reconstructed samples that
are inconsistent with the classes of the original samples.
By controlling the class information c, the adversarial
samples of the specified class are generated.

Because of the gradient vanishing and training
instability phenomena during the training of traditional
GANs, DCVAE-adv adopts a loss function different
from GANs’ called cost sensitivity loss to alleviate the
occurrence of the above two phenomena. In the initial
stage of training, discriminator can easily classify the
original samples and the adversarial samples accurately.

Therefore, the discriminator cannot provide effective
gradient information to update the network parameters
of the decoder, which makes the model training process
very unstable. To address the above mentioned problem,
the weight of discriminant loss term LEdis (i.e., the
loss of discriminator) is initialized as small as possible
and is increased with the increasing number of model
iterations. This method can effectively overcome the
defect of instability caused by poor model generation
ability in the initial training stage. Based on this idea,
the proposed method solves the following optimization
problem:

arg min
E��� ;D���

Ec�Y; x�XL.xadv; xI c/ (12)

where L.xadv; xI c/ is the loss function of the target
model with respect to the original samples and the
adversarial samples of specific class,X is the probability
distribution of the original samples, Y is the set of classes
of samples, and E��� and D��� are the parameter sets of
encoder and decoder, respectively.

To better understand the improved VAE module of
DCVAE-adv, the objective functions of each component
to optimize are explained in details here. The encoder
learns the distribution p.znoisejx/ and outputs znoise that
is the feature representation of the original sample in the
potential space. The objective function LE of encoder
consists of two terms: Ldis and Lreg. The Ldis loss
regularizes the output distribution of encoder to be close
to high-dimensional Gaussian distribution as much as
possible, while Lreg loss makes encoder retain the key



436 Tsinghua Science and Technology, April 2024, 29(2): 430–446

input information as much as possible. Since the second
term of Eq. (8) is a constant,Lreg is equivalent to PCE, thus
we have Lreg D PCE.x; xadv/. We use a hyperparameter
� to balance the effects of the two terms, namely,

.�i ; �i / D E.xi / (13)

Lreg D PCE.x; xadv/ (14)

Ldis D �
1

2
�

dX
iD1

.�2i C �
2
i � log �2i � 1/ (15)

LE D � � Ldis C .1 � �/ � Lreg (16)

The decoder takes the randomly sampled noise znoise

and class c as inputs to generate adversarial samples xadv

and adversarial perturbations xnoise. At the same time,
the parameters are updated according to the effective
gradient information provided by the discriminator.

To sum up, the loss functions of our improved
VAE module include Lreg, Lfool, and LEdis , and two
hyperparameters ˛ and ˇ are used to balance their
relative importance.

LD D ˛Lreg C ˇLfool C .1 � ˛ � ˇ/LEdis (17)

where ˛; ˇ 2 Œ0; 1�, LEdis is given in Eq. (18).
LEdis D Ez�Znoise Œlog.Dis.D.z; c//C

Loss.Dis.D.z; c/; c///� (18)

where the first term in Eq. (17) discriminates the
real samples from the generated adversarial samples,
and the second term in Eq. (17) classifies the
generated adversarial samples and penalizes samples
with different classes from the real samples. The third
term, i.e., Eq. (18), suggests that the adversarial samples
generated by the decoder should meet the following two
conditions: (1) The discriminator Dis can successfully
classify the adversarial samples into class c. (2) The
generated adversarial samples can successfully fool
the discriminator Dis, and it is hard to distinguish the
original samples from the adversarial samples. In other
words, the trained model will enable the discriminator
Dis to classify the adversarial samples and the original
samples with a probability of 0.5.

For non-targeted attacks, it is required that the
adversarial samples xadv can be classified into all other
classes except class c, and the loss function for non-
targeted attacks is given in Eq. (19).

Lunt
fool D

nX
iD1

Œ�Loss.T .xiadv/; c/�

Loss.T .xiadv C Clip.xinoise; d //; c/C Loss.T .xi /; c/�
(19)

where Clip.xnoise; d / is given in Eq. (20).

Clip.xnoise; d / D d �
xnoise �min.xnoise/

max.xnoise/ �min.xnoise/
(20)

For the targeted attack, in addition to requiring the
target network to incorrectly classify the adversarial
samples, the adversarial samples xadv should be classified
into a specified class t , and the loss function for targeted
attacks is given in Eq. (21).

Ltar
fool D

nX
iD1

ŒLoss.T .xiadv/; t/C

Loss.T .xiadv C Clip.xinoise; d //; t/C Loss.T .xi /; c/�
(21)

where Loss.T .xiadv/; t/ is given in Eq. (22).

Loss.T .xiadv/; t/ D �

kX
yD1

t .xiadv; y/ log.T .xiadv// (22)

where t .xiadv; y/ denotes the one-hot encoding of class
t . In the proposed model DCVAE-adv, it is required
that the adversarial samples constructed in both phases
by the decoder should be able to perform the attacks
successfully.

The discriminator Dis also classifies the input samples
and assigns higher penalty to those adversarial samples
whose classes are inconsistent with the those of original
samples. The corresponding two loss functions are given
in Eqs. (23) and (24).

Lreal DEx�X Œlog Dis.x/�C

Ez�Znoise;c�Y Œlog.1 � Dis.D.z; c///� (23)

Lclass DEx�X ŒLoss.Dis.x/; c/�C

Ez�Znoise;c�Y ŒLoss.Dis.D.z; c//; c/� (24)

The total loss of discriminator Dis is the sum of
Eqs. (23) and (24), as shown in Eq. (25).

LDis D Lreal C Lclass (25)

During the training of DCVAE-adv, to be able to
perform more difficult black box attack, we train an
approximate model to simulate the network to be
attacked. First, the real samples and the corresponding
labels are used to train a classifier T . Then DCVAE-adv
takes the classifier T as the target network and attacks it,
and the target network T would in turn provide gradient
information to update the decoder network. Finally,
the adversarial samples which successfully attacked
the target network T would be used for the black box
transfer attack. The pseudo-code of the algorithm for
training DCVAE-adv is given in Algorithm 1.
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Algorithm 1 Training algorithm for DCVAE-adv
Input:

Training set S D .x; y/, size of minibatch b, attack target
class t , parameters ˛; ˇ; �; and r , and the number of iterations
epochs.

Output:
Encoder parameter E��� , decoder parameter D��� , discriminator
parameter Dis���, and target network T� .

1: Initialize the model parameter E��� , D��� , Dis���, and T� ;
2: For (numbers of epochs)
3: Randomly sample a mini-batch with b original examples
fx1clean; x

2
clean; : : : ; x

b
cleang;

4: Randomly sample a mini-batch with b labels
fy1; y2; : : : ; ybg;

5: LT D �
bP
iD1

kP
yD1

T� .xi ; y/ log.T� .xi //;

6: Update the target network parameters T� with the
stochastic gradient descent algorithm;

7: .�i ; �i / D E.xi /;
8: zi � N.0; I/;
9: .xiadv; x

i
noise/ D D.�i ; �i � zi /;

10: Lreg D PCE.x; xadv/;

11: LE D �
1
2
�
dP
iD1

.�2
i
C �2

i
� log �2

i
� 1/C .1 � �/Lreg;

12: Update the target network parameters E��� with the
stochastic gradient descent algorithm;

13: xiadv two D xiadv C Clip.xinoise; d /;
14: LEdisDExiadv�xadv

Œlog.Dis.xiadv two//CLoss.Dis.xiadv two; c//�;

15: Lfool D
nP
iD1

Loss.T� .xiadv/; t/ C Loss.T� .xiadv two/; t/ C

Loss.T� .xi /; yi /;
16: If (numbers%10 D 0/
17: r D(numbersC0.1)=(epochsC1/;
18: LD D ˛Lreg C ˇLfool C .1 � ˛ � ˇ/rLEdis ;
19: Update the target network parameters D� with the

stochastic gradient descent algorithm;
20: LrealDExi�xŒlog.Dis.xi //�CExiadv�xadv

Œlog.1�Dis.xiadv//�;

21: LDis D Lreal CExi�x;yi�y Œlog.Dis.xi ; yi //�;
22: Update the target network parameters Dis��� with the

stochastic gradient descent algorithm;
23: Return E��� , D��� , Dis���, and T� .

4 Experimental Result

To verify the effectiveness and efficiency of the
proposed approach, we conduct extensive experiments
on three datasets, MNIST[51], Fashion-MNIST[52], and
CIFAR10[53]. The performance of the proposed approach
is evaluated quantitatively and qualitatively. The
quantitative evaluation focuses on the attack success rate
of DCVAE-adv on different attack networks, whereas
the qualitative evaluation focuses on the generation
quality of adversarial samples by DCVAE-adv on
different datasets. All experiments are implemented

in the same experimental environment. The software
environment is Window10+Python3.7+Tensorflow2.1,
and the hardware environment is Intel(R) I5-6600K CPU,
16.0 GB memory, and Nvidia GTX3050 GPU.

In our experiments, we train DCVAE-adv to learn
the probability distribution of the generated adversarial
samples rather than the probability distribution of the
original samples, and the trained DCVAE-adv is used
to generate the desired adversarial samples. In the
black box attack scenario, we train a network (original
network, e.g., LeNet5) by the proposed method to
generate adversarial samples, and then use the generated
adversarial samples to attack another network (transfer
attack network, e.g., AlexNet). In other words, the
adversarial samples generated by one network are used
to attack another different network. The higher the
attack success rate is, the better the transferability of
the adversarial samples is. The better the transferability
of the generated adversarial samples, the stronger the
ability of the adversarial samples to carry out black box
attack. In the following, we will present the details of
our experiments.

4.1 Network structure design for three datasets

We test the proposed model DCVAE-adv on the three
datasets mentioned above. For MNIST and Fashion-
MNIST datasets, LeNet5[54], AlexNet[2], and VGG[3]

are selected as the target networks to be attacked. For
training DCVAE-adv, the batch size is 256, and the
learning rate is 1�10�4. The Adam optimizer is used to
optimize the target loss. For CIFAR10 dataset, we use
three ResNet networks as target models to be attacked,
which are ResNet20[4], ResNet32[4], and Wide ResNet28
(WResNet28)[55]. For training DCVAE-adv, the batch
size is 128, the learning rate is 1�10�4, and the target
loss is optimized using the RMSprop optimizer. With
respect to the design of network structure, we adopt
different network structures for different datasets. In our
experiments, we found that it is not true that the more
complex the model structure, the higher the quality of
the generated adversarial examples[56, 57]. Based on this
principle, the network structures we designed for the
three datasets, MNIST, Fashion-MNIST, and CIFAR10,
are given in Table 1.

In the experiment, we first use the pre-trained
network to simulate the target attack network on
three datasets, and then use the gradient descent
algorithm to solve the optimal parameters of the
target network. The classification accuracy of different
classifiers on the three test sets is given in Table 2.
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Table 1 Design of network structure for three datasets MNIST, Fashion-MNIST, and CIFAR10.
Component MNIST and Fashion-MNIST CIFAR10

Encoder

Conv2D (16, 2�2, 2), BN, Tanh Conv2D (16, 2�2, 2), BN, Tanh
Conv2D (32, 2�2, 2), BN, Tanh Conv2D (32, 2�2, 2), BN, Tanh
Conv2D (64, 2�2, 2), BN, Tanh Conv2D (64, 2�2, 2), BN, Tanh

Dense (512), BN, Tanh Dense (512), BN, Tanh
Dense (10) Dense (10)
Dense (10) Dense (10)

Decoder

Dense (128), BN, LeakyReLU
Dense (128), BN, LeakyReLU Dense (256), BN, LeakyReLU
Dense (256), BN, LeakyReLU Dense (512), BN, LeakyReLU, Reshape (4, 4, 32)

Dense (512), BN, LeakyReLU, Reshape (4, 4, 32) Conv2DTranspose (32, 3�3, 1), BN, Tanh
Conv2DTranspose (32, 3�3, 1), BN, Tanh Conv2DTranspose (64, 2�2, 1), BN, Tanh
Conv2DTranspose (64, 2�2, 1), BN, Tanh Conv2DTranspose (128, 3�3, 2), BN, Tanh
Conv2DTranspose (128, 3�3, 2), BN, Tanh Conv2D (1, 5�5, 2), BN, Tanh

Conv2D (1, 5�5, 2), BN, Tanh Conv2DTranspose (128, 3�3, 2), BN, Tanh
Conv2D (1, 5�5, 2), BN, Tanh

Discriminator

Conv2D (32, 3�3, 2), Relu Conv2D (32, 3�3, 2), Relu
Conv2D (64, 3�3, 2), Relu, Flatten Conv2D (64, 3�3, 2), Relu, Flatten

Dense (10) Dense (10)
Dense (1) Dense (1)

Table 2 Recognition accuracy of attack networks on
different datasets.

Dataset Attack network Recognition accuracy (%)

MNIST
LeNet5 99.32
AlexNet 99.04

Fashion-MNIST
LeNet5 91.08
AlexNet 91.32

VGG 93.70

CIFAR10
ResNet20 90.16
ResNet32 91.15

WResNet28 95.54

Due to the simple sample distribution of MNIST
dataset, even simple LeNet network can achieve nearly
100% classification accuracy. Compared with LeNet5
and AlexNet networks, VGG network is deeper and
uses multiple continuous small convolutional kernels
instead of large convolutional kernels, thus achieving
the highest classification accuracy on the Fashion-
MNIST dataset. In the CIFAR10 dataset, due to the high
diversity of the overall sample, it is more challenging
compared with the first two datasets, so we choose three
more complex residual networks. Residual network is
mainly composed of multiple residual units, which can
effectively alleviate the problem of vanishing gradient
caused by too many network layers. Among the three
residual networks, WResNet28 achieves the optimal
classification accuracy of 95.54% on the test set.

4.2 Attack effect on the original network to be
attacked

In this section, we demonstrate the attack effect of

the method proposed in this paper on the original
network to be attacked without adversarial training. We
select LeNet5, ResNet20, ResNet32, and WResNet28 as
the networks to be attacked on MNIST, Fashion-MNIST,
and CIFAR10 datasets, respectively. For different
classes, we construct adversarial samples to attack
the corresponding original networks. When the attack
network and transfer attack network are the same
network, we call it non-transfer attack, which is often
less difficult. When the attack network and transfer
attack network are different, we call it transfer attack or
adversarial sample transfer attack. The transferability of
adversarial samples measures the ability of adversarial
samples designed for one network successfully attacking
other networks. The black box attack is difficult since the
network structure and the parameters are not accessible.
However, we could transform the black box attack into
a white box attack by training an alternative model
to approximate the target black box network, and get
the adversarial samples which successfully attacked the
alternative model to attack the target black box network.
Accordingly, the higher the transferability of adversarial
sample is, the stronger the black box attack capability
of the corresponding attack method is. However, the
transfer attack capability of the adversarial samples
generated with previous GAN-based methods is weak.
In the experiment, we focused on the targeted attack
with the adversarial samples generated by DCVAR-
adv. Figure 4 demonstrates the experimental results
with target class 8. It is observed from Fig. 4 that the
adversarial samples generated by DCVAE-adv are clear
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Fig. 4 Experimental results of targeted attack on MNIST
(target class 8).

and realistic with less visual difference compared with
the original samples.

In Fig. 4, the first row shows the real examples from
the target class 8. The rest rows show the adversarial
examples generated by DCVAR-adv. And the numbers
on the left side show the real classes for each row, and
the numbers on the right side show the classes predicted
by the target network.

Table 3 shows the success rate of attack against
samples constructed for different classes on dataset
MNIST. When the attack network is LeNet5, both
transfer attack and non-transfer attack have achieved
nearly 100% success rate. When the attack network

is AlexNet, transfer attack has not achieved desired
results. Relatively speaking, slightly successful transfer
attacks are mainly concentrated on the samples of class 5,
which may be due to the small visual difference between
numbers 5 and 8. The model can fool the target network
through simple modification of number 5 and transfer to
other networks more easily.

The experimental results of targeted attack on the
dataset Fashion-MNIST is given in Fig. 5. Because
classes 5 and 9 belong to the same superclass as
class 7, the success rates of attack and transfer attack
of the adversarial samples generated by classes 5 and
9 are higher than that of others, which can be further
confirmed by the experimental results in Table 4. For
targeted attack, not all classes can produce reliable and

Fig. 5 Experimental results of targeted attack on Fashion-
MNIST (target class 7).

Table 3 Experimental results of targeted attacks and transfer attacks on MNIST (target class 8).

Attack network (AN) Transfer AN
Attack success rate (% )

0 1 2 3 4 5 6 7 9 Mean

TLeNet5
LeNet5 100 93.1 97.0 100 100 100 100 100 100 98.9
AlexNet 100 100 100 100 100 100 100 100 99.1 99.8

TAlexNet
LeNet5 0 0 1.6 0 0 12.9 1.9 0 0.9 1.9
AlexNet 99.1 100 100 100 99.1 100 100 100 99.2 97.7

Note: f0; 1; : : : ; 9g are original class labels.

Table 4 Experimental results of targeted attacks and transfer attacks on Fashion-MNIST (target class 7).

Attack network (AN) Transfer AN
Attack success rate (% )

0 1 2 3 4 5 6 8 9 Mean

TLeNet5

LeNet5 100 98.0 100 99.0 100 98.9 100 99.1 100 99.4
AlexNet 5.9 2.9 13.8 6.9 20.7 28.7 17.8 62.3 49.5 23.6

VGG 36.6 41.5 22.7 25.7 41.5 100 45.5 90.1 85.1 54.3

TAlexNet

LeNet5 9.1 0.8 0 0 0 42.3 0.9 0 69.1 13.8
AlexNet 96.3 94.1 100 94.5 96.1 99.2 100 99.1 100 97.6

VGG 20.7 36.6 7.9 26.7 7.9 89.1 3.9 37.6 78.2 34.8

TVGGNet

LeNet5 0 0 0 0 0 44.5 4.6 0 0 5.4
AlexNet 3.2 1.6 0 18.6 0 17.8 1.6 13.8 78.8 15.4

VGG 97.2 100 99.1 99.2 100 98.0 99.1 100 97.1 98.8

Note: f0; 1; : : : ; 9g are original class labels.
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effective adversarial samples with good transferability.
And the classes more semantically similar to the
target class can produce adversarial samples which can
successfully attack the target network with a higher
probability. For instance, as shown in Fig. 5, sandals
(class 5) and ankle boots (class 9) are very similar to the
target class sneakers (class 7), thus it would be easier
to introduce imperceptible perturbations to these two
classes to successfully transform the predicted class into
the target class.

In Fig. 5, the first row shows the real examples from
the target class 7. The rest rows show the adversarial
examples generated by DCVAR-adv. And the numbers
on the left side show the real classes for each row, and
the numbers on the right side show the classes predicted
by the target network.

The experimental results of targeted attack on the
dataset CIFAR10 are shown in Fig. 6, and the target
class is class 7. The first and third rows are the original
samples and their classes, and the second and fourth rows
are the corresponding adversarial samples generated by
the proposed method. It is observed from Fig. 6 that the
background of the generated adversarial sample images
is relatively clear, while the instances (e.g., horse and

Fig. 6 Experimental results of targeted attack on CIFAR10
(target class 7).

car) are blurry. This is because in order to improve the
attack success rate, the instances located in the center of
the images are blurred when the adversarial samples are
generated. The experimental results of targeted transfer
attack on the CIFAR10 dataset (target class is class 7)
are shown in Table 5. It is observed from Table 5 that,
for different neural networks, ResNet20, ResNet32, and
WResNet28, the average attack success rates are 92.8%,
93.7%, and 96.4%, respectively, and the average transfer
attack success rates are 16.7%, 24.3%, 26.9%, 26.6%,
17.6%, and 12.2% on this complex dataset, respectively.
Overall, the proposed method shows good performance.

4.3 Experimental comparison with related
methods

In this section, we experimentally compare DCVAE-
adv with FGSM, AdvGAN, and AdvGAN++ in two
settings: non-targeted attacks and targeted attacks. For
the three datasets, we choose different networks as
attack networks. For MNIST dataset, we choose LeNet5
and AlexNet as attack networks; for Fashion-MNIST
dataset, we choose LeNet5, AlexNet, and VGG as attack
networks; for CIFAR10 dataset, we choose ResNet20,
ResNet32, and WResNet28 as the attack networks. The
process of adversarial attack includes three steps: (1)
training DCVAE-adv model, (2) generating adversarial
samples with the trained DCVAE-adv model, and (3)
using the generated adversarial samples to attack the
corresponding networks and transfer to other attack
networks. It should be noted that for the three state-
of-the-art methods, FGSM is only applicable to non-
targeted attacks, while AdvGAN and AdvGAN++ are
applicable to both targeted and non-targeted attacks.
The FGSM and AdvGAN are methods constructing
adversarial samples by explicitly adding perturbations,
and their attack effect depends mainly on the scale
of perturbations. Figure 7 shows the attack success

Table 5 Experimental results of targeted attacks and transfer attacks on CIFAR10 (target class 7).

Attack network (AN) Transfer AN
Attack success rate (%)

0 1 2 3 4 5 6 8 9 Mean

TResNet20

ResNet20 93.9 93.1 94.9 91.0 91.0 91.1 95.9 95.9 88.9 92.8
ResNet32 9.1 10.9 20.1 25.1 7.1 34.1 3.9 7.0 33.1 16.7

WResNet28 14.0 11.9 34.1 46.0 23.9 46.9 5.0 15.0 21.9 24.3

TResNet32

ResNet20 11.9 24.7 29.7 47.5 20.8 29.7 0.9 9.9 45.5 26.9
ResNet32 92.0 92.1 95.1 93.1 93.1 91.0 96.1 97.1 94.1 93.7

WResNet28 18.0 11.8 19.8 73.2 3.9 49.5 15.8 18.8 28.7 26.6

TWResNet28

ResNet20 30.1 10.6 10.6 31.7 10.6 34.9 7.3 15.4 7.3 17.6
ResNet32 28.5 0.8 19.5 8.9 15.4 27.6 1.6 3.2 4.6 12.2

WResNet28 96.7 91.1 99.2 96.7 99.1 98.1 96.7 96.2 94.3 96.4
Note: f0; 1; : : : ; 9g are original class labels.
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Fig. 7 Comparison of adversarial samples generated by
FGSM at different perturbation scales.

rates of FGSM at different perturbation scales. In
Fig. 7, Eps and Acc represent perturbation scale and
attack success rate, respectively. When the perturbation
scale (i.e., Eps) gradually increases from 0.03 to 0.15,
the attack success rate (i.e., Acc) gradually increases
to 82.6%. However, when the perturbation scale
continues to increase, the success rate of attack does
not continue to improve but appears to a certain degree
of decline. In our experiments, when adversarial samples
are generated on MNIST and Fashion-MNIST datasets,
the perturbation scale of FGSM is set to 15%, and
the perturbation pixel value of AdvGAN is limited to
[�0:2; 0:2]. When adversarial samples are generated on
CIFAR10 dataset, the perturbation scale of FGSM is set

to 10%, and the perturbation pixel value of AdvGAN is
limited to [�0:1; 0:1]. The experimental results of non-
targeted and targeted attacks are listed in Tables 6 and
7, respectively. Figure 8 shows an intuitive comparison
of the adversarial samples generated by different attack
methods.

In Tables 6 and 7, when the attack network and
transfer attack network are the same network, the attack
is not transfer attack. When the attack network is
different from the transfer attack network, the attack
is transfer attack. And normally transfer attack is more
difficult than non-transfer attack. Table 6 shows that
our proposed method provides the best results in the
vast majority of cases with three exceptions: (1) When
AlexNet was transferred to LeNet5 on MNIST dataset,
FGSM achieves the highest success rate of 13.8%, while
DCVAE-adv achieved attack success rate of 12.5% with
little difference between them. (2) On the Fashion-
MNIST dataset, AdvGAN++ achieved the best attack
success rate of 97.5% when AlexNet performed non-
transfer attack, while the success rate of DCVAE-adv
was 95.9%, with only 1.6% difference. (3) On the
CIFAR10 dataset, AdvGAN++ achieved the highest
success rate of 95.1% when ResNet20 performed non-
transfer attack, while DCVAE-adv achieved a success

Table 6 Experimental results of non-targeted attacks.

Dataset Attack network (AN) Transfer AN
Attack success rate (%)

FGSM AdvGAN AdvGAN++ DCVAE-adv

MNIST
LeNet5

LeNet5 66.4 78.1 97.2 98.1
AlexNet 65.1 55.2 47.1 71.5

AlexNet
LeNet5 13.8 1.6 10.3 12.5
AlexNet 88.6 97.5 95.1 97.1

Fashion-MNIST

LeNet5
LeNet5 74.7 91.8 96.7 99.9
AlexNet 62.6 51.2 28.9 74.7

VGG 71.5 64.2 45.5 74.3

AlexNet
LeNet5 50.4 47.1 39.2 55.2
AlexNet 63.7 82.9 97.5 95.9

VGG 59.3 46.3 48.7 65.8

VGG
LeNet5 53.6 60.9 35.7 67.5
AlexNet 54.4 52.8 31.7 66.1

VGG 73.9 91.8 86.9 92.6

CIFAR10

ResNet20
ResNet20 82.1 90.2 95.1 90.2
ResNet32 71.4 84.5 89.4 95.7

WResNet28 73.2 87.8 85.3 89.8

ResNet32
ResNet20 81.9 78.2 92.6 93.6
ResNet32 83.9 80.4 93.4 95.7

WResNet28 69.9 75.6 85.3 85.8

WResNet28
ResNet20 78.5 78.8 86.6 91.3
ResNet32 73.1 64.2 87.9 88.5

WResNet28 89.3 87.4 94.2 97.9
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Table 7 Experimental results of targeted attacks.

Dataset Attack Network (AN) Transfer AN
Attack success rate (%)

AdvGAN AdvGAN++ DCVAE-adv

MNIST
LeNet5

LeNet5 70.7 93.4 98.9
AlexNet 56.1 12.1 99.8

AlexNet
LeNet5 3.3 4.1 1.9
AlexNet 86.2 93.4 97.7

Fashion-MNIST

LeNet5
LeNet5 95.9 94.3 99.4
AlexNet 20.3 4.8 23.6

VGG 51.2 2.4 54.3

AlexNet
LeNet5 11.4 12.1 13.8
AlexNet 94.3 95.4 97.6

VGG 38.2 8.9 34.8

VGG
LeNet5 0.8 10.5 5.4
AlexNet 13.8 4.6 15.4

VGG 97.5 95.9 98.8

CIFAR10

ResNet20
ResNet20 50.4 87.8 92.8
ResNet32 2.4 17.8 16.7

WResNet28 0.8 31.7 24.3

ResNet32
ResNet20 12.2 24.1 26.9
ResNet32 92.1 92.5 93.7

WResNet28 13.1 23.1 26.6

WResNet28
ResNet20 0.1 14.3 17.6
ResNet32 0.8 18.4 12.2

WResNet28 89.4 92.5 96.4

Fig. 8 Visualizations of the adversarial samples generated
by different attack methods.

rate of 90.2%, with 4.9% difference. Table 7 shows the
experimental results of targeted attacks. The FGSM
is not applicable to the targeted attacks thus is not
compared against. Similar to the experimental results
of non-targeted attacks listed in Table 6, the proposed
method provides the best results in the vast majority of
cases with six exceptions.

Because targeted attacks are more difficult than non-
targeted attacks, making targeted transfer attacks even
more difficult, the success rate of targeted transfer
attacks is much lower than that of non-targeted attacks.
However, it is observed from Tables 6 and 7 that for
MNIST dataset, the transfer attack success rate of
targeted attack was higher than that of non-targeted

attack when the adversarial samples are transferred
from the LeNet5 network to the AlexNet network.
And it is observed that DCVAE-adv attempted to
construct adversarial samples with pixel values in the
interval [0.34, 0.87] to attack the target network. And
these adversarial samples can attack the target network
effectively with a high attack success rate and transfer to
other networks easily. In addition, we also found from
Table 6 that on the CIFAR10 dataset, the success rate
of non-transfer attack on ResNet20 network generated
by DCVAE-adv was 90.2%, while the success rate
of transfer attack on the target network ResNet32
was 95.1%. The possible reason could be that the
CIFAR10 dataset is relatively complex, contains 10
classes, and has a high diversity of images, which makes
it difficult to learn the data distribution. Therefore, it
is inevitable that some samples are of poor generation
quality, and the poor quality adversarial samples may
be correctly identified by the attacking network and
incorrectly identified by the transfer attack networks.
The visualizations of the experimental results in Tables 6
and 7 are given in Figs. 9 and 10, respectively.

To demonstrate the differences between the
adversarial samples generated by different methods
more intuitively, Fig. 8 shows adversarial samples
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Fig. 9 Visualizations of the experimental results given in Table 6.

Fig. 10 Visualizations of the experimental results given in Table 7.

generated by different methods on MNIST dataset. It
is observed that for FGSM baseline, the adversarial
perturbations almost cover the whole generated
adversarial samples. The adversarial samples generated
by AdvGAN++ are very competitive in most classes,
but for some classes the generation quality is poor,
such as numbers 2, 3, and 4. The third and fourth rows
are adversarial samples generated by AdvGAN at a
perturbation scale of 0.1 and 0.2, respectively. The
former has better imperceptibility. The adversarial
samples generated by DCVAE-adv are shown in the
last row. The generated samples are more realistic
and sharper compared with the adversarial samples
generated by other methods.

4.4 Experimental comparison of generation speed

As for the efficiency, we compared the time required
to generate 1000 adversarial samples on the three
datasets, MNIST, Fashion-MNIST, and CIFAR10 by
the four methods, DCVAE-adv, FGSM, AdvGAN, and
AdvGAN++. The experimental results are listed in
Table 8.

Table 8 Speed of generating adversarial examples with
different methods.

Dataset
Time of generating adversarial examples (s)
FGSM AdvGAN AdvGAN++ DCVAE-adv

MNIST 10.02 0.090 0.128 0.097
Fashion-MNIST 10.12 0.111 0.207 0.102

CIFAR10 18.66 0.215 0.302 0.198
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It is observed from Table 8 that DCVAE-adv is the
most efficient approach, as the speed of adversarial
sample generation by DCVAE-adv is faster than the
other three methods on two datasets, Fashion-MNIST
and CIFAR10, whereas on dataset MNIST, the speed
of AdvGAN is faster among the four methods, yet the
speed of DCVAE-adv is almost the same as that of
AdvGAN.

5 Conclusion

A novel adversarial example generation method DCVAE-
adv combining variational inference with adversarial
learning is proposed in this paper. DCVAE-adv has
three advantages: (1) It is suitable not only for white
box attacks but also for black box attacks, since it
integrates both explicit and implicit perturbations. (2) It
is memory efficient and time efficient for adversarial
example generation, since no original examples are
needed to generate adversarial examples. (3) It generates
more realistic and sharper adversarial samples achieving
a higher success rate of attacks and transfer attacks
compared with prior methods. The promising future
works of this study include: (1) Investigate the
interpretability of adversarial examples. (2) Is there any
essential difference in the quality of adversarial examples
generated by different probabilistic generation models?
For example, generative adversarial network, variational
autoencoder, and diffusion model. Is there a unified
defense method against these adversarial examples? (3)
The adversarial examples are well designed, and not just
any clean original examples can be obtained by adding
a subtle perturbation. How to select the clean examples
that can generate adversarial examples?
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