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Grasp Detection with Hierarchical Multi-Scale Feature Fusion and
Inverted Shuffle Residual

Wenjie Geng�, Zhiqiang Cao�, Peiyu Guan�, Fengshui Jing, Min Tan, and Junzhi Yu

Abstract: Grasp detection plays a critical role for robot manipulation. Mainstream pixel-wise grasp detection networks

with encoder-decoder structure receive much attention due to good accuracy and efficiency. However, they usually

transmit the high-level feature in the encoder to the decoder, and low-level features are neglected. It is noted that

low-level features contain abundant detail information, and how to fully exploit low-level features remains unsolved.

Meanwhile, the channel information in high-level feature is also not well mined. Inevitably, the performance of

grasp detection is degraded. To solve these problems, we propose a grasp detection network with hierarchical

multi-scale feature fusion and inverted shuffle residual. Both low-level and high-level features in the encoder are

firstly fused by the designed skip connections with attention module, and the fused information is then propagated to

corresponding layers of the decoder for in-depth feature fusion. Such a hierarchical fusion guarantees the quality of

grasp prediction. Furthermore, an inverted shuffle residual module is created, where the high-level feature from

encoder is split in channel and the resultant split features are processed in their respective branches. By such

differentiation processing, more high-dimensional channel information is kept, which enhances the representation

ability of the network. Besides, an information enhancement module is added before the encoder to reinforce input

information. The proposed method attains 98.9% and 97.8% in image-wise and object-wise accuracy on the Cornell

grasping dataset, respectively, and the experimental results verify the effectiveness of the method.

Key words: grasp detection; hierarchical multi-scale feature fusion; skip connections with attention; inverted shuffle

residual

1 Introduction

In recent years, tremendous progresses have been made
towards high-quality image understanding, including
object detection[1], segmentation[2], inpainting[3, 4], grasp
detection, etc. As a crucial component in robotic
manipulation, grasp detection can provide the suitable

grasping position of the target object in the image, which
has received much attention.

Earlier studies usually infer grasp detection results in
a geometrical way based on point cloud of the target
object, which can be categorized into principal axis
based, algebraic expression, and template matching
methods. The first type follows the procedure of
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clustering-then-detecting, which first clusters the point
cloud of each object to calculate its center and principal
axis based on Principal Component Analysis (PCA), and
then gets the proper grasp position and direction[5, 6]. The
second solution achieves grasp detection with the
surface properties of object point cloud such as surface
equation[7] and local curvature[8]. The above two
solutions are susceptible to noise, and some researchers
attempt to analyze grasp detection by template matching
on the basis of a pre-built grasp template library[9, 10].
Nevertheless, the template library might lead to poor
generalization.

With the development of deep learning[11–13],
more researches focus on grasp detection based on
Convolution Neural Network (CNN). A representative
solution resorts to convolution layers followed by fully
connected layers to predict the grasp quality[14, 15] or
regress the grasp results[16, 17]. However, since the
feature map needs to be flattened to a vector with fixed
length before fully connected operation, the input image
is preferred to a fixed size. Such a case prevents the
flexibility of the network with higher computational
cost. In order to adapt the network to different input
sizes, some works adopt Region Of Interest (ROI)
pooling layer to pool features of different sizes into
the same size[18, 19]. Due to the fact that the proposal
network needs to be constructed before ROI pooling
layer, the network complexity is increased. Still, the
problem of computation burden is unsolved. To solve
the drawback from fully connected layers, the solution
of Fully Convolutional Network (FCN) is concerned. It
simplifies the network structure with the adaptability
to arbitrary image sizes. Compared with the FCN-
based grasp detection that generates feature maps in a
decreasing way in size[20–22], the grasp detection network
based on encoder-decoder structure is more attractive
and valuable as fine-grained features which are obtained
by the upsampling deconvolution operation with good
accuracy and efficiency[23–25]. In this way, a pixel-wise
grasp detection is achieved.

It is noted that the existing encoder-decoder-based
methods mainly concern the high-level feature in the
encoder and low-level features are ignored. As a matter
of fact, low-level features contain abundant local detailed
information. The fusion of low-level and high-level
features shall no doubt benefit the grasp detection.
Skip connection in the field of object detection and
segmentation provides a preferable way to combine
multi-level features. Sistu et al.[26] implemented skip

connections by connecting the corresponding feature
layers with the same spatial scales from encoder and
decoder. A problem of this connection relationship
is that the information interaction among features of
different scales is not considered, which affects the
system performance. How to design the skip connections
with multi-scale feature interaction deserves further
investigation. Moreover, as the object detection methods
SSD[27] and FPN[28] point out, high-level feature
possesses a large receptive field with rich semantic
information. However, if the high-level feature of the
encoder is directly transmitted to the decoder for grasp
prediction, it may be lack of the information transmission
among different channels in high-level feature. Effective
mining of channel information of high-level feature is
beneficial to improve the quality of grasp detection. The
aforementioned analyses motivate us to build advanced
encoder-decoder network. For this paper, the main
contributions are as follows:

(1) A novel grasp detection network with hierarchical
multi-scale feature fusion and Inverted Shuffle Residual
(ISR) is proposed, and it attains good accuracy and
efficiency.

(2) Multi-scale features from different convolution
layers in the encoder are fused by our Skip Connections
with Attention (SCA) module. In SCA, detailed
information from low-level features of the encoder is
effectively exploited. The resultant features are further
processed with the secondary feature fusion in the
decoder for better grasp prediction.

(3) The ISR module is designed, where the high-
level feature from the encoder is split into two features
in channel, and one of them is projected to a high-
dimensional space to acquire more discriminative
information. By processing these two split features in
a differentiated way, more high-dimensional channel
information is mined and retained.

(4) The experiments on the Cornell grasping dataset,
the robustness verification under interferences, and grasp
detection in an actual scene prove the effectiveness of
the proposed method.

This paper is organized as follows. Section 2 gives
the related work. Section 3 presents the proposed grasp
detection method in detail. Experiments are presented in
Section 4, and Section 5 concludes this paper.

2 Related Work

This section discusses the grasp detection methods from
three aspects: traditional geometry, grasp detection with
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fully connected layer, and graps dection with fully
convolutional network.

2.1 Traditional geometry methods

The principal axis based solution is popular in traditional
grasp detection. Suzuki and Oka[5] extracted the
planar surface and the object by randomly sample the
consensus, and then the center point and the principal
axis of object are computed via PCA. Further, the grasp
direction is calculated by cross product between the
direction of the principal axis of object and the normal
of the plane. Zapata-Impata et al.[6] computed a cutting
plane whose normal vector is parallel to the principal
axis of object. On this basis, sub-cloud of object is
generated within a certain distance to the cutting plane,
and the best grasping points are chosen according to
point curvature in sub-cloud, antipodal configuration,
and perpendicular grasp constraint. Another scheme is
to model object using the algebraic expression. Vezzani
et al.[7] modeled the object and the graspable volume
of the hand with superquadric functions for grasp
detection. Gori et al.[8] matched local curvature of
object to the surface of the robot’s palm, and a score
function is designed to measure the quality of graspable
points on the object surface. Besides, Li and Pollard[9]

treated grasping as a shape matching problem, where a
grasp database with object models and corresponding
hand poses is pre-built, and then the features of a
tested object are compared with those of models in the
database to identify candidate grasps. Herzog et al.[10]

constructed a grasp template library composed of local
shape descriptors of objects and corresponding grasp
configurations through kinesthetic teaching, and a good
grasp configuration is acquired by matching.

2.2 Grasp detection with fully connected layer

With the fully connected layers, Mahler et al.[14]

proposed a grasp quality CNN to predict the probability
of successful grasps from depth image. A two-step
cascaded grasp detection method is presented in Ref.
[15], which first produces candidate rectangles from
an RGB-D image using a small deep network, and
then the corresponding raw features, including color,
depth images, and surface normals of rectangles, are
inputted to a relatively large deep network to score
each rectangle. Finally, the top-ranked one is chosen.
Different from the scoring evaluation on candidate
grasps[14, 15], some researches directly regressed the
grasp. Redmon and Angelova[16] presented a regression
grasp model to predict both the category of the object and

the corresponding grasp result. Meanwhile, considering
the drawback of average effect, an improved MultiGrasp
network is designed to predict a reasonable grasp by
dividing the image into grids. In Ref. [17], two ResNet-
50 modules are utilized in parallel to extract features
from the inputs of RGB and depth data. After the results
are merged, they are processed by two fully connected
layers for grasp configuration prediction. Constrained by
the fixed size of input image, the flexibility of the above-
mentioned methods is weak. To solve this problem,
ROI pooling layer is embedded[18, 19]. Karaoguz and
Jensfelt[18] proposed a Grasping Rectangle Proposal
Network (GRPN) with the rotated region proposals
to detect the grasp rectangles and the corresponding
probabilities, and the predicted grasping result with the
highest probability is used for robot manipulation. An
ROI of interest-based Grasping Detection method (ROI-
GD) is proposed in Ref. [19]. It first provides object
bounding box proposals by an ROI generator from the
input RGB image, and then uses features from ROIs to
generate grasp candidates and confidence scores. After
non-maximum suppression, the best grasp candidate is
determined.

2.3 Grasp detection with fully convolutional
network

One implementation based on FCN is to capture feature
in deep layer and generate grasp results, where the
sizes of feature maps decrease gradually. Satish et al.[20]

proposed a fully convolutional grasp quality CNN. Zhou
et al.[21] proposed an end-to-end fully convolutional
network with the oriented anchor box mechanism to
predict an accurate grasp for a parallel-plate robotic
gripper. A convolutional neural network combined
with regression and classification was presented in
Ref. [22], which employs atrous convolution to improve
local expression ability of features. In these methods,
coarse-grained feature is mainly used and fine-grained
feature is deficient. To tackle this issue, grasp detection
networks based on the encoder-decoder structure
are proposed. A pioneering work is the Generative
Grasping Convolutional Neural Network (GG-CNN)
proposed by Morrison et al.[23], which adopts cascaded
convolutional layers and transposed convolutional layers
in encoder and decoder, respectively. This network
directly generates a grasp pose and grasp quality
for every pixel with a small number of parameters.
Afterwards, a series of improvements emerge. Kumra
et al.[24] designed a Generative Residual Convolutional
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neural Network (GR-ConvNet) to output the grasp
result of each pixel, where residual layers are inserted
between encoder and decoder to avoid the problem of
vanishing gradients. Yu et al.[25] employed the improved
BlitzNet to simultaneously detect and segment the
target object, and then the depth and grayscale maps
of target object are inputted to the Two-stream Grasping
convolutional neural Network (TsGNet), where TsGNet
adopts depthwise separable convolution in the encoder
and global deconvolution network in the decoder for
better feature expression. In these encoders, high-level
feature is chosen for subsequent deconvolution and low-
level features are neglected. In this paper, low-level and
high-level features are fused by skip connections with
attention. Besides, the channel information in high-level
feature is also enriched by the inverted shuffle residual.

3 Method
Figure 1 presents the structure of the grasping detection
network with hierarchical multi-scale feature fusion and
ISR, which is termed as HMISR. The proposed network
originates from the encoder-decoder structure with three
new modules: information enhancement, SCA, and
ISR. The information enhancement module is added
before the encoder to capture the context information
with different receptive fields for the enhanced feature
representation. SCA and ISR modules are inserted
between encoder and decoder to refine features in both
spatial and channel dimensions. In view of the flexibility
in handling information of attention mechanism[29, 30],
SCA module adopts channel attention to fuse the feature
maps from different layers in the encoder. In this way,
low-level features are effectively explored. ISR mainly

focuses on mining the channel information of the output
of the last layer from the encoder, which enhances the
information flow among different channels in high-level
feature with good semantic representation ability. On
the basis of the results of SCA and ISR, a customized
decoder is designed to further process these multi-scale
feature maps for grasp prediction. It is worth mentioning
that multi-scale features are fused hierarchically in SCA
and decoder. In addition, the input of the network can
be one of the following three forms: RGB, depth, and
RGB-D images.

The pipeline of the proposed method is as follows.
The input image Iin is firstly preprocessed by the
information enhancement module, and the feature map
Icnt after enhancement is sent to the encoder for multi-
scale convolutional results EL1, EL2, and EL3. It is
pointed out that the channel number of Icnt is varied
according to the input forms of Iin (RGB, depth, or
RGB-D). Thus, the channel number of EL1 is fixed
to adapt to different input forms. These feature maps
are then combined by SCA to achieve the first phase of
fusion, where the spatial information of these features is
merged by size adjustment and concatenation, and the
merged features are reorganized by adaptively learning
the importance of each channel. Also, the high-level
feature map EL3 from the last layer of encoder is
processed by ISR, which maintains the high-dimensional
information by cascading multiple Inverted Shuffle Units
(ISU) with residual connection. The multi-scale feature
maps ML1, ML2, and EL3 of SCA and the feature
FISR generated from ISR are gradually integrated in
the decoder. The fused feature map D3 holds the same
size as the original input image, which is followed by 4
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Fig. 1 Structure of the proposed grasp detection network. The input image Iin is firstly pre-processed by the information
enhancement module to output the enhanced result Icnt, which is fed into the encoder module, and feature maps EL1, EL2,
and EL3 with different sizes are obtained. These three feature maps are fused through the SCA module in both spatial and
channel dimensions to generate new feature maps ML1, ML2, and ML3. Besides, EL3 is also inputted to the ISR module to obtain
high-dimensional feature maps FISR in channel. Taking ML1, ML2, ML3, and FISR as inputs, the decoder module further executes
multi-scale feature fusion for grasp prediction (Gq, Gsin, Gcos, Gw). The feature fusion operator is implemented by an elementwise
addition followed by a 1 � 1 convolution layer; the unit of the images in the structure is pixel.
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parallel convolutional layers to predict grasp (Gq , Gsin,
Gcos , Gw ). Gq , Gsin, Gcos , and Gw refer to the feature
maps of grasp quality, sine and cosine of grasp angle,
and the width of grasp rectangle, respectively.

3.1 Information enhancement module

This module is used to strengthen the diversity of input
information with pyramid scene parsing[31]. Similar to
Ref. [32] that efficiently captures information about
different regions using different kernels for adaptability
improvement, we leverage four adaptive average pooling
operations with different kernels in parallel to capture
contextual information from the input image Iin,
as illustrated in Fig. 2. Four pointwise convolution
operations are separately executed on the pooled feature
maps to change the number of channels. The generated
four feature maps are respectively up-sampled to the
same size for further concatenation with Iin, then we
have feature map Icnt . For the input of RGB, depth, or
RGB-D, the channel numbers of each 1 � 1 convolution
layer are set to 3, 5, and 4, respectively. Correspondingly,
the channel numbers of Icnt become 15, 21, and 20,
respectively.

3.2 SCA

SCA aims to facilitate the information interaction
of multi-scale features among different layers of the
encoder. In particular, the detail information in low-
level features is mined for better feature refinement. The
detailed structure is shown in Fig. 3a, which takes feature
maps ELt .t D 1; 2; 3) as inputs. In order to achieve
the fusion of input feature maps, three groups of parallel
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Fig. 2 Structure of information enhancement module,
where N1 denotes the channel number of feature maps (the
unit of images in the structure is pixel).
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Fig. 3 Structure of skip connections (dashed lines) with
attention module. Icamt and MLt refer to the input and output
of the t-th CAM[33], where t = 1, 2, 3.

operations with channel attention are conducted to yield
three feature maps MLt . For a group, the input ELt
is resized to the required the size of output feature map
by down-sampling or up-sampling operation. Take the
second group G2 as an example and the required size
of output feature map is the same as that of EL2. Thus,
EL1 and EL3 should be aligned to EL2. Concretely,
EL3 is kept fixed and EL1 is down-sampled according
to their size relationship. Further, the aligned feature
maps are concatenated in channel to generate Icam2,
which is followed by a Channel Attention Module
(CAM)[33] to adaptively recalibrate channel-wise feature
responses (see Fig. 3b). Since the channel dimension of
the concatenated feature map is increased, a pointwise
convolution is employed at the end of CAM to reduce the
channel number to that of EL2. Eventually, the output
ML2 of G2 is generated. Similarly, the outputs ML1
and ML3 are obtained.

3.3 ISR

This module is designed to exploit channel information
of high-level feature in the encoder, and thus achieving
high-dimensional feature enhancement. As is shown
in Fig. 1, it consists of three cascaded ISUs with a
residual connection[34, 35], where the structure of ISU
is illustrated in Fig. 4. For input feature map Uin with
2Na channels, ISU first executes channel split, and
two split features with Na channels are sent to their
respective branches. Both branches utilize the depthwise
convolution to capture the neighboring information
at each spatial location of the feature map with a
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small number of parameters. Meanwhile, in order to
compensate for the deficiency of depthwise convolution
without channel interaction, two pointwise convolutions
are employed before and after depthwise convolution
to enhance the association among different channels.
Different from the upper branch with unchanged channel
number Na, the down branch expands the channel
number of input feature map from Na to Nb (Nb >
Na) to obtain rich feature representation. After spatial
interaction of features by the depthwise convolution,
the high-dimensional feature is re-mapped to lower-
dimensional space by the second pointwise convolution
with batch normalization and ReLU to restore the
original input channel, which ensures the efficiency of
network. Formally,
ISUb1 D Convs.DC.Convs.fsplit .Uin////;

ISUb2 D Convr.DC.Convi .fsplit .Uin//// (1)
where ISUb1 and ISUb2 are the output feature maps
for the two branches of ISU, respectively. fsplit .�/ and
DC .�/ refer to channel split operation and depthwise
convolution, respectively. Convs .�/, Convi .�/, and
Convr .�/ denote convolutions with the channel number
unchanged, increased, and reduced, respectively.

The results ISUb1 and ISUb2 from two branches are
fused through concatenation in channel. Furthermore,
channel shuffle from ShuffleNet[36, 37] is taken to
promote the information interaction in channel between
these two branches. The output of ISU can be described
as follows:

Uout D fcs.Cat ŒISUb1; ISUb2�/ (2)
where Cat Œ � denotes concatenation, fcs.�/ represents the
operation of channel shuffle.

ISU serves as a basic building block to construct ISR.
In the ISR module, ISU is recursively used 3 times with

a residual structure connecting the input of the first ISU
and the output of the last one for fast convergence, and
the feature FISR is obtained. In the first ISU, the channel
numberNb is the same asNa, whileNb is twice as much
as Na in the latter two ISUs, where Na D 128.

3.4 Feature fusion in the decoder

Given the multi-scale features MLt (t = 1, 2, 3) from
SCA and the feature FISR from ISR module, the decoder
fulfills the secondary fusion of features. As is illustrated
in Fig. 1, the feature map ML3 with the smallest
spatial size is combined with FISR by a feature fusion
operator ff usion (�), which consists of an elementwise
addition operation and a pointwise convolution with
batch normalization. The former merges two input
feature maps at each spatial position and the latter
promotes the information interaction along channel. The
fused result is further processed by a deconvolution layer,
which outputs the feature map D1, whose spatial size is
the same as that of ML2 for the next fusion,

D1 DDeConv.ff usion.ML3; FISR// D

DeConv.Conv.ML3 C FISR// (3)
where Conv (�) and DeConv (�) stand for a
convolutional layer and a deconvolution layer,
respectively.

Similar fusion processes are conducted three times
to obtain the feature map D3, which is then converted
to the pixel-wise grasp prediction G = (Gq , Gsin, Gcos ,
Gw ) by four parallel convolutional layers, where Gq
represents the grasp quality feature map. Gsin and Gcos
record sine and cosine related to predicted grasp angle
� at every pixel. The whole grasp detection process
is shown in Algorithm 1, fEnInf (�) and fEncoder (�)
denote the information enhancement and encoding,
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Algorithm 1 Grasp detection process
Input: Input image Iin

Output: Results of grasp detection Gq ; Gsin; Gcos ; and Gw

1: Icnt D fEnInf .Iin/I

2: EL1; EL2; EL3  fEncoder .Icnt /I

3: ML1;ML2;ML3  fSCA.EL1; EL2; EL3/I

4: ISRmid D EL3I

5: for r 2 Œ1; NISU � do
6: FISR  f r

ISU
.ISRmid /;

7: ISRmid D FISRI

8: end for
9: FISR D FISR CEL3I

10: FDemid D 0; Fin D FISRI

11: for p 2 Œ1; 3� do
12: FDemid D ff usion.Fin;ML4�p/I

13: Dp D DeConv.FDemid /;
14: Fin D DpI

15: end for
16: Gq ; Gsin; Gcos ; Gw  

4Conv.D3/;
17: return Gq ; Gsin; Gcos ; Gw

respectively. fSCA (�) describes the SCA processing and
f rISU (�) is the r-th ISU function. NISU is the cascaded
number of ISU. 4Conv refers to convolution operation
in four parallel branches.

The grasp angle feature map G� can be derived by
G� D

1
2
arctan.Gsin/Gcos). Gw contains the width

of grasp rectangle at each pixel position. The best
grasp result is then determined according to the grasp
quality of each pixel. Concretely, the pixel coordinate
p� D argmax.p/.Gq) corresponding to the maximal
grasp quality is first selected, where p denotes the pixel
coordinate. The best grasp rectangle can be expressed as
G� D .p�; G� jp� ; Gw jp�/:

3.5 Loss function

The proposed network is trained by a smooth L1 loss
under the supervision of ground truth, which is described
as follows:

Lg D
1

N

nX
iD1

SmoothL1
.Gi �Gi / (4)

SmoothL1
.x/ D

(
.˛x/2=2; if jxj < 1I
jxj � 1=2˛2; others

(5)

where N denotes the number of training samples. x
represents the difference betweenGi andGi , andGi and
Gi refer to the prediction result of HMISR for the i-th
sample and the corresponding ground truth, respectively.
˛ is a hyper-parameter ranging from 0 to 1 to control
the smoothness. When the difference x is too large

or too small, Smooth L1 can provide an appropriate
gradient value to avoid gradient explosion and gradient
disappearance.

4 Experiment

4.1 Experimental setup

In this part, extensive experiments are conducted
to verify the effectiveness of the proposed method.
Following the existing grasp detection methods[22, 24, 25],
the proposed HMISR network is trained and tested on
the public Cornell grasping dataset[15], which includes
RGB-D images of objects and is widely used as an
evaluation platform for grasp detection. In detail, the
dataset contains 885 images of 240 different objects with
a resolution of 640 pixel�480 pixel, where the number
of positive grasps is 5110 and that of negative grasps
is 2909. The ground truth including feature maps of
grasp quality, angle, and width is obtained according to
Ref. [23]. During the training process, random cropping,
zooming, and rotation are applied for data augmentation
to improve the robustness of network. The network is
trained with Adam optimizer for 50 epochs, where the
batch size is set as 8 and the probability of dropout is
0.1 for avoiding overfitting. At the phase of test, the
predicted grasp quality map is filtered by applying a
Gaussian kernel. Our method runs on a platform with
NVIDIA GTX1080 GPU with 8 GB memory and Intel
Core i7-7770HQ CPU.

For a grasp prediction result, it is regarded as valid
if the following conditions are satisfied[23–25, 38]: (1) the
Intersection over Union (IoU) between the predicted
grasp rectangle and the corresponding ground truth is
over 25%; (2) the difference between the predicted
grasp angle and its corresponding ground truth is less
than 30. Following Ref. [23], the dataset is split into
training and test sets in two ways: Image-Wise (IW) and
Object-Wise (OW). The former tests the generalization
of the network for new grasp pose, while the latter
aims to verify the generalization ability for new objects.
Correspondingly, two evaluation metrics are adopted:
image-wise accuracy (namely IW acc.) and object-wise
accuracy (namely OW acc.).

4.2 Ablation studies

To verify the effectiveness of our HMISR network,
its five variants are constructed according to whether
information enhancement, SCA, ISR, basic decoder,
and the proposed feature fusion decoder are involved.
The basic decoder is composed of three cascaded
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deconvolutional layers. All variants adopt the same
encoder architecture as that of HMISR. Table 1 presents
the comparison results of different variants on the
Cornell grasping dataset in terms of image-wise and
object-wise accuracies. The results of HMISR-I with
a basic encoder-decoder architecture are the lowest.
The addition of information enhancement module is
helpful to improve the accuracy, which can be seen
from the results of HMISR-I and HMISR-II. Comparing
HMISR-II with HMISR-III, one can see that our decoder
with multi-feature fusion performs better than the basic
decoder. On this basis, HMISR-IV and HMISR-V adds
the SCA and ISR modules, respectively, and both of
them implement improvements in terms of IW acc. and
OW acc. With the combination of SCA, ISR, and feature
fusion decoder, the proposed HMISR attains the best
accuracy. Actually, HMISR mainly enhances the OW
acc. with the same IW acc. as that of HMISR-IV and
HMISR-V. The reason is from the split way of dataset.
Under the image-wise split, the training and test datasets
contain objects with the same classes but different poses,
which is less challenging. It is enough to rely on SCA
or ISR on the basis of the information enhancement
module and the proposed decoder. For the object-wise
split, the training and test datasets are related to objects
with different classes, which increases difficulty due to
unseen object classes at test phase. The OW acc. of
HMISR indicates that the combination of SCA and ISR
promotes the generalization to new objects with a higher

accuracy.
Table 2 presents the ablation of the proposed

ISR module, where different numbers of ISUs and
connection ways are considered. 6 variants of ISR
are constructed and their structures are illustrated in
Table 2. As we can see, ISR with three ISUs obtains
better results than ISR-I and ISR-II. Also, although ISR-
III and ISR-V achieve the same accuracy as that of ISR,
the complex architectures of these two variants increase
memory usage with more network parameters. Thus, the
proposed ISR structure is considered as the best.

4.3 Comparisons with the existing methods

In this section, the proposed HMISR network is
compared with the existing methods including SAE[15],
regression grasp[16], DCNN[17], GRPN[18], ROI-GD[19],
closed-loop grasp[39], GN[40], GPN-GD[41], FCGN[21],
multimodal fusion[22], GG-CNN[23], GR-ConvNet[24],
and TsGNet[25], where the first 8 methods belong
to the category based on fully connected layers,
and the last 5 methods are fully convolution based
methods. Combining these two types together, DSGD[42]

constructs global, region, and pixel level networks,
and each network is evaluated by the corresponding
confidence score. The grasp detection result from the
network with the highest score is outputted. Besides, TF-
Grasp[43] is the first to achieve the grasp detection using
transformer with the fusion of local and global features.
Table 3 illustrates the results of different methods on the

Table 1 Grasp detection accuracy of different variants of HMISR on the Cornell grasping dataset.

Method
Information
enhancement

SCA ISR
Basic

decoder
Feature fusion

decoder
IW

acc. (%)
OW

acc. (%)
HMISR-I – – –

p
– 91.0 89.9

HMISR-II
p

– –
p

– 93.3 91.0
HMISR-III

p
– – –

p
94.4 91.0

HMISR-IV
p p

– –
p

98.9 94.4
HMISR-V

p
–

p
–

p
98.9 93.3

HMISR
p p p

–
p

98.9 97.8

Table 2 Ablation of ISR module in terms of IW acc. and OW acc.
Method Structure IW acc. (%) OW acc. (%)

ISR-I

 

Table 2 Ablation of inverted shuffle residual module in terms of IW acc. and OW acc.  

Method Structure IW acc. (%) OW acc. (%) 

ISR-I ISU
 97.8 97.8 

ISR-II ISU ISU

 97.8 94.4 

ISR ISU ISU ISU
 98.9 97.8 

ISR-III ISU ISU ISU ISU

 98.9 97.8 

ISR-IV ISU ISU ISU ISU ISU
 98.9 96.6 

ISR-V ISU ISU ISU ISU ISU
 98.9 97.8 

ISR-VI ISU ISU ISU ISU ISU ISU
 98.9 96.6 

 

97.8 97.8

ISR-II

 

Table 2 Ablation of inverted shuffle residual module in terms of IW acc. and OW acc.  

Method Structure IW acc. (%) OW acc. (%) 

ISR-I ISU
 97.8 97.8 

ISR-II ISU ISU

 97.8 94.4 

ISR ISU ISU ISU
 98.9 97.8 

ISR-III ISU ISU ISU ISU

 98.9 97.8 

ISR-IV ISU ISU ISU ISU ISU
 98.9 96.6 

ISR-V ISU ISU ISU ISU ISU
 98.9 97.8 

ISR-VI ISU ISU ISU ISU ISU ISU
 98.9 96.6 

 

97.8 94.4

ISR

 

Table 2 Ablation of inverted shuffle residual module in terms of IW acc. and OW acc.  

Method Structure IW acc. (%) OW acc. (%) 

ISR-I ISU
 97.8 97.8 

ISR-II ISU ISU

 97.8 94.4 

ISR ISU ISU ISU
 98.9 97.8 

ISR-III ISU ISU ISU ISU

 98.9 97.8 

ISR-IV ISU ISU ISU ISU ISU
 98.9 96.6 

ISR-V ISU ISU ISU ISU ISU
 98.9 97.8 

ISR-VI ISU ISU ISU ISU ISU ISU
 98.9 96.6 

 

98.9 97.8

ISR-III

 

Table 2 Ablation of inverted shuffle residual module in terms of IW acc. and OW acc.  

Method Structure IW acc. (%) OW acc. (%) 

ISR-I ISU
 97.8 97.8 

ISR-II ISU ISU

 97.8 94.4 

ISR ISU ISU ISU
 98.9 97.8 

ISR-III ISU ISU ISU ISU

 98.9 97.8 

ISR-IV ISU ISU ISU ISU ISU
 98.9 96.6 

ISR-V ISU ISU ISU ISU ISU
 98.9 97.8 

ISR-VI ISU ISU ISU ISU ISU ISU
 98.9 96.6 

 

98.9 97.8

ISR-IV

 

Table 2 Ablation of inverted shuffle residual module in terms of IW acc. and OW acc.  

Method Structure IW acc. (%) OW acc. (%) 

ISR-I ISU
 97.8 97.8 

ISR-II ISU ISU

 97.8 94.4 

ISR ISU ISU ISU
 98.9 97.8 

ISR-III ISU ISU ISU ISU

 98.9 97.8 

ISR-IV ISU ISU ISU ISU ISU
 98.9 96.6 

ISR-V ISU ISU ISU ISU ISU
 98.9 97.8 

ISR-VI ISU ISU ISU ISU ISU ISU
 98.9 96.6 

 

98.9 96.6

ISR-V

 

Table 2 Ablation of inverted shuffle residual module in terms of IW acc. and OW acc.  

Method Structure IW acc. (%) OW acc. (%) 

ISR-I ISU
 97.8 97.8 

ISR-II ISU ISU

 97.8 94.4 

ISR ISU ISU ISU
 98.9 97.8 

ISR-III ISU ISU ISU ISU

 98.9 97.8 

ISR-IV ISU ISU ISU ISU ISU
 98.9 96.6 

ISR-V ISU ISU ISU ISU ISU
 98.9 97.8 

ISR-VI ISU ISU ISU ISU ISU ISU
 98.9 96.6 

 

98.9 97.8

ISR-VI

 

Table 2 Ablation of inverted shuffle residual module in terms of IW acc. and OW acc.  

Method Structure IW acc. (%) OW acc. (%) 

ISR-I ISU
 97.8 97.8 

ISR-II ISU ISU

 97.8 94.4 

ISR ISU ISU ISU
 98.9 97.8 

ISR-III ISU ISU ISU ISU

 98.9 97.8 

ISR-IV ISU ISU ISU ISU ISU
 98.9 96.6 

ISR-V ISU ISU ISU ISU ISU
 98.9 97.8 

ISR-VI ISU ISU ISU ISU ISU ISU
 98.9 96.6 

 

98.9 96.6
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Table 3 Comparison results of different methods on the Cornell grasping dataset.

Method Input size
(pixel�pixel)

Number of
parameters

Input mode Accuracy (%)
Time (ms)

RGB Depth Image-wise Object-wise
SAEŒ15� � > 1050 500

p p
73.9 75.6 13 500 (without device information)

Regression graspŒ16� 224�224 > 7300 000
p p

88.0 87.1 76 (NVIDIA Tesla K20 GPU)
DCNNŒ17� 224�224 > 20 000 000

p p
89.2 89.0 103 (NVIDIA GeForce GTX 645 GPU)

GRPNŒ18� � �
p

� 88.7 � 500 (NVIDIA GTX 1070 GPU)
ROI-GDŒ19� � > 30 000 000

p
� 93.6 93.5 40 (GTX1080Ti GPU)

Closed-loop graspŒ39� � �
p p

81.8 � 141 (GeForce GTX 980 GPU)
FCGNŒ21� 320�320 > 27 000 000

p
� 97.7 96.6 118 (NVIDIA TITAN-X)

Multimodal FusionŒ22� 224�224 > 4400 000
p p

88.9 88.2 117 (NVIDIA Tesla K80 GPUs)
GG-CNNŒ23� 300�300 62 420

p p
73.0 69.0 19 (NVIDIA GeForce GTX 1070)

GR-ConvNetŒ24� 224�224 1 900 900
p p

97.7 96.6 20 (NVIDIA GeForce GTX 1080 Ti)
TsGNetŒ25� 300�300 66 754

p p
93.1 93.0 �

GNŒ40� 227�227 > 11 000 000
p p

96.0 96.1 120 (NVIDIA Titan-X)
GPN-GDŒ41� 227�227 > 31 000 000

p p
97.2 97.1 81 (NVIDIA GeForce RTX 2080 Ti GPU)

DSGDŒ42� � > 13 000 000
p p

97.5 � 111 (NVIDIA Tesla K80 GPU)
TF-GraspŒ43� 224�224 �

p p
98.0 96.7 41.6 (NVIDIA3090 GPU)

HMISR (depth) 224�224 1 089 856 �
p

92.1 89.8 14 (NVIDIA GTX1080 GPU)
HMISR (RGB) 224�224 1 088 128

p
� 95.5 95.5 15 (NVIDIA GTX1080 GPU)

HMISR (RGB-D) 224�224 1 089 604
p p

98.9 97.8 15 (NVIDIA GTX1080 GPU)

Cornell grasping dataset. Besides the image-wise and
object-wise accuracies, the running time and the number
of parameters are also provided. The detailed calculation
of parameters for the proposed HMISR method with
RGB-D image is shown in Table 4, where there are three
sequential processing blocks in each of encoder, ISR, and
decoder. The output head refers to convolution operation
in four branches on the decoder output. Overall, HMISR
(RGB-D) performs well in both image-wise and object-
wise accuraies. For the solution with only RGB input,
FCGN attains higher accuracy than our HMISR with
RGB input. In addition, GG-CNN is also run on our
GPU platform and its running time reaches 13 ms. By

Table 4 Parameter calculation of the proposed HMISR
method.

Item Number of parameters
Information enhancement 96

Encoder
E1: 5856
E2: 18 624
E3: 74 112

SCA 483 392

ISR
ISU1: 22 976
ISU2: 65 856
ISU3: 65 856

Decoder
DL1: 221 760
DL2: 78 112
DL3: 52 448

Output head 516
Total 1 089 604

contrast, the running time (15 ms) including computation
of the best grasp of our HMISR is slightly slower
but with higher accuracy. Considering the accuracy
and efficiency, the proposed HMISR is considered as
effective.

Figure 5 visualizes the predicted grasp detection
results of the proposed method on the Cornell dataset.
The first two columns describe the input RGB and
depth images of three objects, and their corresponding
grasp rectangles are shown on RGB images. Also, the
predicted feature maps of grasp quality, angle, and width
are exhibited in columns 3, 4, and 5, respectively. It
is seen that our method achieves the correct grasps.
Figure 6 demonstrates the predicted grasp rectangles of
our HMISR for objects with different shapes and poses
on the Cornell grasping dataset, which shows the good
adaptability of our method.

4.4 Robustness verification

Different interferences are applied to the original RGB
and depth images, and then the noisy images are
fed to HMISR to verify the robustness. The grasp
detection result of original image is shown in the first
column of the Fig. 7. The remaining parts present
the grasp detection results on different interference
images. The second column describes the result of the
noisy image after Gaussian blur with kernel size 10�10
exerted. The third to the sixth columns correspond to
the interferences from Gaussian noise with standard
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Fig. 5 Detection results of HMISR (RGB-D) on the Cornell grasping dataset, where the first column presents the RGB images
with the predicted grasp rectangles, the second column describes the images of depth-type, and the subsequent columns show
the feature maps of grasp quality, angle, and width, respectively.

Fig. 6 Predicted grasp rectangles of HMISR for objects on the Cornell grasping dataset.

deviation 0.02, brightness enhancement (20%), salt-
pepper noise with the ratio value 0.04, and GridMask
with size 3 pixel�3 pixel, respectively. As shown in
the experimental results, the proposed method can still
obtain correct results.

4.5 Grasp detection in actual scene

The proposed HMISR is also applied to an actual scene
to further testify its effectiveness. Herein we concern the
fruits, which are detected by YOLACT[44]. The regions
corresponding to the detected box of each target object
are extracted in the original RGB and depth images, and
border padding and resizing operations are imposed to
adjust the sizes of regions to that of training image. The

resultant RGB and depth images are fed into HMISR
network for grasp prediction. The experimental results
are illustrated in Fig. 8, where the apple, orange, and
banana are the concerned objects. The detection results
and corresponding grasp detection results are presented
in Figs. 8b and 8c, respectively. The results manifest the
effectiveness of the proposed method.

5 Conclusion

In this paper, a grasp detection network with hierarchical
multi-scale feature fusion and ISR is proposed. With the
framework of encoder-decoder structure, three modules
are added: information enhancement, SCA, and ISR.
Firstly, in the information enhancement module, the
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Original image Gaussian blur Gaussian noise Brightness Salt-pepper noise GridMask

RGB 

Depth

Result

Fig. 7 Grasp detection results of HMISR under different interferences.

(a) (b) (c)

Fig. 8 Experiment in an actual scene. (a) RGB image, (b)
detection results of concerned objects, and (c) grasp detection
results.

contextual information of the input image is strengthened
by adaptive average pooling operations in four parallel
branches. Then, multi-scale features from the encoder
are fused by SCA, which fully utilizes the detail
information from low-level features for better feature
refinement. Meanwhile, the high-level feature from the
encoder is also enhanced at channel level based on ISR
module. This enriches the channel information in high-
level feature of the encoder. The resultant features from
ISR and SCA modules are further aggregated and fused
in the designed decoder. Through the hierarchical feature
fusion, the quality of grasp prediction is improved. The
proposed method is testified on the Cornell grasping
dataset and an actual scene, and the results indicate that
the proposed method achieves good accuracy with the
robustness to disturbances.
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