
TSINGHUA SCIENCE AND TECHNOLOGY
ISSNll1007-0214 08/24 pp400–414
DOI: 10 .26599 /TST.2023 .9010007
Volume 29, Number 2, April 2024

C The author(s) 2024. The articles published in this open access journal are distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

Federated Learning Security and Privacy-Preserving Algorithm and
Experiments Research Under Internet of Things Critical Infrastructure

Nasir Ahmad Jalali and Hongsong Chen�

Abstract: The widespread use of the Internet of Things (IoTs) and the rapid development of artificial intelligence

technologies have enabled applications to cross commercial and industrial band settings. Within such systems, all

participants related to commercial and industrial systems must communicate and generate data. However, due to

the small storage capacities of IoT devices, they are required to store and transfer the generated data to third-party

entity called “cloud”, which creates one single point to store their data. However, as the number of participants

increases, the size of generated data also increases. Therefore, such a centralized mechanism for data collection and

exchange between participants is likely to face numerous challenges in terms of security, privacy, and performance.

To address these challenges, Federated Learning (FL) has been proposed as a reasonable decentralizing approach,

in which clients no longer need to transfer and store real data in the central server. Instead, they only share

updated training models that are trained over their private datasets. At the same time, FL enables clients in

distributed systems to share their machine learning models collaboratively without their training data, thus reducing

data privacy and security challeges. However, slow model training and the execution of additional unnecessary

communication rounds may hinder FL applications from operating properly in a distributed system. Furthermore,

these unnecessary communication rounds make the system vulnerable to security and privacy issues, because

irrelevant model updates are sent between clients and servers. Thus, in this work, we propose an algorithm for fully

homomorphic encryption called Cheon-Kim-Kim-Song (CKKS) to encrypt model parameters for their local information

privacy-preserving function. The proposed solution uses the impetus term to speed up model convergence during

the model training process. Furthermore, it establishes a secure communication channel between IoT devices and

the server. We also use a lightweight secure transport protocol to mitigate the communication overhead, thereby

improving communication security and efficiency with low communication latency between client and server.

Key words: Federated Learning (FL); Internet of Things (IoTs); lightweight Transport Layer Security (iTLS); Cheon-

Kim-Kim-Song (CKKS)

1 Introduction

With the objective of increasing human life quality,

�Nasir Ahmad Jalali and Hongsong Chen are with
Department of Computer Science, University of Science
and Technology Beijing (USTB), Beijing 100083, China.
E-mail: nasir.zehand@gmail.com; chenhs@ustb.edu.cn.
�To whom correspondence should be addressed.

Manuscript received: 2022-07-20; revised: 2022-12-07;
accepted: 2023-02-13

Internet of Things (IoTs) enabled smart systems have
become increasingly popular in recent years. The
smart system concept has been enabled by IoT
devices, such as smartphones and Artificial Intelligence
(AI), as well as related storage and computation
mechanisms, including cloud, edge computing, and
big data analytics. However, as the increase of nodes
in such smart systems generates massive amounts of
data, due to the limited capacity of IoT devices, all

Nasir Ahmad Jalali et al.: Federated Learning Security and Privacy-Preserving Algorithm and Experiments : : : 401

generated data must be transferred and stored in third-
party (cloud) servers[1]. Highly mature techniques are
required for the computation and processing of such vast
amounts of data. Machine Learning (ML) techniques
are highly successful techniques whose three main
characteristics (big data availability, newer learning
model computational power, and the evolution of deep
learning model) have contributed significantly to their
extensive usage and application[2]. Despite the fact that
ML has shown success in big and huge data analysis and
processing, most domains are not willing to deploy them
in the real world. One study[3] reports that, in today’s
competitive business environments, data holders are not
willing to share their data with a centralized system due
to security, privacy, and performance concerns. This is
because they create one single point, so if the central
server suffers from an attack, all stored data will be
exploited. Some other reasons cited by the data holders
include the following:
� Concerns about the user’s data privacy;
� Confidentiality issues arising from the transfer of

data from the clients to the central server for learning;
� Failure to use significant amounts of data and

computing resources in the edge network for effective
learning improvement.

Other confidentiality and security concerns regarding
ML involve the fact that data holders cannot transfer
their datasets to a central location for computation and
processing while the system is being used by some
companies[4, 5]. As shown in Fig. 1, all data are collected
and stored in a central server, and the model is trained
by the central dataset.

As mentioned above, all users are concerned about
their data privacy and confidentiality when transferring
data to a third-party cloud server. When clients send
their data to the central server, it may not be able to
achieve fast computation. As clients need to receive

Fig. 1 Machine learning model with centralized dataset.

their responses immediately, they are often unable to use
those resources effectively for learning improvements.
To overcome these challenges, Federated Learning (FL),
which is based on the concept of ML, has been proposed
as the best and most affordable solution[6]. Although
recent studies have shown that FL has numerous
advantages, it also faces security, privacy, efficiency,
and communication cost issues. For example, private
data may be leaked while transferring gradients to the
central server in the FL system due to untrustworthy
model generation or information about previous data[7].
Thus, in the FL system, encrypting and protecting data
from leaking via the Homomorphic Encryption (HE)
scheme is a reasonable choice. Thus far, researchers have
worked on preserving information privacy efficiently in
the FL system based on their expectations. However,
they did not consider the improvement of convergence
performance in the FL system[8]. Furthermore, the
key elements of the FL system, namely, efficient
performance in terms of model accuracy, model
convergence rate, and communication cost with low
latency, must be considered to ensure the security and
privacy of the data resources of distributed participants.

2 Related Work

The use of FL in distributed learning systems has
attracted increasing attention. However, certain issues,
such as security and privacy leakage concerns, the
requirement for high performance, low communication
overhead, and low latency to communicate and respond
to clients on time in a secure environment, have yet to
be fully resolved. Recent attacks reveal that personal
private and sensitive data may be leaked when the model
is transferred between clients and the central server.
Although differential privacy is used as a security and
privacy mechanism, it has also led to increased model
training costs and lower model performance quality[9].
Secure communication is very important for IoT devices
in FL. However, according to studies in Refs. [10] and
[11], the current approaches using Transport Layer
Security (TLS) protocol and Datagram TLS (DTLS)
protocols are challenged by heavy communication
overhead, high latency, low security, and transport
protocol exchanges that require many roundtrip
messages between a client and server. Different types
of HE, such as secure multiparty computation, have
shown to be robust to users dropping out; However,
these can also lead to large communication and

402 Tsinghua Science and Technology, April 2024, 29(2): 400–414

computational overhead[12]. To resolve this problem, the
Cheom-Kim-Kim-Song (CKKS) scheme is proposed,
which has an excellent encryption speed than other
encryption algorithms, such as RSA. Our scheme
uses both the CKKS algorithm and the lightweight
Transport Layer Security (iTLS) protocol to encrypt the
model’s parameters to preserve privacy, speed up model
convergence, decrease communication and computation
overhead, achieve low latency, and reduce and limit the
number of unnecessary roundtrips of communication
messages.

2.1 Motivation and problem statement

FL is a distributing ML technique that enhances
user data privacy by retaining user data locally.
However, it is prone to certain security and performance
challenges related to distribution ML systems. Although
many studies have been conducted regarding privacy
and security, they have been unable to completely
eliminate FL-related performance, privacy, accuracy, and
security challenges arising during real-life applications.
Thus, motivated by the above metioned challenges,
we aim to provide a secure and high-performance
environment for distributed learning machines. The
potential contributions of this study are two-fold. First,
we propose a full homomorphic algorithm, i.e., CKKS,
to encrypt model parameters for their local information
privacy preservation and faster model convergence and
computation during model training. Second, we use
a lightweight protocol to promote efficient and secure
communication overhead with low latency.

2.2 Paper structure

The remainder of the paper is divided into different
sections. Section 2 presents the related works, while
Section 3 explores the landscape of the FL model,
mainly focusing on security and privacy preservation
in the FL system. Section 4 addresses the challenges
in FL under the IoT environment, while Section 5
covers the experimental part, including the experimental
environment and configuration. Finally, Section 6
presents the conclusion for the entire paper.

3 Landscape About FL Model

The research community has developed and proposed
the FL framework to overcome the above mentioned

limitations and problems related to well-trained central
ML, such as data privacy, confidentiality, high-speed
communication, and high computation power. FL is

widely considered the best and most affordable solution
for IoT device communication[13]. FL is also a type
of ML technique that can solve the above mentioned
challenges compared with the practice of centralizing
all data and training the model on a central server. This
is because the FL model can train decentralized data
without transferring and collecting all data to a central
server. As shown in Fig. 2, each client trains the model
using local data, after which it sends locally trained
models to the central server. When the server receives
the local models, it aggregates them, builds one global
model, and sends it back to all participants to update the
information. The participants circulate these activities
without transferring actual local data.

The process described below for FL model updating
is iterative, in which each iteration improves the central
ML model. The process is organized into three major
steps as follows:

Step 1: Model selection. The global model pre-trains
the model with all initial parameters and shares the
output with all clients included in the FL environment.

Step 2: Local model training. When a global model
is shared with clients, then each node trains the model
over its local dataset.

Step 3: Aggregate local model. A model is updated
when it is trained locally on the client side. Then, the
new version of the model is shared with the central point.
The server updates and aggregates the global model with
new parameters and returns it to the clients to start the
iteration that will update the information.

The above steps show that the FL framework trains
the ML model on several devices and does not need
to transfer real data to the central server (cloud).
Furthermore, only the training model will share the data
between clients and servers by circulating Steps 2 and 3
to update the model. Figure 3 shows the details of how

Fig. 2 Federated learning system.

Nasir Ahmad Jalali et al.: Federated Learning Security and Privacy-Preserving Algorithm and Experiments : : : 403

Fig. 3 Federated learning model updating process.

the model is updated in the FL system.
As shown in Fig. 3, the process begins with global

model wt initialization, and the model is sent to the
clients. Upon receiving the model, each client “k”
trains the model with its local data, where sk is the
number of trained samples held by clients, and s is the
total number of samples trained by clients. Then the
updated model wk

t returns to the server, and the server
aggregates all received models to update the global
model wtC1

[14]. In this way, data privacy is maintained
locally within the clients’ environments. All IoT devices
in the FL framework are responsible for performing the
computation processes to train the model and preserve
privacy efficiently[15].

3.1 Security and privacy preservation in FL

In today’s data-driven world, most services and
applications, such as educational, healthcare, medical,
smart city, and financial applications, heavily rely
on AI technology, such as IoT devices. Different
applications can generate various data types that work
on a complex ML model; therefore, users must pay
attention to data protection and privacy[16]. However,
AI technology has not yet reached its full potential,
and applications related to AI and ML continue to
face many challenges pertaining to centralized storage
and computation[17]. AI technologies generate data,
especially personal data, and store them in a data silo
due to their limited storage capacity—be they related
to an end-user or service provider. While most ML

algorithms operate in a centralized manner, they need
to collect data into the central server for integrating,
aggregating, and processing training data[18]. In a
conventional ML algorithm, collecting large amounts
of data into a cloud or central server can lead to a single
point of failure and result in security risks, such as
a data breach. This centralized data processing and
management can lead to limitations in transparency
and provenance, leading to distrust between end-users
and difficult deployment[19]. FL is the best and most
affordable solution to overcome such challenges. FL is
a technique used by ML algorithms in a decentralized
collaborative learning model, where the algorithm is
executed on various separated datasets. There is no
need to collect all data from IoT devices to a centralized
server for operation. Instead, the participants only
exchange updated models with a central coordinated
server[20, 21]. The major advantage of FL over traditional
cloud-centric ML is that the former ensures the privacy
of data processed locally on the client side and is
required to exchange only the model parameters. Some
privacy-preserving and security techniques strengthen
this transmission and aggregation between central
coordinated servers and clients, resulting in enhanced
data privacy and security[22, 23]. ML technology is used
to design and build intelligent systems, such as IoT
devices, which automatically learn and process their
activities based on mathematical algorithms and models
(model training process) using a sample set (training
data) without direct human instructions[18].

404 Tsinghua Science and Technology, April 2024, 29(2): 400–414

3.2 Communication cost and model accuracy in FL

As mentioned in Section 2, FL is a type of ML
approach to training a global model with high-quality
over distributed datasets coming from numerous IoT
clients. These IoT clients might have unreliable and slow
network connections; thus, each client may train, update,
and compute the current model independently based on
its local dataset. Furthermore, local clients update the
aggregates to compute a new model and communicate
or return to the central server, thus highlighting the
importance of communication cost and efficiency[24].
In the FL learning system, all participants maintain
iteration rounds with the central server to achieve active
connections and obtain the desired accuracy. However,
because of unnecessary iterations, model parameters
may still be leaked even in favorable environments. In
comparison, ML contains and processes a huge number
of parameters, resulting in high communication costs and
delays while the participants upload the updates[25].

4 Addressing Challenges in FL Application
Under IoT Environment

A previous study[26] predicted that the number of
IoT devices would reach 75 billion worldwide. Such
unbelievable development will cause enormous growth
in the distributed data generated by these IoT devices.
Such data are relayed on centralized storage where all
data are transferred from clients and collectively stored
on the server. Therefore, having a central point can lead
to vulnerabilities, such as compromising data security
and privacy. In recent years, Google has introduced
FL as a reasonable solution to reduce security and
privacy challenges. FL enables all distributed clients
to collaboratively learn a shared ML model without
transferring a client’s local data to the central server[27].
However, FL still faces security and privacy risks
because the leaking of information related to locally
trained datasets from the model’s parameters is still
possible. Thus, it is important to implement specific
security and privacy algorithms, such as HE algorithms,
to enhance security and reduce privacy risks.

4.1 HE

This technique is used in ML algorithms to achieve
privacy and preservation. HE enables an application
to perform a computation on encrypted data without
decrypting the cipher text. This type of encryption
allows the delivery of a cipher text C.M/ of a

plaintext message M and performs the computation on
cipher text C.f .M// function on a plaintext message
M without decrypting the message M [18, 28]. This
encryption process proceeds in three steps:

Step 1: Key generation. This step generates both the
secret key (sk) and public key (pk).

Step 2: Encryption. The plaintext message performs
encryption with the public key to produce ciphertext.

Step 3: Decryption. The encrypted message is
decrypted using a secret key to yield a plain text message.

The steps of the encryption process between the client
and server in the cloud are shown in Fig. 4. In Step 1,
the client generates a plaintext message M with the
encryption key sent to the cloud, and then stores the
encrypted data along with the key in the central database.

Whenever the client needs to perform an operation, it
must send a request to the service provider (cloud), after
which the service provider transfers the client’s request
to the processing server. Then, the server performs
the operation C.f .M// as per request, and returns the
result to the client as a response step. Finally, the client
decrypts the result from the service provider (cloud) with
a secret key. HE is classified into three major categories
based on its operation on data.

(1) Partial HE: It allows either addition or
multiplication operations but only on encrypted data.

(2) Somewhat HE: This will perform more than one
operation on encrypted data, but not with a limited scale.

Fig. 4 Basic structure of the homomorphic encryption
method.

Nasir Ahmad Jalali et al.: Federated Learning Security and Privacy-Preserving Algorithm and Experiments : : : 405

(3) Full HE (FHE): This will allow many addition
and multiplication to perform the operation on encrypted
data.

4.1.1 FHE
FHE is a key technological algorithm for secure
computation that allows a third party to perform arbitrary
functions over encrypted data without knowing the
input and the results of the computation[29]. In the
FHE method, the composition polynomial is used to
split high-degree polynomials into different low-degree
polynomials. The concept of this procedure is to encrypt
a plaintext message with a large-ring-packed cipher
text. Then, this message will recover as a simple linear
function on the plaintexts encrypted in the smaller-
ring cipher text. As such, transferring a smaller cipher
text instead of a large cipher text will improve process
efficiency[30]. We use the CKKS, which is an updated
and new type of HE for data security and privacy.

4.1.2 CKKS
As mentioned in Section 3.3.2, FHE allows computation
over encrypted data. Researchers have argued that
the data encryption/decryption process with FHE is
computationally expensive[31]. The CKKS scheme is
a newly proposed FHE encryption scheme that can
rapidly perform encryption and computation compared
with other HE schemes, such as Rivest-Shamir-Adleman
(RSA)[32], which is depicted in Fig. 5. The reasonable
solution to preserve data privacy and improve the model
training efficiency of FL is the CKKS scheme or HE for
Arithmetic Approximate Numbers (HEAAN)[33].

When data are exchanged between two parties in a
communication system, data security (confidentiality
and integrity) should be guaranteed between them. This
is because security assurance in IoT devices is more
important in achieving privacy and quality of services[34].
The full homomorphic CKKS scheme operation features
several steps. First, the computer/client-generated
message M is encoded into plain text p .X/, after

which the message is encrypted with public keys
c0 and c1, which show various encrypted messages,
for example, we have two messages and they are
encrypted into ciphertext C D c0 C c1, so it changed
from plain text to cipher. Then, the server stores the
message to perform a homomorphic operation f . / over
encrypted data. Based on the client’s request, the server
returns the encrypted data to the client and performs
additional steps (reverse steps of encrypts) to decrypt
the message or data. Next, the client decrypts the data
with its secret key to plain text p D f . /, after which it
decodes and converts it to message f .M/ or data. The
main concept behind HE is to have HE properties,
such as encoder, encryptor, decryptor, and decoder,
enabling participants to decrypt and decode operations
correctly on cipher text and provide the output after
the operations are implemented. The proposed CKKS
scheme works with polynomials because it has good
intercommunication between security and efficiency
than other standard computations. There are many
other protocols used to secure communication channels
while they exchange data; however, they are unable to
decrease communication overhead with low latency and
cannot control iteration rounds between a client and
server. Lightweight security protocol and symmetric
payload encryption are used to minimize communication
overhead with low latency and perform computation, and
save communication capacity[35].

4.2 Lightweight secure transport protocol

The IoT is a growing technology that connects
cyberworlds with physical devices. We can find IoT
technologies and applications in different areas of our
daily life, such as health, education, transportation, and
so on. All IoT-based systems have benefits, but they also
face some communication and performance challenges
related to communication cost, power capability,
computation, and storage capacity of IoT devices. Thus,
high speed with low latency secure communication is

Fig. 5 Full homomorphic CKKS operation diagram.

406 Tsinghua Science and Technology, April 2024, 29(2): 400–414

important for many IoT applications to achieve the
timely exchange of information security with other
participants. Related to this, various computationally
lightweight protocols, such as TLS and DTLS, have been
proposed and implemented. However, the current TLS
authentication method may suffer from heavy overhead,
high communication costs, latency, and other security
issues in constrained IoT environments. Instead of these
protocols, we propose an iTLS protocol to deliver
protected data with low communication latency and
less overhead[36, 37]. A lightweight protocol is a type
of protocol that has a minor and leaner payload, and has
been used and transmitted over a network connection.
The characteristics of the lightweight protocol are that
it is faster, simpler, and easier to use and manage
than other communication protocols on client/server-
based network systems. Lightweight protocols leave
out unessential communication steps and data, or may
use data compression techniques that affect a network
connection. Thus, iTLS has the same characteristics
when it is used for client-server connections, because
it is also considered an iTLS protocol. The iTLS
protocol reduces communication overhead because
it can identify irrelevant updates dynamically, as
provided by the clients, and forbids unnecessary data
from transferring. The aforementioned protocol is also
equipped with inside techniques to dynamically detect
clients at first connection and implement security
filtering steps on participants compared with transport
protocols, while also integrating some connection steps
due to communication cost and latency[38, 39]. iTLS
uses identity-based cryptography, which is known as
asymmetric encryption or a public key cryptography
mechanism, to establish an inherent binding between
the public key and the entity that presents the public
key. The IBAKA schema authenticates communication
among different parties while establishing a shared key;
in the process, it no longer needs to use a communication
and verification certificate with iTLS while establishing
the connection. iTLS uses the identity of both parties to
generate the first key dynamically in order to protect the
data in the first communication[10]. The authentication
flowchart is shown in Fig. 6. As can be seen, different
steps are followed to establish a communication channel.
They are divided into two main stages.
� Initialization: This stage initializes or searches for

the connection request to exchange channel-searching
signals.
� Handshake: When the initialization stage is

completed, the iTLS handshake protocol generates

Fig. 6 Flowchart of the lightweight iTLS transport protocol.

the encryption key and exchanges encryption values.
Then, iTLS establishes a secure connection between
participants.

5 Experiment

In this section, we evaluate the security and privacy
algorithm under an IoT environment with one of the FL
frameworks as that in the real world. Doing so ensures
the integrity of the exchanged information between
clients and coordinated servers. We propose a non-IID
distribution (that is Independent Identically Distribution)
type to train the model on a standard dataset named
“MNIST” with the implementation of full homomorphic
algorithm to encrypt model parameters for their local
information privacy preservation. Moreover, we use
iTLS protocol to speed up model performance during
model training, reduce communication overhead, and
decrease latency for improved communication efficiency.

5.1 Experimental environment

The purpose of our experiments is to define a
Python-based FL with the support of lightweight
protocols and FHE algorithms to enable clients and
servers to have secure communication and decrease
communication overhead and latency, while providing
privacy preservation for model parameters in their local
information in FL under an IoT environment. The
logical diagram is shown in Fig. 7, which presents
client-server communication based on CKKS and

Nasir Ahmad Jalali et al.: Federated Learning Security and Privacy-Preserving Algorithm and Experiments : : : 407

Fig. 7 Logical diagram of client-server communication under CKKS and iTLS protocol.

iTLS. This communication consists of various parts,
namely, initialization, creating secure communication,
generating encryption keys, and model training on both
sides (client/local training and server/global training).
We explain each part briefly as follows.

(1) Initialization: The iTLS protocols are initialized
to determine whether it needs to send a message
for the model update. If it is necessary, then the
iTLS protocols create a secure channel between
communication participants. In addition, a trusted
authority generates a pair of keys (public key and secret
key) based on the CKKS encryption scheme. Each client
initializes the weight parameters of its local model (local
weights) and encrypts it with the public key pk before
sending it to a central or cloud server for aggregation.
When the parameters are received, the server starts
computation on the global model by aggregating all
received parameters. Thus, the server sends the global
model, enc (global, weights), to clients.

(2) Local model training: Once a client receives
encrypted global model parameters enc (global weights),
it performs decryption with a secret key (sk) to obtain
the global model. Then, the client loads the global model
into its local model and computes local model gradients
through its private data resources. Once the computation
of the gradients is completed, the model is encrypted
again with the public key and returned to the cloud server
for further processing.

(3) Global model training: As soon as the central or
cloud server receives the encrypted gradients enc (local
weights) from all distributed clients, it then computes all
encrypted gradients, updates the global model, and then
sends it back to all distributed clients.

5.2 Experimental configuration and result

The logical diagram shows the communication between
FL clients and servers under the IoT environment
shown in Fig. 7. This is validated by experiments with
the implementation of CKKS and iTLS to decrease
communication overhead and achieve low latency and
data privacy (integrity and confidentiality). Many phases
are included in performing the simulation. For a better
explanation, we design the whole program flowchart
to show the main step and the substeps in the system
structure, which is shown in Fig. 8. Specifically, Fig. 8
shows the steps of the whole program structure and
functions related to the logical design. The flowchart
shows two processes related to logical design. The first
one is the establishment of the client-server connection
using iTLS. Once the connection is created, then the
CKKS encryption schema starts the function to encrypt
data and training model for privacy preservation and
security.

The flowchart is designed based on some critical
attributes in the logical diagram, Some program-related
parameters with their descriptions are presented in

408 Tsinghua Science and Technology, April 2024, 29(2): 400–414

Fig. 8 Client-server communication flowchart with the implementation of CKKS and iTLS protocol in the FL system.

Table 1.
(1) Initializer attribute: First, both clients and server

agents are initialized for the iteration of the training
model, after which evaluation is performed to determine
whether a model update is required. If it is needed, then
the iTLS exchanges the flag message to create a channel
between participants and exchange the keys with each
other. This phase also distributes the correct and required
amount of dataset for each client. Once the initializer
phase is created, then simulation () is invoked to start
the simulation.

(2) Simulation.py and config.py: After the
initialization phase, simulation () invokes both

the client and server agent. Here, a client creates a map
for client agent names and shares it with other clients
while the server is invoked by request value () from
all participating clients. Each client tries to generate
weights and trains the learning model throughout its
own dataset D for that iteration. Then, it sends a copy
of the trained model to the server with a security offset.
When the server receives the trained model, it proceeds
to aggregate all models and returns them to the clients.
Once the clients receive the aggregate model weights
for each iteration, they then compute the accuracy of
the federated model in contrast to its local model. This
activity will be iterated to i up to a certain number of

Nasir Ahmad Jalali et al.: Federated Learning Security and Privacy-Preserving Algorithm and Experiments : : : 409

Table 1 Parameters configuration.
Parameter Explanation

iTLS protocol
This is a secure transport communication. If its state is “True”, then new sockets and client-server
connections will be established to exchange primary flag messages to be prepared for real data
transmission. Otherwise, the communication circuit will not be created.

Security key
If it is “True”, then the client performs key exchanges with other participants in the offline portion
of the simulation to establish common keys for the encryption method.

Add Differential Privacy (DP)
If it is “True”, then the CKKS allows adding noise following the important bit containing the focal
message. In addition, this encryption noise is considered an error while executing approximate
computation, thus ensuring the security hardness assumption.

Remove DP
If it is “True”, the DP will be removed while data are received by the client in the FL system.
Otherwise, the client will use the model computed by the server.

Client dropped-out
If it is “True”, the client drops out after receiving the weights from each iteration in the FL model,
and the simulation continues without clients.

Simulate and latency
If it is “True”, the system simulates how long each step of the protocol of user-defined
communication latency in the config.py file will take. Otherwise, the information will not be
displayed.

iterations.
(3) Message. py: All participants must communicate,

invoke each other, and send the message for
communication. The message contains all metadata
about the communication and body attributes.

(4) Client-agent.py: This is the main instance of the
simulation that trains the learning model. The agent has
both the agent name and number to be determined during
the simulation.

When the server invokes the agent, it will use the
following two main methods:
� Generate weights: In this stage, the client transmits

the learning model on its own dataset for each iteration
using generate-weights (self, message).
� Receive weights: Receive-weights (self, message)

is used when the server wants to return aggregated
federated weights to the client. This message includes
the iteration number, weight, and simulated time of the
received message. If the client’s weights converge to
the federated weights, the method is considered true;
otherwise, it is considered false. The dropped client
method is used at the end of each iteration in the
simulation, and this message contains a list of dropped
clients and simulated time.

(5) Server agent: As mentioned previously, the
server agent is an instance of the third party, and only
coordinates all participating clients to exchange the
training model and information. The server agent uses
request value () to perform this activity.

(6) CKKS encryption: This step is done after the
initializing step when the clients want to exchange
data or training models with other participants. CKKS
encryption is the FHE schema used for ensuring

confidentiality and integrity (security and privacy).
It is an encrypting training model that exchanges
between various participants in the FL system, especially
between client and server. To perform this function,
the CKKS schema generates two types of keys (secret
and public keys). The client encrypts the message with
the public key and sends it to the server, after which
the server aggregates all encrypted messages received
from different clients. Such operations are done over
encrypted data. Based on a client’s request, the server
returns the aggregated encrypted data to the client. Using
the secret key, the client performs data decryption and
proceeds to learn the model. Some program-related
parameters with their descriptions are presented in
Table 1.

5.3 Results

When the simulation runs, the iTLS and CKKS
algorithms start their function according to the
steps explained in the configuration environment
of the simulation above. At this point, the iTLS
protocol provides the communication channel between
participants and gives clients a chance to share their
identity with others, thus decreasing unnecessary
communication steps between participants. As shown
in the iTLS communication sequence diagram in
Fig. 9, the iTLS protocol employs a new extension
used by the client and server under a Client Hello
and server message. The aim is to exchange the
identity details and cryptographic parameters used
for shared secrets between them. In addition, all
components belonging to certificates and certificate
verification messages are ignored because those need

410 Tsinghua Science and Technology, April 2024, 29(2): 400–414

Fig. 9 iTLS protocol communication steps.

more communication steps and increase communication
overhead when exchanged by other protocols, such as
TLS. Therefore, this decrement in communication steps
improves performance and decreases communication
overhead and latency.

Comparisons of latency and unnecessary round trip
messages between iTLS and TLS based on the packet
loss percentage are presented in Figs. 10 and 11. In
particular, Fig. 10 shows that TLS increases the number
of messages and has increased the latency rapidly,
thus affecting the connection between client and server
promptly. In comparison, Fig. 11 shows iTLS with the
CKKS scheme, which prevents unnecessary messages
and decreases the latency with packet losses, which

Fig. 10 Handshake latency (packet loss) in TLS.

Fig. 11 Handshake latency (packet loss) in iTLS.

means the client-server connection is less affected in
contrast to TLS. Furthermore, Fig. 11 shows that the
proposed scheme speeds up the computation process.
Table 2 shows the comparison of various schemes
and algorithms used for FL security and privacy, and
computation process. Due to their computation process
and roundtrip messages, they have a different measure
of accuracy. As indicated by the results, our proposed
scheme limits unnecessary roundtrip messages, speeds
up the computation process, and increases accuracy.

The comparison of communication overhead between
TLS and iTLS with the CKKS scheme protocol is
shown in Fig. 12. As shown in the chart, for both

Fig. 12 Communication overhead comparison between
iTLS and TLS.

Table 2 Accuracy comparison between current and previous scheme.

Scheme Accuracy (%) Reason Dropout
MPC 82.0 Decreased due to the conversion from floating-point operations to modular computations Yes
DP 77.0 Decreased due to noise and additional communication rounds Yes

FedAvg/SecAgg 73.0 Less accurate due to additional computation and communication processes –
Our scheme 95.3 Increased due to the prevention of additional communication rounds; faster computation process No

Nasir Ahmad Jalali et al.: Federated Learning Security and Privacy-Preserving Algorithm and Experiments : : : 411

protocols during the handshake, the TLS generated 1840
bytes. This is because using iTLS means that the client
and server need not exchange any additional certificate
components and verify messages. Then, they generate
850 bytes in size, because iTLS reduces communication
overhead by about 65 bytes. In addition, the CKKS
algorithm starts its own mechanism to encrypt the
gradients of the model, which are supposed to be sent to
the server for model updating, thus saving information
against potential attackers and reducing activities to
exploit information integrity and confidentiality. This
process also helps mitigate risks that are harmful to
model training security. As mentioned previously, to
improve the FL system’s model training efficiency and
security, the proposed method uses a CKKS encryption
scheme to preserve the data resource of the distributed
client and encrypt model parameters, as shown in Fig. 5.
The CKKS encryption method consists of the following
three functions:

(1) Key generation: Security parameters and ring
degree are defined by n, the cipher text modulus is
represented by P. In this process, the message is encoded
and converted to plaintext. Thus, the trust authority
generates pair of keys (pk and sk) based on the CKKS-
defined cryptosystem standard.

(2) Model encryption: This process encrypts the
model parameters using the public key generated by
a trusted authority.

(3) Model aggregation in the cloud server: In this
step, the cloud server receives encrypted messages or
gradients from all distributed clients, after which it
aggregates all gradients and creates/updates a global
model.

5.4 State-of-art

FL is a distributed and collaborative AI method, in which
a global model is trained over distributed datasets, and
clients only need to train their local models over their
private datasets before sending them to a central server
without real data to improve data privacy. However,
as the number of connected devices grows, the FL
systems need high-speed communication, along with low

communication overhead and latency, as well as privacy,
accuracy, and best computational power. Numerous
studies have investigated FL privacy and communication
overhead, but none have worked effectively as required
by the FL system. Thus, the current paper compares
previous research with our research scheme, as shown
in Table 3.

6 Conclusion

This section presents the conclusion according to
the research conducted in this paper. Here, we use
the iTLS transport protocol and the CKKS FHE
schema, both of which play important roles in
data and model security and privacy. These also
enhance the performance of data processing, decrease
communication overhead, and reduce latency, while
data are exchanged between various participants in
FL systems. The required implementation of the
Confidentiality Integrity Availability (CIA) triangular
is also completed in this research to achieve data
security. Whenever a client wants to send model weights
and gradients for the model update to the server, it
must first determine whether the model update is
necessary and when a client is able to send gradients
to the server. Thus, this effort allows participants to
confirm the availability of transferred data between
client and server. Furthermore, the data will not be
transferred periodically if not needed, thus reducing
the number of communication steps while creating a
client-server channel to enhance the communication
performance and decrease communication overhead.
The CKKS encryption schema starts its mechanism
to encrypt the model, thus protecting information
against potential attackers. This also prevents hacking
activities that can harm the integrity and confidentiality
of the information, which are harmful to model
training security. This security and privacy fact and
communication performance allow users to use cloud
structure to perform processing in different domains
of human life, such as medical systems, education,
banking, and other structures, which need data security

Table 3 Comparison of the present scheme with referenced scheme.

Scheme
Accuracy and
computation

process

Communication
overhead

and latency
Operation type More training and

communication iteration
Dropping in

model performance

Ours High and faster Less Complex (adding
and multiplying)

Reduced No

Others Less and slowerŒ40� MoreŒ10; 41� Simple (either adding
or multiplying)Œ42; 43�

Not-reducedŒ36; 44� YesŒ9; 43�

412 Tsinghua Science and Technology, April 2024, 29(2): 400–414

and consistency.
To enhance data security in cloud-based structures,

future research may consider the MultiKey HE (MKHE)
schema, as it can perform the mathematical processes
on cipher text encrypted under various keys.

Acknowledgment

This work was supported by the National Key
Research and Development Program of China (No.
2018YFB0803403) and the Fundamental Research Funds
for the Central Universities (Nos. FRF-AT-20-11 and
FRF-AT-19-009Z) from the Ministry of Education of
China.

References

[1] Y. Zhao, J. Zhao, L. Jiang, R. Tan, D. Niyato, Z. Li, L. Lyu,
and Y. Liu, Privacy-preserving blockchain-based federated
learning for IoT devices, IEEE Internet Things J., vol. 8, no.
3, pp. 1817–1829, 2021.

[2] D. Chen, V. Tan, Z. Lu, and J. Hu, OpenFed: A
comprehensive and versatile open-source federated learning
framework, arXiv preprint arXiv: 2109.07852, 2023.

[3] L. Zhang, Z. Zhang, and C. Guan, Accelerating privacy-
preserving momentum federated learning for industrial
cyber-physical systems, Complex Intell. Syst., vol. 7, no.
6, pp. 3289–3301, 2021.

[4] B. Jeon, S. M. Ferdous, M. R. Rahman, and A. Walid,
Privacy-preserving decentralized aggregation for federated
learning, in Proc. IEEE INFOCOM 2021–IEEE Conf.
Computer Communications Workshops, Vancouver, Canada,
2021, pp. 1–6.

[5] M. Asad, A. Moustafa, and C. Yu, A critical evaluation of
privacy and security threats in federated learning, Sensors,
vol. 20, no. 24, p. 7182, 2020.

[6] M. Alazab, S. Priya, M. Parimala, P. K. R. Maddikunta,
T. R. Gadekallu, and Q. V. Pham, Federated learning for
cybersecurity: Concepts, challenges, and future directions,
IEEE Trans. Ind. Inform., vol. 18, no. 5, pp. 3501–3509,
2022.

[7] Z. Wang, M. Song, Z. Zhang, Y. Song, Q. Wang, and
H. Qi, Beyond inferring class representatives: User-level
privacy leakage from federated Learning, in Proc. IEEE
INFOCOM 2019–IEEE Conf. Computer Communications,
Paris, France, 2019, pp. 2512–2520.

[8] Y. Aono, T. Hayashi, L. T. Phong, and L. Wang, Privacy-
preserving logistic regression with distributed data sources
via homomorphic encryption, IEICE Trans. Inf. Syst., vol.
E99-D, no. 8, pp. 2079–2089, 2016.

[9] D. Stripelis, H. Saleem, T. Ghai, N. Dhinagar, U. Gupta,
C. Anastasiou, G. V. Steeg, S. Ravi, M. Naveed, P. M.
Thompson, et al., Secure neuroimaging analysis using
federated learning with homomorphic encryption, arXiv
preprint arXiv: 2108.03437, 2021.

[10] P. Li, J. Su, and X. Wang, iTLS: Lightweight transport-layer
security protocol for IoT with minimal latency and perfect

forward secrecy, IEEE Internet Things J., vol. 7, no. 8, pp.
6828–6841, 2020.

[11] R. Hummen, J. H. Ziegeldorf, H. Shafagh, S. Raza, and K.
Wehrle, Towards viable certificate-based authentication for
the internet of things, in Proc. 2nd ACM Workshop on Hot
Topics on Wireless Network Security and Privacy, Budapest,
Hungary, 2013, pp. 37–42.

[12] M. Hao, H. Li, G. Xu, S. Liu, and H. Yang, Towards efficient
and privacy-preserving federated deep learning, in Proc.
IEEE Int. Conf. Communications (ICC), Shanghai, China,
2019, pp. 1–6.

[13] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, Federated
learning: Challenges, methods, and future directions, IEEE
Signal Process. Mag., vol. 37, no. 3, pp. 50–60, 2020.

[14] Y. Gao, M. Kim, S. Abuadbba, Y. Kim, C. Thapa, K. Kim, S.
A. Camtep, H. Kim, and S. Nepal, End-to-end evaluation of
federated learning and split learning for internet of things, in
Proc. 2020 Int. Symp. Reliable Distributed Systems (SRDS),
Shanghai, China, 2020, pp. 91–100.

[15] C. Shen and W. Xue, An experiment study on federated
learning testbed, in Proc. SmartCom 2021, Singapore, 2021,
pp. 209–217.

[16] M. Yang, Y. He, and J. Qiao, Federated learning-
based privacy-preserving and security: Survey, in
Proc. Computing, Communications and IoT Applications
(ComComAP), Shenzhen, China, 2021, pp. 312–317.

[17] S. Sav, A. Pyrgelis, J. R. Troncoso-Pastoriza, D. Froelicher,
J. P. Bossuat, J. S. Sousa, and J. P. Hubaux, POSEIDON:
Privacy-preserving federated neural network learning, arXiv
preprint arXiv: 2009.00349, 2021.

[18] N. Truong, K. Sun, S. Wang, F. Guitton, and Y. Guo, Privacy
preservation in federated learning: Insights from the GDPR
perspective, arXiv preprint arXiv: 2011.05411, 2021.

[19] N. B. Truong, K. Sun, G. M. Lee, and Y. Guo, GDPR-
Compliant personal data management: A blockchain-based
solution, IEEE Transactions on Information Forensics and
Security, vol. 15, pp. 1746–1761, 2020.

[20] J. Konečný, H. B. McMahan, D. Ramage, and P. Richtárik,
Federated optimization: Distributed machine learning for
on-device intelligence, arXiv preprint arXiv: 1610.02527v1,
2016.

[21] K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B.
McMahan, S. Patel, D. Ramage, A. Segal, and K. Seth,
Practical secure aggregation for privacy-preserving machine
learning, in Proc. 2017 ACM SIGSAC Conf. Computer
and Communications Security, Dallas, TX, USA, 2017,
pp. 1175–1191.

[22] K. Wei, J. Li, M. Ding, C. Ma, H. H. Yang, F. Farokhi, S.
Jin, T. Q. S. Quek, and H. V. Poor, Federated learning with
differential privacy: Algorithms and performance analysis,
IEEE Transactions on Information Forensics and Security,
vol. 15, pp. 3454–3469, 2020.

[23] J. Konečný, H. B. McMahan, F. X. Yu, P. Richtárik, A. T.
Suresh, and D. Bacon, Federated learning: Strategies for
improving communication efficiency, arXiv preprint arXiv:
1610.05492, 2017.

[24] M. Asad, A. Moustafa, T. Ito, and M. Aslam, Evaluating the

Nasir Ahmad Jalali et al.: Federated Learning Security and Privacy-Preserving Algorithm and Experiments : : : 413

communication efficiency in federated learning algorithms,
in Proc. IEEE 24th Int. Conf. Computer Supported
Cooperative Work in Design, Dalian, China, 2021, pp. 552–
557.

[25] Z. Chai, Y. Chen, A. Anwar, L. Zhao, Y. Cheng, and H.
Rangwala, FedAT: A high-performance and communication-
efficient federated learning system with asynchronous tiers,
in Proc. SC21: Int. Conf. High Performance Computing,
Networking, Storage and Analysis, St. Louis, MO, USA,
2021, pp. 1–17.

[26] J. Ma, S. A. Naas, S. Sigg, and X. Lyu, Privacy-preserving
federated learning based on multi-key homomorphic
encryption, arXiv preprint arXiv: 2104.06824v1, 2021.

[27] V. Mugunthan, A. Peraire-Beuno, and L. Kagal, PrivacyFL:
A simulator for privacy-preserving and secure federated
learning, in Proc. 29th ACM Int. Conf. Information and
Knowledge Management, Virtual Event, 2020, pp. 3085–
3092.

[28] K. Rangasami and S. Vagdevi, Comparative study
of homomorphic encryption methods for secured data
operations in cloud computing, in Proc. 2017 Int. Conf.
Electrical, Electronics, Communication, Computer, and
Optimization Techniques (ICEECCOT), Mysuru, India,
2017, pp. 1–6.

[29] A. Acar, H. Aksu, A. S. Uluagac, and M. Conti, A
survey on homomorphic encryption schemes: Theory and
implementation, ACM Comput. Surv., vol. 51, no. 4, p. 79,
2018.

[30] M. Ogburn, C. Turner, and P. Dahal, Homomorphic
encryption, Procedia Comput. Sci., vol. 20, pp. 502–509,
2013.

[31] J. He, B Gong, and J. Yang, ASCFL: Accurate and speedy
semi-supervised clustering federated learning, Tsinghua
Science and Technology, vol. 28, no. 5, pp. 823–837, 2023.

[32] H. Chen, W. Dai, M. Kim, and Y. Song, Efficient multi-
key homomorphic encryption with packed ciphertexts
with application to oblivious neural network inference, in
Proc. 2019 ACM SIGSAC Conf. Computer Communication
Security, London, UK, 2019, pp. 395–412.

[33] J. H. Cheon, A. Kim, M. Kim, and Y. Song, Homomorphic
encryption for arithmetic of approximate numbers, in Proc.
23rd Int. Conf. Theory and Applications of Cryptology and
Information Security, Hong Kong, China, 2017, pp. 409–
437.

[34] D. Shehada, A. Gawanmeh, C. Fachkha, and H. A. Damis,
Performance evaluation of a lightweight IoT authentication
protocol, in Proc. 3rd Int. Conf. Signal Processing and
Information Security (ICSPIS), DUBAI, United Arab
Emirates, 2020, pp. 1–4.

[35] A. Diro, H. Reda, N. Chilamkurti, A. Mahmood, N.
Zaman, and Y. Nam, Lightweight authenticated-encryption
scheme for internet of things based on publish-subscribe
communication, IEEE Access, vol. 8, pp. 60539–60551,
2020.

[36] M. N. Khan, A. Rao, and S. Camtepe, Lightweight
cryptographic protocols for IoT-Constrained devices: A
survey, IEEE Internet Things J., vol. 8, no. 6, pp. 4132–
4156, 2021

[37] P. Liu, X. Xu, and W. Wang, Threats, attacks and defenses
to federated learning: Issues, taxonomy and perspectives,
Cybersecurity, vol. 5, no. 1, p. 4, 2022.

[38] O. Shahid, S. Pouriyeh, R. M. Parizi, Q. Z. Sheng, G.
Srivastava, and L. Zhao, Communication efficiency in
federated learning: Achievements and challenges, arXiv
preprint arXiv: 2107.10996v1, 2021.

[39] L. Wang, W. Wang, and B. Li, CMFL: Mitigating
communication overhead for federated learning, in Proc.
IEEE 39th Int. Conf. Distributed Computing System
(ICDCS), Dallas, TX, USA, 2019, pp. 954–964.

[40] J. Loya and T. Bana, Privacy-preserving keystroke analysis
using fully homomorphic encryption & differential privacy,
in Proc. Int. Conf. Cyberworlds (CW), Caen, France, 2021,
pp. 291–294.

[41] E. Rescorla, The Transport Layer Security (TLS) Protocol
version 1.3, Internet Engineering Task Force (IETF), RFC
8446, https://www.rfc-editor.org/info/rfc8446, 2018.

[42] K. Lauter, M. Naehrig, and V. Viakuntanathan, Can
homomorphic encryption be practical? in Proc. Association
for Computing Machinery (ACM) CCSW, 2011, pp.113–
124.

[43] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I.
Mironov, K. Talwar, and L. Zhang, Deep learning with
differential privacy, in Proc. ACM SIGSAC Conf. Computer
and Communications Security, Vienna, Austria, 2016, pp.
308–318.

[44] U. Gupta, D. Srtipelis, P. K. Lam, P. M. Thompson, J. L.
Ambite, and G. Ver Steeg, Membership inference attacks
on deep regression models for neuroimaging, Mach. Learn.
Res., vol. 143, pp. 228–251, 2021.

Nasir Ahmad Jalali received the MEng
degree in computer science (information
technology) from Kabul University,
Afghanistan. He is a PhD candidate at
University of Science and Technology
Beijing (USTB), China. He has been an
assistant professor at Ghazni University,
Afghanistan since 2012. His research area

is network security, information security, wired and wireless
network, machine learning, and big data. He has published five
academic papers. He got the outstanding student award at USTB
in 2022. Also, he is the author of two books entitled MPLS-VPN
Impacts on VoIP-QoS and Framework Development for Higher
Education Information Security in Afghanistan.

414 Tsinghua Science and Technology, April 2024, 29(2): 400–414

Hongsong Chen received the PhD
degree in computer science from Harbin
Institute of Technology, China in 2006. He
has been a professor at Department of
Computer Science, University of Science
and Technology Beijing (USTB), China
since 2008. He was a visiting scholar at
Department of Computer Science, Purdue

University, USA during 2013–2014. He is a high-level member
of the China Computer Federation. He is an IEEE member
now. His research interests include artificial intelligence and
information security, wireless network and pervasive computing,
and trust computing. He received the Excellent Young Academic
Paper Award at USTB in 2009. He has published more than 60
academic papers and 6 books.

