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A Matching Algorithm with Reinforcement Learning and Decoupling
Strategy for Order Dispatching in On-Demand Food Delivery

Jingfang Chen, Ling Wang�, Zixiao Pan, Yuting Wu, Jie Zheng, and Xuetao Ding

Abstract: The on-demand food delivery (OFD) service has gained rapid development in the past decades but

meanwhile encounters challenges for further improving operation quality. The order dispatching problem is one of

the most concerning issues for the OFD platforms, which refer to dynamically dispatching a large number of orders

to riders reasonably in very limited decision time. To solve such a challenging combinatorial optimization problem, an

effective matching algorithm is proposed by fusing the reinforcement learning technique and the optimization method.

First, to deal with the large-scale complexity, a decoupling method is designed by reducing the matching space

between new orders and riders. Second, to overcome the high dynamism and satisfy the stringent requirements

on decision time, a reinforcement learning based dispatching heuristic is presented. To be specific, a sequence-to-

sequence neural network is constructed based on the problem characteristic to generate an order priority sequence.

Besides, a training approach is specially designed to improve learning performance. Furthermore, a greedy heuristic

is employed to effectively dispatch new orders according to the order priority sequence. On real-world datasets,

numerical experiments are conducted to validate the effectiveness of the proposed algorithm. Statistical results

show that the proposed algorithm can effectively solve the problem by improving delivery efficiency and maintaining

customer satisfaction.

Key words: order dispatching; on-demand delivery; reinforcement learning; decoupling strategy; sequence-to-

sequence neural network

1 Introduction

The wide application of computer and Internet
technology has promoted the online-to-offline (O2O)
e-commerce which has gained significant growth[1] over
the past decades. Meanwhile, with the support of modern
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logistics, O2O e-commerce spawns the on-demand food
delivery (OFD) service. Some of the most well-known
OFD providers include Meituan, Ele me, Uber Eats,
Grubhub, Deliveroo, and Swiggy. The users only need
to place orders on smartphones, and the platforms will
inform the restaurants to prepare meals and send riders
to deliver meals to the users. Recently, with the rapid
development of the lazy economy, the traditional OFD
platform is not limited to providing meal delivery and
extends to delivering medicine, flowers, and all kinds
of goods from supermarkets, which have deeply seeped
into most aspects of daily life. Such a purchase mode
saves time for users on cooking at home or heading to the
stores so that they can spare and enjoy more leisure time.
Besides, the OFD service also offers job opportunities
with decent wages for couriers and helps restaurants
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or stores overcome the disadvantages in locations[2] by
connecting them with potential online customers. As
a result, OFD commerce attracts more and more users,
freelancers, and business owners, leading to a continuous
increase in market scale. According to the report by
Statista, the worldwide market volume of online food
delivery is projected to reach 1.65 trillion US dollars
by 2027 from 2023 with an expected compound annual
growth rate of 12.67%[3].

However, the business expansion also incurs fierce
competition, which drives the OFD enterprises to
improve service quality for a larger market share. One
of the operational issues that many OFD providers are
concerned about is how to dispatch orders for higher
delivery efficiency and better customer satisfaction. This
issue is more prominent during the on-peak dining hours
when new orders need to be assigned to riders who have
already carried multiple previously dispatched orders to
serve. The OFD platforms should not only consider how
to deliver new orders on time but also guarantee that
the assignment will not influence the unfinished orders
too much. In a word, it is crucial to obtain a reasonable
dispatching scheme that can meet all demands on time
while reducing the detours for riders as well.

Essentially, the order dispatching problem together
with the route planning problem can be formulated as a
special extension of the vehicle routing problem, which
is named as OFD problem in this paper. Besides its
NP-hard nature, there are multiple challenges of the
order dispatching problem under realistic circumstances,
such as high dynamism, large-scale complexity, and
stringent time requirements. To be specific, new orders
are flooding into the platforms continuously and the
locations of riders are changing dynamically, which
mean that the platforms need to make real-time decisions.
Besides, the number of orders and riders to be scheduled
is massive in China. Moreover, to ensure the taste of food
and spare enough time for riders to deliver, the platforms
are forced to make very quick decisions (usually in tens
of seconds). Therefore, the order dispatching problem in
OFD has been acknowledged as the ultimate challenge
in last-mile logistics[4, 5].

Such a challenging problem has drawn increasing
attention from researchers in recent years. Cosmi et
al.[6, 7] modeled the OFD problem with one rider
and one restaurant as a single machine scheduling
problem, which was formulated into mixed integer
linear programming (MILP) models, and optimized
by a dynamic programming algorithm[6] and optimizer

Gurobi[7]; for the similar scenario, Yu et al.[8] derived the
lower bounds for various rider capacities and designed
two dispatching algorithms to minimize the delay. For
a special OFD scenario where a customer could order
meals from multiple restaurants, Steever et al.[9] built an
MILP model and designed two heuristics, and Wang et
al.[10] proposed a three-stage order dispatch scheme that
outperformed the heuristics in Ref. [9]. Ulmer et al.[11]

presented an anticipatory customer assignment policy
with a postponement strategy and time buffer to account
for the stochasticity from dynamic requests and food
preparation. Liu et al.[12] integrated travel time predictors
into the order assignment optimization and proposed
a branch-and-price algorithm. Kohar and Jakhar[13]

presented an augmented two-index formulation to
model the capacitated multi pickup online food delivery
problem and proposed a branch-and-cut algorithm. Tao
et al.[2] proposed a personalized order assignment and
routing model for different types of riders and developed
a tabu search algorithm. For a future scenario where food
is delivered by unmanned aerial vehicle, Liu[14] built
a mixed integer programming model and proposed an
optimization-driven progressive algorithm, and Huang
et al.[15] proposed an iterated heuristic framework
integrated with a simulated annealing based local search
to periodically schedule tasks.

Besides, more and more researchers begin to focus
on the realistic scenarios originating from the OFD
platforms. For the meal routing problem from Grubhub,
Reyes et al.[4] developed a rolling horizon algorithm
while Yildiz and Savelsbergh[5] proposed a new
mathematical model solved by a simultaneous column
and row generation method. For the order dispatching
problem from Meituan, Chen et al.[16, 17] and Zheng et
al.[18] designed a matching algorithm with an adaptive
tie-breaking strategy, an imitation-learning enhanced
iterated matching algorithm, and a filtration-based
iterated greedy algorithm to effectively dispatch orders;
besides, multiple efficient route planning techniques
were developed in Refs. [19–21]. For the OFD scenario
in Swiggy, Kottakki et al.[22] modeled the customer
experience as a time-variant piece-wise linear function
and built a multi-objective optimization model solved by
Gurobi; Paul et al.[23] proposed a generic optimization
framework with a batching algorithm and a mathematical
model to assign the order batches; Joshi et al.[24] also
proposed a FOODMATCH algorithm to group the orders
and assign the order batches. For the meal delivery
problem from Getir, Jahanshahi et al.[25] and Bozanta
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et al.[26] modeled the dynamic arrival of orders and the
rider behaviors as a Markov decision process where the
riders can accept or reject the orders. The authors trained
multiple extensions of the deep Q-Network to dispose of
the dynamic customer requests.

From the above literature, it is observed that the OFD
scenarios considered in different works differ because
the operation mode and market size vary across different
regions and OFD platforms. In this paper, we typically
investigate the OFD problem in China which constitutes
the biggest share worldwide according to Statista[3].
Taking Meituan as an example, there are over 2 000 000
orders and over 100 000 riders to be scheduled per day
on average in Beijing, which amounts to a large-scale
combinatorial optimization problem. Meanwhile, the
platform needs to periodically solve the problem every
minute. In this case, most existing exact methods or
swarm intelligence based optimization algorithms[27]

cannot be directly applied because these methods are
too time-consuming to solve large-scale instances. The
reinforcement learning (RL) approach has shown great
potential to solve complex combinatorial optimization
problems effectively and efficiently, which can meet the
stringent time requirements of OFD. To the best of our
knowledge, few research papers have applied RL to the
OFD problem except Refs. [25] and [26]. However, the
problem scale is smaller (less than 300 daily orders and
less than 10 riders) and the new orders can be rejected
in Refs. [25] and [26], which is far from the problem
scenario in this paper so the proposed RL method cannot
be directly employed. Therefore, it is still of significance
to develop fast and effective algorithms to meet such
extreme OFD requirements on limited computation time
and large problem scale.

In this paper, we address the order dispatching
problem originating from one of the largest OFD
platforms in China, and propose a reinforcement learning
and decoupling strategy based matching algorithm
(RLDMA). First, to deal with the large-scale complexity,
a decoupling method is designed, which reduces the
solution space by only considering the riders with
the best potential for each new order. Second, to
tackle the high dynamism and meet the stringent time
requirements, an RL-based dispatching algorithm is
developed, which periodically dispatches new orders to
appropriate riders. Specifically, a sequence-to-sequence
(seq2seq) network is constructed based on the problem
characteristic to generate the order priority sequence,
which is trained by a specially designed training

approach to improve the learning performance; then, a
greedy heuristic is employed to effectively dispatch new
orders. Numerical experiments are conducted to test the
performance of the proposed algorithm by comparing
it with other methods. Statistical results show that
the proposed algorithm can well solve the problem by
improving delivery efficiency and maintaining customer
satisfaction.

2 Problem Description

To respond to the dynamically arriving orders in
time, the rolling horizon approach is employed, which
accumulates the new orders and solves the following
static optimization problems in a series of time windows.
With the notations in Table 1, the order dispatching
problem can be described as follows:

At the current time T , a set of n new ordersO received
in [T ��T , T ] need to be dispatched to a set ofm riders
Q. Each rider qj may be delivering a set of old orders
Ooj with a travel speed vj . Each new order can only be
dispatched to a single rider, and each old order cannot
be re-dispatched to other riders. Each order oi needs to
be delivered before a committed soft deadline ti . The

Table 1 Notations.
Notation Description

Input
parameter

T Current time to make decisions
�T Length of a time window

n
Number of new orders received in [T �
�T , T ]

m Number of riders
Q Set of all riders. Q D fq1; q2; : : : ; qmg

O
Set of all new orders. O D fo1; o2; : : : ;
ong

Oo
j

Set of undelivered old orders carried by
qj

Oo
Set of all undelivered old orders. Oo D
Oo
1
[ Oo

2
[ � � � [ Oom D fonC1;

onC2; : : : ; onCug

L
Set of all site nodes. L D fl1; l2; : : : ;
lmg

P
Set of all pickup nodes. P D fiCjoi 2
O [Oog

D
Set of all delivery nodes. D D fi�joi 2
O [Oog

ti Committed delivery time of order oi
vj Travel speed of rider qj
di1;i2 Travel distance from node i1 to node i2

Decision
variable

On
j

Set of new orders dispatched to qj .
On
j
� O

Intermediate
variable

Rn
j

New route of rider qj
Ro
j

Old route of rider qj
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old order that has been picked up is associated with a
single delivery node i� 2 D. Each of the remaining old
orders and all new orders is associated with a pickup
node iC 2 P and a delivery node i� 2 D. Each rider
qj locates at node lj 2 L. Then the problem can be
described on GraphG = (V , A/, where V D L[P [D
is the node set and A is the arc set. Each arc (i1, i2/ 2 A
(i1, i2 2 V , i1 ¤ i2/ relates to a travel distance di1;i2 .
An example is provided in Fig. 1 to better describe the
problem. There are several constraints as follows:
� Food cannot be picked up until it has been prepared.
� Food should be picked up first before being

delivered.
� The total weight of food that a rider carries must be

less than the trunk capacity.
The goal is to optimize customer satisfaction and

delivery efficiency by dispatching each new order to
riders appropriately. Define the set of new orders
dispatched to each rider Onj � O as the decision
variables, and then the optimization objective is defined
in Eq. (1).

Min ADC D
1

n

X
qj2Q

C
�
Onj
�

(1)

Equation (1) calculates the average dispatching cost
(ADC) after dispatching all orders, where C.Onj / is the
cost of dispatching a set of new orders Onj to rider qj ,
and the decision variable sets satisfy On1 [O

n
2 [ � � � [

Onm D O and Onj \ O
n
j 0 D ∅ for any two different

riders qj and qj 0 . Given the intermediate variables new
routeRnj and old routeRoj , i.e., the route of rider qj after

and before being dispatched with Onj , respectively, the
dispatching cost C.Onj / can be calculated in Eq. (2).

C
�
Onj
�
D wt

ˇ̌
TC

�
Rnj
�
� TC

�
Roj
�ˇ̌
C

wd
ˇ̌
DC

�
Rnj
�
� DC

�
Roj
�ˇ̌
C L

�
Rnj
�

(2)

L
�
Rnj
�
D

(
0; if Rnj satisfies all constraintsI
M; if Rnj violates any constraint

(3)

where TC
�
Rj
�

represents the delay of all orders in
route Rj , Rj 2 fRnj ; R

o
j g, which reflects customer

satisfaction; DC.Rj / is the total travel distance of route
Rj , which reflects delivery efficiency; wt and wd are
the weights to balance customer satisfaction and delivery
efficiency, respectively; and L.Rnj / is a penalty term on
the new route Rnj to check if the constraints are satisfied,
which is defined in Eq. (3) where M is a large number.
The specific calculation of TC

�
Rj
�

and DC
�
Rj
�

is
consistent with the previous researches[16–18].

It should be noted that the new route Rnj starts with
the site node lj , and is constructed with the pickup and
delivery nodes of the old orders in Ooj and the assigned
new orders in Onj . Scheduling the route of a rider can
be modeled as a pickup and delivery problem with a
single vehicle and open route. Generally speaking, a
route Rj can be obtained by any route planning method.
Since this paper mainly studies the order dispatching
problem and due to the limited space, the route planning
methods used in this paper are not elaborated on but can
be referred to in Refs. [17–19].

3 Methodology

As mentioned above, the exact algorithm and meta-

(a) New orders to be dispatched (b) A feasible solution

Fig. 1 An example of the order dispatching problem. There are two new orders to be dispatched and three riders with six old
orders to serve. The committed delivery time of each order is given alongside the delivery node. A decision needs to be made
on how to dispatch new orders o7 and o8, the pickup and delivery nodes of which are circled by the red dotted line. A feasible
solution is given where o7 and o8 are dispatched to q3 and q2, respectively.
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heuristics cannot well converge in limited decision
time due to the large-scale complexity of the problem.
Actually, constructive heuristics are usually adopted by
the platforms as a trade-off method to meet the stringent
time requirements. Therefore, this paper considers the
heuristic method to solve the order dispatching problem.
However, although it can generate a solution fast, the
heuristic sometimes cannot well guarantee the solution
quality. To overcome this issue, an effective dispatching
heuristic is presented by fusing the advantages of the
RL mechanism and optimization strategies. Specifically,
to deal with the large-scale complexity, a decoupling
method is designed which reduces the matching space
based on the analysis of the relationship between new
orders and riders. Besides, an RL-based dispatching
method is developed, which exploits the dispatching
priority of orders to improve the overall solution
quality. Finally, according to the priority, the orders are
dispatched to the corresponding best riders in order by
the greedy heuristic to obtain a high-quality dispatching
solution.

3.1 Calculating dispatching costs

The first step of RLDMA is constructing a dispatching
cost matrix. Specifically, to evaluate whether it is
reasonable to dispatch a new order to a certain rider,
the dispatching cost is calculated for each pair of new
orders and riders based on Eq. (2). An example of the
dispatching cost matrix is illustrated in Fig. 2 where
the dispatching cost of the best rider for each new order
is marked with red color. According to the dispatching
cost matrix, it is natural to consider matching each new
order with its best rider. By analyzing each pair of the
new order and its best rider, there will be two types of
matching relationships.

The first is the one-to-one best matching where a best
rider is related to only one new order. In this case,
dispatching this new order to any other rider will cause
the dispatching cost to increase, and any other new order
is related to another rider with a smaller dispatching cost.
Thus, it can be indicated that dispatching the new order

Fig. 2 Dispatching cost matrix.

to its best rider may be the optimal match.
The second type is the many-to-one best matching

where a best rider is related to more than one new order,
which means that the delivery resources are relatively
insufficient since there are more new orders than proper
riders. In this case, it is necessary to decide whether to
dispatch more than one order to a rider, defined as bundle
dispatching for simplicity, or evenly dispatch the new
orders to multiple riders. Note that bundle dispatching
helps to reduce travel distance but may also be riskier
at delivering all the orders on time. Therefore, how to
trade off delivery efficiency and customer satisfaction by
balancing the workload of riders is crucial for optimizing
many-to-one best matching.

3.2 Decoupling

According to the above analysis, it is important to deal
with the many-to-one best matching scenario. Since
the many-to-one best matching only considers the rider
with minimum dispatching cost for each new order,
the matching space can be largely reduced. However,
this greedy manner also means that it would be easy
to be trapped in local minimum because it lacks the
exploration of the matching space.

It is discovered from practical experience that the new
orders are usually dispatched to one of the riders with
smaller dispatching costs. Therefore, more attention
can be paid to focusing on optimizing the matching
relationship between each new order and these riders
rather than all riders. Meanwhile, the exploration ability
can also be enhanced since matching space is enlarged
compared with the one-to-one and many-to-one best
matching. However, a rider may simultaneously be the
rider with smaller dispatching costs of multiple new
orders, which means that the matching relationship is
more complicated than the one-to-one and many-to-one
best matching. Thus, it is of significance to reconstruct
the matching relationship between new orders and riders.

To this end, this paper proposes a decoupling
approach that aims at reducing the matching space while
maintaining the exploration ability. For convenience, we
define the following terms.

Top riders. Referring to the riders with smaller
dispatching costs, which can be determined as follows:
For a new order oi , sort all the riders qj 2 Q in
ascending order of dispatching cost C.Onj / whereOnj D
foig, and the first K riders are the top riders of oi where
K is a parameter.

Candidate orders. For each top rider qj of a new
order oi , oi is defined as a candidate order of qj .
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Non-critical order-rider set. Which is composed of
one new order and its top riders. Each rider in this set is
not the top rider of any other new orders.

Critical order-rider set. Which is composed of at
least two new orders and their top riders. There is at
least one rider in this set that is simultaneously the top
rider of more than one new order.

With the above definitions, the steps of the proposed
decoupling method are described as follows:

Step 1: Initialize Ou D O . Find the top riders for
each new order and the candidate orders for each top
rider accordingly.

Step 2: Initialize the current order-rider set .C;R/ D
.∅;∅/.

Step 3: For the first order in Ou, put the
corresponding top riders into set C and their candidate
orders into set R. For each order that is newly put
into C, put the corresponding top riders into C and their
candidate orders into R. Repeat the above process until
no new orders or riders can be put into C or R.

Step 4: Remove the orders in C from Ou. Store the
current .C; R/ and classify it as a non-critical order-
rider set or critical order-rider set according to the
number of new orders in C.

Step 5: If Ou ¤ ∅, then turn to Step 2; otherwise,
output all the stored non-critical order-rider sets and
critical order-rider sets.

The pseudo-code is given in Algorithm 1. Figure 3
illustrates an example with 4 new orders and 9 riders,
whereK is set as 3. According to the decoupling method,
all the new orders and riders can be decoupled as a
critical order-rider set with 3 new orders and 6 riders
and a non-critical order-rider set with 1 new order and 3
riders.

Compared with the original matching space with all
new orders and riders, the problem scale of each critical
or non-critical order-rider set is reduced. Then, for each
non-critical order-rider set, the sole new order will be
directly dispatched to its best rider. For each critical
order-rider set, how to dispatch each new order will
be determined by the following RL-based dispatching
approach.

3.3 RL-based dispatching

For each critical order-rider set, two decisions need to be
made. The first is to decide the priority of dispatching
each new order. The orders that are dispatched first will
change the statuses of the corresponding riders, thus
indirectly affecting the dispatching of the remaining new

Algorithm 1 Decoupling method
Input: temporary new order set Ou

1: Initialize T  ∅, N  ∅, Ou  O

2: while Ou ¤ ∅
3: Let oc  POP .Ou/, Oc  focg
4: Initialize R ∅, C  focg
5: while Oc ¤ ∅
6: Let oc  POP .Oc/
7: for each top rider qj of oc
8: if qj … R:
9: R D R [ fqj g

10: for each candidate order oi of qj
11: if oi … C:
12: Let C D C [ foi g
13: Let Oc D Oc [ foi g
14: Let Ou D Oun foi g
15: end if
16: end for
17: end if
18: end for
19: end while
20: if jCj > 1:
21: T D T [ f.C;R/g
22: else:
23: N D N [ f.C;R/g
24: end if
25: end while
Output: non-critical order-rider sets N and critical order-rider

sets T .

Fig. 3 An example of the decoupling method.

orders and the final dispatching results. This process is
sequential decision-making where the RL mechanism
can be introduced to explore. The second is to decide
which rider each new order should be dispatched to,
which directly affects the final dispatching quality.

To balance the exploration and exploitation, the
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RL method and greedy heuristic are hybridized for
dispatching. Specifically, a seq2seq framework is used
to generate the order dispatching priority, which is
trained by a specially designed RL method to explore
the sequence space. The greedy heuristic is used
to determine the rider for each new order, which is
beneficial to guaranteeing the solution quality. The
details are described as follows.
3.3.1 Encoder
The encoder extracts the information about the new
orders and the relationship between them. In this paper,
the gate recurrent unit, one type of recurrent neural
network, is adopted as the encoder. The mechanism
of the encoder is shown in Fig. 4. For each critical order-
rider set, the following steps are executed.

Step 1: Use the one-dimensional convolutional
neural network (Conv1d) to process the feature matrix
constructed by the raw feature vector of each new
order. The output of the Conv1d represents the high-
dimensional embeddings of the new orders, which is
denoted as f!!!1;!!!2; : : : ;!!!nt g, where nt is the number
of new orders in the current critical order-rider set.

Step 2: Sort the new orders in descending order of
critical rate. For a new order oi , the critical rate is
defined as the total number of candidate orders that the
top riders of oi are related to. If the top riders of oi are
simultaneously the top riders of more new orders, the
critical rate of oi is larger. In other words, a larger value
of the critical rate indicates that the dispatching results
of oi will affect more new orders.

Step 3: According to the order sequence generated in
Step 2, feed each new order into the encoder in turn until
the encoder outputs the final hidden state ent .

The hidden state vector produced by the encoder
represents the extracted information and will be fed into
the decoder.
3.3.2 Decoder
The decoder is designed for generating the dispatching
priority of new orders. The priority depends not only
on the information of the new order itself but also on
the rider information. This is because dispatching new
orders to different riders will influence the subsequent
dispatching of the remaining new orders. Therefore, it is

Fig. 4 Illustration of the encoder.

crucial to make full use of the information of both new
orders and riders.

To enable the decoder to learn the relationship
between each new order and riders sufficiently, the
attention mechanism is employed, which extracts the
importance of new orders with different riders and uses
it as the input. Besides, the regret mechanism is also
introduced, which is combined with the predictions of
the network for generating the priority. The exploration
is ensured by the network while the bad case can be
avoided by the regret value. The mechanism of the
decoder is illustrated in Fig. 5. The specific steps of the
decoder are elaborated on as follows:

Step 1 (calculating the high-dimensional rider
embeddings): Use Conv1d to process the feature
matrix constructed by the raw feature vector of each
rider. The output of the Conv1d represents the high-
dimensional embeddings of the riders, which is denoted
as fr1; r2; : : : ; rmt g, where mt is the number of riders in
the critical order-rider set.

Step 2 (calculating the context vector): Use the
final hidden state vector ent of the encoder as the initial
hidden state vector of the decoder, i.e., d0 D ent .
Calculate the alignment scores, weights, and context
vector with the embeddings of riders rj and the hidden
state vector di according to Eqs. (4) to (6):

uij D vT tanh
�
W1rj CW2di

�
(4)

aij D softmax
�
uij
�

(5)

ci D
mtX
jD1

aij rj (6)

where vector v, matrix W1, and matrix W2 are trainable
parameters, uij is the alignment score of the new order
oi and rider qj , aij is the normalized attention weight,
and ci is the context vector representing the relationship

Fig. 5 Illustration of the decoder.
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between the new order oi and all the riders in the current
critical order-rider set.

Step 3 (calculating the input of the decoder):
Concatenate the high-dimensional embedding !!!i of the
previous output order oi and the context vector ci of oi ,
which yields the new embedding hi of oi as Eq. (7). hi
is fed into the decoder as the next input.

hi D !!!i jjci (7)

Step 4 (calculating the probability vector of the
priority): Use the linear transformation to process the
hidden state vector di of the decoder, which yields the
probability vector of the priority yi as Eq. (8) shows.
Then, use the softmax function to process yi and obtain
the normalized probability vector of the priority pi as
Eq. (9) shows.

yi D Wddi C bd (8)

pi D softmax .yi / (9)

where Wd and bd are the trainable parameter matrix and
the trainable bias vector, respectively. It should be noted
that the length of the normalized probability vector of
priority equals the number of new orders in the critical
order-rider set.

Step 5 (generating the order priority sequence):
Calculate the regret value rv˙i of each new order oi
according to Eq. (10) and obtain the regret value vector
rv D Œrv1; rv2; : : : ; rvnt �. Combine the regret value and
the normalized probability vector of priority as the final
priority vector according to Eq. (11).

rvi D Ci;Œ1� � Ci;Œ2� (10)

Pi D rvC pi (11)

where Ci;Œ1� and Ci;Œ2� are the dispatching cost of
the best rider and second-best rider for order oi ,
respectively. The new order with the largest priority
is selected as the current output new order of the decoder.
Meanwhile, use the masking technique to set the priority
as zero in case the new order is repeatedly selected.
Denote the generated new order priority sequence as˚
oŒ1�; oŒ2�; : : : ; oŒnt �

	
.

3.3.3 Training approach
In this paper, the policy-based RL method is employed
to train the seq2seq network. According to the above
steps, the seq2seq network directly generates the order
priority sequence without the need to update the states
and calculate the cumulated reward. Thus, the evaluation
of the order priority sequence, i.e., the total dispatching
costs, can be utilized to replace the cumulated reward
for credit assignment. However, the total dispatching

costs cannot be directly used due to two reasons: the
scales of different critical order-rider sets differ, so the
total dispatching costs need to be normalized; besides,
simply using the total dispatching costs as the weights
in the loss function would lead to the training bias, so
a baseline needs to be introduced to make the training
more stable. Therefore, the total dispatching cost is
processed as follows:

C.�js/ D
TDC.�js/ � TDCbest .s/

TDCbest .s/
(12)

where TDC .�js/ is the total dispatching cost that results
from policy � on instance s, TDCbest .s/ is the best total
dispatching cost on instance s, which is stored during
the history training process and used as the baseline, and
C.�js/ is the weight for credit assignment. The policy
gradient method is used for updating the parameters of
the networks as Eq. (13) shows and the Monte Carlo
sampling is adopted to approximate the expectation.
r�J .�/ D E��p� .�js/ ŒC .�js/r� logp� .�js/� (13)
Note that the total dispatching cost depends on the

final dispatching results which are affected by both
the order priority sequence and the greedy heuristic.
Thus, the total dispatching costs cannot directly reflect
the quality of the order priority sequence because the
greedy heuristic also influences the total dispatching
cost. Besides, different order priority sequences may
lead to the same dispatching results. Therefore, it is
necessary to investigate which part of the order priority
sequence truly affects the final dispatching results. The
dispatching cost of the corresponding part will be used to
evaluate the quality of the whole order priority sequence
and guide the policy network to learn. To this end, a
resultant order based selective learning strategy (ROSLS)
is designed. In the ROSLS, only the resultant orders will
be selected for calculating the dispatching costs and
then updating the policy network. For simplicity, the
following definitions are given before elaborating on the
process of ROSLS.
� History best order priority sequence seq*:

the order priority sequence that yields the smallest
dispatching cost during the training process. Specifically,
a buffer will be reserved to store the history best order
priority sequence and its total dispatching cost, i.e.,
TDCbest .s/. The buffer will be updated once a better
order priority sequence with a smaller total dispatching
cost is found.
� Resultant order: the order that is in different

positions in the current order priority sequence seq�

generated by policy � and the history best order priority
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sequence seq�. For an example with 6 new orders,
assume that seq� and seq� are 1-3-4-2-6-5 and 1-3-6-2-
4-5, respectively, and the resultant orders are 4 and 6.

The process of the ROSLS is as follows. First,
calculate the resultant dispatching cost C r.Onj / of each
order in seq� according to Eq. (2). Specifically, for
the rider that is dispatched with only one new order, the
resultant dispatching cost is calculated as C r.Onj / D
C.Onj /; for the rider that is dispatched with more than
one new order, the dispatching cost is averaged as the
resultant dispatching cost, i.e., C r.Onj / D C.O

n
j /=jO

n
j j.

Then, find the resultant orders and use the corresponding
resultant dispatching cost to calculate the weights in Eq.
(12). This process is realized by masking the resultant
dispatching cost of the other new orders so that only the
resultant dispatching cost of the resultant orders will be
included in the training loss.
3.3.4 Greedy dispatching heuristic
To ensure the solution quality, the following greedy
heuristic is adopted to dispatch each new order.
Specifically, for each critical order-rider set, the order
priority sequence is generated based on the seq2seq
network. Then, dispatch each new order in order priority
sequence to its best rider in turn. Each time a new
order oi is dispatched, the dispatching costs among the
remaining new orders and the rider that are dispatched
with oi will be recalculated, and the best rider for
each remaining new order will be updated according
to current dispatching costs. Repeat the above steps until
all the new orders in all the critical order-rider sets are
dispatched.

4 Experiment

In this section, the performance of the proposed method
is evaluated and analyzed by comparing it with other
methods in terms of different metrics.

4.1 Experiment setting

We collect the history delivery data generated from 10:00
am to 1:00 pm in Longyan, Fujian province, China, as
datasets. The datasets are separated into the training set
and test set according to the dates. The data generated in
the first couple of dates are used as the training set and
the remaining are used as the test set. The length of the
time windows is set as 1 min. Each instance is related
to a specific time window where a number of riders and
new orders need to be scheduled.

The parameters are set as follows. The weight
coefficients wt and wd for calculating the dispatching

cost are both set as 1. The sizes of the rider embeddings
and order embeddings are both 100 and the size of
the hidden layer of the recurrent neural networks is 50.
There is only one crucial parameter K in the proposed
algorithm, which is the number of the top riders for each
order for the decoupling method. A larger K means
that the critical order-rider set will include more new
orders and riders so that the matching space is larger
but the algorithm will consume more computation time.
Therefore, it is not suggested to set K as an overlarge
value. To properly set K, we carried out a preliminary
experiment to investigate the influence of K on the scale
of the critical order-rider set as shown in Figs. 6 and 7.

Specifically, the numbers of riders or new orders are
recorded on each instance as K changes. The average,
maximal, and minimal values among all instances are
plotted in Figs. 6 and 7.

From Fig. 6, it is natural that the number of riders
in a critical order-rider set becomes larger when each
new order is related to more top riders. However, the
number of new orders in a critical order-rider set tends
to be saturated as K increases according to Fig. 7. This
is because the new orders are mostly connected by the
top riders with higher ranks. The riders that rank lower
are usually not appropriate to be dispatched with a new
order so including such riders is hard to absorb other

Fig. 6 Trend of the rider number in a critical order-rider
set.

Fig. 7 Trend of new order number in a critical order-rider
set.
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new orders. In other words, the new orders that share
the same top riders are usually clustered spatially or
temporally, so there must be a threshold of K that can
well decouple all the riders and new orders into different
sets/clusters. According to the above results and analysis,
we set a moderate value of K as 5.

To make a fair comparison, several effective
dispatching heuristics are adopted to compare with
the proposed method. The first heuristic is the best
matching with the regret operator (BM-REG)[16], which
first dispatches orders to the best riders and dispatches
the remaining orders to the riders with the largest regret
values. To test the effectiveness of the proposed RL-
based training strategy, we set two variants of the
proposed method, i.e., rdGD and gGD, which are the
same as the proposed method except that they use
different rules to generate the order priority sequence.
Specifically, the rdGD randomly generate the order
priority sequence and gGD sort the orders in ascending
order of dispatching cost corresponding to their best
riders.

The relative percentage deviation (RPD) in Eq. (14) is
adopted as the main metric to evaluate the optimization
performance of the algorithms.

RPD D
ADCalg � ADCbest

ADCbest
� 100 (14)

where ADCalg is the average dispatching cost, i.e.,
the optimization objective in Eq. (1), obtained by a
certain algorithm alg, and ADCbest is the best average
dispatching cost obtained among all algorithms as
the baseline. The smaller the RPD, the better the
optimization performance.

Besides, the following observation metrics are also
employed to evaluate the performance of algorithms in
terms of effectiveness and efficiency.
� Average increased distance (AID):

AID D
1

n

mX
jD1

.DC.Rnj / � DC.Roj // (15)

� Delay rate (DR):

DR D
jOd j

n
� 100% (16)

where DC.Rnj / and DC.Roj / are the total travel distances
of the old and new routes for a rider qj , respectively.
The AID reflects the average increased travel distance
for delivering a new order. A smaller value of AID
indicates a higher delivery efficiency. Od � O is the
set of orders that are delivered with a delay. The delay
rate represents the proportion of the delayed orders in

all orders. The smaller the delay rate, the better the
customer satisfaction.

4.2 Experiment result and discussion

The results of RPDs, AIDs, and DRs are listed in
Tables 2–4. The instances are classified into 9 groups
by the number of new orders n in the second column.
Accordingly, the number of riders m is recorded in the
third column for each group. The interval represents the
range of the number of new orders or riders for each
instance in this group. For example, the instance that

Table 2 Results of RPD.

Group n m
RPD

RLDMA BM-REG rdGD gGD
1 [10, 20) [173, 296] 0.527 1.745 1.335 0.751
2 [20, 30) [213, 433] 1.548 2.893 1.681 2.074
3 [30, 40) [297, 503] 0.746 4.005 1.517 2.179
4 [40, 50) [403, 580] 0.917 2.192 1.761 3.115
5 [50, 60) [245, 572] 2.601 4.693 1.312 4.642
6 [60, 70) [544, 641] 0.497 4.009 3.474 4.971
7 [70, 80) [568, 661] 0.826 4.713 5.471 5.558
8 [80, 90) [558, 660] 2.089 4.656 2.319 3.205
9 > 90 [604, 695] 0.558 5.358 3.734 5.670

Average 1.145 3.807 2.512 3.574

Table 3 Results of average increased distance.

Group n m
AID

RLDMA BM-REG rdGD gGD
1 [10, 20) [173, 296] 575.485 583.888 582.771 577.006
2 [20, 30) [213, 433] 498.987 508.952 501.670 503.257
3 [30, 40) [297, 503] 397.209 409.136 398.939 401.995
4 [40, 50) [403, 580] 320.214 323.426 322.565 326.041
5 [50, 60) [245, 572] 317.134 326.552 315.029 322.820
6 [60, 70) [544, 641] 232.845 240.029 238.968 243.020
7 [70, 80) [568, 661] 198.721 207.144 208.937 209.349
8 [80, 90) [558, 660] 185.893 190.443 185.891 186.850
9 > 90 [604, 695] 172.272 179.489 176.069 179.930

Average 322.084 329.895 325.649 327.808

Table 4 Results of delay rate.

Group n m
DR (%)

RLDMA BM-REG rdGD gGD
1 [10, 20) [173, 296] 1.724 1.695 1.714 1.726
2 [20, 30) [213, 433] 3.708 3.791 3.729 3.596
3 [30, 40) [297, 503] 4.059 4.001 4.237 4.141
4 [40, 50) [403, 580] 3.088 3.103 2.966 3.103
5 [50, 60) [245, 572] 3.337 3.408 3.070 3.296
6 [60, 70) [544, 641] 2.527 2.636 2.571 2.548
7 [70, 80) [568, 661] 3.061 2.998 2.962 2.993
8 [80, 90) [558, 660] 1.950 2.024 2.085 2.006
9 > 90 [604, 695] 2.631 2.536 2.583 2.595

Average 2.898 2.910 2.880 2.889



396 Tsinghua Science and Technology, April 2024, 29(2): 386–399

contains 10–19 new orders will be classified in Group 1.
Then, the statistics of the number of riders among all
instances in Group 1 are calculated, which corresponds
to a minimum of 173 riders and a maximum of 296
riders. The value in each cell is the average value of all
instances in this group.

From Table 2, it can be seen that the proposed
RLDMA yields the best RPDs on nearly all groups. This
phenomenon indicates that the RLDMA is able to deal
with scenarios with different numbers of new orders,
which validated the adaptability of the RLDMA. Note
that on Group 5 the RLDMA is inferior to the rdGD.
This may be because the rdGD has good exploration
capability since it randomly generates the order priority
sequence. However, this also indicates that rdGD lacks
the exploitation ability relatively so that it is inferior
to the RLDMA on most groups. Nevertheless, the
RLDMA still surpasses the other two algorithms on

Group 5. Besides, the average RPD of RLDMA is
the smallest among all the algorithms as the last row
shows. Therefore, it can be concluded that the proposed
RLDMA performs the best in terms of the optimization
metric.

Furthermore, as the RLDMA outperforms the rdGD
and gGD, the effectiveness of the proposed seq2seq
network and the training approach is validated, which
means that the proposed method can well extract the
relationship between orders and riders so that it can
generate an order priority sequence with high quality.

To investigate the performances of the algorithms
more specifically, we illustrate the boxplots on each
group in Fig. 8. It can be seen that on Groups 1 to 5,
the median of RLDMA is close to that of rdGD or gGD.
Especially, on the first group, the median RPDs of all
algorithms approximate to zero. This is because the
problem scale of the instances in Group 1 is small and

(a) Group 1 (b) Group 2 (c) Group 3

(d) Group 4 (e) Group 5 (f) Group 6

(g) Group 7 (h) Group 8 (i) Group 9

Fig. 8 Boxplot of the RPDs on each group.
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it is easier for algorithms to achieve good dispatching
results. However, the boxplots on Groups 6 to 9 show
that as the number of new orders increases, the gap
of median between the RLDMA and other algorithms
becomes larger. This phenomenon indicates that the
advantage of RLDMA is more obvious on larger scales
of instances, which demonstrates the effectiveness of
RLDMA to deal with the large-scale complexity.

Besides, it is obvious that the range of RPDs for
RLDMA is smaller than those of the other algorithms
on all groups. Especially, the maximal RPDs of the
RLDMA are also remarkably smaller on all groups.,
Although the rdGD is capable of exploration and
achieves good results on Group 5 with small media and
deviation as mentioned before, the performance of rdGD
is not stable enough since it also fluctuates intensely on
Groups 1, 8, and 9. Thus, the RLDMA outperforms
significantly the rdGD in terms of stability. In a word,
the performance of RLDMA is more stable than those of
the other algorithms, which demonstrates the robustness
of the RLDMA.

Tables 3 and 4 show the results of delivery efficiency
and customer satisfaction. From Table 3, it is discovered
that the AIDs of RLDMA are smaller than those of
the other algorithms on 7 out of 9 groups. Although
on Groups 5 and 8, the RLDMA performs worse than
the rdGD, it still outperforms the other two algorithms.
Overall, the average AID of RLDMA is the best.
Therefore, it can be concluded that the RLDMA is able
to increase the delivery efficiency compared with other
algorithms. Table 4 shows that the rdGD performs best
on the delay rate. Despite the inferiority of RLDMA
to rdGD and gGD on some groups, the delay rates of
all algorithms are close either on each group or from
the perspective of average results. Thus, it indicates
that the RLDMA can guarantee customer satisfaction
not to change overly. All in all, it can be concluded
that the RLDMA can improve delivery efficiency while
maintaining customer satisfaction to some degree.

5 Conclusion

In this paper, the order dispatching problem in the on-
demand food delivery service is addressed. To overcome
the challenges of high dynamism, large-scale complexity,
and stringent time requirements, an effective matching
algorithm with reinforcement learning and decoupling
strategy is proposed. The problem is formulated into a

series of static problems in continuous time windows to
deal with the high dynamism. The large matching space
can be reduced by the proposed decoupling method
which only considers the riders with the best potential
for each new order. The stringent requirements on
computation time and solution quality can be satisfied by
fusing the greedy dispatching heuristic and the seq2seq
network trained by a specifically designed reinforcement
learning method. Numerical experiments demonstrate
the superiority of the proposed method by comparing it
with other existing methods, which can improve delivery
efficiency and well maintain customer satisfaction.

From this study, several conclusions can be drawn
as follows. It is recommended to collaboratively
combine the reinforcement learning technique and the
optimization methods to solve real-world combinatorial
optimization problems, especially for scenarios that limit
the decision time. The optimization methods can well
ensure the solution quality, while the network trained
by reinforcement learning is good at fast generating a
solution or enhancing the solution quality by extracting
implicit useful information from the data. Besides, it is
also a good attempt to tailor the reinforcement learning
methods by introducing the problem characteristics
or the valuable information during the optimization
or training process, which benefits in improving the
performance.

In future work, other effective divide-and-conquer
mechanisms[28] can be introduced to deal with the large-
scale complexity. Besides, other reinforcement learning
approaches can be employed for better modeling of
the order dispatching process, such as multi-agent
reinforcement learning[29]. We will also continue to
study the order dispatching problem by considering
the long-term objectives to typically deal with the
high dynamism. Besides, it is also worth investigating
the scheduling problems with uncertainty for on-
demand food delivery. Furthermore, it is interesting
to develop effective hyper-heuristic or reinforcement
learning methods to solve other complex combinatorial
problems[30, 31].
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reinforcement learning approach for the meal delivery
problem, Knowl. Based Syst., vol. 243, p. 108489, 2022.

[26] A. Bozanta, M. Cevik, C. Kavaklioglu, E. M. Kavuk, A.
Tosun, S. B. Sonuc, A. Duranel, and A. Basar, Courier
routing and assignment for food delivery service using
reinforcement learning, Comput. Ind. Eng., vol. 164, p.
107871, 2022.

[27] J. Hu, H. Wu, B. Zhong, and R. Xiao, Swarm intelligence-
based optimisation algorithms: An overview and future
research issues, Int. J. Autom. Control, vol. 14, nos. 5&6,
pp. 656–693, 2020.

[28] W. Fang, R. Min, and Q. Wang, Large-scale global
optimisation using cooperative co-evolution with self-
adaptive differential grouping, Int. J. Autom. Control, vol.
15, no. 1, pp. 58–77, 2021.

[29] W. Fan, P. Chen, D. Shi, X. Guo, and L. Kou, Multi-agent
modeling and simulation in the AI age, Tsinghua Science
and Technology, vol. 26, no. 5, pp. 608–624, 2021.

[30] F. Zhao, S. Di, J. Cao, J. Tang, and Jonrinaldi, A novel
cooperative multi-stage hyper-heuristic for combination
optimization problems, Complex System Modeling and
Simulation, vol. 1, no. 2, pp. 91–108, 2021.

[31] L. Wang, Z. Pan, and J. Wang, A review of reinforcement
learning based intelligent optimization for manufacturing
scheduling, Complex System Modeling and Simulation,
vol. 1, no. 4, pp. 257–270, 2021.



Jingfang Chen et al.: A Matching Algorithm with Reinforcement Learning and Decoupling : : : 399

Jingfang Chen received the PhD degree
in control theory and control engineering
from Tsinghua University, Beijing, China
in 2023. He is currently a postdoctoral
researcher at Department of Automation,
Tsinghua University, China. His main
research interest includes intelligent
optimization on complex scheduling

problems.

Ling Wang received the BSc degree
in automation and the PhD degree in
control theory and control engineering from
Tsinghua University, Beijing, China in 1995
and 1999, respectively. Since 1999, he
has been with Department of Automation,
Tsinghua University, where he became a
full professor in 2008. He has authored

five academic books and more than 300 refereed papers. His
current research interests include computational intelligence based
optimization and scheduling. He is a recipient of the National
Natural Science Fund for Distinguished Young Scholars of China,
the National Natural Science Award (Second Place) in 2014, and
the Natural Science Award (First Place in 2003, and Second
Place in 2007) nominated by the Ministry of Education of
China. He is the editor-in-chief for the International Journal
of Automation and Control, and the associate editor for the
IEEE Transactions on Evolutionary Computation, Swarm and
Evolutionary Computation, etc.

Zixiao Pan received the BSc degree in
automation from Wuhan University of
Technology, Wuhan, China in 2019. He
is currently pursuing the PhD degree in
control theory and control engineering
at Tsinghua University, Beijing, China.
His main research interests include the
distributed and green scheduling with

intelligent optimization and reinforcement learning.

Yuting Wu received the MSc degree
from Dongbei University, Shenyang, China
in 2020. She is currently pursuing the
PhD degree in control theory and control
engineering at Tsinghua University, Beijing,
China. Her main research interests include
intelligent optimization and seru production
system scheduling.

Jie Zheng received the BSc degree in
automation from Tsinghua University,
Beijing, China in 2018. She is currently
pursuing the PhD degree in control
theory and control engineering at Tsinghua
University, Beijing, China. Her main
research interest includes the scheduling
problem under uncertainty with intelligent

optimization.

Xuetao Ding received the MS degree
in artificial intelligence from Tsinghua
University, Beijing, China in 2013. He
is currently at Department of Delivery
Technology, Meituan, Beijing, China. His
main research direction is machine learning
and decision intelligence, including causal
learning for pricing, order dispatching

algorithm, supply demand optimization, and recommendation.


