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Performance of Text-Independent Automatic Speaker Recognition
on a Multicore System

Rand Kouatly and Talha Ali Khan*

Abstract: This paper studies a high-speed text-independent Automatic Speaker Recognition (ASR) algorithm based

on a multicore system’s Gaussian Mixture Model (GMM). The high speech is achieved using parallel implementation

of the feature’s extraction and aggregation methods during training and testing procedures. Shared memory parallel

programming techniques using both OpenMP and PThreads libraries are developed to accelerate the code and

improve the performance of the ASR algorithm. The experimental results show speed-up improvements of around

3.2 on a personal laptop with Intel i5-6300HQ (2.3 GHz, four cores without hyper-threading, and 8 GB of RAM). In

addition, a remarkable 100% speaker recognition accuracy is achieved.
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1 Introduction

Human interaction with computers has become more
pervasive and essential in financial services, security, and
information retrieval from speech databases. Machines’
ability to recognize a speaker with high accuracy and
speed is a challenge nowadays. The problem is even
more challenging when the speech signal used for
constructing the features database (training stage) differs
from the speech signal used in testing or the real-
time application (testing stage). This is called text-
independent Automatic Speaker Recognition (ASR).
To achieve high recognition accuracy, many training
speech signals must be used to construct a speaker
database. A big problem arises due to the high
complexity of both phases: (1) training and (2) the
search for the best candidate in the testing phase. One of
the methods used to increase the recognition accuracy,
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which has been used for a long time, is Gaussian
Mixture Model (GMM)!!-?!. Several methods have been
proposed to improve GMM accuracy in text-independent
ASRI[Z] Still, these studies are not concerned with
the computation of the features, the complexity of
GMM classification techniques, or data size (number
and size of the speech signals) used in the training and
testing phases. This turns speaker recognition into a
computationally demanding problem!®: 7).

Ganjeizadeh et al.l! studied the best combination
between the frame size and the number of GMM
parameters to achieve less computational burden.
Unfortunately, no new methods were introduced in that
work. Petracca et al.!®! introduced a new idea by using
speech bitstream information of compressed speaker
signals instead of computing the features to reduce the
computational burden. Their approach shows inferior
results in terms of recognition accuracy when the used
speech signal is less than 15 s. In Refs. [9-11], the GMM
is implemented in Python and on a Graphic Processing
Unit (GPU). The results are poor recognition when quick
changes exist in the speakers in the conversation. In
this work, we parallelize the text-independent speaker
recognition algorithm on a multicore system using
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the C language and the shared memory programming
standards OpenMP!'?l and PThreads!'3. This paper is
organized as follows: Section 2 shows an overview of
the speaker recognition system, highlighting the high
computational burden of getting the speaker features,
and how to deal with it. Section 3 shows an overview
of the GMM, focusing on its workload. An overview
of the parallel implementation of the ASR system is
presented in Section 4. Simulation results on an i5-
6300HQ 2.3 GHz with 4 GB of RAM are shown in
Section 5, and the main conclusions and future work
are shown in Section 6.

2 Speaker Recondition System

Figure 1 shows training and testing phases of a speaker
verification system. A speaker verification system
is based on two stages: Training and testing. The
training phase is used to generate the models of the
speakers, which are used to identify speakers in the test
phase. Figure 1 shows the components of the speaker
recognition system, where the upper part represents the
training.

Each phase consists of several serial independent
modules. In both phases, the first step consists of
extracting the speaker parameters from the speech signal
to obtain a suitable representation for the second phase
(feature aggregation). This step will be described in
detail in Section 3. The first step aims to transform
the speech signal into a set of speech features to
remove redundancy and reduce the data size, favouring
statistical modelling. This is achieved by computing
the Mel Frequency Cepstral Coefficients (MFCC)
representation''. Figure 2 shows the block diagram
for the MFCC computation.

In MFCC, the speech signal is first divided into 20—
30 ms vectors. The speech vector can be overlapped to
improve recognition'?!. The per-emphasized method is

Speech data

Feature Training
i —» . > h
from a given extraction algorithm
speaker
Statisticali{Statistical Statistical Training
model ii model model phase
Speaker 1} Speaker 2 Speaker ki
Speaker model
Input Feawre | | Pattern Recognition Output ~ Testing
speech extraction| matching decision decision phase

Fig. 1 Training and testing phases of a speaker verification
system.
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Fig.2 Computation of MFCC vectors!”.

used to eliminate the high frequencies of the spectrum
and can be applied to signal x using the first-order filter
as followsl!!> 16;

xp(t) = x(t) —ax(r —1) (1)
where « is the filter coefficient in the range [0.95,
0.98]!'71, the pre-emphasized signal is then windowed
using Hanning window(s) to improve the spectral
representation of the speech vector!!8). Once the speech
signal has been windowed and pre-emphasized, the Fast
Fourier Transform (FFT) is calculated!’!. Then, the
modulus of the FFT vector is extracted (dended by | | in
Fig. 2). A filter bank filters the returned vector to smooth
the signal spectrum because only the envelope of the
spectrum is of interest; a typical of 40 filters are used!'®.
A filter bank contains a series of bandpass frequency
filters multiplied by the spectrum to get an average value
in a particular frequency band. Several filter banks have
been used in Refs. [15, 16]. The Bark/Mel is one of the
most frequently used to convert between the frequency
f (inHz) and fya",

S
fue = 1000220~ To08) 2
log?2
The fme scale aims to mimic the non-linear human

ear perception of sound by being more discriminative
at lower frequencies and less discriminating at higher
frequencies. Next, the log of this spectral envelope
is calculated, and each coefficient is multiplied by
20 to obtain the spectral envelope in dB. Finally, the
Discrete Cosine Transform (DCT) is usually applied to
the spectral vectors in speech processing, resulting in the
Cepstral coefficients!!!,

Cp = ixkcos(n(k—%)g), n=12,....,.L 3)
k=1

where N is the number of previously calculated log-
spectral coefficients, L is the number of the Cepstral
coefficients we want to obtain, and x is the speech
samples at the k-th framel?".

3 GMM

After extracting features for each speech frame, an
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aggregation method is usually performed to obtain
the summary values for each speaker. Several ways
exist for feature aggregation. One is the GMM/>- 211 3
GMM comprises a finite weight of the sum of M of
multivariate Gaussian components densities. A GMM
is characterized by its probability density function'??! as
follows:

M
PN = wig(x|pi. Xi) “4)
i=1
where x is a d-dimensional continues-valued speech
features, w; (i=1, 2, ..., M) are the mixture weights,
and g(x|u;, X;) (i=1,2, ..., M) are the components of
Gaussian densities. For each component, the variance is
a d variance of the Gaussian density function/??),
g(x|pmi Xi) =
e[ - u) )] ©)
(2m) %] 5|2 2
where u; is the d-dimensional mean vector, X; is a
covariance matrix with d xd dimension, and the mixture
weight satisfies the constraint by Y, w; = 11231,
The mean vectors, covariance matrices, and mixture
weights from all component densities parameterize the
complete Gaussian mixture model. These parameters
are collectively represented by the notation!??!,
)t:{a),-,m,El-}, i:1,2,...,M (6)
In the testing phase, the Nspeakers database is
represented by a GMM. The tested speaker is identified
as that who has the maximum posterior probability
density function (see Eq. (7) in the following) among the
population. This is mainly done using the Expectation
Maximization (EM) algorithm for GMM!?> 24 For a

sequence of T training vectors X = {x1,X2,...,XT},
the GMM likelihood can be given by Ref. [21],
T
p(XIA) =[] p(x:ld) (7)
=1

The parameter estimation can be obtained iteratively
by starting from an initial model of A (K-mean a very
good choice initial value), then processed to update
A iteratively until convergence is detected (significant
change of the log-likelihood value, see Eq. (12)), or
the number of maximum of iteration is reached. In the
EM iteration, Egs. (8)—(10) in the following are used
to estimate the mixture weights, means, and variances,
respectively?4!:

T
1 .
& = t§=1pr (i]x2, 2) ®)

T
> Pr(ilx. Mx;
fi =" ©

T
> Priilx. )
t=1

T
> Pr(ilx;. A)x?

- t=1
67 =

i T
ZPr(i|x,,)&)

t=1

— 7 (10)

where the posterior probability for each component i is
given in the following:

. - 2
Pr (i]x;. A) = Mwlg(XI|Ml i) (11)
> org(xelpi, Ti)
k=1

In the M-step, the membership for data points is
changed slightly, and the values of A and mixture weights
are recomputed. The iterations (E-step and M-step)
are repeated until the maximum log-likelihood?!! is
achieved, or the maximum number of iterations M is
reached,

E{log P(X|V)} =

T M
> > Pr(kle ) { log e +log g(xe k. T (12)
t=1k=1

The computational burden of the ASR algorithm is
very high in both the feature extraction and aggregation
stages. This affects both the speed of the speaker
identification system due to high processing time and
also to the accuracy of the identification. For the latter,
the designer tends to reduce the number of features and
increase the speech frame size to reduce the burden of
the ASR system in most real-time applications.

4 Parallel Implementation

Parallelism is the type of computation used to accelerate
many hard-to-solve problems. We are interested in
shared-memory systems because it is easier to develop
parallel algorithms on them from the programmer’s point
of view!!> 23] Communication and data replication often
lead to additional high overheads in distributed memory
systems but offer better scalability than shared-memory
ones. Shared-memory programming has to be handled
with care. For instance, many possible interleaving of
threads might exist, creating errors in the results that are
difficult to detect!?!. Instead of using threads directly,
one can use simple constructs that indicate which parts
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of the program are safe to run in parallel. On the one
hand, languages, such as OpenMP!?7, Intel Threading
Building Blocks!?¥!, Habanero®!, and X103, are
examples of libraries that allow the programmer to leave
to the run-time scheduler essential decisions like how
to assign work to threads and how to perform the load
balancing among them!*!. On the other hand, PThreads
provide more control to the programmer with a lower
programming level than in the libraries, as mentioned
abovel !,

Here, we focus on both PThreads and OpenMP.
PThreads programming interface is typically accessed
via a run-time library and operating system calls.
Any ANSI/ISO-C conforming compiler may compile
programs with the PThreads library. OpenMP extends
programming C with directives to make explicit
parallelism and data privacy. OpenMP annotations
change the semantics of loops and data persistence. As in
all programming models, special care is needed because
OpenMP annotations can assert incorrect program
transformations, manifesting as race conditions or
deadlocks"?!.

The ASR system consists of sequential stages, i.e.,
each step depends on the results of the previous stages.
So, our methodology is based on parallelizing each stage
independently, moving the results to the next stage, and
so on. Parallelizing ASR aims to increase the speed
without harming the algorithm’s accuracy. Figure 3
shows the parallelization principle of the ASR stages.

We have created a benchmark suite to evaluate the
parallel performance of ASRs, as was done in Ref.
[33]. The suite contains two main benchmarks. The
first benchmark corresponds to the MFCC evaluation
(see Section 2) and the second to the GMM one (see
Section 3). Each benchmark has several sub-stages,
as shown in Table 1. In Table 1, N represents the
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Fig. 3 CPU parallelization principle of GMM and MFCC
stages.

number of samples in each frame, 7" is the number of
Cepstral coefficients computed for each frame, M is
the number of Gaussian components or clusters, and K
is the maximum number of iterations (see Section 3).
For the simulation benchmark the maximum number
of iteration K = 10000 is used as the threshold if
the maximum likelihood is not reached, M = 12 is
the number of clusters selected to equal the number
of MCFF parameters for each speech frame. P is the
order of the coefficients in each frame. The number
of Lines Of Code (LOCs) for each algorithm is used
in each benchmark. In addition, sequential, PThreads,
and OpenMP algorithms have been developed for each
benchmark. The following sections show that PThreads
and OpenMP variants exploit the exact parallelism.

4.1 Parallelization of the feature extraction

The parallelization of sub-stages of MFCC
(preEmphasis, fft, fhank, energy, and dct) has
been done by a static distribution of the input data
among threads based on parallel loops. After all the
threads have finished, their results are gathered. The
time waiting for all threads to finish is the main

Table 1 ASR simulation benchmark.

Method Stage Sub-stage Complexity order Number of LOCs

MFCC - O(NZP) 1631
Pre-emphasis and windowing preEmpbhasis O(N) 22

MFCC FFT fft O(N log N) 730
Filtering fbank O(N) 45
Energy energy O(N) 10

DCT dct O(N?) 258

GMM - O(KT3) 1609

Initialization gmmint 0(T?) 730

GMM E-step training gmmETrain O(T?KM))~ O(KT?) 119
M-step and log-likelihood computation gmmMTrain O(T?PM))~ O(KT?) 131

Classification and log-likelihood computation gmmClassifier O(T? KP) )~ O(KT?) 159
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limitation of the efficiency.

Algorithm 1 shows the pseudo-code of the
parallelization of the MFCC benchmark. A buffer is
created with different frames extracted from the speech
vector, and the sequence of sub-stages for MFCC in
Table 1 is applied sequentially for each frame until the
end of the speech signal(s).

The parallel algorithms for each sub-stage are shown
in Algorithms 2 to 6, as a result of the MFCC,
the extracted features are stored for the next GMM
benchmark.

Algorithm 1 MFCC (S, a, &, L, NTh)
Require:
S: speech frame,
C,, : output coefficients vector,
«: pre-emphasis coefficient,
e: energy coefficient,
L: number of Cepstral coefficients,
NTh: number of threads.
1:fori < 1to Mdo

2:  Eng < energy (S;, &, NTh); — See Algorithm 2
3:  Sp < preEmphasis (S;, Eng, NTh); — See Algorithm 3
4. fft (Sp, S;, N, NTh); — See Algorithm 4
5: S <« fbank (S;, Eng, NTh); — See Algorithm 5
6: C;, <« dct(S;, L, NTh); — See Algorithm 6
7: return C,,

Algorithm 2 energy (S, & NTh)
Require:

S speech frame,

e: energy coefficient,
1: for all threads i <— 0 to N/NTh do
2: eg<«¢e4+8; xS8;;
3:  reduction (¢);
4: if ¢ > O then
5
6
7

return log (¢);
. else
return O

Algorithm 3 preEmphasis (S, o, NTh)
Require:

S: speech frame,

o: pre-emphasis coefficient,

NTh: number of threads,

N': frame length.
1: for all threads i < 0 to N/NTh do
20 Spi<Si+Sic1 xa — Pre-emphasis part
3: for all threads i < 0 to N/NTh do
4 Spi<=S pi x[0.54—0.46 x cos(2mi/(N— 1))];

— Hamming window part

5:  reduction (Sp);
6: return S,

Algorithm 4  fft (x,y,n,NTh)

Require:
x: input frame,
y: output frame,
n: vector length,
NTh: number of threads.
1: [ <27, — Length of x [ ] is the power of 2
2: y < bit reverse-permutation (x);
3: for all threads i < 1 to (n/2)/NTh do

4: wg «—e2mi/d

5: for j < 0 to log (n) do

6: d <27,

7: w < 1;

8: for all threads k<0 to (d/2 —1)/NTh do
9: for all threads m <— k to (n — i)/NTh step d do
10: t < wxy[m+d/2];

11: x <y [k];

12: yI[k]l<x+1t;

13: yvIk+d/2]« x—t;

14: 0« 0w Xwg;

15: return

Algorithm 5 fbank (x, n, f,, &, NTh)

Require:
S speech frame,
o: pre-emphasis coefficient,
&: eneray coefficients,
n: vector length,
fs: sampling frequency,
NTh: number of threads.
1: for all threads i < 0 to n/NTh do
2: fMel <_0510g(1 +kfs/b);
3:  count < 0;
4:fork < Oton/2 do
5:  while fye < kfg/n and count < n do
6: count < count+1;
7. PMel <— count;
8: for all threads k < 1 to (n/2) NTh do
9: J < PMel;
10: w < (fmelj —kfs/n)/ fmei0;
11: for all threads k <— 1 to n/NTh do

12: j = fue:

13:  if j > O then

14: Yi<yi +Xxxw;

15:  if j < n then

16: Vi+1 < Vi1 +x(—w);
17: for all threads k <—1 to n/NTh do
18: if y < ¢ then

19: y< &

20: y < log(y);

21: return y

In Algorithms 2 and 3, the speech frame is divided
into equal-sized chunks processed in parallel by threads
(see Algorithm 2 Line 1 and Algorithm 3 Lines 1 and
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Algorithm 6 dct (x, n, NTh)
Require:

x: input frame,

y : output frame,

n: vector length,

Nth: number of threads.

1: if n = 1 then

2: y<«x;

3: else

4:  m<2", — Length of x[ ] power of 2
5: X1 < bit reverse-permutation (x);

6:  for all threads i <— 1 to n/NTh do

7: wg < e2mi/d,

8: fft(xy, r,n, NTh); — See Algorithm 4
9:  for all threads k<—0 to m/NTh do

Yy <= Tr Xwgqg;
for k < 2ton do
12: y<—y><ﬁ
13: return y

—
—_ o

3). The results generated from each thread are gathered
as soon as possible, considering the dependencies in the
loop.

Algorithm 4 shows the parallel implementation of the
Radix 2 FFT based on the iterative method taken from
Refs. [34, 35]. The first step performs the permutation
of the input vector. Each element x[i] is copied to
y[j], where j is the index found by reversing the bits
of y[i]©®. Then the parallel computation of the cos and
sin table is performed. The main loop of the function
has log(n) iterations. During each iteration, each task
computes its new value of y[k] from the previous values
of y[k] and either y[k +m/2] or y[k —m/2]1*]. Most of
the computational burden is in the inner two loops that
perform the complex numbers’ required multiplication,
addition, and subtraction.

Algorithm 5 shows the parallel implementation of
the Mel filter bank based on signal processing tool Kit
SPTK!!,

In Algorithm 5, the first step is computing the filter
Mel frequencies and storing them in vector fy, Where
a and b are constants (see Eq. (2)). The second step
is to compute filter points pyr where these points are
spaced using Mel frequencies fye. Using the values
calculated in the first and second steps, the weighting
filter vector is computed using a parallel loop where the
index j is shared between loops. In the filtering section,
there exist dependencies in the loop parameters. In
OpenMP, multiple code versions have been created and
passed for different thread capabilities using the simd
techniques!®® 37, The last step is to perform the log of
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the filtered output to prepare the spectral vector (see
Fig. 2). Algorithm 6 shows the parallel implementation
of the DCT!8!, The DCT uses the FFT in Algorithm 4.
The parallelization is primarily performed in the part of
the DCT loop where the real part and imagery part of
the input are added and multiplied by the cosine and sine
value (describe variables in Algorithm 6).

4.2 Parallelization of the GMM procedure

In the following, we describe the parallelization of
the different sub-stages of the GMM procedure. They
suffer from the same efficiency limitation as the one
in feature extraction. The computational workload
is assigned to the available idle threads during the
process. Algorithm 7 shows the pseudo-code of the
GMM benchmark.

The GMM benchmark starts initiating the GMMs
and copying the model data. Then it computes the
GMM weighting density function (see Algorithm §)
in the E-step and changes the parameters to calculate
the log-likelihood during the M-step (see Algorithm 9).
These steps are repeated until a slight difference among

Algorithm 7 GMM (C,, n, NTh)
Require:

C,, : MFCC vector,

n: vector length,

NTh: number of threads.
1: fori < Oto M do
for i < 1 to max do
gmmlint ();
wj k< gmmETrain (C,,, n, NTh); —see Algorithm 8
Ilh; ; < gmmMTrain (w;x, C,, n, NTh);

—see Algorithm 9

6 if lth; ; >~ 1lh;—; ; then
7: return llh; ;;
8: return 0

Algorithm 8 gmmETrain (C,, n, NTh)
Require:
C,,;: MFCC vector,
n: vector length,
NTh: number of threads,
K: Gaussian order.
1: for all threads i < 0 to n/NTh do
s < 0;
for all threads k < 1 to K/NTh do
i < pr X R(Cp; [A D k)3
s<s+r+k;
for all threads k < 1 to K/NTh do
Wik < I'x/s:
8: return w;

A A N o
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Algorithm 9 gmmMTrain (wy, C,, n, NTh)
Require:

w; k. density function,

C,, : MFCC vector,

n: vector length,

NTh: number of threads,

K: Gaussian order.
I: Nk <0, p< 0,1« 0,0 < 0;
2: for all threads i < 1 to n/NTh do
3: fork < 1to K/NTh do
4: Ni < N + Tigs
5: for all threads k <—1 to K/NTh do
6:
7:
8:
9:

Pik< Ni/N;
for all threads i «<— 1to N do
for k < 1to K/NTh do
for m < 1to P/NTh do

10: Akp < Akp + Tik X Xiq/Nk;
11: for all threads i <— 1 to Ndo
12:  for k <— 1to K/NTh do
13: for m < 1 to P/NTh do
14: U%m<—cr,%m+r,-kx(x,-m—)t,-m)/Nk;
15: for all threads i < 1 to K/NTh do
16: >, <« diag(a,%);
17: for all threads i < 1 to K/NTh do
18:  1lh < llh+1log R(CyilAk, Y x)s
19: return llh

between the computed log-likelihood values in the last
iterations happens. The best-found GMM parameters
will be saved to be used in the testing phase.

Algorithm 8 shows the parallel code for the E-
step during the training process, where k& Gaussian
mixing coefficients, k& Gaussian means, and k
Gaussian covariances are computed using Egs. (8)—(10),
respectively, for all the data points of dimension 7.
In each loop, the data points are distributed evenly to
threads, and each thread performs the computation in
parallel.

Algorithm 9 shows the code for the M-step during
the training process, where the membership of the data
points is changed. k Gaussian mixing coefficients,
k Gaussian means, and k Gaussian covariances are
computed again for all the data points of dimension
P. Using Eq. (14), the log-likelihood is computed.

5 Experimental Result

To evaluate the ASR algorithms, the training experiments
are conducted using a collection of TIMIT Acoustic-
Phonetic Continuous Speech Corpus; TIMIT contains
broadband recordings of 630 speakers of eight
significant dialects of American English, each reading
ten phonetically rich sentences. The TIMIT corpus

includes time-aligned orthographic, phonetic, and word
transcriptions, and a 16-bit 16 kHz speech waveform
file for each utterance®®!. For training, only 20 males
and 16 females speakers of speech waveforms are used,
with a total duration of more than 2 hours of speech; the
minimum period of speech signal for each speaker is
around 3 minutes. Only short sentences of a maximum
time of 0.04 seconds are used for testing, not in the
testing phase. In our implementation, we apply the same
ASR configuration for the comparison offered:

o The speech is segmented into 20 ms windows with
overlapped between frames of 10 ms.

e The speech frame is pre-emphasized using a 0.95
pre-emphasis coefficient before being windowed by a
Hamming window.

e A speech activity detector is then used to discard
silence-noise frames. The speech activity detector is a
self-normalizing and energy-based detector that tracks
the signal’s noise floor to adapt it to noise conditions.

e Next, Mel-scale Cepstral feature vectors are
extracted from the speech frames. The Mel-scale
Cepstrum is the discrete cosine transform of the log-
spectral energies of the speech segment Y, where all
Cepstral coefficients except its zero values (the DC
level of the log-spectral energies) are retained in the
processing.

e Delta Cepstral are computed using a first-order
orthogonal polynomial temporal fit over two feature
vectors.

e A twelve-order GMM is used for feature
aggregation*), A maximum of M = 10000 iterations
are used to find the full log-likelihood. The trained
data are stored for each speaker and used for testing
prepossess.

All the experiments are performed with 1, 2, 4, and 8
threads using Intel Core i5- 6300HQ, 2.3 GHz CPU, with
8 GB RAM and without hyper-threading under Ubuntu
14.04 LTS operating system, kernel version number RPC
3.19.0-73. Different implementations of the ASR are
performed:

e The sequential version uses Matlab programming
language to study the overall performance of speaker
recognition accuracy related to the used speech corpus
accuracy!*!! and time consumption during the training
and testing phases.

e The sequential version uses C programming
language version 4.8.41371,

e Parallel versions of the sequential C code using
OpenMP and PThreads libraries.
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Figure 4 compares the performance of the ASR
workload for both MATLAB and C codes during the
training and testing phases. As expected, the results
show the superior performance of C implementation in
terms of running time in both stages.

Figure 5 shows the speed-up!?}! for PThreads and
OpenMP using 1, 2, 4, and 8 threads for both the
training (MFCC and GMM stages, see Fig. 5a and testing

100000
10000

1000

B Training
Testing

Time (s)

100

-

Matlab implementation C implementation

Fig. 4 Performance comparison of the C and Matlab ASR
codes for the testing and training phases.

35
== GMM-OpenMP
=4 GMM-Pthread
MCFF-OpenMP
3.0 == MCFF-Pthread

1 2 3 4 5 6 7
Thread

(a) Training phase

o

35
== GMM-OpenMP
—+— GMM-Pthread
MCFF-OpenMP
30 —e— MCFF-Pthread

1.0
1 2 3 4 5 6 7

Thread
(b) Testing phase

®

Fig. 5 Achieved speed-up using PThreads and OpenMP for
a fixed instance of the problem (no differences are noticed in
speed-up between GMM and MFCC in the training phase).
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phases (MFCC and GMM stages, see Fig. 5b. The best
sequential running time was 856 s for training 2 hours
of speech signals and 11 s for detecting 36 speakers.

The results show that both parallel versions show
improvements in the running time of the ASR system.
The improvement is almost identical in the training
stage for both PThread and OpenMP versions. The
improvement is better for OpenMP than PThreads in
the testing stage. This is because PThreads introduce
additional overhead due to the use of locks to protect
critical sections, increasing the idle time of the threads.
The idle time is unnoticeable during the training phase
because the amount of data to be processed is much more
significant than in the testing phase!?”.

Figure 6 shows the overall performance of the ASR
during the testing and training stages for the OpenMP
version. The effect of increasing the number of threads
to more than 4, especially during the testing phase
(recognition), is not noticeable. This is because of the
serial part of the code, which is more important when
the amount of data to be processed is relatively low.
Following the Amdahl Law!?3], the percentage of parallel
code in ASR is approximately 75%!%%.

We also measure both PThreads and OpenMP
versions regarding speaker recognition accuracy during
testing. For this purpose, we make a coarse test using
different signal durations to study the effect of ASR
recognition accuracy on buffer time. The speech duration
is established to achieve good recognition accuracy.
Using the tested speech corpus’l, the speech utterance
duration used in the speaker recognition is 3.5, 1.7,
0.9, 0.5, and 0.15s. The detection results are shown
in Fig. 7, where even with a speech duration of around
0.5 s (relatively far from one spoken word), the detection
rate is relatively high (near 98%). The accuracy is 100%
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Fig. 6 Speed-up of the OpenMP version for the overall
training and testing stages.
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Fig. 7 Accuracy of the ASR for both PThreads and
OpenMP versions with eight threads.

when the speech duration is more significant than around
1.7 s. Therefore, it is only sufficient for the tested speaker
to speak one or two words to be recognized.

6 Conclusion and Future Work

This paper uses OpenMP and PThreads libraries to code
parallel robust speaker recognition versions. We have
used two main benchmarks with different sub-stages

covering essential parts of ASR for their evaluation.

The results show a better performance using OpenMP
with a speed-up of around 3.2, achieved on the personal
laptop with an i5 CPU (4 cores), despite the sequential
dependencies in the ASR algorithm.

The remarkable performance of ASR in recognition
rate, even using a concise duration of the spoken
sentence of the unknown speaker, could be achieved
using a high number of speech features in the parallel
version. In future work, the parallel algorithms will be
further tested with a large speaker population, under
different speech quality, and using a more significant
number of cores.
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