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Lesson Learned from COVID-19 Retrospective Study:
An Entropy-Based Clinical-Interpretable Scorecard for

Mortality Risk Control at ICU Admission

Chong Yao, Chonghui Huangqi, and Anpeng Huang�

Abstract: With severe acute respiratory syndrome coronavirus 2 spreading globally and causing 2019 coronavirus

disease (COVID-19), a challenge that we unprepared for was about how to optimally plan and distribute limited

top-medical resources for patients in need of urgent care. To address this challenge, physicians desperately needed

a scientific tool to methodically differentiate between cases with varying severity. In this study, the unique data

of COVID-19 intensive care unit (ICU) patients provided by the national medical team in Wuhan were classified

into discrete and continuous variable types. All continuous data were discretized using an entropy-based method

and transformed into serial information margins, in which each information margin is related to a specific symptom

or clinical meaning. Finally, all these native and processed discrete data were used to configure a readable

scorecard through logistic regression, which is the desired scientific tool aforementioned. A total of 322 ICU patients

(age: [median: 64, interquartile range: 54–75], males: 178 [55.28%], and death: 72 [22.36%]) were included in

the study. Probabilities of mortality in COVID-19 patients can be evaluated using a scorecard model (calibration

slope: 1.343, Brier: 0.048, Dxy = 0.972, and population stability index = 0.071), with desired model performances

(accuracy = 0.948, area under curve = 0.99, sensitivity = 1, and specificity = 0.939). This new model can interpret

clinical meanings from complex data, and compare it with existing machine learning methods through a black-box

mechanism. This new data-information model answers a critical question of how a computing algorithm produces

clinically meaningful results that will help physicians logically allocate medical resources for COVID-19 patients.

Notably, this tool has limitations, giving that this research is a retrospective study. Hopefully, this tool will be tested

further and optimized for adaptation to similar clinical cases in the future.
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1 Introduction

The 2019 coronavirus disease (COVID-19) is spreading
globally and is known as the “killer” of public health.

Until November 27, 2022, more than 645 million
confirmed cases and over 6.6 million deaths worldwide
have been recorded. How to maximize the utilization of
intensive care unit (ICU) medical resources is a critical
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issue, especially in areas with medical shortages.
A related study will be useful for increasing the
efficiency of treatment and resource allocation. More
importantly, physicians need a tool to fight future
pandemics when ICU admissions increase exponentially,
thereby decreasing mortality rates. Driven by this
motivation, a scientific tool is needed to help
physicians make objective judgments, rather than
subjective logical choices. This tool may include several
essential components, namely, data preprocessing,
computational methods, knowledge discovery, and
clinical interpretation. In terms of data preprocessing,
Selvan[1], Shang et al.[2], and Overmyer et al.[3]

discussed data formalization and cleaning. Regarding
survival analysis, related literature addressing logistic
models and machine learning algorithms for risk scoring
were examined by Zhang et al.[4], Tian et al.[5], and
Liang et al.[6]. As for knowledge discovery, clinical
information is extremely complex to be extracted in a
linear style according to Yan et al.[7], Gao et al.[8], and
Yadaw et al.[9]. Lastly, for clinical interpretation, the
black-box data-information model of machine learning
algorithms cannot be applied in clinical practice, as
discussed by Knight et al.[10] and Razavian et al.[11]

Therefore, this topic must be studied from a new
perspective to efficiently translate data knowledge into
clinical information. Taking this into consideration, we
developed an entropy-based scorecard model to achieve
clinical interpretability. This data-information model can
be used to categorize patients depending on case severity
with the use of a few key bioparameters. Arguably, this
model helps in assigning limited medical resources to
patients who possess a higher probability of survival and
aids physicians in maximizing ICU resources.

2 Method

2.1 Data resource

This study is a retrospective research. The ICU patient
cohort was from the national medical team in Wuhan and
contained data from January 26, 2020, to April 6, 2020;
the patients were confirmed by oropharyngeal swabs
and positive antigen-antibody tests. The data included
routine records at admission, comorbidities, and disease
severity, along with laboratory test results such as
nucleic acid tests, routine blood tests, biochemistry,
etc. Each patient’s information was recorded from
ICU admission to final discharge. All data from
patients’ electronic medical records were formalized

professionally and labeled by clinical experts. All
data processing personnel were required to sign a
data security and confidentiality agreement to protect
patient-doctor confidentiality. For the assessment of
this model’s effectiveness in different situations, two
more external cohorts were applied (one was from Yan
et al.[7] study: https://www.nature.com/articles/s42256-
020-0180-7; the other was a Peru cohort: https://
figshare.com/articles/dataset/Database.xls/13869179).

2.2 Data preprocessing

For data quality control, 322 cases from 345 ICU patients
were finally selected as study subjects, with the omission
of 23 inconclusive data (i.e., 4 patients transferred out
and 19 non-tracking documents). On the first day of
admission, information on each patient was collected
for clinical and blood biochemical samples, generating
49 separate categories of data entries. For the study of
validity and data integrality, an entry may be deleted
if its data distribution had low diversity, or more than
20% of patients lacked such an entry. As a result, 30
out of the 49 variables were selected as candidates and
treated as input variables of our data-information model.
To examine all potential dysfunction or bugs in our
models, we selected 97 individuals (30% of patients)
as the test data set, and the other 70% of subjects
were grouped into the training dataset to optimize the
model hyperparameters. The basic requirement was
that the test dataset had no voids, and some nulls in the
training dataset were filled in advance for data continuity.
To avoid additional background noise in the process
of null fillings, we applied K-Nearest-Neighbours
(KNN) to enhance the resolution[12–15]. Furthermore,
data classification processing methods were a part of
our models and machine learning algorithms, but they
likely relied on their statistical distribution features.
For different data, including demographic, clinical, and
blood biochemistry characteristics by survival status,
the mean (Standard Deviation (SD)) and student t-test
were applied to continuous variables following normal
distribution; the median (interquartile range (IQR)) and
Mann-Whitney U (U-test) were deployed if they did not
show a normal distribution. Otherwise, the variables
were considered categorical, frequency and chi-square
tests were adopted for their distribution profile.

2.3 Model configuration

In this study, the main goal was to conceive a new
data-informal model that can avoid the dilemma of
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justifying the allocation of resources to patients who
are more likely to survive. This dilemma decision
cannot be made blindly by a data model without clinical
explanation. Currently, most artificial intelligence data
models run in a “black-box” style, which cannot present
clinical explanations from computing results. To address
this challenge above, we conceived an entropy-based
scorecard model (Fig. 1) in this study and adopted
logistic regression to compute data. Each component of
this model is illuminated below.

2.3.1 Variable formalization
As discussed above, the first goal was to determine
how to deal with mixed data with continuous and
discrete variables. For any continuous variable, a clinical
outcome is generally related to a range of data. For
example, the level of systolic pressure can be interpreted
as normal, hypertension, or hypotension among most
people (90–140, above 140, and below 90 mmHg,
respectively). Thus, these continuous variables need
to be discretized into a sequence of data zones to match
each one with a specific symptom or similar clinical
outcome. An optimal solution is needed to group these
continuous variables into a sequence of data zones.
In the optimal solution, how the cutoff endpoints of
these continuous variables can be determined for data
zones must be resolved. To address this problem, we
borrowed the entropy concept, which was originally
from physics, and has been successfully applied in
many areas, e.g., information theory, credit review
for financial loans, binning computing, etc. Entropy,
or the information content, is a way to calculate the
information gain of different data segment solutions. The
calculated information gain values was used to optimize

the placement of data zones. This entropy method
can avoid potential crosstalk-intermixing between data
zones[16].

The function of entropy is listed below:
H.X/ D �

X
p.k/ � logp.k/ (1)

where X is an event (death or living), and H.X/ is
the entropy value of variable X with the kth data zone
within K discrete data zones. p.k/ is the probability of
the event X during the kth data zone.

After discretization based on entropy, the continuous
variable became the ordinal categorical data zone. To
code these ordinal data zones, we applied the weight
of evidence (WOE)[17, 18] to maintain logic linearity,
which can satisfy the logic linearity hypothesis in logistic
regression compared with other coding methods (one
hot spot/virtual). The WOE of the i th data zone of a
categorical variable is defined as follows:

WOEi D ln
Ni.nondeath/=Ntot.nondeath/

Ni.death/=Ntot.death/
(2)

Ni.nondeath/: the number of patients who survived within
the i th data zone of the selected categorical variable;
Ni.death/: the number of deceased patients within
the i th data zone of the selected categorical variable;
Ntot.nondeath/: the total number of patients who survived;
Ntot.death/: the total number of deceased patients.
2.3.2 Variable selection
To evaluate the roles of each variable, we applied the
information values (IV) formula[17].

IV D

mX
iD1

�
Nattr.nondeath/

Ntot.nondeath/
�
Nattr.death/

Ntot.death/

�
�WOEi

(3)
The IV of the i th data zone is a measurement of how

much information it can predict. All these data zones

Fig. 1 Workflow of our new model.
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were ranked using backward stepwise regression in
accordance with the exact Akaike information criterion
(AIC). In general, variables with IV < 0:02[19] were not
considered in this model due to insignificant information
predictability.
2.3.3 Model configuration
Based on multiple logistic regressions, the patient
probability of mortality can be calculated as below:

d D
1

1C e��TX
(4)

ln
d

1 � d
D �TX (5)

ln .odds/ D W0 CW1X1 C � � � CWnXn (6)

d : the probability of mortality, � : parameter vector
ŒW0; W1; : : : ; Wn�, in which Wi is the i th variable
coefficient, X : variable vector Œ1; X1; : : : ; Xn�, in which
Xi is the i th variable value.

To visualize and interpret this function for clinical
application, which is widely used in financial credits,
etc., we mapped its results to a scorecard. The scorecard
formulas are listed in Eqs. (4) to (12).

scoretotal D AC B � ln .odds/ (7)
A: intercept (the score points when probabilities of death
and survival are equal); B: slope (a margin while scoring
points against ln .odds/(changing); odds: probability
of death .d//survival probability .1 � d/.

To normalize the outcome results of the scorecard,
we initialized the parameters as below. A specific point
score of P0 was set, with odds D odds0. The point-to-
double odds (PDO) refer to the difference when odds D
odds0 becomes odds D odds0

2
. Here, P0 D 600,

odds0 D
1
19

, and PDO D 50. Thus, the odds (death
probability/survival probability) of the patient at 600
score points was 1/19, and the value was reduced by half
for every 50 points lost (Fig. 2).

These initialization factors were brought back into the
following formula:

P0 D AC B � ln .odds0/ (8)
P0 C PDO D AC B � ln .odds0=2/ (9)

Then,

B D �
PDO
ln 2

(10)

A D P0 � B � ln .odds0/ (11)

Based on the settings above, the score function was
deduced,
scoretotal D ACBW0CBW1X

i
1C� � �CBWnX

i
n (12)

where A C BW0 is a base point, and BWnX in is the
mapping score of the i th data zone of the nth variable.

Fig. 2 Relationship between the score in the scorecard and
probability.

2.4 Model evaluation

To evaluate the new model, we applied several key
performance metrics.

First, whether the results of this new model matched
real situations is significant. Here, Brier scores and
calibration curves[20] were deployed to describe gaps
between the model and statistical facts. The values of
Brier scores were between 0 and 1, in which a smaller
value indicates a better performance.

Second, training and test data sets should have no bias.
The population stability index (PSI) is widely used to
measure bias; it is normalized between 0 and 1, in which
a small value indicates high stability. PSI is calculated
as follows:

PSI D
mX
iD1

.li � qi / ln
�
li

qi

�
=100 (13)

m: the number of groups, which are classified by a
metric of equal score zone in the training data set; li :
the patient proportion in the training data set when their
scores are in the i th group ofm; qi : the patient proportion
in the test data set when their scores are in the i th group
of m, where PSI D 0; ideally, the patient proportions
in training and test data sets must be equal in each
group. Existing rules of thumb are as follows: PSI <
0:10 means “little shift”, 0:10 < PSI < 0:25 means
“moderate shift”, and PSI > 0:25 means “significant
shift, action required[21]”.

Third, this model is needed to evaluate how much gain
is valid. Here, a decision curve analysis[22] was applied
to calculate “NET Benefits”, which were referred to, was
in two default cases (i.e., no model was applied in one
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default case, and the other one applied the model for
every case)[23, 24]. The formula for net benefits is shown
below:

NET Benefit D
TPC
N
�

FPC
N
�

t

1 � t
(14)

TPC: true positive count; FPC: false-positive count; t :
threshold probability of a given event.

Fourth, this model’s efficiency was compared with
those of typical machine learning algorithms in the same
test data set. Six machine learning algorithms were
applied: penalty logistic regression (logistic elastic),
KNN, support vector machine (SVM), extreme gradient
boosting (XGBoost), random forests (RF), and a voting
model (RF + XGBoost). To prevent prepositive bias
from machine learning algorithms, we used the typical
adaptive synthetic[25] strategy to balance the probabilities
of both dead and survival samples in the training data
set. Their hyperparameters were optimized by combining
grid search and fivefold cross-validation.

Finally, the model was validated on the two other
external datasets (one was from Yan et al.[7] study:
https://www.nature.com/articles/s42256-020-0180-7,
and the other was from a Peru cohort: https://figshare.
com/articles/dataset/Database.xls/13869179).

Given that no same datasets had all identical variables,
we checked the kernel performance of this model in part.
Initially, we observed all common variables between
our dataset and two external datasets. Second, our model
was simplified by using these common variables as input,
exclusively. Logically, our model can work well if its
kernel performance is accepted in other different datasets
with only common variables. All tests were two-tailed,
and their results were statistically significance when P-
value was less than 0.05. Python (3.9.1) was used for
machine learning algorithms, including numpy, pandas,
matplotlib, sklearn, imblearn, scipy, and XGBoost
packages along with R (version 4.0.2), involving finalfit,
glmnet, ggplot2, pROC, rmda, and tidyverse packages,
were applied for the scorecard.

3 Result

3.1 Patient statistic

The 322 patients included in this study had a median
(IQR) age of 64 (54–70.75) years old, and males
accounted for 55.28%. A total of 139 (46.49%) patients
had hypertension, 66 (22.54%) had diabetes, and 246
(88.17%) had symptoms of coughing. Among the 322
samples, 72 (22.4%) patients died, and their median
(IQR) age was 68 (60.0–74.74) years old, which is higher

than that of the survival group (68 versus 63). Each of
these 72 deceased patients suffered from one or more
symptoms of consciousness disorder, whose probability
and seriousness levels were higher than those of the
survival group (24% versus 14%). Men accounted for
69.01%, which was higher than the 50.41% observed
in the survival group, as shown in Table 1. The
distribution of blood oxygen saturation, respiratory rate
(RR), temperature, and blood biochemical indicators,
etc., deviated between samples of the deceased and
surviving patients (Table 2). The dead patients suffered
from higher RR, lower blood oxygen saturation, and
higher temperature, accompanied by increased levels
of leukocytes, neutrophils, high sensitive troponin-
I (hsTnl), N-terminal pro-B-type natriuretic peptide
(NT-proBNP), interleukin-2 (IL-2), interleukin-6 (IL-
6), interleukin-10 (IL-10) procalcitonin, and decreased
levels of lymphocytes along with platelets.

3.2 Our proposal: Scorecard model for death risk
prediction

As aforementioned, 30 out of 49 variables were selected
for this study (Table 3). Twelve items were excluded
due to the data incompleteness issue, along with seven
variables being deleted for the sake of low diversity.
Among the selected 30 variables from 322 patients,
two more items were removed as a consequence of
the high correlation of neutrophils (cor [neutrophils,
lymphocytes] D 0.92) and NT-proBNP (cor [TNI, NT-
proBNP]D 0.82). Thus, only 28 variables were deemed
suitable for the study.

To search for clinical meanings from these 28
study variables, we discretized the continuous variables
by tree-like segmentation. In accordance with the
clinical criteria, cutoff points were set based on their
entropy values and adjusted if necessary. After data
differentiation and entropy processing, 8 of the 28 items
were discarded because their IVs were less than 0.02.
The remaining 20 variables were explored by backward
stepwise variable selection in accordance with the AIC.
After the selection process, we observed that mortality
risks were more significantly affected by eight factors:
namely age, temperature, RR, disease cluster, leukocyte,
lymphocytes, hsTnl, and IL-10. Their attributes are
listed below: age (odds ratio(OR): 5.68; 95% confidence
interval (CI): 1.74–24.1), RR (OR: 2.43; 95% CI: 1.12–
5.59), temperature (OR: 2.88; 95% CI: 1.19–7.41), and
disease cluster (OR: 1.78; 95% CI: 0.87–3.93), leukocyte
(OR: 1.52; 95% CI: 0.90–2.77), lymphocytes (OR: 2.02;
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Table 1 Clinical characteristics, comorbidities, and outcomes of 322 patients with COVID-19.
Characteristic Missed heads All patients Survival group Death group t/X2 P-value

Age (IQR) – 64 (54–70.75) 63.0 (51.25–69.0) 68.0 (60.0–74.75) 6181 <0.001
HR(IQR) 17 94 (84–104) 93.0 (83.75–105.0) 101.0 (85.0–114.0) 6526 0.0504
RR(IQR) 53 20 (20–24) 20.0 (20.0–23.0) 25.0 (20.0–32.0) 3764 <0.001

SpO2(IQR) 53 96 (92–98) 96.0 (94.0–98.0) 86.5 (78.0–94.75) 9139 <0.001
Temperature (IQR) 44 36.6 (36.2–37.08) 36.6 (36.2–37.0) 37.0 (36.5–37.85) 4547 <0.001

Gender
Male – 178 (55.28%) 124 (51.20%) 50 (69.44%)

7.526 0.006
Female – 144 (44.72%) 122 (48.80%) 22 (39.56%)

Coronary disease
Yes – 46 (16.61%) 31 (14.42%) 15 (24.19%)

3.32 0.068
No – 231 (83.39%) 184 (85.58%) 47 (75.81%)

Mental
state

Normal – 227 (85.35%) 185 (91.13%) 42 (66.67%)
16.19 0.003Slightly – 29 (10.9%) 15 (7.4%) 14 (22.22%)

Severe – 10 (2.75%) 3 (1.47%) 7 (11.11%)

Diabetes
Yes – 66 (22.54%) 49 (21.4%) 17 (26.56%)

0.765 0.381
No – 227 (77.47%) 180 (78.6%) 47 (73.44%)

Hypertension
Yes – 139 (46.49%) 127 (54.27%) 33 (50.77%)

0.251 0.616
No – 160 (53.51%) 107 (45.73%) 32 (49.23%)

Cough
Yes – 246 (88.17%) 188 (87.04%) 59 (92.19%)

1.26 0.262
No – 33 (11.83%) 28 (12.96%) 5 (7.81%)

Table 2 Blood biochemistry of 322 patients with COVID-19
Characteristic Missed head Patient Survival group Death group t/X2 P-value

Leukocyte (IQR) 5 6.26 (4.93–8.67) 5.7 (4.62–7.16) 9.67 (7.46–13.57) 2946.5 <0.001
Neutrophils (IQR) 5 71.1 (57.55–82.6) 65.7 (55.35–75.78) 89.52 (83.7–91.95) 1679.5 <0.001

Lymphocytes (IQR) 5 19.2 (9.65–29.15) 22.6 (14.08–30.15) 5.96 (3.16–8.85) 15519 <0.001
Platelets (IQR) 6 223 (165.38–286.5) 234.0 (185.25–292.75) 159.0 (105.71–225.75) 12299 <0.001

hsTnl (IQR) 23 6.1 (2.3–17.15) 3.6 (1.9–8.6) 35.92 (11.42–198.6) 1918.5 <0.001
NT-proBNP (IQR) 25 173 (49–503) 111.5 (35.75–296.88) 817.0 (383.0–2687.0) 2017 <0.001

PCT (IQR) 48 0.05 (0.03–0.16) 0.04 (0.02–0.09) 0.22 (0.13–0.94) 1687.5 <0.001
IL-6 (IQR) 40 14 (3–49.74) 9.02 (2.15–27.43) 69.77 (34.4–178.95) 1937.5 <0.001
IL-2 (IQR) 58 655 (399–1091) 570.75 (347.0–894.75) 1128.0 (816.0–1809.0) 2903.5 <0.001
IL-10 (IQR) 58 5 (4–5) 5.0 (5.0–5.9) 10.3 (6.8–20.7) 1968.5 <0.001

Table 3 Initial filtering of variables based on their missing data and variability.
Type Parameter

Age, sex, hypertension, coronary heart disease
Chronic nephropathy, history of diabetes, underlying lung disease, smoking history

History of surgery/trauma/blood transfusion, disease cluster
Heart rate (5.6%) (bpm), respiratory rate (16.1%), temperature (16.8%) (ıC)

Inclusion Peripheral oxygen saturation (16.4%), night sweats, fever
Mental status, dyspnea, cough, headache, chest pain

Leukocyte (1.6%), neutrophils (1.6%), lymphocytes (1.6%)
PCT (14.9%), IL-2 (18.3%), IL-6 (12.4%), IL-10 (18.3%)

TNI (7.1%), NT-proBNP (7.5%), platelets (1.9%)
Weight (52.8%), height (54.3%), hepatitis B vaccine

Disease of digestive tract, tumor, HIV
Perinatal or lactation, contact histor of COVID-19 patients

Exclusion Contact history of fevrile personnel in Wuhan
Pharyngal myalgia (41%), chilly (20.8%), fatigue (35.1%)

Stroke, diarrhea (37.58%), C-reaction protein (72.46%)
Albumin (72.17%), creatinine (72.75%), LDH (54.78%), D-dimer ration (27.54%)
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95% CI: 1.48–2.84), hsTnl (OR: 1.60; 95% CI:
1.08–2.37), and IL-10 (OR: 1.60; 95%, CI: 1.08–2.37).

3.3 Model validation and comparison

As displayed in Fig. 3, the calibration curves matched
the desired requirements: slope D 1343, BrierD 0.048,
and Dxy D 0.972. In Fig. 4, the decision curves show
that the scorecard model satisfied clinical utility in the
test data set. In terms of computing effectiveness and
efficiency, six typical algorithms (e.g., KNN, logistic-
elastic, SVM, XGBoost, RF, and a voting model) were
cited as alternates. According to Table 4, the RF achieved
the best performance (ACCD 87.6%; AUCD 97.6%),
followed by XGBoost (ACCD 85.6%; AUCD 96.1%),
and logistic elastic (ACC D 86.6%; AUC D 94.7%).
Compared with these traditional machine learning
models, our entropy-based discretization scorecard
model achieved a better performance (ACC D 94.8%;
AUCD 98.6%).

The scorecard model is a visual quantitative tool
for death risk in clinical applications (Table 5) and

Fig. 3 Calibration curve, model results versus statistical
facts regarding in-hospital mortality (red line: calibration
curve).

Fig. 4 Decision curve analysis (DCA) curves and red lines
are standardized net benefits at different risk thresholds
compared with two default cases (black line: no model
applied; blue dash line: the model was used for all patients).

Table 4 Performance comparison of different models in the
data test set.

Model ACC (%) AUC (%) Sp Se PPV NPV
KNN 82.5 76.3 0.878 0.533 0.444 0.911
SVM 85.6 88.5 0.914 0.533 0.530 0.915
XG 85.6 96.1 0.841 0.933 0.518 0.986
RF 87.6 97.6 0.866 0.933 0.560 0.986

Vote 87.6 97.6 0.866 0.933 0.560 0.986
Logistic 86.6 94.7 0.865 0.867 0.541 0.973

Scorecard 94.8 98.6 0.939 1.000 0.750 1.000

Note: ACC D accuracy; AUC D area under curve; Sp D
specificity; Se D sensitivity; PPV D positive predictive value;
NPVD negative predictive value.

Table 5 Visualization of risk scorecard for real applications.
Age

(Risk coefficient)
Temperature (ıC)
(Risk coefficient)

Disease cluster
(Risk coefficient)

<48 (291) <37.3 (18) No (–17)
48–72 (–5) 37.3–38.2 (–21) Yes (51)
>72 (–62) >38.2 (–135) – (–)

Leukocyte (109/L)
(Risk coefficient)

hsTnl (pg/mL)
(Risk coefficient)

IL-10 (pg/mL)
(Risk coefficient)

<10 (–106) <16 (31) <10 (42)
10–19 (37) 16–30 (6) 10–18 (–56)
>19 (99) >30 (–70) >18 (–161)

Note: pg/mL is the unit of drug dose.

reliable given the PSI D 0:071 between the training
and test datasets (Fig. 5). As shown in Table 6, when the
patient’s death risk score was lower than a threshold of
205, the mortality rate was close to 100% (training set:
96.2%; test set: 100%). When the scores were between
thresholds 205 to 459, the mortality rates decreased
significantly, and when the score was higher than the
score at our threshold of 459, the mortality rate was
close to 0. In real scenarios, these score ranges can be
adjusted based on local medical resource availability.
Our new model is available for public sharing on the
link (https://xqccccc.shinyapps.io/DynNomapp/), and it
can interactively calculate the specific death probability
and confidence interval of patients. Figure 6 shows its
interactive windows.

In our dataset, the performance of our model with
all eight factors showed ([ACC D 94.8%, AUC D
99.0%, sensitivity D 1, and specificity D 0.939]; the
performance was adjusted to [ACC D 88.7%, AUC D
94.1%, sensitivity D 0.583, and specificity D 0.986])
when using the mentioned three common variables
(age[6, 10, 26], temperature[27–29], and RR[19]). As shown
in Fig. 7 and Table 7, the model performance in
the other two datasets was listed as (Wuhan cohort
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Fig. 5 Score distribution for a given PSI result.

https://www.nature.com/articles/s42256-020-0180-7;
ACCD 82.0%, AUCD 92.4%, sensitivityD 0.886, and
specificity D 0.785; Peru cohort: https://figshare.com/
articles/dataset/Database.xls/13869179; ACC D 71.4%,
AUC D 74.4%, sensitivity D 0.757, and specificityD
0.642). These kernel performance tests can mainly

reflect the model’s universal applicability in different
datasets.

3.4 Illumination of model results

In this scorecard model, the roles of eight variables can
be interpreted clinically and independently. Specifically,
neutrophils are the main members of the leukocyte
family. The increase in neutrophil levels introduces
excessive reactive oxygen species and causes tissue
damage, especially in elderly or frail people and
indicates various types of bacterial infection[30, 31].
Existing studies[32, 33] explained the strong causation
correlation between neutrophil growth and the increased
death risk. The increased levels of hsTnl and IL-10 and
decreased levels of lymphocytes are explicit risk factors
for COVID-19 patient death[34–36]. These abnormalities
indicate that COVID-19 infection may be associated
with cellular immune deficiency, myocardial injury, and
cytokine storm, which also reveals that systemic immune
response is a critical factor related to the final outcomes
of COVID-19 subjects. As for other variables, such as

Table 6 Scorecard performance evaluation regarding mortality rates and related metrics between cutoff points in the test set.
Number of cutoff points Number of patients ACC (%) TP TN FP FN Se Sp PPV NPV F1 Death

48 1 85.6 1 82 0 14 0.07 1.00 1.00 0.85 0.13 1
79 6 90.7 6 82 0 9 0.40 1.00 1.00 0.90 0.57 6
205 9 93.8 9 82 0 6 0.6 1.00 1.00 0.93 0.75 9
332 15 93.8 12 79 3 3 0.80 0.96 0.80 0.96 0.80 12
459 27 87.6 15 70 12 0 1.00 0.85 0.56 1.00 0.71 15
586 40 74.2 15 57 25 0 1.00 0.70 0.38 1.00 0.55 15
713 68 45.4 15 29 53 0 1.00 0.35 0.22 1.00 0.36 15
839 79 34.0 15 18 64 0 1.00 0.22 0.19 1.00 0.32 15
966 92 20.6 15 5 77 0 1.00 0.06 0.16 1.00 0.28 15
1093 97 15.5 15 0 82 0 1.00 0.00 0.15 NA 0.27 15

Note: TPD true positive; TND true negative; FPD false positive; FND false negative; SeDsensitivity; SpDspecificity; PPVD positive
predictive value; NPVD negative predictive value.

Fig. 6 The interactive window of a visualization tool for clinical treatment.
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Fig. 7 Comparison between different datasets in terms of receiver operating characteristic (ROC) curves and confusion
matrices for testing the new model’s applicability (in the figure, ROC curves are in (a)–(c); confusion matrices are in (d)–(f),
(a) and (d) stand for performance in the Peru dataset; (b) and (e) represent results in Ref. [7]; (c) and (f) mean results from our
dataset of the national medical team).

Table 7 Performance comparison of the three-predictor
model in different test sets.

Type ACC (%) AUC (%) Sp Se PPV NPV
Peru 71.4 74.4 0.642 0.757 0.613 0.779

Yan et al.’s data[7] 82.0 92.4 0.785 0.886 0.927 0.692
Our data 88.7 94.1 0.986 0.583 0.878 0.933

Note: ACC D accuracy; AUC D area under curve; Sp D
specificity; Se D sensitivity; PPV D positive predictive value;
NPVD negative predictive value.

age[6, 10, 26], temperature[27–29], and RR[19], their increase
either means a high risk of hospitalization mortality
for COVID-19 patients. These three factors are also
common risk factors for other types of pneumonia[37–39].
Disease cluster is a special and extensively studied fact,
and in such a case, a patient can infect those who
are close to him or her in a relatively short period.
These patients are likely to recover rapidly as they are
determined by the scoreboard as positive for proper
treatment as early as possible.

In this retrospective study, our main objective was
to find an effective and efficient way that can provide
a scientific tool to process complex data and help
in processing unknown or unclear data knowledge to
improve the medical quality of a new disease, for

example, at the early stage of a disease such as the
COVID-19 outbreak. The first issue was the removal of
redundant noises from high-dimensional data variables
using the entropy information theory. These variables
were selected and processed layer by layer, to find
key factors of COVID-19 death risk. Finally, the
findings on these key factors were mapped to a simple
scorecard, which is a digital tool for translating data
into clinical information to allow doctors to control
the death risks during ICU admission of COVID-19
patients. In applications, the thresholds of the scorecard
can be adjusted based on the actual availability of
local medical resources. To illustrate how the model
works in different datasets, we created and applied a
partial kernel performance test method. In this study,
training data were all from Chinese patients, and the
results’ effectiveness may have some limitations when
extended to other populations, including influence from
differences in genes, environment, medical treatment
methods, etc. This model should be further optimized
for cases in different countries/regions. Thus, our model
provides a handy digital assistant to physicians for
handling new or unknown diseases for death risk control
and medical resource management.
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4 Conclusion

This study solved a critical problem of how to allow a
computing algorithm to produce clinical explanation
results, regardless of its black-box mechanism. To
address this problem, we developed a visual scientific
tool for clinical decision support during ICU admission
of COVID-19 patients by refining some critical
factors using an entropy-based method. Compared with
traditional machine learning models, our scorecard
model is a scientific clinical interpretation tool to be used
by doctors for medical resource planning, especially in
massive epidemics like the COVID-19 situation during
the past three years globally. In this retrospective study,
we assessed 322 adults (age: [median: 64; IQR: 54–75],
males: 178 [55.28%], and death: 72 [22.36%]) who
are the laboratory-confirmed COVID-19 ICU patients
from the national medical team in Wuhan. These
patients were randomly grouped into training (70%)
and validation (30%) cohorts. In the training cohort,
all kinds of continuous-type data were first discretized
using an entropy-based method (tree-like segment) to
obtain the cutoff endpoints of the information margin,
and they were helpful in relating clinical explanation to
complex data. Combining other discrete data, a logistic
regression was adopted to configure a scorecard of death
risk factors in visualization and compare it with machine
learning algorithms. Logistic regression was utilized
to identify the risk factors of patients with COVID-19,
and a scorecard with the selected eight variables was
built for clinical use. Calibration curves, PSI, and DCA
were used to evaluate the performance of the scorecard
in validation cohorts. In terms of survival probability
analyses, this scorecard model can interpret clinical
meanings from complex data with the desired computing
performance (ACCD 94.8%; AUCD 99.0%, compared
with several other typical machine learning methods,
such as XGBoost (ACCD 85.6%; AUCD 96.0%), RF
(ACCD 87.6%; AUCD 98.0%) and a voting classifier
(XGBoost C RF) (ACC D 87.6%; AUCD 98.0%)).
Notably, some limitations were noted in this study, such
as how to set up a clinical cohort to validate this model in
real-life, how to find clinical explanations from missing
or unconsidered data, and how to design an online
computing model to help in the treatment of any new
diseases, etc. These topics are open for the next study.

Acknowledgment

This work was supported in part by the Scientific and
Technological Innovation 2030-“New Generation Artificial
Intelligence” Major Project (No. 2021ZD0140406), and
the National Natural Science Foundation of China (No.
62041201). Qiang Ji contributed figure drawing and data
analysis assistance to the article.

References

[1] M. Esai Selvan, Risk factors for death from COVID-19, Nat.
Rev. Immunol., vol. 20, no. 7, p. 407, 2020.

[2] Y. Shang, T. Liu, Y. Wei, J. Li, L. Shao, M. Liu, Y. Zhang,
Z. Zhao, H. Xu, Z. Peng, et al., Scoring systems for
predicting mortality for severe patients with COVID-19,
eClinicalMedicine, vol. 24, p. 100426, 2020.

[3] K. A. Overmyer, E. Shishkova, I. J. Miller, J. Balnis, M. N.
Bernstein, T. M. Peters-Clarke, J. G. Meyer, Q. Quan, L. K.
Muehlbauer, E. A. Trujillo, et al., Large-scale multi-omic
analysis of COVID-19 severity, Clin. Transl. Discov., vol.
12, no. 1, pp. 23–40, 2021.

[4] G. Zhang, Y. An, L. Zhang, L. Xie, and X. Guo, Risk factors
for in-hospital mortality in patients with cancer and COVID-
19, Lancet Oncol., vol. 21, no. 9, p. 407, 2020.

[5] J. Tian, X. Yuan, J. Xiao, Q. Zhong, C. Yang, B. Liu, Y.
Cai, Z. Lu, J. Wang, Y. Wang, et al., Clinical characteristics
and risk factors associated with COVID-19 disease severity
in patients with cancer in Wuhan, China: A multicentre,
retrospective, cohort study, Lancet Oncol., vol. 21, no. 7,
pp. 893–903, 2020.

[6] W. Liang, H. Liang, L. Ou, B. Chen, A. Chen, C. Li,
Y. Li, W. Guan, L. Sang, J. Lu, et al., Development and
validation of a clinical risk score to predict the occurrence
of critical illness in hospitalized patients with COVID-19,
JAMA Intern. Med., vol. 180, no. 8, pp. 1081–1089, 2020.

[7] L. Yan, H. T. Zhang, J. Goncalves, Y. Xiao, M. Wang,
Y. Guo, C. Sun, X. Tang, L. Jing, M. Zhang, et al., An
interpretable mortality prediction model for COVID-19
patients, Nat. Mach. Intell., vol. 2, no. 5, pp. 283–288,
2020.

[8] Y. Gao, G. Y. Cai, W. Fang, H. Y. Li, S. Y. Wang, L. Chen,
Y. Yu, D. Liu, S. Xu, P. F. Cui, et al., Machine learning
based early warning system enables accurate mortality risk
prediction for COVID-19, Nat. Commun., vol. 11, no. 1, p.
5033, 2020.

[9] A. S. Yadaw, Y. C. Li, S. Bose, R. Iyengar, S. Bunyavanich,
and G. Pandey, Clinical features of COVID-19 mortality:
Development and validation of a clinical prediction model,
Lancet Digit. Heath., vol. 2, no. 10, pp. 516–525, 2020.

[10] S. R. Knight, A. Ho, R. Pius, I. Buchan, G. Carson, T.
M. Drake, J. Dunning, C. J. Fairfield, C. Gamble, C. A.
Green, et al., Risk stratification of patients admitted to
hospital with COVID-19 using the ISARIC WHO Clinical
Characterisation Protocol: Development and validation of
the 4C Mortality Score, BMJ Clin. Res. Ed., vol. 370,



44 Tsinghua Science and Technology, February 2024, 29(1): 34–45

p. 3339, 2020.
[11] N. Razavian, V. J. Major, M. Sudarshan, J. Burk-Rafel, P.

Stella, H. Randhawa, S. Bilaloglu, J. Chen, V. Nguy, W.
Wang, et al., A validated, real-time prediction model for
favorable outcomes in hospitalized COVID-19 patients, NPJ
Digit. Med., vol. 3, p. 130, 2020.

[12] O. Troyanskaya, M. Cantor, G. Sherlock, P. Brown, T.
Hastie, R. Tibshirani, D. Botstein, and R. B. Altman,
Missing value estimation methods for DNA microarrays,
Bioinform. Oxf. Engl., vol. 17, no. 6, pp. 520–525, 2001.

[13] J. Gupta, S. Paul, and A. Ghosh, A novel transfer learning-
based missing value imputation on discipline diverse real
test datasets—A comparative study with different machine
learning algorithms, in Advances in Intelligent Systems and
Computing, Singapore: Springer, 2019.

[14] Minakshi, Rajan Vohra, and Gimpy, Missing value
imputation in multi attribute data set, Int. J. Comput. Sci.
Infor. Technol., vol. 5, no. 4, pp. 5315–5321, 2014.

[15] G. E. A. P. A. Batista and M. C. Monard, An analysis of
four missing data treatment methods for supervised
learning, Appl. Artif. Intell., vol. 17, nos. 5–6, pp. 519–533,
2003.

[16] J. Dougherty, R. Kohavi, and Sahami M., Supervised and
unsupervised discretization of continuous features, in Proc.
12th Int. Conf. Machine Learning, Tahoe City, CA, USA:
Morgan Kaufmann, 1995.

[17] G. Zeng, Metric divergence measures and information value
in credit scoring, J . Math., vol. 2013, pp. 1–10, 2013.

[18] M. Refaat, Credit Risk Scorecards: Development
and Implementation Using SAS, Raleigh, NC, USA:
LULU.COM, 2011.

[19] N. Siddiqi, Credit Risk Scorecards: Developing and
Implementing Intelligent Credit Scoring, Hoboken, NJ,
USA: John Wiley & Sons, Inc., 2012.

[20] E. W. Steyerberg, A. J. Vickers, N. R. Cook, T. Gerds,
M. Gonen, N. Obuchowski, M. J. Pencina, and M. W.
Kattan, Assessing the performance of prediction models: A
framework for traditional and novel measures, Epidemiol.
Camb. Mass, vol. 21, no. 1, pp. 128–138, 2010.

[21] R. Taplin and C. Hunt, The population accuracy index: A
new measure of population stability for model monitoring,
Risks, vol. 7, no. 2, p. 53, 2019.

[22] A. J. Vickers and E. B. Elkin, Decision curve analysis: A
novel method for evaluating prediction models, medical
decision making, Med. Decis. Making, vol. 26, no. 6, pp.
565–574, 2006.

[23] A. J. Vickers, B. van Calster, and E. W. Steyerberg, A
simple, step-by-step guide to interpreting decision curve
analysis, Diagn. Progn. Res., vol. 3, p. 18, 2019.

[24] M. Fitzgerald, B. R. Saville, and R. J. Lewis, Decision curve
analysis, JAMA, vol. 313, no. 4, p. 409, 2015.

[25] H. He, Y. Bai, E. A. Garcia, and S. Li, ADASYN: Adaptive
synthetic sampling approach for imbalanced learning, in
Proc. 2008 IEEE Int. Joint Conf. Neural Networks (IEEE
World Congress on Computational Intelligence), Hong
Kong, China, 2008, pp. 1322–1328.

[26] F. Caramelo, N. Ferreira, and B. Oliveiros, Estimation of
risk factors for COVID-19 mortality-preliminary results,
medRxiv, https://europepmc.org/article/PPR/PPR114369,
2020.

[27] B. Zheng, Y. Cai, F. Zeng, M. Lin, J. Zheng, W. Chen, G.
Qin, and Y. Guo, An interpretable model-based prediction
of severity and crucial factors in patients with COVID-19,
BioMed Res. Int., vol. 2021, pp. 1–9, 2021.

[28] J. A. Kline, C. A. Camargo, D. M. Courtney, C. Kabrhel,
K. E. Nordenholz, T. Aufderbeide, J. J. Baugh, D. G.
Beiser, C. L. Bennett, J. Bledsoe, et al., Clinical prediction
rule for SARS-CoV-2 infection from 116 U.S. emergency
departments 2-22-2021, PloS One, vol. 16, no. 3, p.
0248438, 2021.

[29] K. B. Son, T. J. Lee, and S. S. Hwang, Disease severity
classification and COVID-19 outcomes, Republic of Korea,
Bull. World Heath. Organ., vol. 99, no. 1, pp. 62–66, 2021.

[30] M. Laforge, C. Elbim, C. Frère, M. Hémadi, C. Massaad,
P. Nuss, J. J. Benoliel, and C. Becker, Tissue damage from
neutrophil-induced oxidative stress in COVID-19, Nat. Rev.
Immunol., vol. 20, no. 9, pp. 515–516, 2020.

[31] B. Kalyanaraman, Do free radical network and oxidative
stress disparities in African Americans enhance their
vulnerability to SARS-CoV-2 infection and COVID-19
severity? Redox Biol., vol. 37, p. 101721, 2020.

[32] P. Pan, Y. Li, Y. Xiao, B. Han, L. Su, M. Su, Y. Li, S. Zhang,
D. Jiang, X. Chen, et al., Prognostic assessment of COVID-
19 in the intensive care unit by machine learning methods:
Model development and validation, J . Med. Internet Res.,
vol. 22, no. 11, p. 23128, 2020.

[33] A. Alnor, M. B. Sandberg, C. Gils, and P. J. Vinholt,
Laboratory tests and outcome for patients with coronavirus
disease 2019: A systematic review and meta-analysis, J.
Appl. Lab. Med., vol. 5, no. 5, pp. 1038–1049, 2020.

[34] X. Zhang, Y. Tan, Y. Ling, G. Lu, F. Liu, Z. Yi, X. Jia, M.
Wu, B. Shi, S. Xu, et al., Viral and host factors related to the
clinical outcome of COVID-19, Nature, vol. 583, no. 7816,
pp. 437–440, 2020.

[35] D. Wang, B. Hu, C. Hu, F. Zhu, X. Liu, J. Zhang, B. Wang,
H. Xiang, Z. Cheng, Y. Xiong, et al., Clinical characteristics
of 138 hospitalized patients with 2019 novel coronavirus–
infected pneumonia in Wuhan, China, JAMA, vol. 323, no.
11, p. 1061, 2020.

[36] F. He, Y. Quan, M. Lei, R. Liu, S. Qin, J. Zeng, Z. Zhao, N.
Yu, L. Yang, and J. Cao, Clinical features and risk factors for
ICU admission in COVID-19 patients with cardiovascular
diseases, Aging Dis., vol. 11, no. 4, p. 763, 2020.

[37] W. S. Lim, M. M. van der Eerden, R. Laing, W. G.
Boersma, N. Karalus, G. I. Town, S. A. Lewis, and J.
T. MacFarlane, Defining community acquired pneumonia
severity on presentation to hospital: An international
derivation and validation study, Thorax, vol. 58, no. 5, pp.
377–382, 2003.

[38] M. J. Fine, T. E. Auble, D. M. Yealy, B. H. Hanusa, L. A.
Weissfeld, D. E. Singer, C. M. Coley, T. J. Marrie, and W.
N. Kapoor, A prediction rule to identify low-risk patients
with community-acquired pneumonia, Dev. Camb. Engl.,
vol. 336, no. 4, pp. 243–250, 1997.

[39] J. L. Liu, F. Xu, H. Zhou, X. J. Wu, L. X. Shi, R. Q. Lu,
A. Farcomeni, M. Venditti, Y. L. Zhao, S. Y. Luo, et al.,
Expanded CURB-65: A new score system predicts severity
of community-acquired pneumonia with superior efficiency,
Sci. Rep., vol. 6, p. 22911, 2016.



Chong Yao et al.: Lesson Learned from COVID–19 Retrospective Study: An Entropy-Based Clinical-Interpretable : : : 45

Chong Yao received the MS degree
from China University of Mining and
Technology, Xuzhou, China, in 2020.
Now, she is pursuing the PhD degree in
Beihang University, China. Her research
interests include medical information and
blockchain.

Chonghui Huangqi received the BS
degree from College of Agricultural and
Environment Sciences at University of
California, Davis, USA, in 2022. From
August 2022 to May 2023, he was an
employee at the Lab of Population Health
and Reproduction, UC Davis, USA. He is
currently a graduate student in University

of Southern California, USA. His research interests include
biomedical engineering, gene computing, medical imaging, and
imaging information.

Anpeng Huang received the MS degree
from the University of Electronic Science
and Technology of China, Sichuan, China,
in 2000, and the PhD degree from Peking
University, Beijing, China, in 2003. From
May 2004 to January 2005, he was a visiting
scholar in the University of Waterloo,
Canada. From February 2005 to March

2008, he was a postdoctoral researcher at the Department of
Computer Science in the University of California, Davis, USA.
Since November 2007, he has been a tenure-tracked associate
professor of Peking University, China. He is also the chief
scientist of National Health IT Program in China, and the chief
scientist of Beijing Goodwill Information and Technology Co.,
Ltd. He has more than 75 journal papers and conference papers,
He is the holder of 19 US patents and 74 Chinese patents, the
advisor of “Best Student Paper Award” winner at 2012 14th IEEE
HEALTHCOM conference, and the founder of Mobile Health
Laboratory in PKU. His research interests include mobile health,
medical big-data, artificial intelligence for health, etc.


