
1 Introduction

Submodular maximization has become one of the

most attractive problems in combinatorial optimization,

since the greedy algorithm[1] was introduced by

Nemhauser et al. The diminishing return of a set

function is regarded as an equivalent definition

of submodularity, which has been well applied in

economics and artificial intelligence. In Ref. [1],

Nemhauser et al. showed that the approximation ratio,

1 " 1=e of their greedy algorithm, cannot be improved

for maximizing monotone nonnegative submodular

function unless P D NP . Many new results have been

arising. Except the greedy algorithm, many other

algorithms, such as local search[2], continuous greedy

algorithm[3], adaptive algorithms[4], and streaming
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algorithms[5], have been proposed. Various constraints,

such as cardinality[1, 5], knapsack[6, 7], matroid[3], and

fairness[8, 9], have also been considered. A number

of models, including non-submodular models[10–12],

models on the lattice[12, 13], off-line[14], and online

models[15], have been investigated.

Submodular maximization has been extensively

studied and widely applied. However, most practical

problems are non-submodular in nature[10–12]. Bian et

al. introduced the submodularity ratio[11] to describe

the difference between a non-submodular function

and a submodular function. They proposed a greedy

algorithm and attained the first tight approximation ratio

with respect to the submodularity ratio. However, the

submodularity ratio of a non-submodular function is

highly related to the ground set and cannot be computed

in polynomial time. Bai and Bilmes[10] investigated a

non-submodular function with special structures; that is,

the non-submodular function is a submodular function

plus a supermodular function. By introducing the

polynomial-time computable parameters, named total

curvatures[16], they obtained a constant approximation

ratio for the greedy algorithm.

Fairness constraint[9] is a new constraint that was

proposed by Wang et al., and it is considered as a

special case of matroid partition constraints. When

we investigate the maximization of the submodular
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function with a cardinality constraint, the solution would

probably be obtained in a subset with the same properties.

Taking the Olympic Games as an example, if we put

male and female athletes in the same competitions,

then male athletes have a high probability winning all

the medals. Thus, fairness constraint is significant for

practical problems[17]. In Ref. [9], the fairness constraint

is given in the form jS \Ej j 6 kj with
Pl

jD1 kj D k,

where S is a feasible solution, Ej .j D 1; : : : ; l/ is

the partition of the ground set E with Ei \ Ej D ∅

(i ¤ j ) and [l
jD1Ej D E, kj is a known budget given

as kj D
jEj j

jEj
k and k is the total budget. The authors

mainly considered a streaming model and gave multi-

pass and one-pass streaming algorithms.

In Ref. [8], Halabi et al. proposed another

form of fairness constraint as qj 6 jS\Ej j6pj ,

and
Pl

jD1 qj 6 k, where pj and qj are constants.

Their streaming algorithm was designed by invoking

an approximation algorithm for the submodular

maximization with a matroid constraint.

Here, we mainly focus on the maximization of a

submodular function plus a supermodular function with

a fairness constraint. We design two offline algorithms

and one streaming algorithm. First, using the greedy

algorithm alone, we choose the element with the largest

marginal increment at each step. By utilizing the total

curvature of the supermodular function, we analyze

the approximation ratio of the greedy algorithm. If the

objective function reduces to a submodular function, we

obtain the same approximation ratio given in Ref. [9].

Second, we design the threshold greedy algorithm to

overcome this problem. We pick the element if its

marginal increment is larger than a given threshold. We

use the thresholds to reduce the inquiry complexity.

Finally, a one-pass streaming algorithm is provided.

However, we cannot obtain the total curvature of the

supermodular function in advance. Here we guess it

by dividing the interval Œ0; 1/ equally and returning the

solution with the largest objective value at the end. We

also give the guarantee, memory complexity, and inquiry

complexity of the algorithm.

The rest of the paper is organized as follows.

In Section 2, we describe the investigated problem,

and introduce some notations and conclusions used

throughout the paper. In Section 3, we provide a greedy

algorithm and analyze its approximation ratio. In Section

4, to improve the inquiry complexity, we introduce the

threshold greedy algorithm and give its guarantee. In

Section 5, a one-pass streaming algorithm with post-

processing is proposed, and its properties are analyzed.

2 Preliminary

In this section, we introduce some notations, definitions,

and properties. We also give a description of the problem

we focus on.

Given a ground set E D fe1; : : : ; eng, the monotone

non-decreasing function is defined as f .S/ 6 f .T / for

any S � T , S and T 2 2E . Let Œn� denote the set

Œn� D f1; 2; : : : ; ng.

The definitions of submodularity and its equivalent

form are given as follows:

Definition 1[13] A set function f .�/ W 2E ! RC is

submodular if for any subsets S; T 2 2E , the equation

f .S/C f .T / > f .S [ T /C f .S \ T /
holds.

Meanwhile, the most useful equivalent form is the

Diminishing Return submodularity (DR-submodularity)

which is defined as follows:

Definition 2[13] If a set function f W 2E ! RC

satisfies

f .S [ feg/  f .S/ > f .T [ feg/  f .T /

for every S and T 2 2E , S � T , e 2 EnT , the function

f .�/ is DR-submodular.

Similarly, the supermodularity of a set function is

defined.

Definition 3 Given a set function gW 2E ! RC, we

say that g is supermodular if for any S and T 2 2E ,

S � T , e 2 E n T ,

g.S [ feg/  g.S/ 6 g.T [ feg/  g.T /;

which is equivalent to

g.S/C g.T / 6 g.S [ T /C g.S \ T /

for any subsets S and T 2 2E .

We investigate the maximization of a monotone

submodular function plus a supermodular function[10]

with a fairness constraint[9]. A given ground set E

is divided into l subsets E1; : : : ; El , satisfying Ei \

Ej D ∅ and [l
jD1Ej D E. The objective function

h.X/ D f .X/C g.X/ is a monotone nonnegative non-

submodular function with h.∅/ D 0, where f .X/ and

g.X/ are a monotone nonnegative submodular function

and a monotone nonnegative supermodular function on

E, respectively. The target of the problem is to get a

subset X 2 2E to maximize the objective function h.X/

with the constraints jX \ Ei j 6 ki for all i 2 Œl � and
Pl

iD1 ki D k, where ki ; i 2 Œl � are known positive

integers. Thus, the feasible solution X with jX j 6 k
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chooses at most ki elements in each subset Ei (i 2 Œl �).

The formula of the problem is as follows:

max
X 2 2E ; jX \Ei j 6 ki ; i 2 Œl�;

h.X/ (1)

For two subsets S and T , we denote h.S jT / WD h.S[

T /  h.T / as the marginal value of a set S when it is

added to another set T .

To measure the non-submodular function h.X/ with

polynomial-time computable parameters, we introduce

the total curvatures of submodular and supermodular

functions.

Definition 4[10, 16] Given a monotone nonnegative

submodular function f W 2E ! RC , the total curvature

of f .�/ is defined as follows:

cf D 1  min
e2E

f .E/  f .E n feg/

f .feg/
;

where we suppose that f .feg/ ¤ 0 for any e 2 E.

From the definition it is obvious to see that cf 2 Œ0; 1/.

Moreover, the function is modular if and only if cf D 0.

Proposition 1[10] Let g.X/ be supermodular. Its dual

function g.E/ g.E n fXg/ is submodular with respect

to X .

Proof For any X�Y , e 2 EnY , from the definition

of supermodularity, we obtain

g.X [ feg/  g.X/ 6 g.Y [ feg/  g.Y /:

Furthermore, let l.X/ D g.E/ g.EnX/, we can prove

the following:

l.X [ feg/   l.X/ D
g.E/   g.E n .X [ feg//   .g.E/   g.E n X// D 
g.E n X/   g.E n .X [ feg/) >
g.E n Y /   g.E n .Y [ feg/) D
g.E/   g.E n .Y [ feg//   .g.E/   g.E n Y // D 
l.Y [ feg/   l.Y /;

where the first inequality holds for the supermodularity

of g.�/.

Therefore, l.X/ D g.E/  g.E n X/ is a DR-

submodular function with respect to X . �

Thus the total curvature of a supermodular function

can be derived from its dual submodular function as

follows.

Definition 5[10] Let g.�/ be a monotone nonnegative

supermodular function on E, the total curvature of g.�/

is defined in the following:

cg D cg.E/ g.EnX/ D 1  min
e2E

g.feg/

g.E/  g.E n feg/
:

Similar to the case of submodularity, we can obtain

that cg 2 Œ0; 1/ and g.�/ is modular if and only if

cg D 0.

The advantage of these parameters is that they can be

obtained by at most 2nC 1 oracle queries [10, 14].

By utilizing the total curvatures, we have the following

properties of the objective function h.�/.

Lemma 1[10] Let f .�/ be a monotone nonnegative

submodular function with total curvature cf , and g.�/

be a monotone nonnegative supermodular function with

total curvature cg . Then, for the function h.�/ D f .�/C

g.�/ and any two subsets S and T � E, satisfying S �

T and e 2 E n T ,
 

1  cf

�

.h.S [ feg/  h.S// 6 h.T [ feg/  h.T /

(2)

.1   cg / .h.T [ feg/   h.T // 6 h.S [ feg/   h.S/0 
(3)

Proof From Definition 2, we have
 

1  cf

�

f .feg/ 6 f .E/  f .E n feg/ (4)

From submodularity, we obtain the expression below:

f .E/  f .E n feg/ 6 f .T [ feg/  f .T / (5)

f .S [ feg/  f .S/ 6 f .feg/ (6)

where S and T � E. If S � T , combining Formulas

(4)–(6), we achieve
 

1  cf

�

.f .S [ feg/  f .S// 6
 

1  cf

�

f .feg/ 6

f .E/  f .E n feg/ 6

f .T [ feg/  f .T / (7)

Correspondingly, for function g.�/ there holds
 

1  cf

�

.g.S [ feg/  g.S// 6

g.S [ feg/  g.S/ 6

g.T [ feg/  g.T / (8)

where S � T . Then Formula (2) can be derived by

combining Formulas (7) and (8). By Definition 2, we

can obtain

.1  cg/ .g.E/  g.E n feg// 6 g.feg/ (9)

Moreover, by the supermodularity of function g.�/, we

have

g.T [ feg/  g.T / 6 g.E/  g.E n feg/ (10)

g.feg/ 6 g.S [ feg/  g.S/ (11)

where S and T � E. If S � T , then together with

Formulas (9)–(11), we obtain

.1  cg/ .g.T [ feg/  g.T // 6

.1  cg/ .g.E/  g.E n feg// 6

g.feg/ 6 g.S [ feg/  g.S/ (12)

For the submodular function f .�/ and there holds
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.1 " cg/ .f .T [ feg/ " f .T // 6

f .T [ feg/ " f .T / 6

f .S [ feg/ " f .S/ (13)

where S � T . Together with Formula (12), we finally

finish the proof. �

3 Greedy Algorithm

First, we use the greedy algorithm to investigate

Formula (1). In every step, the algorithm enumerates

all the elements in the remaining ground set to find

the maximum one with the largest marginal increment.

Then, the subset to which the selected element belongs

is checked. If the constraint of the subset has not reached

the capacity, the element is added to the solution set, and

is removed away from the ground set. If the constraint

of the subset has already reached the capacity, the

element cannot be added to the solution set and we

delete all the elements in this subset from the ground set.

This procedure is repeated until the remaining ground

set is empty. Meanwhile, all the constraints are tight.

Algorithm 1 gives the pseudo code of this idea.

To analyze the approximation ratio of Algorithm 1,

we introduce some notations. Let O denote an optimal

solution set of Formula (1) and Oj D O \ Ej be the

optimal solution in the subset Ej .j 2 Œl �/.

Theorem 1 The performance guarantee of

Algorithm 1 is .1 " cg/=.2 " cg/. The inquiry

complexity of Algorithm 1 is O.nk/.

Proof The final solution X obtained by Algorithm 1

is divided into X1; X2; : : : ; Xl according to the subsets

E1; E2; : : : ; El . Given that jOj j D jXj j D kj , we

construct bijections �j W Oj ! Xj from Oj to Xj , j D

Algorithm 1 Greedy.∅; E/

input: function h.�/, ground set E, partitions E1; E2; : : : ; El �

E, total budget k 2 N, budgets of each partitions

k1; k2; : : : ; kl 2 N 
output: X

1: X ∅, S E; 
2: while S ¤ ∅ do

3: e arg maxe2S h.X [ feg/ " h.X/;

4: Find e 2 Ej ;

5: if jX \Ej j < kj then

6: X X [ feg, S        S n feg;
7: else

8: S  S nEj ;

9: end if

10: end while

11: return X

1; 2; : : : ; l . For o 2 Oj \ Xj , the bijection maps o

to itself. The subset Xj n Oj D fxj1
; xj2

; : : : ; xjqj
g

.qj 6 kj / is labeled in the order of the elements

added by Algorithm 1. The set Oj n Xj is ordered

foj1
; oj2

; : : : ; ojqj
g arbitrary. For oji

2 Oj n Xj , the

bijections are �j .oji
/ D xji

, i D 1; 2; : : : ; qj . Let Xji

denote the initial solution of the iteration in which the

element xji
is added. According to Algorithm 1, the

equation h.oji
jXji / 6 h.xji

jXji / holds. Thus, we have

h.O/ " h.X/6h.O [X/ " h.X/ 6

1

1 " cg

l
X

jD1

qj
X

iD1

h.oji
jXji / 6

1

1 " cg

l
X

jD1

qj
X

iD1

h.xji
jXji / 6

1

1 " cg
h.X/:

By rearrangement, the above inequality can be written

as follows:

h.X/ >
1 " cg

2 " cg
h.O/ (14)

The algorithm needs to query the marginal increment

of at most n elements in each round, and enumerates k

rounds. Thus, we obtain the conclusions in Theorem 1.

�

Remark 1 If cg D 0, then g.�/ is a modular

function. At this point, Algorithm 1 is guaranteed by

1=2.

4 Threshold Greedy Algorithm

In this section, to reduce the inquiry complexity, we

propose the threshold greedy algorithm for Formula

(1). The main idea is as follows: when the marginal

increment of an element for the current solution is larger

than some threshold, it will be added to the solution.

Intuitively, the threshold is related to the OPTimal value

(OPT). Moreover, the threshold can be considered as

one over k of OPT. The OPT can be estimated by using

Formula (3),

d 6 h.O/ 6
1

1 " cg

X

o2O

h.o/ 6
kd

1 " cg
(15)

where d D maxe2E h.feg/ is the maximum value

of any singleton element. Thus, the one over k of

OPT falls in the interval

�

�
d

k
;

d

1 " cg

�

, where � is a

small positive constant. We reduce from
d

1 " cg
by the

order of times the geometric progression .1 " �/i 1,
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�

i D 1; : : : ; O

�

log k

�

��

and consider all these values

as thresholds. For each threshold, we enumerate all

elements in the ground set. If the marginal increment

of an element is larger than the threshold and the

corresponding constraint has not reached its upper bound,

then the element is added to the solution. More details

are shown in Algorithm 2.

To analyze the approximation ratio of the algorithm,

we consider the upper bound of the marginal increment

for an element which is in the optimal solution but not

in the current solution. Suppose that Algorithm 2 is

terminated as the threshold lower than �
d

k
. Thus, the

solution is updated at most O

�

n log k

�

�

times. Let

p D O

�

n log k

�

�

denote the final step of the iteration.

We then have the following lemma.

Lemma 2 Let xi (xi 2 Ej .j 2 Œl �// be processed

at the i-th iteration .i D 1; : : : ; p/ in Algorithm 2 and

X i 1 with jX i 1 \Ej j < kj be the initial solution for

the i-th iteration. X i D X i 1 [ fxig (i D 1; : : : ; p)

is the solution after the i-th iteration. For any o 2

Algorithm 2 Threshold greedy

input: submodular function f .�/, supermodular function

g.�/, h.�/ D f .�/ C g.�/, ground set E, partitions

E1; E2; : : : ; El � E, total budget k 2 N, budgets for each

partitions k1; k2; : : : ; kl 2 N, parameter � 2 .0; 1/

output: X

1: cg D 1  mine2E
g.feg/

g.E/ g.Enfeg/ ;

2: X ← ∅, S ← E, d ← maxe2E h.feg/;

3: for (� D d
1 cg ; � > � d

k
; � .1  "/� ) do

4: for all e 2 E do

5: Find e 2 Ej ;

6: if jX \Ej j < kj then

7:

8:

9:

10:

11:

if h.X [ feg/   h.X/ > �  then

X X [ feg, S S n feg;
else

X X , ,S  S ;

end if
12: else

13: S S nEj ;

14: end if

15: end for

16: if jX j D k then

17: break;

18: end if

19: end for

20: return X

Oj nX i 1 .j D 1; : : : ; l/, the relationship between the

increment of o to X i 1 and the gain at the i -th iteration

is given as follows:

h.ojX i 1/ 6
1

.1  "/.1  cg/
h.xi jX

i 1/ (16)

where o and xi are in the same partition Ej .j D 1; : : : ;

l/.

Proof First, suppose that the threshold is � D
d

1  cg
. Thus, the increment is

h.xi jX
i 1/ > � D

d

1  cg
>

1  "

1  cg
d >

1  "

1  cg
h.o/ > .1  "/h.ojX i 1/ >

.1  "/.1  cg/h.ojX i 1/;

where o 2 O nX i 1.

Second, for � <
d

1  cg
, suppose that the last

threshold is
�

1  "
, and Xm (Xm � X i 1) is the last

feasible solution with respect to the threshold
�

1  "
.

Then, all the elements in the ground set E have been

read at least once. For any o 2 Oj n X i 1, let Xo 1

.jXo 1 \ Ej j < kj / be the initial solution for the

iteration to consider the element o. As o has not been

added, we therefore have

h.ojXo 1/ 6
�

1  "
(17)

From Formula (3), we have

h.ojX i 1/ 6
1

1  cg
h.ojXo 1/ (18)

where Xo 1�Xm�X i 1. Meanwhile, from Algorithm 2,

at the i -th iteration, we have

h.xi jX
i 1/ > � (19)

Combining Formulas (17)–(19) immediately yields

Lemma 4. �

Theorem 2 Algorithm 2 is guaranteed by

.1C cg/2.1  �/2

.1C cg/2.1  �/2 C 1
. The inquiry complexity

of Algorithm 2 is O

�

n log k

�

�

.

Proof From the algorithm, the final output solution

Xp satisfies jXpj D k or jXpj < k. Let X
p
j D Xp \

Ej , j 2 Œl � be the partition of Xp based on Ej (j 2 Œl �).

(1) For the case jXpj D k, each constraint satisfies

jX
p
j j D kj . We first label the elements in the set X

p
j D

fxj1
; : : : ; xjkj

g according to the order of the element
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added. As jOj j D jX
p
j j D kj , we construct bijections

�j (i 2 Œl �) from Oj to X
p
j similar as the bijections

in the proof of Theorem 1. As a result, we obtain the

following:

�j .oji
/ D

(

oji
; if oji

2 Oj \X
p
j I

xji
; otherwise

(20)

Let Xji 1 be the initial solution of the iteration in which

xji
is added. Thus, we have

h.O/  h.Xp/ 6

h.O [Xp/  h.Xp/ 6

1

1  cg

l
X

jD1

X

oji
2Oj nX

p

h.oji
jXji 1/ 6

1

.1  cg/2.1  �/

l
X

jD1

X

xji
2X

p

j
nOj

h.xji
jXji 1/ 6

1

.1  cg/2.1  �/
h.Xp/ (21)

The first inequality holds by monotonicity, and the

second and the third inequalities hold via Formula (3)

and Lemma 4, respectively. By rearrangement, we obtain

h.Xp/ >
.1C cg/2.1  �/

.1C cg/2.1  �/C 1
h.O/ (22)

(2) In the case jXpj < k, some constraints satisfy

jX
p
j j < kj , and others satisfy jX

p
j j D kj . We label

the index sets I1 D fj j jX
p
j j < kj ; j 2 Œl �g and I2 D

fj j jX
p
j j D kj ; j 2 Œl �g.

According to Algorithm 2, we have

h.ojXp/ <
�d

k
(23)

for any o 2 Oj nXp with j 2 I1. Thus, we get
X

j2I1

X

o2Oj nX
p

h.ojXp/ 6 �h.Xp/ 6

�

.1  cg/.1  �/
h.Xp/ (24)

For the case of o 2 Oj nXp with j 2 I2, we construct

bijections similar to Eq. (20). Thus, we have
X

j2I2

X

oji
2Oj nX

p

h.oji
jXji 1/ 6

1

.1  cg/.1  �/

X

j2I2

X

xji
2X

p

j
nOj

h.xji
jXji 1/ 6

1

.1  cg/.1  �/
h.Xp/ (25)

Combining Formulas (24) and (25), we attain in the

following:

h.O/  h.Xp/ 6

h.O [Xp/  h.Xp/ 6

1

1  cg

X

j2I1

X

o2Oj nX
p

h.ojXp/C

1

1  cg

X

j2I2

X

oji
2Oj nX

p

h.oji
jXji 1/ 6

1C �

.1  cg/2.1  �/
h.Xp/:

By rearrangement, we obtain

h.Xp/ >
.1C cg/2.1  �/

.1C cg/2.1  �/C 1C �
h.O/ >

.1C cg/2.1  �/2

.1C cg/2.1  �/2 C 1
h.O/ (26)

Combining Formulas (22) and (26), we achieve the

conclusion in Theorem 2. �

Remark 2 When cg D 0, h.�/ is generated to a

submodular function. Thus, Algorithm 2 becomes a

.1=2  �/-approximation algorithm .

5 Streaming Algorithm

Finally, we attempt to investigate Formula (1) with a big

data ground set. We cannot store all data information

and calculate them simultaneously. We need a streaming

algorithm. Streaming algorithms consider the data one

by one, and before the next element reveals, it must make

a decision for the current one. Four indexes are used

to measure the performance of a streaming algorithm.

The approximation ratio and time complexity are formal

indexes. The other two are memory complexity and

the number of passes of reading the total data. We

aspire to attain a one-pass streaming algorithm with a

reasonable approximation ratio, time complexity and

memory complexity.

Similar to the threshold greedy algorithm, if the

marginal increment of the current element is larger

than the threshold, then it is added to the solution.

We subdivide the estimation interval of the OPT by

geometric series, and consider all these values as the

threshold. By Formula (15), the bound of the OPT is as

follows:

� 6 h.O/ 6
kd

1  cg
(27)

where � D maxŒd; h.X/�.

We subdivide the interval

�

�;
2kd

1  cg

�

and obtain a

set in the following:
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HD
n

.1C�/mjm2Z; maxfd; �g6.1C�/m
6

2kd

1 cg

o

:

Suppose that .1 C �/m D h.O/. Then, we attain

m� D
j log h.O/

log.1C �/

k

. Let �� D .1C �/m� . Evidently,

we have �� 6 h.O/. Meanwhile, �� >
h.O/

1C �
> .1  

�/h.O/. Therefore, the parameter �� is contained in H

with .1  �/h.O/ 6 �� 6 h.O/. �� can be considered

as an estimation of the OPT.

As the element is revealed one by one in streaming

algorithms, we cannot obtain the maximum value d of a

singleton element in advance. Meanwhile, the feasible

solution is updated with the new arriving element. Thus,

the estimation interval and the parameter set H are

updated. Finally, the set desired is exactly Hn with

.1  �/h.O/ 6 �� 6 h.O/.

Another difficulty is that cg is the total curvature of the

supermodular function g.�/, whose computation needs

the entire information of the data set. Thus, we cannot

receive it in advance. Given that cg 2 Œ0; 1/, we refine

the interval Œ0; 1/ into b1=�c copies to simulate the value

cg . The more copies of the interval Œ0; 1/ are subdivided,

the higher accuracy of the solution can be achieved.

Finally, the algorithm returns a solution with the largest

value among all these cg 2 f0; �; 2�; : : : ; b1=�c�g and

� in Hn. The pseudo code of the one-pass streaming

algorithm is presented in Algorithm 3.

In the following lemma, we consider the properties

of the solution X�� corresponding to �� in the set X ,

where X D fX� ; � 2 Hng is the set of all final solutions

with respect to the parameters � 2 Hn returned by the

streaming processing and .1  �/h.O/ 6 �� 6 h.O/.

The constraints of X�� may result in (1) jX��\Ej j D kj

for all j 2 Œl �, or (2) jX�� \Ej j < kj for all j 2 Œl �, or

(3) jX�� \ Ej j D kj for some j and jX�� \ Ej j < kj

for others. One of these three cases may occur.

Lemma 3 For the parameter �� with .1 �/h.O/ 6

�� 6 h.O/, if the cardinality of X�� is jX�� j D k, or

jX�� \ Ej j < kj for all j 2 Œl �, we have h.X��/ >
�

1  
1

2.1  cg/
 �

�

h.O/.

Proof By mathematical induction, we get

h.X��/ >
��

2k
jX�� j:

For the case of jX�� j D k, it is obvious that

h.X��/ >
��

2
>

1

2
.1  �/ h.O/:

For the case that jX�� \ Ej j < kj for all j 2 Œl �, we

Algorithm 3 Streaming / submodular plus supermodular

input: f .�/, g.�/, h.�/ D f .�/C g.�/, E, E1; E2; : : : ; El � E,

k 2 N, and k1; k2; : : : ; kl 2 N, � and ˇ 2 .0; 1/

output: X

1: for each cg D r�, r D 0; : : : ; b1=�c do

2: d  0, � 0, M  ∅, Qj  ∅ for j 2 Œl �;

3: for each i 2 Œn� do

4: d D maxfd; h .fei g/g;

5: Update Qj with respect to e using reservoir sampling;

6: Hi D f.1 C �/mjm 2 Z; maxfd; �g 6 .1 C �/m 6
2kd

1 cg g;

7: X�  ∅ for each new appeared � in Hi ;

8: Discard X� for all � … Hi ;

9: Find ei 2 Ej ;

10: for each � 2 Hi do

11: if jX� \Ej j < kj then

12: if h.ei jX� / > �
2k

then

13: X�  X� [ fei g;

14: else fif h.ei jX� / > ˇ�
2k

;g

15: M  M [ fei g;

16: end if

17: end if

18: end for

19: � D max�2Hi
h.X� /;

20: end for

21: X D fX� ; � 2 Hng;

22: if ˝ D f� W X� .Ej / < kj for all j 2 Œl �; X� 2 X g ¤ ∅

then

23: '  min�2˝ � ;

24: else

25: '  max�2Hn
� ;

26: end if

27: for each � 6 ' and � 2 Hn do

28: X ← X� , S  M [
�

[l
jD1

Qj

�

;

29:                X   ←
� Greedy

�

X� ; M [
�

[l
jD1

Qj

��

;

30: end for

31: return Xcg
D arg max�2Hn

h.X� /;

32: end for

33:   return X D arg maxcgD0;1, :::;b1=�c� h.Xcg 
/

have

h.O/ h.X��/ 6 h.O [X��/  h.X��/ 6

1

1  cg

X

o2OnX��

h.ojX��/ 6

1

1  cg
�

��

2k
� k 6

1

2.1  cg/
h.O/;

where the third inequality holds by Algorithm 3.

By rearrangement, we get

h.X��/ >

�

1  
1

2.1  cg/

�

h.O/ (28)

From the above, we receive the conclusions in

Lemma 5. �
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However, if the constraints of X�� are jX�� \Ej j D

kj for some j and jX��\Ej j < kj for others, we cannot

achieve the quality of X�� . Thus, Algorithm 3 employs

a post-processing to improve the solution quality and

help us achieve an approximation ratio of the algorithm.

We keep some elements during the streaming processing

and store them in set M . The marginal increments of

these elements are less than the threshold
�

2k
but no less

than
ˇ�

2k
. Set M is considered as the ground set in the

post-processing. The solutions X' based on the special

parameter ' are considered. Two cases are investigated.

One is when ' is assigned as the minimum value in set

˝ D f� W X� .Ej / < kj for all j 2 Œl �; X� 2 X g, if

˝ ¤ ∅. If ˝ D ∅, then ' is the maximum value in set

Hn. We consider the properties of the final solution X
f
'

whose initial solution is X' in the post-processing.

Theorem 3 Algorithm 3 is guaranteed by

2.1  cg/2  ˇ

2.1  cg/2 C 2C 2�
, the update time per element in

streaming processing is O

�

log k

�

�

, and the running

time for the post-processing is O

�

k log k

�
.jM j C k/

�

.

Proof We first consider the case that jX'\Ej j < kj

for all j 2 Œl �.

In this case, we divide O n X
f
' into two sets: OI D

�

O nX
f
'

�

\M , in which the optimal elements are in

the set M , but not in the final solution X
f
' ; OJ D

�

O nX
f
'

�

\ .E nM/, in which the optimal elements

are deleted directly during streaming processing.

For any o 2 OI , we have

h.ojXf
' / 6

1

1  cg
h.ojX 0

'/ 6
1

1  cg
h.xjX 0

'/ (29)

where X 0
' (X 0

' � X
f
' ) is the initial solution when x is

added, and x and o are in the same patition. Formula (29)

holds both in streaming processing (h.ojX 0
'/ <

'

2k
6

h.xjX 0
'/) and in post processing (the idea of greedy

h.ojX 0
'/ 6 h.xjX 0

'/).

Meanwhile, as the element o 2 OJ is deleted during

streaming processing, its marginal increment to the

corresponding solution Xo
' is less than

ˇ�

2k
. Thus, for

any o 2 OJ , we achieve

h.ojXf
' / 6

1

1  cg
h.ojXo

' / <
1

1  cg
�

ˇ�

2k
(30)

Combining Formulas (29) and (30), we have

h.O/  h.Xf
' / 6

h.O [Xf
' /  h.Xf

' / 6

1

1  cg

X

o2OnX
f
'

h.ojXf
' / D

1

1  cg

0

@

X

o2OI

h.ojXf
' /C

X

o2OJ

h.ojXf
' /

1

A 6

1

1 cg

0

B

@

1

1  cg

X

x2X
f
'

h.xjX 0
'/C

1

1  cg
�
kˇ�

2k

1

C

A
6

1

.1 cg/2

�

h.Xf
' /C

ˇ

2
h.O/

�

(31)

where X 0
' is the initial solution when x is added.

By rearrangement, we obtain

h.Xf
' / >

2.1  cg/2  ˇ

2.1  cg/2 C 2
h.O/ (32)

Second, we investigate the case in which ' is the

maximum parameter in Hn. Notably, ' 6
2kd

1  cg
6

.1 C �/'. In such situation, for any solution X� .� 2

Hn/, there are at least one element in the set fj j jX� \

Ej j D kj ; j 2 Œl �g.

In this case, O nX
f
' is divided into three sets: OJ1

in

which the optimal elements are deleted in the streaming

process since their corresponding partitions have already

reached the capacities, where J1 D fj j jX' \ Ej j D

kj ; j 2 Œl �g; OJ2
D

�

O n
�

X
f
' [OJ1

��

\M , in which

the optimal elements are in the set M but not in the final

solution X
f
' ; OJ3

D
�

O n
�

X
f
' [OJ1

��

\ .E nM /,

in which the optimal elements are deleted directly during

streaming processing thought the constraints of their

corresponding partitions are not tight. However, their

marginal increments are less than
ˇ�

2k
.

For o 2 OJ1
, we have

h.ojXf
' / 6

1

1  cg
h.o/ 6

1

1  cg
d D

2k

1  cg
d �

1

2k
6

.1C �/'

2k
6

.1C �/h.xjX 0
'/ 6

1C �

1  cg
h.xjX 0

'/;

where x is in the same partition with o and X 0
' is the

initial solution when x is added. Collect all these x in

the set XJ1
D fx W x 2 X

f
' \Ej ; j 2 J1g.

For o 2 OJ1
and o 2 OJ3

, the relations are similar

with Formulas (29) and (30).
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Thus, we obtain the calculation as follows:

h.O/ " h.Xf
' / 6

h.O [Xf
' / " h.Xf

' / 6

1

1 " cg

X

o2OnX
f
'

h.ojXf
' / D

1

1 " cg

0

@

X

o2OJ1

C
X

o2OJ2

C
X

o2OJ3

1

A h.ojXf
' / 6

1

.1 " cg/2

�

.1C �/
X

x2XJ1

h.xjX 0
'/C

X

x2X
f
' nXJ1

h.xjX 0
'/C

kˇ�

2k

�

6

1

.1 " cg/2

�

.1C �/h.Xf
' /C

ˇ

2
h.O/

�

:

By rearrangement, we have

h.Xf
' / >

2.1 " cg/2 " ˇ

2.1 " cg/2 C 2C 2�
h.O/ (33)

Combining Formulas (32) and (33), we obtain the

conclusion in Theorem 5.

From d.1 C �/m D
2kd

1 " cg
, the cardinality of the

set Hn is O

�

log k

�

�

. Therefore, in the streaming

processing the memory complexity is O

�

k log k

�

�

for each cg . At most .jM j C k/ elements are

stored for the post-processing. As we have to check

b1=�c values of cg , the total memory of Algorithm

3 is O

�

k log k

�2
C
jM j

�

�

. In the streaming process,

the inquiry complexity for each element is formed

by the number of parameters in set Hn, that is

O

�

log k

�

�

. In the post-processing, the algorithm

enumerates at most k iterations for .jM j C k/ elements

with each initial solution. Thus, post-processing needs

O

�

k log k

�
.jM j C k/

�

oracle queries for each cg .

6 Conclusion

This paper investigates the maximization of a non-

submodular function which is a submodular function

plus a supermodular function. Meanwhile, the constraint

about fairness is more practical than the cardinality

constraint because it considers more properties of

each subset of the ground set. We first give a

greedy algorithm which is a high-quality approximation

algorithm consumes long running times. To improve

its inquiry complexity, we introduce a threshold greedy

algorithm. Both of them are offline algorithms. Finally,

we give a streaming algorithm with post-processing to

overcome the big data problem. We also analyze the

quality of the solutions, inquiry complexity and memory

complexity of the three algorithms.
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