
TSINGHUA SCIENCE AND TECHNOLOGY
ISSNll1007-0214 11/24 pp447–456
DOI: 10 .26599 /TST.2023 .9010018
Volume 29, Number 2, April 2024

C The author(s) 2024. The articles published in this open access journal are distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

Performance of Text-Independent Automatic Speaker Recognition
on a Multicore System

Rand Kouatly and Talha Ali Khan�

Abstract: This paper studies a high-speed text-independent Automatic Speaker Recognition (ASR) algorithm based

on a multicore system’s Gaussian Mixture Model (GMM). The high speech is achieved using parallel implementation

of the feature’s extraction and aggregation methods during training and testing procedures. Shared memory parallel

programming techniques using both OpenMP and PThreads libraries are developed to accelerate the code and

improve the performance of the ASR algorithm. The experimental results show speed-up improvements of around

3.2 on a personal laptop with Intel i5-6300HQ (2.3 GHz, four cores without hyper-threading, and 8 GB of RAM). In

addition, a remarkable 100% speaker recognition accuracy is achieved.

Key words: Automatic Speaker Recognition (ASR); Gaussian Mixture Model (GMM); shared memory parallel

programming; PThreads; OpenMP

1 Introduction

Human interaction with computers has become more
pervasive and essential in financial services, security, and
information retrieval from speech databases. Machines’
ability to recognize a speaker with high accuracy and
speed is a challenge nowadays. The problem is even
more challenging when the speech signal used for
constructing the features database (training stage) differs
from the speech signal used in testing or the real-
time application (testing stage). This is called text-
independent Automatic Speaker Recognition (ASR).
To achieve high recognition accuracy, many training
speech signals must be used to construct a speaker
database. A big problem arises due to the high
complexity of both phases: (1) training and (2) the
search for the best candidate in the testing phase. One of
the methods used to increase the recognition accuracy,

�Rand Kouatly and Talha Ali Khan are with Faculty of Tech
and Software Engineering, University of Europe for Applied
Sciences, Potsdam 14469, Germany. E-mail: rand.kouatly@ue-
germany.de; talhaali.khan@ue-germany.de.
�To whom correspondence should be addressed.

Manuscript received: 2022-09-26; revised: 2023-03-10;
accepted: 2023-03-18

which has been used for a long time, is Gaussian
Mixture Model (GMM)[1, 2]. Several methods have been
proposed to improve GMM accuracy in text-independent
ASR[2–5]. Still, these studies are not concerned with
the computation of the features, the complexity of
GMM classification techniques, or data size (number
and size of the speech signals) used in the training and
testing phases. This turns speaker recognition into a
computationally demanding problem[6, 7].

Ganjeizadeh et al.[6] studied the best combination
between the frame size and the number of GMM
parameters to achieve less computational burden.
Unfortunately, no new methods were introduced in that
work. Petracca et al.[8] introduced a new idea by using
speech bitstream information of compressed speaker
signals instead of computing the features to reduce the
computational burden. Their approach shows inferior
results in terms of recognition accuracy when the used
speech signal is less than 15 s. In Refs. [9–11], the GMM
is implemented in Python and on a Graphic Processing
Unit (GPU). The results are poor recognition when quick
changes exist in the speakers in the conversation. In
this work, we parallelize the text-independent speaker
recognition algorithm on a multicore system using



448 Tsinghua Science and Technology, April 2024, 29(2): 447–456

the C language and the shared memory programming
standards OpenMP[12] and PThreads[13]. This paper is
organized as follows: Section 2 shows an overview of
the speaker recognition system, highlighting the high
computational burden of getting the speaker features,
and how to deal with it. Section 3 shows an overview
of the GMM, focusing on its workload. An overview
of the parallel implementation of the ASR system is
presented in Section 4. Simulation results on an i5-
6300HQ 2.3 GHz with 4 GB of RAM are shown in
Section 5, and the main conclusions and future work
are shown in Section 6.

2 Speaker Recondition System

Figure 1 shows training and testing phases of a speaker
verification system. A speaker verification system
is based on two stages: Training and testing. The
training phase is used to generate the models of the
speakers, which are used to identify speakers in the test
phase. Figure 1 shows the components of the speaker
recognition system, where the upper part represents the
training.

Each phase consists of several serial independent
modules. In both phases, the first step consists of
extracting the speaker parameters from the speech signal
to obtain a suitable representation for the second phase
(feature aggregation). This step will be described in
detail in Section 3. The first step aims to transform
the speech signal into a set of speech features to
remove redundancy and reduce the data size, favouring
statistical modelling. This is achieved by computing
the Mel Frequency Cepstral Coefficients (MFCC)
representation[14]. Figure 2 shows the block diagram
for the MFCC computation.

In MFCC, the speech signal is first divided into 20–
30 ms vectors. The speech vector can be overlapped to
improve recognition[2]. The per-emphasized method is

Fig. 1 Training and testing phases of a speaker verification
system.

Fig. 2 Computation of MFCC vectors[7].

used to eliminate the high frequencies of the spectrum
and can be applied to signal x using the first-order filter
as follows[15, 16]:

xP .t/ D x.t/ � ˛x.t � 1/ (1)
where ˛ is the filter coefficient in the range [0.95,
0.98][17], the pre-emphasized signal is then windowed
using Hanning window(s) to improve the spectral
representation of the speech vector[18]. Once the speech
signal has been windowed and pre-emphasized, the Fast
Fourier Transform (FFT) is calculated[15]. Then, the
modulus of the FFT vector is extracted (dended by j j in
Fig. 2). A filter bank filters the returned vector to smooth
the signal spectrum because only the envelope of the
spectrum is of interest; a typical of 40 filters are used[16].
A filter bank contains a series of bandpass frequency
filters multiplied by the spectrum to get an average value
in a particular frequency band. Several filter banks have
been used in Refs. [15, 16]. The Bark/Mel is one of the
most frequently used to convert between the frequency
f (in Hz) and fMel

[14],

fMel D 1000
log.1C f

1000
/

log 2
(2)

The fMel scale aims to mimic the non-linear human
ear perception of sound by being more discriminative
at lower frequencies and less discriminating at higher
frequencies. Next, the log of this spectral envelope
is calculated, and each coefficient is multiplied by
20 to obtain the spectral envelope in dB. Finally, the
Discrete Cosine Transform (DCT) is usually applied to
the spectral vectors in speech processing, resulting in the
Cepstral coefficients[19],

cn D

NX
kD1

xk cos
�
n
�
k �

1

2

� 
2

�
; n D 1; 2; : : : ; L (3)

where N is the number of previously calculated log-
spectral coefficients, L is the number of the Cepstral
coefficients we want to obtain, and x is the speech
samples at the k-th frame[20].

3 GMM

After extracting features for each speech frame, an



Rand Kouatly et al.: Performance of Text-Independent Automatic Speaker Recognition on a : : : 449

aggregation method is usually performed to obtain
the summary values for each speaker. Several ways
exist for feature aggregation. One is the GMM[5, 21], a
GMM comprises a finite weight of the sum of M of
multivariate Gaussian components densities. A GMM
is characterized by its probability density function[22] as
follows:

p.xj�/ D

MX
iD1

!ig.xj�i ; ˙i / (4)

where x is a d -dimensional continues-valued speech
features, !i (i=1, 2, . . . , M/ are the mixture weights,
and g.xj�i ; ˙i / (i=1, 2, . . . , M/ are the components of
Gaussian densities. For each component, the variance is
a d variance of the Gaussian density function[22],

g.xj�i ;˙i /D

1

.2 /
d
2 j˙i j

1
2

exp
�
�
1

2
.x � �i /

T˙T
i .x ��i /

�
(5)

where �i is the d -dimensional mean vector, ˙ i is a
covariance matrix with d�d dimension, and the mixture
weight satisfies the constraint by

PM
iD1 !i D 1

[23].
The mean vectors, covariance matrices, and mixture
weights from all component densities parameterize the
complete Gaussian mixture model. These parameters
are collectively represented by the notation[22],

� D f!i ; �i ; ˙ig; i D 1; 2; : : : ;M (6)

In the testing phase, the N speakers database is
represented by a GMM. The tested speaker is identified
as that who has the maximum posterior probability
density function (see Eq. (7) in the following) among the
population. This is mainly done using the Expectation
Maximization (EM) algorithm for GMM[22, 24]. For a
sequence of T training vectors X D fx1; x2; : : :; xT g,
the GMM likelihood can be given by Ref. [21],

p.X j�/ D

TY
tD1

p.xt j�/ (7)

The parameter estimation can be obtained iteratively
by starting from an initial model of � (K-mean a very
good choice initial value), then processed to update
� iteratively until convergence is detected (significant
change of the log-likelihood value, see Eq. (12)), or
the number of maximum of iteration is reached. In the
EM iteration, Eqs. (8)–(10) in the following are used
to estimate the mixture weights, means, and variances,
respectively[24]:

N!i D
1

T

TX
tD1

Pr .i jxt ; �/ (8)

N�i D

TX
tD1

Pr .i jxt ; �/xt

TX
tD1

Pr .i jxt ; �/

(9)

N�2
i D

TX
tD1

Pr .i jxt ; �/x
2
t

TX
tD1

Pr .i jxt ; �/

� N�2
i (10)

where the posterior probability for each component i is
given in the following:

Pr .i jxt ; �/ D
!ig.xt j�i ; ˙i /

MX
kD1

!kg.xt j�i ; ˙i /

(11)

In the M-step, the membership for data points is
changed slightly, and the values of � and mixture weights
are recomputed. The iterations (E-step and M-step)
are repeated until the maximum log-likelihood[21] is
achieved, or the maximum number of iterations M is
reached,

EflogP.X j�/g D
TX

tD1

MX
kD1

Pr .kjxk;�/
n

log!kClogg.xt j�k; ˙k/
o

(12)

The computational burden of the ASR algorithm is
very high in both the feature extraction and aggregation
stages. This affects both the speed of the speaker
identification system due to high processing time and
also to the accuracy of the identification. For the latter,
the designer tends to reduce the number of features and
increase the speech frame size to reduce the burden of
the ASR system in most real-time applications.

4 Parallel Implementation

Parallelism is the type of computation used to accelerate
many hard-to-solve problems. We are interested in
shared-memory systems because it is easier to develop
parallel algorithms on them from the programmer’s point
of view[12, 25]. Communication and data replication often
lead to additional high overheads in distributed memory
systems but offer better scalability than shared-memory
ones. Shared-memory programming has to be handled
with care. For instance, many possible interleaving of
threads might exist, creating errors in the results that are
difficult to detect[26]. Instead of using threads directly,
one can use simple constructs that indicate which parts



450 Tsinghua Science and Technology, April 2024, 29(2): 447–456

of the program are safe to run in parallel. On the one
hand, languages, such as OpenMP[27], Intel Threading
Building Blocks[28], Habanero[29], and X10[30], are
examples of libraries that allow the programmer to leave
to the run-time scheduler essential decisions like how
to assign work to threads and how to perform the load
balancing among them[31]. On the other hand, PThreads
provide more control to the programmer with a lower
programming level than in the libraries, as mentioned
above[13].

Here, we focus on both PThreads and OpenMP.
PThreads programming interface is typically accessed
via a run-time library and operating system calls.
Any ANSI/ISO-C conforming compiler may compile
programs with the PThreads library. OpenMP extends
programming C with directives to make explicit
parallelism and data privacy. OpenMP annotations
change the semantics of loops and data persistence. As in
all programming models, special care is needed because
OpenMP annotations can assert incorrect program
transformations, manifesting as race conditions or
deadlocks[32].

The ASR system consists of sequential stages, i.e.,
each step depends on the results of the previous stages.
So, our methodology is based on parallelizing each stage
independently, moving the results to the next stage, and
so on. Parallelizing ASR aims to increase the speed
without harming the algorithm’s accuracy. Figure 3
shows the parallelization principle of the ASR stages.

We have created a benchmark suite to evaluate the
parallel performance of ASRs, as was done in Ref.
[33]. The suite contains two main benchmarks. The
first benchmark corresponds to the MFCC evaluation
(see Section 2) and the second to the GMM one (see
Section 3). Each benchmark has several sub-stages,
as shown in Table 1. In Table 1, N represents the

Fig. 3 CPU parallelization principle of GMM and MFCC
stages.

number of samples in each frame, T is the number of
Cepstral coefficients computed for each frame, M is
the number of Gaussian components or clusters, and K
is the maximum number of iterations (see Section 3).
For the simulation benchmark the maximum number
of iteration K D 10 000 is used as the threshold if
the maximum likelihood is not reached, M D 12 is
the number of clusters selected to equal the number
of MCFF parameters for each speech frame. P is the
order of the coefficients in each frame. The number
of Lines Of Code (LOCs) for each algorithm is used
in each benchmark. In addition, sequential, PThreads,
and OpenMP algorithms have been developed for each
benchmark. The following sections show that PThreads
and OpenMP variants exploit the exact parallelism.

4.1 Parallelization of the feature extraction

The parallelization of sub-stages of MFCC
(preEmphasis, fft, fhank, energy, and dct) has
been done by a static distribution of the input data
among threads based on parallel loops. After all the
threads have finished, their results are gathered. The
time waiting for all threads to finish is the main

Table 1 ASR simulation benchmark.
Method Stage Sub-stage Complexity order Number of LOCs

MFCC

MFCC – O.N 2P / 1631
Pre-emphasis and windowing preEmphasis O.N/ 22

FFT fft O(N logN ) 730
Filtering fbank O.N/ 45
Energy energy O.N/ 10
DCT dct O.N 2/ 258

GMM

GMM – O(KT3/ 1609
Initialization gmmlnt O.T 2/ 730

E-step training gmmETrain O.T 2KM))' O(KT3/ 119
M-step and log-likelihood computation gmmMTrain O.T 2PM))' O(KT3/ 131

Classification and log-likelihood computation gmmClassifier O.T 2 KP) )' O(KT2/ 159



Rand Kouatly et al.: Performance of Text-Independent Automatic Speaker Recognition on a : : : 451

limitation of the efficiency.
Algorithm 1 shows the pseudo-code of the

parallelization of the MFCC benchmark. A buffer is
created with different frames extracted from the speech
vector, and the sequence of sub-stages for MFCC in
Table 1 is applied sequentially for each frame until the
end of the speech signal(s).

The parallel algorithms for each sub-stage are shown
in Algorithms 2 to 6, as a result of the MFCC,
the extracted features are stored for the next GMM
benchmark.

Algorithm 1 MFCC (S, ˛̨̨ , """, L, NTh)
Require:
SW speech frame,
Cn W output coefficients vector,
˛: pre-emphasis coefficient,
": energy coefficient,
L: number of Cepstral coefficients,
NTh: number of threads.

1: for i  1 to Mdo
2: Eng energy (Si , ", NTh); ! See Algorithm 2
3: Sp preEmphasis (Si , Eng, NTh); ! See Algorithm 3
4: fft (Sp, Si , N, NTh); ! See Algorithm 4
5: S  fbank (Si , Eng, NTh); ! See Algorithm 5
6: Cn  dct (Si , L, NTh); ! See Algorithm 6
7: return Cn

Algorithm 2 energy (S, """, NTh)
Require:
S : speech frame,
": energy coefficient,

1: for all threads i  0 to N=NTh do
2: " "C Si �Si ;
3: reduction (");
4: if " > 0 then
5: return log (");
6: else
7: return 0

Algorithm 3 preEmphasis (S, ˛̨̨ , NTh)
Require:
SW speech frame,
˛W pre-emphasis coefficient,
NTh: number of threads,
N : frame length.

1: for all threads i  0 to N/NTh do
2: Spi Si C Si�1 � ˛ ! Pre-emphasis part
3: for all threads i  0 to N/NTh do
4: Spi S pi � [0.54�0.46 � cos(2 i /(N� 1))];

! Hamming window part
5: reduction (Sp/I

6: return Sp

Algorithm 4 fft (x, y, n, NTh)
Require:
x: input frame,
y: output frame,
n: vector length,
NTh: number of threads.

1: l  2n; ! Length of x [ ] is the power of 2
2: y  bit reverse-permutation (x/;
3: for all threads i  1 to (n=2)/NTh do
4: !d  e2 i=d

5: for j 0 to log (n/ do
6: d  2j ;
7: ! 1;
8: for all threads k 0 to (d=2 �1)/NTh do
9: for all threads m k to (n � i//NTh step d do
10: t  ! �y[mC d /2];
11: x  y [k];
12: y [k] x C t I

13: y [k C d=2] x � t I

14: ! ! � !d ;
15: return

Algorithm 5 fbank (x, n, fs, """, NTh)
Require:
SW speech frame,
˛: pre-emphasis coefficient,
": eneray coefficients,
n: vector length,
fs : sampling frequency,
NTh: number of threads.

1: for all threads i  0 to n=NTh do
2: fMel  ˛ log.1C kfs=b/I
3: count 0;
4: for k  0 to n=2 do
5: while fMel < kfs=n and count 6 n do
6: count count+1;
7: pMel  count;
8: for all threads k 1 to (n=2) NTh do
9: j pMel;
10: w (fMelj�kfs=n/=fMel0;
11: for all threads k 1 to n=NTh do
12: j D fMel;
13: if j > 0 then
14: yj yj C x � wI

15: if j 6 n then
16: yjC1  yjC1 C x.1 � w/;
17: for all threads k  1 to n=NTh do
18: if y < " then
19: y ";
20: y  log.y/;
21: return y

In Algorithms 2 and 3, the speech frame is divided
into equal-sized chunks processed in parallel by threads
(see Algorithm 2 Line 1 and Algorithm 3 Lines 1 and



452 Tsinghua Science and Technology, April 2024, 29(2): 447–456

Algorithm 6 dct (x, n, NTh)
Require:
x: input frame,
y W output frame,
n: vector length,
Nth: number of threads.

1: if n D 1 then
2: y  x;
3: else
4: m 2nI ! Length of x[ ] power of 2
5: x1  bit reverse-permutation (x);
6: for all threads i 1 to n=NTh do
7: !d  e2 i=d I

8: fft (x1, r , n, NTh); ! See Algorithm 4
9: for all threads k 0 to m=NTh do
10: y  r � !d ;
11: for k  2 to n do
12: y  y �

p
2

13: return y

3). The results generated from each thread are gathered
as soon as possible, considering the dependencies in the
loop.

Algorithm 4 shows the parallel implementation of the
Radix 2 FFT based on the iterative method taken from
Refs. [34, 35]. The first step performs the permutation
of the input vector. Each element x[i] is copied to
y[j ], where j is the index found by reversing the bits
of y[i ][35]. Then the parallel computation of the cos and
sin table is performed. The main loop of the function
has log(n/ iterations. During each iteration, each task
computes its new value of y[k] from the previous values
of y[k] and either y[kCm/2] or y[k�m/2][35]. Most of
the computational burden is in the inner two loops that
perform the complex numbers’ required multiplication,
addition, and subtraction.

Algorithm 5 shows the parallel implementation of
the Mel filter bank based on signal processing tool Kit
SPTK[11].

In Algorithm 5, the first step is computing the filter
Mel frequencies and storing them in vector fMel, where
a and b are constants (see Eq. (2)). The second step
is to compute filter points pMel where these points are
spaced using Mel frequencies fMel. Using the values
calculated in the first and second steps, the weighting
filter vector is computed using a parallel loop where the
index j is shared between loops. In the filtering section,
there exist dependencies in the loop parameters. In
OpenMP, multiple code versions have been created and
passed for different thread capabilities using the simd
techniques[36, 37]. The last step is to perform the log of

the filtered output to prepare the spectral vector (see
Fig. 2). Algorithm 6 shows the parallel implementation
of the DCT[38]. The DCT uses the FFT in Algorithm 4.
The parallelization is primarily performed in the part of
the DCT loop where the real part and imagery part of
the input are added and multiplied by the cosine and sine
value (describe variables in Algorithm 6).

4.2 Parallelization of the GMM procedure

In the following, we describe the parallelization of
the different sub-stages of the GMM procedure. They
suffer from the same efficiency limitation as the one
in feature extraction. The computational workload
is assigned to the available idle threads during the
process. Algorithm 7 shows the pseudo-code of the
GMM benchmark.

The GMM benchmark starts initiating the GMMs
and copying the model data. Then it computes the
GMM weighting density function (see Algorithm 8)
in the E-step and changes the parameters to calculate
the log-likelihood during the M-step (see Algorithm 9).
These steps are repeated until a slight difference among

Algorithm 7 GMM (Cn, n, NTh)
Require:
Cn WMFCC vector,
n W vector length,
NTh: number of threads.

1: for i  0 to M do
2: for i  1 to max do
3: gmmInt ( );
4: wik gmmETrain (Cn, n, NTh); !see Algorithm 8
5: llht;i  gmmMTrain (wik ; Cn; n; NTh);

!see Algorithm 9
6: if llht;i ' llht�i;i then
7: return llht;i ;
8: return 0

Algorithm 8 gmmETrain (Cn, n, NTh)
Require:
CnWMFCC vector,
n: vector length,
NTh: number of threads,
K: Gaussian order.

1: for all threads i  0 to n=NTh do
2: s 0;
3: for all threads k  1 to K=NTh do
4: rk  pk �R.Cni

j�k

P
k/;

5: s  s C r C k;
6: for all threads k  1 to K=NTh do
7: wik  rk=s;
8: return wik



Rand Kouatly et al.: Performance of Text-Independent Automatic Speaker Recognition on a : : : 453

Algorithm 9 gmmMTrain (wik, Cn, n, NTh)
Require:
wik: density function,
Cn WMFCC vector,
n: vector length,
NTh: number of threads,
K: Gaussian order.

1: Nk  0, p  0, � 0, �  0;
2: for all threads i  1 to n=NTh do
3: for k  1 to K=NTh do
4: Nk  Nk C rik

;
5: for all threads k 1 to K=NTh do
6: pk Nk=N ;
7: for all threads i  1 to N do
8: for k  1 to K=NTh do
9: for m 1 to P=NTh do
10: �kp  �kp C rik � xid=Nk I

11: for all threads i  1 to Ndo
12: for k 1 to K=NTh do
13: for m 1 to P=NTh do
14: � 2

km
 �2

km
C rik� (xim��im/=Nk ;

15: for all threads i  1 to K=NTh do
16:

P
k  diag.�2

k
/;

17: for all threads i  1 to K=NTh do
18: llh llhC logR.Cni j�k ;

P
k/;

19: return llh

between the computed log-likelihood values in the last
iterations happens. The best-found GMM parameters
will be saved to be used in the testing phase.

Algorithm 8 shows the parallel code for the E-
step during the training process, where k Gaussian
mixing coefficients, k Gaussian means, and k

Gaussian covariances are computed using Eqs. (8)–(10),
respectively, for all the data points of dimension n.
In each loop, the data points are distributed evenly to
threads, and each thread performs the computation in
parallel.

Algorithm 9 shows the code for the M-step during
the training process, where the membership of the data
points is changed. k Gaussian mixing coefficients,
k Gaussian means, and k Gaussian covariances are
computed again for all the data points of dimension
P: Using Eq. (14), the log-likelihood is computed.

5 Experimental Result

To evaluate the ASR algorithms, the training experiments
are conducted using a collection of TIMIT Acoustic-
Phonetic Continuous Speech Corpus; TIMIT contains
broadband recordings of 630 speakers of eight
significant dialects of American English, each reading
ten phonetically rich sentences. The TIMIT corpus

includes time-aligned orthographic, phonetic, and word
transcriptions, and a 16-bit 16 kHz speech waveform
file for each utterance[39]. For training, only 20 males
and 16 females speakers of speech waveforms are used,
with a total duration of more than 2 hours of speech; the
minimum period of speech signal for each speaker is
around 3 minutes. Only short sentences of a maximum
time of 0.04 seconds are used for testing, not in the
testing phase. In our implementation, we apply the same
ASR configuration for the comparison offered:
� The speech is segmented into 20 ms windows with

overlapped between frames of 10 ms.
� The speech frame is pre-emphasized using a 0.95

pre-emphasis coefficient before being windowed by a
Hamming window.
� A speech activity detector is then used to discard

silence-noise frames. The speech activity detector is a
self-normalizing and energy-based detector that tracks
the signal’s noise floor to adapt it to noise conditions.
� Next, Mel-scale Cepstral feature vectors are

extracted from the speech frames. The Mel-scale
Cepstrum is the discrete cosine transform of the log-
spectral energies of the speech segment Y , where all
Cepstral coefficients except its zero values (the DC
level of the log-spectral energies) are retained in the
processing.
� Delta Cepstral are computed using a first-order

orthogonal polynomial temporal fit over two feature
vectors.
� A twelve-order GMM is used for feature

aggregation[40]. A maximum of M D 10 000 iterations
are used to find the full log-likelihood. The trained
data are stored for each speaker and used for testing
prepossess.

All the experiments are performed with 1, 2, 4, and 8
threads using Intel Core i5- 6300HQ, 2.3 GHz CPU, with
8 GB RAM and without hyper-threading under Ubuntu
14.04 LTS operating system, kernel version number RPC
3.19.0-73. Different implementations of the ASR are
performed:
� The sequential version uses Matlab programming

language to study the overall performance of speaker
recognition accuracy related to the used speech corpus
accuracy[41] and time consumption during the training
and testing phases.
� The sequential version uses C programming

language version 4.8.4[37].
� Parallel versions of the sequential C code using

OpenMP and PThreads libraries.



454 Tsinghua Science and Technology, April 2024, 29(2): 447–456

Figure 4 compares the performance of the ASR
workload for both MATLAB and C codes during the
training and testing phases. As expected, the results
show the superior performance of C implementation in
terms of running time in both stages.

Figure 5 shows the speed-up[23] for PThreads and
OpenMP using 1, 2, 4, and 8 threads for both the
training (MFCC and GMM stages, see Fig. 5a and testing

Fig. 4 Performance comparison of the C and Matlab ASR
codes for the testing and training phases.

Fig. 5 Achieved speed-up using PThreads and OpenMP for
a fixed instance of the problem (no differences are noticed in
speed-up between GMM and MFCC in the training phase).

phases (MFCC and GMM stages, see Fig. 5b. The best
sequential running time was 856 s for training 2 hours
of speech signals and 11 s for detecting 36 speakers.

The results show that both parallel versions show
improvements in the running time of the ASR system.
The improvement is almost identical in the training
stage for both PThread and OpenMP versions. The
improvement is better for OpenMP than PThreads in
the testing stage. This is because PThreads introduce
additional overhead due to the use of locks to protect
critical sections, increasing the idle time of the threads.
The idle time is unnoticeable during the training phase
because the amount of data to be processed is much more
significant than in the testing phase[27].

Figure 6 shows the overall performance of the ASR
during the testing and training stages for the OpenMP
version. The effect of increasing the number of threads
to more than 4, especially during the testing phase
(recognition), is not noticeable. This is because of the
serial part of the code, which is more important when
the amount of data to be processed is relatively low.
Following the Amdahl Law[23], the percentage of parallel
code in ASR is approximately 75%[23].

We also measure both PThreads and OpenMP
versions regarding speaker recognition accuracy during
testing. For this purpose, we make a coarse test using
different signal durations to study the effect of ASR
recognition accuracy on buffer time. The speech duration
is established to achieve good recognition accuracy.
Using the tested speech corpus[40], the speech utterance
duration used in the speaker recognition is 3.5, 1.7,
0.9, 0.5, and 0.15 s. The detection results are shown
in Fig. 7, where even with a speech duration of around
0.5 s (relatively far from one spoken word), the detection
rate is relatively high (near 98%). The accuracy is 100%

Fig. 6 Speed-up of the OpenMP version for the overall
training and testing stages.



Rand Kouatly et al.: Performance of Text-Independent Automatic Speaker Recognition on a : : : 455

Fig. 7 Accuracy of the ASR for both PThreads and
OpenMP versions with eight threads.

when the speech duration is more significant than around
1.7 s. Therefore, it is only sufficient for the tested speaker
to speak one or two words to be recognized.

6 Conclusion and Future Work

This paper uses OpenMP and PThreads libraries to code
parallel robust speaker recognition versions. We have
used two main benchmarks with different sub-stages
covering essential parts of ASR for their evaluation.
The results show a better performance using OpenMP
with a speed-up of around 3.2, achieved on the personal
laptop with an i5 CPU (4 cores), despite the sequential
dependencies in the ASR algorithm.

The remarkable performance of ASR in recognition
rate, even using a concise duration of the spoken
sentence of the unknown speaker, could be achieved
using a high number of speech features in the parallel
version. In future work, the parallel algorithms will be
further tested with a large speaker population, under
different speech quality, and using a more significant
number of cores.

References

[1] T. Kinnunen and H. Li, An overview of text-independent
speaker recognition: From features to supervectors, Speech
Commun., vol. 52, no. 1, pp. 12–40, 2010.

[2] D. A. Reynolds, Automatic speaker recognition using
Gaussian mixture speaker models, Lincoln Lab. J., vol. 8,
no. 2, pp. 173–191, 1995.

[3] R. Auckenthaler, E. S. Parris, and M. J. Caray, Improving a
GMM speaker verification system by phonetic weighting,
in Proc. IEEE Int. Conf. Acoustics, Speech, and Signal
Processing, Phoenix, AZ, USA, 1999, pp. 313–316.

[4] A. Janicki and S. Biay, Improving GMM-based speaker
recognition using trained voice activity detection, https://
www.researchgate.net/publication/268290565 Improving
GMM-based Speaker Recognition Using Trained Voice
Activity Detection, 2006.

[5] D. A. Reynolds, T. F. Quatieri, and R. B. Dunn, Speaker
verification using adapted Gaussian mixture models,
Digital Signal Processing, vol. 10, nos. 1–3, pp. 19–41,
2000.

[6] F. Ganjeizadeh, H. Lei, A. Maganito, and G. Pallipatta,
Reducing the computational complexity of the GMM-UBM
speaker recognition approach, Int. J. Eng. Res. Technol.,
vol. 3, no. 3, pp. 1793–1797, 2014.

[7] R. Makhijani, U. Shrawankar, and V. M. Thakare,
Opportunities & challenges in automatic speech recognition,
arXiv preprint arXiv:1305.2846, 2013.

[8] M. Petracca, A. Servetti, and J. C. De Martin,
Low-complexity automatic speaker recognition in the
compressed GSM AMR domain, in Proc. IEEE Int. Conf.
Multimedia and Expo, Amsterdam, the Netherlands, 2005,
p. 4.

[9] E. Gonina, G. Friedland, H. Cook, and K. Keutzer, Fast
speaker diarization using a high-level scripting language,
in Proc. IEEE Workshop on Automatic Speech Recognition
and Understanding, Waikoloa, HI, USA, 2011, pp. 553–
558.

[10] D. A. Reynolds and R. C. Rose, Robust text-independent
speaker identification using Gaussian mixture speaker
models, IEEE Trans. Speech Audio Process., vol. 3, no.
1, pp. 72–83, 1995.

[11] T. Yoshimura, T. Fujimoto, K. Oura, and K. Tokuda,
SPTK4: An open-source software toolkit for speech signal
processing, presented at Proc. 12th Speech Synthesis
Workshop, Grenoble, France, 2023.

[12] P. Pacheco, An Introduction to Parallel Programming. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc.,
2011.

[13] IEEE Standard for Information Technology: Portable
Operating System Interface (POSIX), https://pubs.
opengroup.org/onlinepubs/009695399/, 2022.

[14] F. Bimbot, J. F. Bonastre, C. Fredouille, G. Gravier, I.
Magrin-Chagnolleau, S. Meignier, T. Merlin, J. Ortega-
Garcı́a, D. Petrovska-Delacrétaz, and D. A. Reynolds, A
tutorial on text-independent speaker verification, EURASIP
J. Adv. Signal Process., vol. 2004, pp. 430–451, 2004.

[15] R. N. Bracewell, The Fourier Transform and Its
Applications. New York, NY, USA: McGraw-Hill, 1965.

[16] L. R. Rabiner, A tutorial on hidden Markov models and
selected applications in speech recognition, in Proc. IEEE,
vol. 77, no. 2, pp. 257–286, 1989.

[17] J. Vanek, J. Trmal, J. V. Psutka, and J. Psutka, Optimization
of the Gaussian mixture model evaluation on GPU, in Proc.
Interspeech 2011, Florence, Italy, 2011, pp. 1737–1740.

[18] G. Friedland, J. Chong, and A. Janin, Parallelizing speaker-
attributed speech recognition for meeting browsing, in Proc.
IEEE Int. Symp. Multimedia, Taichung, China, 2010, pp.
121–128.

[19] A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal
Processing. Englewood Cliffs, NJ, USA: Prentice-Hall,
1989.



456 Tsinghua Science and Technology, April 2024, 29(2): 447–456

[20] W. J. J. Roberts and J. P. Willmore, Automatic speaker
recognition using Gaussian mixture models, in Proc.
Information, Decision and Control Data and Information
Fusion Symp., Signal Processing and Communications
Symp. and Decision and Control Symp., Adelaide, Australia,
1999, pp. 465–470.

[21] D. Reynolds, Gaussian mixture models, in Encyclopedia of
Biometrics, S. Z. Li and A. Jain, eds. New York, NY, USA:
Springer, 2009, pp. 659–663.

[22] F. Pernkopf and D. Bouchaffra, Genetic-based EM
algorithm for learning Gaussian mixture models, IEEE
Trans. Pattern Anal. Machine Intell., vol. 27, no. 8, pp.
1344–1348, 2005.

[23] G. M. Amdahl, Validity of the single processor approach to
achieving large scale computing capabilities, AFIPS Conf.
Proc., vol. 30, pp. 483–485, 1967.

[24] C. M. Bishop, Pattern Recognition and Machine
Learning. New York, NY, USA: Springer, 2006.

[25] C. E. Leiserson and I. B. Mirman, How to Survive the
Multicore Software Revolution (or at Least Survive the
Hype). Burlington, MA, USA: CILK Arts, Inc., 2008.

[26] G. E. Blelloch, J. T. Fineman, P. B. Gibbons, and J. Shun,
Internally deterministic parallel algorithms can be fast, in
Proc. 17th ACM SIGPLAN Symp. Principles and Practice
of Parallel Programming, New Orleans, LA, USA, 2012,
pp. 181–192.

[27] L. Dagum and R. Menon, OpenMP: An industry standard
API for shared-memory programming, IEEE Comput. Sci.
Eng., vol. 5, no. 1, pp. 46–55, 1998.

[28] C. Pheatt, Intel R threading building blocks, J. Comput. Sci.
Coll., vol. 23, no. 4, p. 298, 2008.

[29] Z. Budimlić, V. Cavé, R. Raman, J. Shirako, S.
Taşırlar, J. Zhao, and V. Sarkar, The design and
implementation of the habanero-java parallel programming
language, in Proc. ACM Int. Conf. Companion on
Object Oriented Programming Systems Languages and
Applications Companion, Portland, OR, USA, 2011, pp.
185&186.

[30] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A.
Kielstra, K. Ebcioglu, C. von Praun, and V. Sarkar, X10: An
object-oriented approach to non-uniform cluster computing,

in Proc. 20th Annu. ACM SIGPLAN Conf. Object-Oriented
it Programming, Systems, Languages, and Applications,
San Diego, CA, USA, 2005, pp. 519–538.

[31] R. D. Blumofe and C. E. Leiserson, Scheduling
multithreaded computations by work stealing, J. ACM, vol.
46, no. 5, pp. 720–748, 1999.

[32] R. J. Anderson and L. Snyder, A comparison of shared and
nonshared memory models of parallel computation, in Proc.
IEEE, vol. 79, no. 4, pp. 480–487, 1991.

[33] M. Andersch, C. C. Chi, and B. Juurlink, Using OpenMP
superscalar for parallelization of embedded and consumer
applications, in Proc. Int. Conf. Embedded Computer
Systems, Samos, Greece, 2012, pp. 23–32.

[34] J. Arndt, Algorithms for programmers ideas and source
code, http://www.jjj.de/fxt/, 2015.

[35] M. J. Quinn, Parallel Programming in C with MPI
and OpenMP. Boston, MA, USA: McGraw-Hill Higher
Education, 2004.

[36] OpenMP: Application Programming. Interface. Version 4.5
November 2015, https://pubs.opengroup.org/onlinepubs/
009695399/, 2022.

[37] W. P. Petersen and P. Arbenz, Introduction to Parallel
Computing: A Practical Guide with Examples in C. Oxford,
UK: Oxford University Press, 2004.

[38] K. R. Rao and P. Yip, Discrete Cosine Transform:
Algorithms, Advantages, Applications. San Diego, CA,
USA: Academic Press, 1990.

[39] N. S. Disc, J. S. Garofolo, L. F. Lamel, W. M. Fisher, J.
G. Fiscus, D. S. Pallett, and N. L. Dahlgren, Acoustic-
phonetic continuous speech corpus, https://catalog.ldc.
upenn.edu/LDC93s1, 2022.

[40] J. Vanĕk, J. Trmal, J. V. Psutka, and J. Psutka, Full
covariance Gaussian mixture models evaluation on GPU, in
Proc. IEEE Int. Symp. Signal Processing and Information
Technology, Ho Chi Minh City, Vietnam, 2012, pp. 203–
207.

[41] L. Lu, A. Ghoshal, and S. Renals, Acoustic data-
driven pronunciation lexicon for large vocabulary speech
recognition, in Proc. IEEE Workshop on Automatic Speech
Recognition and Understanding, Olomouc, Czech Republic,
2013, pp. 374–379.

Talha Ali Khan is a professor of data
science and program director of data
science at University of Europe for Applied
Sciences, Postdam, Germany. He received
the BEng degree in electronics engineering
from NED University of Engineering &
Technology, Pakistan in 2009, the MEng
degree from King Saud University, Riyadh,

Saudi Arabia, and the PhD degree from the University of
Technology Sydney, Australia in 2012. His research interests
are in optimisation, algorithms, artificial intelligence, and data
minning.

Rand Kouatly is a professor of information
technology & communication and program
director of software engineering at
University of Europe for Applied Sciences,
Postdam, Germany. He received the BEng
degree in telecommunication engineering
from Damascus University, Syria in 1991,
and the MEng and PhD degrees from Ain

Shams University, Egypt in 1994 and 2000, respectively. His
main research areas are speech and speaker recognition, artificial
intelligence, and data analytics.


