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1 Introduction

Computers have fueled our reliance on images. From the
first X-rays of a tumor to the latest magnetic resonance
imaging (MRI) scans, images have become integral to
the practice of every field in medicine. The process
of image acquisition is affected, and often limited, by
many aspects, such as the equipment, environment, and
cost. For instance, to reduce the radiation exposed on
human body, computed tomography (CT) is required
to decrease its beam’s energy, resulting in scanned
images with lower spatial resolution. In the medical
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diagnostic process, low-quality images can affect the
pathological assessment by clinical experts and auxiliary
computers, among others[1–4]. Calcification, for example,
is a common symptom of most breast cancers, but
calcification is small and difficult to detect. As a
result, the low intensity variation between pathological
tissue and healthy areas makes the diagnostic process
cumbersome. In the diagnostic retinal images of fundus,
many lesions cover extremely tiny areas and can be
shown as microaneurysms or hemorrhages. Also, there
are parts that may not be clearly visible such as soft
exudates, certain neointima formation, etc.[5] Therefore,
super-resolution reconstruction for medical images has
become an essential role in clinical applications.

There were two main types of image super-resolution
reconstruction techniques: single image super-resolution
(SISR), where a high-resolution image was acquired
from a single low-resolution image, and reference-
based image super-resolution (RefSR), where a high-
resolution image was synthesized from multiple low-
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images from low resolutions utilizing Transformer and generative adversarial networks (T-GANs). The integrated 
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multi-task loss function during the training of our proposed model T-GAN. In comparison to established measures like 

peak signal-to-noise ratio (PSNR) and structural similarity index measure (SSIM), our suggested T-GAN achieves 

optimal performance and recovers more texture features in super-resolution reconstruction of MRI scanned images 

of the knees and belly.
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resolution images. Among them, the goal of SISR
often required optimizing the mean square error between
high-resolution (HR) and SR pixels, however, the
use of mean put error often led to edge blurring
due to the uncomfortable nature of super-resolution
(illposed). The main reason was that the high-resolution
texture of a single image was often over corrupted
and a large amount of information was lost, leading
to unrecoverable textures[6]. While generating a large
number of adversarial samples from images based on
generative adversarial networks could alleviate such
problems[7], the resulting hallucinations and artifacts
posed a greater challenge to image super-resolution
tasks.

RefSR had been shown to be promising in providing
reference (Ref) images with similar content to the
lowresolution (LR) input to recover high-resolution (HR)
image details[8]. A large number of RefSR methods
had produced visually more pleasing results compared
to SISR methods. Currently, RefSR is mainly used
to make full use of the Ref image information by
methods such as image aligning and “patch matching”.
References [9–11] aligned LR and Ref images from
different perspectives.

In Ref. [9], landmark aligned LR and Ref by a global
registration while minimizing energy; In Ref. [10], LR
and Ref images needed to be pre-aligned first, however,
non-uniform warping operation was used to enhance
Ref images by matching LR and Ref feature maps to
obtain super resolution; In Ref. [11], the method used
optical flow to align LR and Ref pictures at different
scales and connected them to the decoder’s relevant
layers. However, the quality of the alignment between

LR and Ref had a significant impact on the performance
of these approaches. In addition, alignment methods
such as optical flow required a large computational cost,
making it difficult to be popularized in practical. On the
other hand, Refs. [6, 8, 12, 13] used a “patch matching”
approach to search for suitable reference information
in the Ref image to complement the information and
thus obtained super resolution. In Ref. [12], the gradient
features in the downsampled Ref were searched to match
the LR patch; in Ref. [8], the features in the CNN were
used instead of gradient features to match the patch of
Ref and LR, while the LR image was expanded using the
SISR method; In Ref. [13], features in VGG were used
to match the patch of Ref and LR, and super-resolution
was obtained by swapping similar texture features. In
Ref. [6], a texture transformer network was used to
feature-match Ref and LR, where the low-resolution
(LR) and reference (Ref) images were represented as
queries and keywords in the Transformer, respectively.
This setup allowed the LR and the Ref images to learn
features together, i.e., deep feature correspondences
that could improve accuracy in texture can be detected
through an attention mechanism. However, when the
reference image was less sharp, the quality of the RefSR
might receive a devastating impact, resulting in impaired
performance of the algorithm.

In this paper, our objective is to unleash the potential
of RefSR by generating 71 reference images with more
texture details through generative adversarial networks,
and to discover deep feature correspondences by using
the Transformer framework to perform joint feature
learning between LR and reference (Ref) images. The
comparing result could be found in Fig. 1, which

Fig. 1 Schematic diagram of the model framework.
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demonstrate the effectiveness of our method on medical
images. The main contributions of this paper are as
follows:
� Propose a generative adversarial network (GAN)

framework to recover the detailed information of the
original photo from the severely downsampled (low-
resolution) image to obtain a high-resolution image using
the powerful generative power of GAN networks.
� Introduce Transformer architecture to extract

learnable texture features.

2 Model Description

In this section, we would review previous classical
algorithms for building single image super-resolution
(SISR) for GAN-based framework in a single image
and classical methods for RefSR in the Transformer
framework for reference-based image super-resolution,
which are the most relevant to our work.

2.1 GANs in image reconstruction

In image super-resolution reconstruction tasks, generative
adversarial networks (GANs)[7] had emerged as an
effective method for enhancing the perceptual quality of
upsampled images[7, 14–16]. GANs were an effective min-
max two-player game[7]. The generator G captured the
data distribution, while the discriminator D continuously
distinguishes whether the samples were from the training
dataset or not. GANs could produce more aesthetically
attractive images without supervised input using this
powerful method. However, due to their intrinsic
instability, the initial GANs were difficult to train.
Wasserstein GANs (WGANs) used weight clipping to
ensure that D is in the space of 1-Lipschit[17]; the
improved training of Wasserstein GANs (WGANGP)[18]

could use gradient penalties to encourage D to learn
smoother decision boundaries; and Gulrajani et al.[19]

proposed a weighted combination of WGANs and
WGAN-GP loss terms to form a complex loss function
that facilitates the model to generate. However, the above
GANs were only applied on SISR while limited to
image datasets with single-scale upsampling at relatively
low target resolution[20]. A multi-scale GAN-enhanced
SISR approach was proposed in Ref. [8], which was
progressive in both architecture and training, similar
to what was done in course learning, simulating the
learning process from easy to hard; Lim et al.[21]

proposed a framework for recovering its fine texture
details when super-resolution at magnification factors.
This framework proposed a perceptual loss function,

which consisted of an adversarial loss and a content
loss. The calculation of adversarial loss allowed the
reconstructed image to be pushed towards the natural
image stream shape, while constructing a discriminator
network for distinguishing the super-resolution image
from the original photo-realistic image.

The traditional reference learning based image
superresolution reconstruction model (RefSR) took the
highresolution image as the reference (Ref), so that the
relevant texture was transferred to the low-resolution
(LR) image. Currently, RefSR mainly made full use of
the image information of Ref by methods such as image
aligning and “patch matching”. However, most of the
traditional methods fed all swapped features equally into
the main network, neglecting to transfer high-resolution
textures from the reference image using attention
mechanisms, thus limiting the application of these
methods in challenging situations[6, 8]. Following that,
Ref. [6] proposed a new texture transformation network
for image super-resolution (TTSR), in which the LR and
Ref pictures were represented as queries and keywords
in the transformation, respectively. A learnable texture
extractor for deep neural networks (DNNs), a relevance
embedding module, a hard-attention module for texture
transfer, and a soft-attention module for texture synthesis
were all part of TTSR, which was tuned for the image
production task. This approach supported cooperative
feature learning across LR and Ref pictures, allowing
attention to uncover deep feature correspondences and
produce accurate texture features. The suggested texture
converter could also be stacked in a cross-scale manner,
allowing texture recovery at multiple magnification
levels (e.g., from 1� to 4�). The method, however,
relied on a high-resolution image as a reference (Ref),
while in practice, a huge number of low-resolution
images were frequently obtained. Therefore, we used
GANs to enhance the quality of low-resolution images
from the perspective of low-resolution images as a
reference, used the enhanced images for information
complementation, and used the attention mechanism
to transfer the effective features of different images to
LR images to achieve RefSR reconstruction in complex
environments.

2.2 Deep-learning models based on Transformer
and GAN

In fact, SISR aims to learn the non-linear mapping
relations between LR and HR images. In general, this
non-linear mapping can be expressed as

Transformer and GAN-Based Super-Resolution Reconstruction Network for Medical Images



200 Tsinghua Science and Technology, February 2024, 29(1): 197–206

y D �.k � x C n/ (1)
where � is the non-linear compression operator, k
represents the convolution operation, n represents the
random noise, y represents the degenerated LR image,
and x is real HR image. In general, Eq. (1) can be
simplified as

y D Dx (2)
where D is the degeneracy matrix representing the
down-sampling operation. Since the conditions for the
discomfort inverse issue expressed in single image
superresolution are not sufficient, x can not be recovered
in the simple way that

x D D�1y (3)

Fortunately, deep learning based models have made
a huge success in image processing fields. Many
researchers have applied these deep learning models to
reconstruct HR images from LR images, which actually
learns an implicit mapping between LR and HR.

Ox D F.y/ (4)

in which Ox represents the reconstructed high resolution
image corresponding to the ground-truth image x.
Technicality, deep neural network models minimize the
optimization objective mainly by training a network F
as

1

N

NX
iD1

.F.yi / � xi /
2 (5)

where N is the number of training samples. In general,
this type of deep learning model can be represented as

Ox D Fd .� � �F3.F2.F1.y//// (6)

where d denotes the number of layers of the deep
network (number of convolutional layers).

2.3 Proposed framework

Rather than just increasing the network depth, the key
goal is to increase the performance of SISR neural
networks by selecting optimal internal mechanisms. The
generative network and the adversarial network are the
two key components of our proposed model, as depicted
in Fig. 1. The residual learning channel and the texture
Transformer channel are two elements of the generative
network.

Eventually, we intend to train a generative function
G that estimates its corresponding HR image from a
given LR input image. To achieve this, we propose a
generative network consisting of two channels, residual
learning and texture Transformer. Here we use �G to
denote all parameters of the generative network as well
as the bias term that is learned by optimizing a particular
SR reconstruction loss lSR. Specifically, for a given

training HR image IHR
n and its corresponding LR image

I LR
n , the objective of the generative network is

O�G D arg min
1

N
lSR.G� .I

LR
n /; IHR

n / (7)

Multiple residual learning blocks and deconvolution
blocks make up the residual learning channel (as
shown in Fig. 1). Because of their success in
image classification, convolutional operations are now
frequently utilized in deep learning, and several studies
have transferred CNNs to SISR. These CNN-based SR
techniques, on the other hand, rarely consider whether
convolutional processes are appropriate for the SISR
mechanism. The majority of them just apply CNN
models to SISR from image classification tasks. The
main objective of SISR is to figure out how LR and
HR images are related. For the mapping relationship
between LR and HR images, it can be represented by a
simple linear degenerate model as follows:

y D x � k (8)

The convolution theorem states that spatial convolution
can be converted to frequency-domain multiplication.

F.y/ D F.x/ �F.k/ (9)

where F.�/ is the Fourier transform and � is the
corresponding element multiplication. Thus, in the
Fourier domain, x can be expressed as
x D F�1.F.y/=F.k// D F�1.1=F.k// � y (10)

where F�1 denotes the inverse Fourier transform and �
denotes the convolution operation. Thus, the true HR
image can be recovered from the low-resolution image
y by a pseudo-inverse calculation, i.e.,

x D k��y;

where �� denotes the deconvolution operation.
Usually, the deconvolution kernel k� is hard to

obtain. Therefore, we construct multiple residual
learning blocks and a deconvolution block to implement
the deconvolution operation. Specifically, we use a
convolution kernel with a small size 3�3 and 64
feature mappings as the convolution layer followed
by a batch normalization layer, while employing the
ReLU function as the activation function. A residual
learning mechanism is introduced (constant mapping) in
order to avoid information loss and also to eliminate
the gradient disappearance and gradient explosion
phenomena. Finally we use the deconvolution layer
(step sizeD 0:5/ proposed by Zheng et al.[13] to improve
the resolution of the input image.

For the texture Transformer channel, similar to the
setup in Ref. [6] (shown in Fig. 2), LR, LR", and Ref
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Fig. 2 Schematic diagram of the texture Transformer strategy.

denote the input image, the 4� double-triple upsampling
input image, and the reference image, respectively. We
apply the double triple downsampling and upsampling
in turn, using the same factor 4� on Ref to obtain
Ref "#, with the domain consistent with LR". The
texture converter accepts the LR features generated by
Ref, Ref"#, and LR" trunk and outputs a synthetic
feature map which is further used to generate HR
predictions. The texture converter consists of four
components: a learnable texture extractor (LTE), a
correlation embedding module (CEM), a hard attention
module (HA) for feature transfer, and a soft attention
module (SA) for feature synthesis.

LTE mainly uses an end-to-end model to train the
learning parameters such that the images of LR and
Ref are able to perform joint feature learning and
therefore capture more accurate texture features. LTE
mainly extracts the texture features of the following
three images and notates them as Q (query), K (key),
and V (value): Q D LTE .LR"/; K D LTE .Ref#"/;
and V D LTE .Ref/, where LTE ./ denotes the output
of the learnable texture extractor. After extracting
the texture features, the RE establishes the matching
relationship between LR and Ref images by estimating
the similarity between Q and K. First, Q and K are
expanded into a number of patches (patches), which are
used to compute normalized inner products to obtain the
correlation between each patch; similarly, HA transfers
features for the most relevant positions in each Q and
V. As a technique to fully merge LR and Ref related

information, SA employs a soft attention mechanism in
which relevant texture transfers are amplified and less
relevant texture transfers are avoided. In conclusion, the
texture converter can effectively convert key HR texture
characteristics in the reference image to LR texture
features, allowing for more accurate texture production.

2.4 Loss function

The perceptual loss function lSR definition guides the
optimization direction of the generative network and is
critical to the performance of the model. We use mean
squared error (MSE) to lSR modeling and express the
perceptual loss as a weighted sum of content loss and
adversarial loss components using features extracted
from the texture Transformer channel, as follows:

lSR
D l.XSR/C 10�3l.GenSR/ (11)

where l.XSR/ is content loss, and l.GenSR/ is the
adversarial loss.

2.4.1 Content loss
Traditional content loss is often based on pixel-wise
MSE loss, e.g.,

lSR
MSE D

1

r2WH

rWX
xD1

rHX
yD1

.IHR
x;y �G�G

.I LR/x;y/
2 (12)

where W and H refer to the width and height of the
input image, respectively.

However this loss tends to make the model ignore
the high frequency content information during training,
making the solution to the problem of overly smooth
textures (OST) not ideal. Instead of relying on pixel loss,

Transformer and GAN-Based Super-Resolution Reconstruction Network for Medical Images
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our proposed model is based on the difference between
the features extracted by the texture Transformer channel,
and then we define the texture-based Transformer loss
as the difference between the reconstructed image
G�G

.I LR/and the reference image IHR as the Euclidean
distance between the feature representations of the
reconstructed image and the reference image.

lSR
VGG=i;j D

1

Wi;jHi;j

Wi;jX
xD1

Hi;jX
yD1

.�i;j .I
HR/x;y�

�i;j .G�G
.I LR//x;y/

2 (13)

2.4.2 Adversarial loss
The content loss describes the difference between
the reconstructed image and the reference image,
while we also need to consider the loss incurred
when reconstructing the image using GAN. When
reconstructing an image using GAN, we need to cheat
the discriminator network to obtain a more insurgent
image, while generating a loss based on the probability
that the discriminator produces a natural sample over all
training samples defined as

lSR
Gen D

NX
nD1

� logR�R;n
.G�G

.I LR// (14)

where R�R;n
.G�G

.I LR// denotes the reconstructed
image G�G

.ILR/ is the estimated probability of the
natural HR image.

3 Experiment

In this section, the proposed model is analyzed in
comparison with bicubic interpolation and some typical
deep CNN based image super-resolution reconstruction
model frameworks, including enhanced deep residual
networks for single image super-resolution (EDSR)[21],
and wide activation for efficient and accurate image
super-resolution (WDSR)[22]. EDSR and WDSR won
the international competitions NTIRE 2017 and NTIRE
2018 image high-resolution competitions, respectively.

3.1 Validation indicator

We conducted experiments on a number of benchmark
medical image datasets. For a fair quantitative
comparison, we use peak signal-to-noise ratio (PSNR)
and structural similarity index measure (SSIM)[23] for
SR framework assessment, and the evaluation indicators
of PSNR and SSIM are calculated as follows:

MSE D
1

M 2

MX
i�1

MX
j�1

.a.i; j / � b.i; j //2 (15)

PSNR D 10 � log10.
MAX2

MSE
/ (16)

ˇSIM D
.2�a�b C c1/.2�ab C c2/

.�2a C �
2
b
C c1/.�a C �b C c2/

(17)

where a is generated image, b is ground truth image,
M is image size, and MAX is gray scale’s maximum
value; � and � denote the mean and variance,
respectively, and �ab denotes the covariance of the
two images; two constants c1 D .0:01 �MAX/2 and
c2 D .0:03 �MAX/2 were calculated according to the
SSIM convention.

3.2 Dataset and implementation details

To validate the effectiveness of our model in real medical
images, we selected separate datasets of MRI scans of
the knee and abdomen datasets� for comparison tests.
MRI imaging methods are completely different from CT
images and natural images in general, and each pixel’s
value in MRI images has no particular physical meaning.
Before training and testing, zero-mean normalization had
to be applied to each MRI image (i.e., the normalization
calculation is to use each value to subtract the mean and
then divide by standard deviation). The low-resolution
MRI image slices were obtained by averaging the 4 � 4
pooling over the original high-resolution MRI image
slices. We set �1 D 5� 10�2; �2 D 5�10

�3
and �L1

D

10�2 for training the loss function in the proposed super-
resolution model and iterative optimization using the
Adam optimizer[24] with ˇ1 D 0:9 and ˇ2 D 0:999, and
the initial learning rate is set to 10�4.

It should be noted that we used knee MRI images,
abdominal MRI images, and chest CT images[25] as
the training set. To enlarge the training set, we crop
the single original image into multiple small images
of the same size while the downsampling factor is set
to 4 to obtain low-resolution input images. Following
that, the suggested depth model is trained using the
obtained lowresolution dataset as well as the original
high-resolution dataset.

3.3 Super-resolution reconstruction results of MRI
images

First we choose the MRI images of knee and abdomen
for testing. After the reconstruction process, the
PNSR/SSIM test results for the knee MRI test images
for all comparing methods are shown in Table 1. The
PNSR/SSIM test results for the abdominal MRI images
are shown in Table 2. It is worth mentioning that all

� http://mridata.org/about
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Table 1 Reconstruction results of each comparing algorithm on MRI images of the knee.

Image No.
T-GANWDSREDSRBicubic

SSIMPSNR SSIMPSNR SSIMPSNR SSIMPSNR
0.903332.921 0.940534.56 0.946834.68 0.952635.26
0.880231.582 0.936933.26 0.940534.12 0.950235.03
0.890231.883 0.935433.38 0.937833.87 0.951435.16
0.868228.564 0.921532.24 0.928933.18 0.945334.17
0.872231.215 0.932433.12 0.946534.14 0.948734.98
0.882831.23Average 0.933333.312 0.940133.998 0.949634.92

Table 2 Reconstruction results of each comparing algorithm on abdominal MRI images.

Image No.
T-GANWDSREDSRBicubic

SSIMPSNR SSIMPSNR SSIMPSNR SSIMPSNR
0.884231.281 0.902633.86 0.924234.23 0.932735.13
0.890131.342 0.915834.15 0.938434.98 0.931834.62
0.880730.783 0.900532.98 0.927633.86 0.929434.76
0.898632.164 0.932734.87 0.948734.98 0.940135.13
0.887230.845 0.912432.57 0.930533.74 0.938934.28
0.880429.476 0.911832.12 0.931633.68 0.939134.19
0.886930.98Average 0.912633.43 0.933534.25 0.935334.69

metrics were calculated on cropped photos in order
to eliminate the impact of non-subject areas. The
quantitative results show that for knee MRI images, our
proposed T-GAN model achieves the best performance
on the PSNR/SSIM metrics. For abdominal MRI images,
our model essentially achieves optimal performance,
with individual image WDSR slightly outperforming our
model. The experimental results proves that our model
is more suitable for medical image super-resolution
reconstruction than the existing deep learning based
image super-segmentation models.

We likewise give the visualization comparison results
for each comparison algorithm, as shown in Figs. 3
and 4. It can be seen that the reconstructed images
based on bicubic interpolation and deep learning
based EDSR and WDSR both show oversmoothing
phenomenon. In contrast, our T-GAN performs better
for the reconstruction of detail information due to
the texture Transformer structure. Also, Figs. 3 and 4
clearly show that our proposed T-GAN provides the
best reconstruction of details, with very low amount of
artifacts and noise. The reconstructed images based on
bicubic interpolation and deep learning based EDSR
both exhibit some loss of detail information due to the
loss of some salient image features during the filtering
process.

3.4 Super-resolution reconstruction of low-dose
CT images

Instead of typical MRI images, the proposed image

(a) Original HD image (b) Bicubic

(c) EDSR (d) WDSR

(e) T-GAN

Fig. 3 Reconstruction results of each algorithm for MRI
images of the knee.

Weizhi Du et al.: Transformer and GAN-Based Super-Resolution Reconstruction Network for Medical Images
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(a) Original HD image (b) Bicubic

(c) EDSR (d) WDSR

(e) T-GAN

Fig. 4 Reconstruction results of each algorithm for
abdominal MRI images.

reconstruction algorithm can also be applied to other
medical pictures, such as X-ray scans and computed
tomography (CT) scans. X-ray and CT scans are widely
used in clinical applications such as noninvasive illness
detection, anatomical imaging, and treatment planning.
These imaging approaches, however, have some serious
limitations and disadvantages. Because it requires
high energy electromagnetic wave to pass through
human body during imaging process, the radiation
damage is unavoidable and high image precision often
requires greater energy from the scanner. Low-dose
CT (LDCT) is currently the clinically recommended
strategy for preventing irreversible radiation harm to
the body, however, it comes at the cost of getting CT
pictures with low resolution or noise contamination. The
spatial resolution is generally coarser than typical CT
imaging which has a high signal-to-noise ratio. As a
result, obtaining high-resolution scanned images with a
lowdose CT scanner would be significantly beneficial to
both the doctors and patients for diagnosis purpose.

In this section, we selected chest CT images of
COVID-19 patients in an actual hospital[25] for our
experiments. The visualization results of the experiments
are shown in Figs. 5 and 6. The experimental results
show that our proposed T-GAN is also applicable to
the super-resolution reconstruction of low-dose CT
images, and the high-resolution images obtained by our
model have more detailed information compared with
the baseline algorithm.

4 Conclusion

In this paper, we present a super-resolution model
(TGAN) for medical pictures based on Transformer and
generative adversarial network (GAN), with Tansformer
approach and residual learning as two generator channels.
The results suggest that our proposed T-GAN model
can be employed directly for super-resolution MRI
image reconstruction, and that our reconstruction
methods preserve more texture information than generic
image reconstruction algorithms. The findings of the
experiments suggest that using the super-resolution
reconstruction model to recover more picture details

(a) Original HD image (b) Bicubic

(c) EDSR (d) WDSR

(e) T-GAN

Fig. 5 Reconstruction results of each algorithm for low-doze
chest CT images: Case 1.
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(a) Original HD image (b) Bicubic

(c) EDSR (d) WDSR

(e) T-GAN

Fig. 6 Reconstruction results of each algorithm for low-doze
chest CT images: Case 2.

from clinically collected low-resolution images is
possible (e.g., LDCT, low-field MRI, and MRI spectral
imaging).

References

[1] X. Lu, Z. Huang, and Y. Yuan, MR image super-resolution
via manifold regularized sparse learning, Neurocomputing,
vol. 162, pp. 96–104, 2015.

[2] A. Rueda, N. Malpica, and E. Romero, Single-image
super-resolution of brain MR images using overcomplete
dictionaries, Med. Image Anal., vol. 17, no. 1, pp. 113–132,
2013.

[3] Y. Zhang, Z. Dong, P. Phillips, S. Wang, G. Ji, and J.
Yang, Exponential wavelet iterative shrinkage thresholding
algorithm for compressed sensing magnetic resonance
imaging, Inf. Sci., vol. 322, pp. 115–132, 2015.

[4] G. Zheng, G. Han, and N. Q. Soomro, An inception module
CNN classifiers fusion method on pulmonary nodule
diagnosis by signs, Tsinghua Science and Technology, vol.
25, no. 3, pp. 368–383, 2020.

[5] X. Yang, S. Zhan, C. Hu, Z. Liang, and D. Xie, Super-
resolution of medical image using representation learning,
in Proc. 2016 8th Int. Conf. Wireless Communications &
Signal Processing (WCSP), Yangzhou, China, 2016, pp.
1–6.

[6] F. Yang, H. Yang, J. Fu, H. Lu, and B. Guo, Learning

texture transformer network for image super-resolution, in
Proc. 2020 IEEE/CVF Conf. Computer Vision and Pattern
Recognition (CVPR), Seattle, WA, USA, 2020, pp. 5790–
5799.

[7] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,
D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio,
Generative adversarial nets, in Proc. 27th Int. Conf. on
Neural Information Processing Systems, Montreal, Canada,
2014, pp. 2672–2680.

[8] Z. Zhang, Z. Wang, Z. Lin, and H. Qi, Image super-
resolution by neural texture transfer, in Proc. 2019
IEEE/CVF Conf. Computer Vision and Pattern Recognition
(CVPR), Long Beach, CA, USA, 2019, pp. 7974–7983.

[9] Y. Wang, Y. Liu, W. Heidrich, and Q. Dai, The light field
attachment: Turning a DSLR into a light field camera using
a low budget camera ring, IEEE Trans. Vis. Comput. Graph.,
vol. 23, no. 10, pp. 2357–2364, 2016.

[10] H. Yue, X. Sun, J. Yang, and F. Wu, Landmark image super-
resolution by retrieving web images, IEEE Trans. Image
Process., vol. 22, no. 12, pp. 4865–4878, 2013.

[11] H. Zheng, M. Ji, H. Wang, Y. Liu, and L. Fang, CrossNet:
An end-to-end reference-based super resolution network
using cross-scale warping, in Proc. European Conference
on Computer Vision, Munich, Germany, 2018, pp. 87–104.

[12] V. Boominathan, K. Mitra, and A. Veeraraghavan,
Improving resolution and depth-of-field of light field
cameras using a hybrid imaging, in Proc. 2014 IEEE Int.
Conf. on Computational Photography (ICCP), Santa Clara,
CA, USA, 2014, pp. 1–10.

[13] H. Zheng, M. Ji, L. Han, Z. Xu, H. Wang, Y. Liu, and
L. Fang, Learning cross-scale correspondence and patch-
based synthesis for reference-based super-resolution, in
Proc. British Machine Vision Conference, London, UK,
2017, pp. 1–13.

[14] C. Ledig, L. Theis, F. Huszár, J. Caballero, A. Cunningham,
A. Acosta, A. Aitken, A. Tejani, J. Totz, Z. Wang, et
al., Photo-realistic single image super-resolution using
a generative adversarial network, in Proc. 2017 IEEE
Conf. Computer Vision and Pattern Recognition (CVPR),
Honolulu, HI, USA, 2017, pp. 105–114.

[15] M. S. M. Sajjadi, B. Schölkopf, and M. Hirsch, EnhanceNet:
Single image super-resolution through automated texture
synthesis, in Proc. 2017 IEEE Int. Conf. Computer Vision
(ICCV), Venice, Italy, 2017, pp. 4501–4510.

[16] X. Wang, K. Yu, C. Dong, and C. C. Loy, Recovering
realistic texture in image super-resolution by deep spatial
feature transform, in Proc. 2018 IEEE/CVF Conf. Computer
Vision and Pattern Recognition, Salt Lake City, UT, USA,
2018, pp. 606–615.

[17] Y. Wang, F. Perazzi, B. McWilliams, A. Sorkine-Hornung,
O. Sorkine-Hornung, and C. Schroers, A fully progressive
approach to single-image super-resolution, in Proc. 2018
IEEE/CVF Conf. Computer Vision and Pattern Recognition
Workshops (CVPRW), Salt Lake City, UT, USA, 2018, pp.
977–97709.

[18] M. Arjovsky, S. Chintala, and L. Bottou, Wasserstein
generative adversarial networks, in Proc. 34th Int. Conf.
Machine Learning, Sydney, Australia, 2017, pp. 214–223.

Transformer and GAN-Based Super-Resolution Reconstruction Network for Medical Images



206 Tsinghua Science and Technology, February 2024, 29(1): 197–206

[19] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A.
Courville, Improved training of Wasserstein GANs, in Proc.
31st Int. Conf. on Neural Information Processing Systems,
Long Beach, CA, USA, 2017, pp. 5769–5779.

[20] X. Zhu, L. Zhang, L. Zhang, X. Liu, Y. Shen, and S. Zhao,
GAN-based image super-resolution with a novel quality
loss, Math. Probl. Eng., vol. 2020, p. 5217429, 2020.

[21] B. Lim, S. Son, H. Kim, S. Nah, and K. M. Lee, Enhanced
deep residual networks for single image super-resolution,
in Proc. 2017 IEEE Conf. Computer Vision and Pattern
Recognition Workshops (CVPRW), Honolulu, HI, USA,
2017, pp. 1132–1140.

[22] J. Yu, Y. Fan, J. Yang, N. Xu, Z. Wang, X. Wang, and T.

Huang, Wide activation for efficient and accurate image
super-resolution, arXiv preprint arXiv: 1808.08718, 2018.

[23] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli,
Image quality assessment: From error visibility to structural
similarity, IEEE Trans. Image Process., vol. 13, no. 4, pp.
600–612, 2004.

[24] D. P. Kingma and L. J. Ba, Adam: A method for
stochastic optimization, presented at Int. Conf. on Learning
Representations, San Diego, CA, USA, 2015.

[25] H. Gunraj, L. Wang, and A. Wong, COVIDNet-CT: A
tailored deep convolutional neural network design for
detection of COVID-19 cases from chest CT images, Front.
Med. (Lausanne), vol. 7, p. 608525, 2020.

Shihao Tian received the PhD degree from
Cornell University, USA in 2019, the MS
degree from Cornell University, USA in
2015, and the BS degree from University
of Virginia, USA in 2012. He is currently
interested in applying AI to physics and
scientific research. Also, he is exploring
the potential of employing NLP technology

to improve STEM education and facilitate the research progress
of younger students. He is a member of IEEE and AAPT, and he
serves as the judge of ISEF, CONRAD, and PUPC competitions.

Weizhi Du is a rising freshman at
Washington University in St. Louis, St.
Louis, MO, USA. He is interested in
learning computer science and taking
digital artwork.


