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1 Introduction

Imbalanced data classification is an important research
topic in machine learning[1]. Here, imbalanced data
mean that the number of samples in some classes is
far larger than the number of samples in others in a
dataset. For example, in two classes of imbalanced
data, the class with most samples is called majority
class and the class with few samples is called minority
class. In many practical applications, the minority class
samples have significant research value because they
contain important information, such as rare disease
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diagnosis[2–4], fraudulent transaction detection[5], DNA
microarray data analysis[6], text classification[7], network
intrusion detection[8, 9], security management[10], etc.

Traditional classification algorithms aim to improve
the overall classification accuracy. However, in
the imbalanced data scenario, since conventional
classification algorithms usually favor majority
class samples[11] and ignore minority class samples,
directly applying classifiers may result in poor
performance[12, 13]. In particular, even a high
classification accuracy is obtained, it is not reliable.
For example, in disease diagnosis, if the number of
diseased samples is only 1% and the number of normal
samples is 99% in a dataset, then the accuracy of
classifying all samples as normal will be as high as 99%,
but this accuracy is not reliable because the minority
samples are not correctly identified and the cost of this
misclassification is huge. Research has shown that not
only between-class imbalance decreases classification
performance, but also overlapping between classes[14, 15],
noisy samples[16], small disjuncts[17, 18], within-class
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imbalance[19], and duplicate data[20] can also decrease
classification performance.

To solve the above problems, many approaches
have been proposed, which can be classified into
four categories: data level methods[21, 22], algorithm
modification[23], cost-sensitive learning[24, 25], and
ensemble learning[26]. Specifically, data level
methods rebalance the dataset using oversampling,
undersampling, or hybrid sampling methods. Algorithm
modification is to improve the existing algorithms to
recognize minority class samples more accurately. Cost-
sensitive learning sets a larger cost for misclassifying
minority classes, and ensemble learning improves
classification performance by combining several basic
classifiers. Among them, the data level method is
favored by researchers because it only changes the
distribution of the original data, is convenient to use,
and can be directly applied to various classifiers.

The most common methods in the data level are
random oversampling[17] and random undersampling[27].
The former randomly duplicates the minority class
samples and the latter randomly reduces the majority
class samples to rebalance the dataset. However,
random oversampling is susceptible to overfitting[28]

and random undersampling may remove samples
containing important information[29]. Although both
methods have their advantages, studies have shown that
oversampling is preferred to undersampling in many
practical applications[30, 31]. To overcome the drawbacks
of oversampling methods, many modified oversampling
methods have been proposed, such as synthetic minority
oversampling technique (SMOTE)[32], adaptive synthetic
sampling approach (ADASYN)[33], K-mean-SMOTE[34],
majority weighted minority oversampling technique
(MWMOTE)[35], borderline-SMOTE (B1-SMOTE and
B2-SMOTE)[36], density-based synthetic minority over-
sampling technique (DBSMOTE)[37], etc. Although
these methods improve the recognition accuracy of
minority classes, they also have some problems such as
insufficient noise filtering and generation of duplicates
and outlier samples. To this end, we propose a joint
sample position based noise filtering and mean shift
clustering (SPMSC) method for imbalanced binary data
in this paper. SPMSC can not only adequately filter
the noise samples to alleviate their influence in the
sample generation process, but also effectively reduce
the production of duplicate samples and class overlap,
so as to improve the recognition accuracy of samples.

The main contributions of this work can be summarized
as follows.
� We propose a new noise filtering mechanism that

can adequately filter the noise samples in the original
dataset to weaken the effect of noise in the sample
synthesis phase.
� We cluster minority samples using the mean shift

method, which does not need to set the number of
clusters in advance. Also, it does not lead to the
generation of a large number of duplicate samples at
the sample synthesis phase due to inappropriate distance
thresholds as in the case of hierarchical clustering.
� We use the Tomek link data cleaning method after

sample synthesis to further reduce class overlap in the
processed dataset.

The remainder of this paper is organized as follows.
We review some popular oversampling methods in
Section 2. In Section 3, we describe the SPMSC method
in detail. Experimental results and analysis are provided
in Section 4. Finally, we conclude this paper in Section 5.

2 Related Work
The essence of sampling is to add or remove resamples to
rebalance the originally imbalanced data. In this section,
we briefly review some of the popular resampling
methods.

SMOTE is one of the most representative
oversampling methods. As shown in Fig. 1a, in
Ref. [32], Chawla et al. randomly selected a sample y
from the k nearest neighbors of minority sample x0 to
synthesize a new sample by Eq. (1):

synthetic D x0 C � � .y � x0/ (1)

where � is a random number between [0, 1]. This method
is widely used because it is easy to understand and
implement, however, it also has shortcomings. As shown
in Fig. 1b, since this method performs sample synthesis
for all minority samples without considering their
distribution information relative to majority samples,
it generates noisy samples and class overlap. Many
approaches have been proposed to solve the problems
generated by SMOTE. In Ref. [33], He et al. assigned
sampling weights to each minority sample based on the
number of majority samples in its nearest neighbors.
However, it has the shortcomings of ignoring the effects
of noisy samples and assigning unreasonable sampling
weights. As shown in Fig. 2a, assuming k is 5, the
noisy sample A will be assigned a larger weight, and
the minority sample B will be assigned the same weight
as the minority sample C although it is closer to the
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(a) Random linear interpolation by using SMOTE

Majority sample 
Minority sample 
Synthetic sample

Decision boundary

(b) Noise generated by using SMOTE

Fig. 1 Sample synthesis.

Majority sample 
Minority sample

Decision boundary

A
B C

(a) An example of the problems caused by ADASYN and borderline-SMOTE

Majority sample 
Minority sample

Decision boundary

D

E
F

(b) An example of the problems caused by safe-level-SMOTE

Fig. 2 Possible scenarios for some oversampling methods.

decision boundary. In Ref. [36], Han et al. proposed a
method to divide minority samples into three classes:
noise, safe, and danger, and to oversample only the
samples in the danger. However, this method may not
accurately identify the danger samples in some cases, as
shown in Fig. 2a, sample B will be misclassified as safe
class although it is a danger sample. Bunkhumpornpat
et al.[38] assigned to each minority sample “safe-level”
value, and then synthesized samples closer to the largest
safe-level. However, as shown in Fig. 2b, in contrast to
the minority sample F , the new samples synthesized
by the minority samples D and E will be closer to
themselves, which may lead to overfitting because
these new samples are gathered around minority class
samples with a large density and away from the decision
boundary. In Ref. [22], Onan proposed a consensus
clustering based on undersampling, which utilizes the
consensus clustering mechanism to undersample the
majority class samples and improves the classification
accuracy. In Ref. [25], Jiang et al. proposed to
change the class distribution of the training data by

cloning minority class samples. Barua et al.[35] proposed
a new method to identify the boundary minority
samples and assign sampling weights, however, it has
the disadvantages of inadequate noise filtering and
duplication of generated samples with the original
minority data. In Ref. [34], Douzas et al. proposed to
firstly cluster the whole dataset by using K-means, then
select the appropriate clusters according to the imbalance
ratio, and finally use SMOTE to synthesize samples.
However, the optimal number of clusters is difficult to
find. Nekooeimehr and Lai-Yuen[39] proposed adaptive
semi-unsupervised weighted oversampling (A-SUWO)
method which uses a semi-unsupervised hierarchical
clustering method to cluster minority samples, then
uses misclassification errors and cross-validation to
determine the number of samples to be synthesized in
each subcluster, and finally assigns sampling weights
based on the average distance of the minority samples
from their nearest majority class neighbors. However,
the method is more complex and may not be suitable for
larger datasets.
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In this section, we propose a new method for imbalanced
data classification. Our method consists of three main
steps: (1) noisy sample filtering, (2) mean shift clustering
and sample synthesis, and (3) data cleaning.

3.1 Preliminary

Mean shift is a center-based nonparametric clustering
method. The method works by calculating the average
value of the distance between a candidate point xi and
the points within a given radius r and then updating the
position of xi , which forms a cluster with the points
within its radius when xi is not moving. The shift vector
m is calculated by Eq. (2):

m.xi / D

P
xj2N.xi /K.xj � xi /xjP

xj2N.xi /K.xj � xi /
� xi (2)

where m points to the region with the largest density
increase, and N.xi / represents the neighborhood of xi

in a given r range. According to the shift vector m, the
update process of a candidate point xi is shown in Eq. (3).

xtC1
i D xt

i Cm.x
t
i / (3)

where t is the number of iterations needed. The
algorithm does not require setting the number of clusters
beforehand, which can be set automatically without
relying on the parameter bandwidth that indicates the
range of the region to be searched, and it can handle
clusters of arbitrary shape. Therefore, the mean shift
algorithm is suitable for the segmentation of data. For
more information about the use of this algorithm, please
refer to sklearn (https://scikit-learn.org/stable/).

3.2 Our method

MWMOTE[35] is a popular oversampling method for
processing imbalanced data problems. Although it
is specific for some problems such as within-class
imbalance and class overlap, it also has the shortcomings
of inadequate noise filtering and generating duplicate
samples. Motivated by this, we propose a new approach
to cope with these problems.

3.2.1 Noise sample filtering
At present, many algorithms remove noise based on K-
NearestNeighbor (KNN) noise filtering criterion, i.e., if
all k nearest neighbors of a minority sample are other
classes, then the minority sample is considered as a noisy
sample. However, this noise removal method is difficult
to eliminate the most noisy samples. As shown in Fig. 3,
only noisy sampleL is removed using this method, while
noisy samplesM andN will still be retained. In order to

Majority sample 
Minority sample 
Noise sampleL

M

N

Fig. 3 Disadvantages of KNN-based noise filtering.

filter noise adequately, we propose a new noise filtering
method. There are three main steps: Firstly, an input
datasetQ is further divided into minority sample set Smin

and majority sample set Smaj according to the labels, and
then the Euclidean distance between each sample in Smin

and each sample in Q is calculated to form a distance
matrix.

dis D Euclideanxi2Smin;yi2Q.xi ; yj / (4)

Specifically, because an sample has zero Euclidean
distance from itself, we set it to a large constant in order
to avoid this situation influencing the next judgments.
Then, for each minority sample, we find the nearest one
and three instances to it in dis using Eqs. (5) and (6),
respectively.

index1 D smallestxi2Smin.1; dis.xi // (5)

index3 D smallestxi2Smin.3; dis.xi // (6)

Finally, two conditional judgments are made, where
if index1 is not a minority class, then the number
of count belonging to the majority class in index3

is judged in turn, and if count is greater than or
equal to 2, then the minority sample is considered
as noise. To further compare our denoising method
with the KNN-based denoising method above, we
use the two-dimensional dataset paw02a-600-5-70-BI
in keel (https://sci2s.ugr.es/keel/datasets.php#sub1) to
visualize the denoising results. As shown in Figs. 4
and 5 compared to MWMOTE’s KNN-based denoising
method, our method can more adequately remove noise
even though some of the noise samples are specially
distributed.

3.2.2 Mean shift clustering and sampling
weighting

The use of average-linkage agglomerative clustering
to divide the minority class samples may result in a
large number of class clusters or only one or a few
minority samples in a class cluster because an optimal
distance threshold cannot be found, which is likely
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Fig. 4 KNN-based noise filtering.

Fig. 5 Proposed denoising method.

to generate many duplicate instances in the sample
synthesis step. Motivated by this, we use a parameter-
free mean shift clustering algorithm to divide minority
samples. This algorithm does not require setting the
number of clusters beforehand and does not generate
too many class clusters, thus reducing the generation of
duplicate samples in the sample synthesis step. We will
give an experimental comparison in Section 4. Next, we
assign sampling weights to the minority class samples
that satisfy the requirements according to Eqs. (7)–(9):

Iw.yj ; xi / D Cf .yj ; xi / �Df .yj ; xi /
xi2Simin;yj2Sbmaj

(7)

Sw.xi /
xi2Simin

D

X
yj2Sbmaj

Iw.yj ; xi / (8)

Sp.xi / D
Sw.xi /P

zi2Simin

Sw.zi / (9)

Specifically, please refer to Ref. [35] for a detailed
explanation of the boundary minority class samples Simin,
boundary majority class samples Sbmaj, closeness factor
Cf , and density factor Df .
3.2.3 Data cleaning
After synthesizing instances for each boundary minority
class sample in the cluster they belong to by using Eq. (1)
according to the selection probability Sp, we use the
Tomek link method to clean the processed dataset with
the aim of further removing class overlap. Tomek link

is a data cleaning method defined as follows: For two
different classes of samples x and y, d.x; y/ denotes
the distance between them, and if there is no sample z
such that d.x; y/ < d.x; z/ or d.x; y/ < d.y; z/, then
.x; y/ is a Tomek link and is removed.

In summary, the full steps of the proposed method are
presented in Algorithm 1. For Algorithm 1, we have two
remarks.

Remark 1. The purpose of first judging index1 in
the noise denoising process is to avoid misclassifying
some minority samples as noisy samples because of their
particular distribution.

Remark 2. When clustering minority class samples

Algorithm 1 SPMSC
1: Input
2: Q: dataset, Smin: minority class sample set, Smaj: majority

class sample set, denoise: storing noise samples, and num:
the number of samples to be generated.

3: K1: nearest neighbors for finding the boundary majority class
and K2: nearest neighbors for finding the boundary minority
class.

4: Procedure begin
5: Calculate the distance matrix between the sample in Smin and

the sample in Q using Eq. (4).
6: for each xi 2 Smin, obtain index1 and index3 by using Eqs.

(5) and (6).
7: if the index1 label is not a minority class, initialize m D
0, for each index 2 index3, if the label of the index is the
majority class, mC 1, if m > 2, then add that minority class
to denoise.

8: Denoised minority class sample set Tmin D Smin � denoise.
9: for each xi 2 Tmin, find its K1 nearest majority class

samples Nmaj.xi / to form boundary majority sample set
Sbmaj D [

xi2Tmin
Nmaj.xi /.

10: for each yi 2 Sbmaj, find its K2 nearest minority class
samples Nmin.yj / to form boundary minority sample set
Simin D [

yj2Sbmaj
Nmin.yi /.

11: Clustering of Smin using the mean shift algorithm.
12: for each xi 2 Simin and yj 2 Sbmaj, sampling weights are

calculated by using Eq. (7).
13: for each xi 2 Simin, the selection probability is calculated

using Eq. (9).
14: Initialize the set S D Smin.
15: do for i D 1; 2; : : : ; num
16: Select sample x according to Sp and find the clusterx

17: where x is located.
18: Select sample y randomly in clusterx .
19: A synthetic sample syn is generated by using Eq. (1) and
20: adds syn to S : S D S [ syn.
21: end loop
22: Obtain new dataset new: new D S [ Smaj

23: The dataset new is cleaned using Tomek link.
24: End



221

using the mean shift algorithm, no parameters need to be
set, where the bandwidth is estimated by the provided
estimate bandwidth function.

4 Result and Discussion

In this section, we conduct experiments and analyze the
experimental results from multiple perspectives to verify
the effectiveness of the SPMSC method.

4.1 Dataset description and comparison methods

We conduct experiments by using 21 datasets from
KEEL, UCI�, UCI extended‘, and RCSMOTEz. These
datasets have different sample sizes, feature attributes,
and degrees of imbalance, and the details are shown in
Table 1. Among them, wdbc is breast cancer dataset
and its labels “M” and “B” denote malignant and benign,
respectively. To be consistent with the other 20 datasets,
we consider malignant as the minority sample assigned
label “1” and benign as the majority sample assigned
label “0”.

To verify the effectiveness of the proposed
method, we compare SPMSC with eight popular
sampling methods, namely random oversampling

� https://archive.ics.uci.edu/ml/index.php.
‘ https://github.com/felix-last/evaluate-kmeans-smote/releases/download/

v0.0.1/uci extended.tar.gz.
z https://raw.githubusercontent.com/M-Hashemzadeh/RCSMOTE/master/

ImplementationSourceCodes.zip.

(ROS)[17], SMOTE[32], SMOTE-Tomeklinks (STL)[40],
ADASYN[33], B1-SMOTE[36], B2-SMOTE[36], safe-
level-SMOTE (SLS)[38], and MWMOTE[35] on three
classifiers, KNN[41], GaussianNB[42], and SVM[43].

4.2 Evaluation measures

The method for evaluating classifier performance in
machine learning is based on confusion matrix. As
shown in Fig. 6, where TN represents the number of
negative (majority) class samples correctly classified,
FP represents the number of negative (majority)
class samples misclassified as positive (minority)
class samples, FN represents the number of positive
(minority) class samples misclassified as negative
(majority) class samples, and TP represents the
number of positive (minority) class samples correctly
classified. The traditional evaluation method accuracy is
not applicable in imbalance scenarios because it only
takes into account the overall accuracy and ignores
the importance of minority class samples. Therefore,
some evaluation methods for imbalance scenarios[44, 45]

are proposed, and the specific definitions are shown as
follows:

F -measure D
2 � Sensitivity � Precision

SensitivityC Precision
(10)

G-mean D
p

Sensitivity � Specificity (11)

AUC D
1C TPR � FPR

2
(12)

Table 1 Description of the imbalanced datasets.
Number of minority samples Number of majority samples Number of samples Attribute Degree of imbalanceDataset

1:2.46814841055429Yeast1
1:8.10814841321163Yeast3
1:32.7381484144044Yeast5
1:1.878768500268Pima
1:2.06921414470Glass0
1:2.78330622581Haberman
1:2.9018846629217Vehicle1
1:2.9918846634212Vehicle3

Glass-0-1-2-3 vs 1:3.209214163514-5-6
1:3.2518846647199Vehicle0
1:3.36733625977Ecoli1
1:8.60733630135Ecoli3
1:2.5110579414165Ilpd
1:1.2513270150120Heart

Liver 1:2.78627220072disorders2
Liver 1:5.56623620036disorders4

1:3.738634500134Pima2
1:6.001623101980330Segment
1:1.899958626332Tic-tac-toe
1:29.17111599154653Winequality-red4
1:1.6831569357212Wdbc
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Fig. 6 Confusion matrix.

TPR D
TP

TPC FN
(13)

FPR D
FP

FPC TN
(14)

4.3 Experimental setting

The three classifiers and eight sampling algorithms are
used in the experimental comparison, where, for the
SVM classifier we used the hinge loss function as the
loss term, C D 0:1, max ite D 10 000, and penalty is
L2. MWMOTE uses the parameters suggested in the
original paper, i.e., K1 D 5, K2 D 3, K3 D jSminj=2,
Cp D 3, Cf .th/ D 5, and CMAX D 2. The rest of
classifier and comparison algorithm parameters used are
set to default values.

4.4 Result comparison and analysis

4.4.1 Duplicate data comparison
To visualize the duplicate points in the processed dataset,
three 2-dimensional datasets are selected from KEEL.
Figure 7 shows the data distribution after using the
MWMOTE method. The blue point represents the
majority class, the red point represents the minority
class, and the point in the black rectangular box is
the synthetic duplicate sample. It can be observed that

the edges of these duplicate sample points show a
sawtooth shape. Table 2 shows the number of duplicates
of the original data in the synthesized samples using
our method compared to the MWMOTE method, from
which it can be concluded that our method can effectively
reduce the generation of duplicate samples in the sample
synthesis phase compared to the MWMOTE method.

4.4.2 Contrastive analysis of sampling
performance

In this subsection, we compare the performance of the
SPMSC method with the comparison method.

Tables 3–5 show the results for SPMSC and other
eight sampling methods obtained using three classifiers
on 21 datasets, with the best measures in bold.
Additionally, 4-fold stratified cross validation was used
to maintain the proportion of classes in the original data,
and each experiment was repeated three times in order
to eliminate the effect of randomness. As shown in
Table 3, SPMSC obtains the best results at least on one
measure in 19 out of 21 datasets when using the KNN
classifier. As shown in Table 4, SPMSC obtains the best
results at least on one measure in 11 out of 21 datasets
when using the NB classifier. As shown in Table 5,
SPMSC obtains the best results at least on one measure
in 13 out of 21 datasets when using the SVM classifier.
In comparison with the other eight sampling methods,
the SPMSC method obtains the highest number of best
results.

Figure 8 shows the average of the results of SPMSC
and the other eight sampling methods. For KNN and
SVM classifiers, SPMSC outperforms the other methods
in all three measures. For the NB classifier, SPMSC

(a) paw02a-600-5-70-BI (b) paw02a-800-7-60-BI (c) 03subcl5-600-5-30-BI-full

Fig. 7 Visualization of duplicate data generated using the MWMOTE method.

Table 2 Comparison of duplicate data generated by the SPMSC method and the MWMOTE method.

Dataset Number of synthetic samples
Number of duplicate samples

MWMOTE SPMSC
paw02a-600-5-70-BI 400 90 5
paw02a-800-7-60-BI 700 159 14

03subcl5-600-5-30-BI-full 400 104 11



MWMOTE SPMSCSLSADASYN B1-SMOTE B2-SMOTESTLSMOTEROSMeasureDataset

Yeast1
F-M 0.522 743 0.536 692 0.530 222 0.531 450 0.526 050 0.528 153 0.535 802 0.547 124 0.553 061
G-M 0.655 485 0.666 418 0.661 095 0.662 405 0.657 654 0.657 407 0.665 758 0.675 997 0.681 259
AUC 0.717 969 0.722 232 0.720 031 0.721 376 0.709 195 0.709 174 0.727 138 0.739 181 0.746 506

Yeast3
F-M 0.676 411 0.660 401 0.681 125 0.644 022 0.681 272 0.587 982 0.654 146 0.676 332 0.693 541
G-M 0.891 676 0.883 111 0.890 240 0.886 152 0.869 750 0.863 613 0.883 747 0.898 834 0.902 797
AUC 0.915 162 0.920 008 0.921 669 0.914 774 0.917 576 0.918 808 0.933 057 0.928 967 0.933 179

Yeast5
F-M 0.617 09 0.581 992 0.586 894 0.576 608 0.594 626 0.531 439 0.573 519 0.584 642 0.586 229
G-M 0.901 115 0.920 686 0.921 039 0.920 406 0.921 821 0.940 573 0.955 442 0.933 357 0.933 667
AUC 0.943 845 0.954 293 0.954 104 0.954 451 0.942 487 0.960 038 0.963 699 0.965 878 0.966 162

Pima
F-M 0.630 745 0.636 319 0.632 69 0.631 125 0.635 532 0.638 106 0.648 711 0.639 191 0.666 279
G-M 0.709 839 0.713 319 0.711 135 0.706 979 0.713 088 0.711 956 0.724 938 0.716 678 0.737 819
AUC 0.759 433 0.767 970 0.771 224 0.767 731 0.764 239 0.761 179 0.777 657 0.778 224 0.783 507

Glass0
F-M 0.684 341 0.649 884 0.666 602 0.653 333 0.700 074 0.675 992 0.677 002 0.691 898 0.687 228
G-M 0.760 103 0.724 730 0.743 947 0.721 762 0.770 171 0.739 385 0.753 216 0.762 917 0.758 680
AUC 0.854 666 0.842 320 0.843 387 0.848 051 0.859 307 0.843 273 0.843 035 0.842 218 0.851 841

Haberman
F-M 0.421 019 0.440 88 0.357 196 0.405 857 0.374 330 0.407 483 0.387 785 0.459 331 0.440 081
G-M 0.581 717 0.600 795 0.525 155 0.568 410 0.542 283 0.569 476 0.553 118 0.615 404 0.597 123
AUC 0.629 310 0.633 590 0.605 722 0.623 992 0.616 953 0.604 969 0.635 230 0.639 898 0.657 138

Vehicle1
F-M 0.607 019 0.640 211 0.618 508 0.621 596 0.613 285 0.611 922 0.636 870 0.623 796 0.641 375
G-M 0.662 310 0.670 863 0.667 071 0.665 134 0.654 432 0.658 299 0.675 294 0.658 596 0.690 055
AUC 0.787 609 0.795 734 0.788 960 0.788 365 0.785 827 0.788 863 0.783 594 0.791 720 0.794 212

Vehicle3
F-M 0.605 194 0.637 168 0.623 961 0.620 988 0.617 169 0.617 063 0.614 278 0.623 436 0.651 422
G-M 0.687 533 0.710 690 0.692 633 0.677 971 0.694 288 0.695 193 0.693 086 0.680 048 0.712 928
AUC 0.797 793 0.805 608 0.806 233 0.812 216 0.807 651 0.797 736 0.810 702 0.792 435 0.812 696

Glass-0-1-2-3 vs 4-5-6
F-M 0.747 578 0.712 082 0.748 193 0.764 255 0.749 501 0.715 580 0.741 925 0.731 710 0.738 032
G-M 0.823 241 0.789 808 0.818 214 0.837 035 0.823 587 0.814 925 0.821 308 0.811 880 0.814 975
AUC 0.874 293 0.901 798 0.881 623 0.914 888 0.883 417 0.909 783 0.874 070 0.880 470 0.916 891

Vehicle0
F-M 0.815 186 0.823 788 0.841 176 0.831 928 0.819 156 0.782 420 0.825 707 0.823 652 0.853 790
G-M 0.910 515 0.917 008 0.925 746 0.928 395 0.916 256 0.899 755 0.917 837 0.921 975 0.942 815
AUC 0.967 894 0.974 264 0.975 171 0.971 552 0.970 341 0.957 626 0.974 061 0.977 874 0.980 050

Ecoli1
F-M 0.725 720 0.727 888 0.711 919 0.724 080 0.730 829 0.741 560 0.717 686 0.748 132 0.752 647
G-M 0.817 409 0.818 596 0.809 286 0.823 722 0.814 030 0.820 512 0.820 526 0.824 980 0.831 529
AUC 0.849 427 0.875 194 0.862 338 0.874 160 0.873 270 0.868 328 0.859 187 0.872 312 0.880 111

Ecoli3
F-M 0.540 513 0.594 937 0.599 679 0.583 611 0.649 275 0.617 845 0.549 430 0.582 168 0.624 126
G-M 0.821 258 0.869 171 0.870 967 0.866 037 0.870 285 0.872 538 0.864 788 0.854 959 0.887 046
AUC 0.894 766 0.903 738 0.912 889 0.897 445 0.913 961 0.907 463 0.914 497 0.904 661 0.905 135

Ilpd
F-M 0.448 776 0.447 730 0.455 276 0.459 848 0.417 290 0.451 186 0.465 025 0.455 049 0.464 537
G-M 0.573 177 0.561 525 0.574 443 0.579 325 0.548 303 0.571 692 0.582 387 0.579 452 0.583 680
AUC 0.634 529 0.620 863 0.635 553 0.620 397 0.620 137 0.627 583 0.626 710 0.622 023 0.636 269

Heart
F-M 0.797 115 0.819 588 0.815 289 0.796 385 0.829 265 0.809 292 0.824 590 0.828 488 0.832 421
G-M 0.816 010 0.834 591 0.833 414 0.810 798 0.841 005 0.820 960 0.841 850 0.843 583 0.847 947
AUC 0.867 028 0.872 804 0.878 781 0.862 011 0.869 965 0.865 040 0.885 165 0.882 278 0.878 924

Liver disorders2
F-M 0.290 462 0.278 902 0.330 081 0.313 657 0.294 858 0.314 726 0.319 391 0.314 614 0.350 284
G-M 0.441 491 0.437 244 0.484 934 0.465 420 0.449 435 0.460 712 0.467 958 0.458 493 0.504 684
AUC 0.489 444 0.487 083 0.539 028 0.543 472 0.472 778 0.452 361 0.526 389 0.490 972 0.528 194

Liver disorders4
F-M 0.292 618 0.337 410 0.293 651 0.299 566 0.281 588 0.247 524 0.272 866 0.302 781 0.342 319
G-M 0.565 799 0.614 234 0.560 365 0.577 422 0.559 526 0.518 399 0.539 649 0.575 478 0.611 144
AUC 0.604 167 0.624 444 0.559 444 0.621 667 0.610 278 0.552 778 0.580 278 0.593 333 0.628 333

Pima2
F-M 0.447 081 0.473 759 0.471 146 0.466 204 0.476 020 0.436 463 0.463 285 0.495 543 0.504 809
G-M 0.650 070 0.676 277 0.672 752 0.671 170 0.669 098 0.639 291 0.663 252 0.694 574 0.701 012
AUC 0.702 607 0.719 742 0.717 297 0.714 878 0.734 442 0.732 310 0.735 352 0.746 740 0.748 690

Segment
F-M 0.880 019 0.884 240 0.883 388 0.869 285 0.870 928 0.789 679 0.861 353 0.880 296 0.871 311
G-M 0.955 697 0.954 073 0.955 136 0.958 285 0.951 425 0.936 239 0.949 397 0.956 944 0.957 501
AUC 0.976 831 0.978 627 0.977 052 0.978 785 0.977 318 0.978 783 0.979 045 0.979 799 0.983 245

Tic-tac-toe
F-M 0.627 109 0.655 931 0.658 492 0.663 588 0.615 011 0.582 630 0.646 761 0.687 021 0.680 496
G-M 0.690 542 0.715 622 0.716 701 0.720 644 0.673 680 0.651 727 0.707 028 0.739 496 0.728 968
AUC 0.751 769 0.768 579 0.764 450 0.759 428 0.734 572 0.701 264 0.750 909 0.798 718 0.796 982

Winequality-red-4
F-M 0.139 106 0.136 370 0.137 932 0.141 528 0.148 952 0.170 618 0.124 273 0.136 538 0.137 645
G-M 0.485 385 0.597 635 0.597 514 0.599 987 0.441 653 0.507 551 0.533 908 0.603 335 0.605 299
AUC 0.597 243 0.650 406 0.658 263 0.647 844 0.613 032 0.620 332 0.643 371 0.652 611 0.673 694

Wdbc
F-M 0.950 643 0.949 163 0.950 982 0.923 582 0.936 692 0.900 051 0.953 471 0.949 109 0.956 013
G-M 0.960 807 0.961 342 0.961 747 0.944 237 0.952 627 0.928 613 0.963 038 0.961 277 0.966 552
AUC 0.990 767 0.991 799 0.990 021 0.984 179 0.985 202 0.975 830 0.990 580 0.989 200 0.990 290
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Table 3 Experimental results obtained on 21 datasets by using KNN classifier (F-M is short for F-measure and G-M is short
for G-mean).
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Table 4 Experimental results obtained on 21 datasets by using NB classifier.
Dataset Measure ROS SMOTE STL ADASYN B1-SMOTE B2-SMOTE SLS MWMOTE SPMSC

Yeast1
F-M 0.456 125 0.458 645 0.457 923 0.458 730 0.457 897 0.455 935 0.457 501 0.460 728 0.462 404
G-M 0.196 169 0.233 243 0.225 275 0.227 735 0.227 596 0.209 021 0.216 401 0.243 092 0.261 612
AUC 0.516 403 0.522 134 0.520 714 0.521 882 0.520 712 0.516 920 0.519 509 0.525 670 0.529 242

Yeast3
F-M 0.219 601 0.233 448 0.236 745 0.218 333 0.218 486 0.206 591 0.227 033 0.231 906 0.228 198
G-M 0.346 482 0.437 491 0.452 808 0.338 814 0.354 067 0.237 156 0.399 952 0.427 586 0.412 470
AUC 0.560 114 0.591 879 0.598 693 0.557 084 0.558 186 0.526 028 0.577 891 0.588 095 0.580 502

Yeast5
F-M 0.114 764 0.169 266 0.175 865 0.164 341 0.185 158 0.124 036 0.141 530 0.174 980 0.178 614
G-M 0.725 108 0.822 667 0.831 483 0.815 966 0.841 108 0.709 541 0.789 541 0.830 068 0.833 602
AUC 0.763 194 0.832 828 0.840 120 0.826 926 0.851 136 0.752 525 0.807 734 0.838 731 0.841 509

Pima
F-M 0.645 945 0.646 374 0.637 224 0.640 895 0.632 705 0.634 009 0.646 661 0.655 554 0.647 528
G-M 0.721 980 0.723 317 0.715 240 0.718 069 0.711 247 0.712 415 0.723 570 0.731 123 0.724 135
AUC 0.725 552 0.726 687 0.717 552 0.720 149 0.713 418 0.714 284 0.726 687 0.734 284 0.726 418

Glass0
F-M 0.648 094 0.652 034 0.649 575 0.626 997 0.612 366 0.607 527 0.648 094 0.622 321 0.651 941
G-M 0.651 987 0.658 523 0.652 378 0.634 395 0.619 109 0.606 533 0.651 987 0.637 977 0.664 927
AUC 0.705 882 0.709 355 0.705 882 0.687 296 0.672 998 0.666 054 0.705 882 0.686 887 0.712 418

Haberman
F-M 0.397 980 0.409 007 0.431 200 0.395 654 0.406 893 0.423 564 0.410 009 0.414 651 0.446 276
G-M 0.538 918 0.549 014 0.568 243 0.549 944 0.551 443 0.567 449 0.549 591 0.570 110 0.591 058
AUC 0.607 151 0.613 518 0.623 410 0.596 742 0.608 647 0.616 267 0.613 142 0.603 791 0.628 180

Vehicle1
F-M 0.548 641 0.549 270 0.549 440 0.544 596 0.520 670 0.516 226 0.549 500 0.547 146 0.552 504
G-M 0.658 387 0.655 214 0.659 961 0.622 060 0.624 599 0.593 398 0.659 831 0.652 197 0.664 494
AUC 0.680 977 0.678 799 0.680 387 0.675 831 0.662 731 0.656 929 0.681 183 0.678 045 0.683 493

Vehicle3
F-M 0.538 009 0.540 603 0.543 196 0.541 562 0.556 529 0.546 873 0.546 298 0.537 867 0.539 489
G-M 0.660 356 0.662 850 0.669 427 0.657 586 0.660 412 0.652 023 0.670 367 0.663 493 0.664 351
AUC 0.671 981 0.675 110 0.679 031 0.680 509 0.690 769 0.684 460 0.680 609 0.674 314 0.675 110

Glass-0-1-2-3 vs 4-5-6
F-M 0.704 351 0.697 455 0.708 851 0.731 197 0.712 044 0.757 099 0.715 747 0.697 455 0.714 076
G-M 0.786 217 0.783 029 0.793 611 0.810 372 0.800 491 0.839 872 0.796 798 0.783 029 0.801 492
AUC 0.813 759 0.810 634 0.821 050 0.829 864 0.828 418 0.854 216 0.824 175 0.810 634 0.827 617

Vehicle0
F-M 0.550 449 0.556 710 0.555 883 0.495 115 0.491 435 0.488 522 0.551 346 0.555 603 0.559 914
G-M 0.719 673 0.726 740 0.725 349 0.672 182 0.670 231 0.666 693 0.720 795 0.725 440 0.729 619
AUC 0.738 867 0.745 127 0.744 286 0.677 976 0.674 297 0.670 531 0.739 582 0.743 334 0.747 437

Ecoli1
F-M 0.500 329 0.560 281 0.592 680 0.503 932 0.644 887 0.512 575 0.538 384 0.533 907 0.425 556
G-M 0.630 874 0.711 160 0.740 656 0.608 356 0.772 606 0.612 207 0.685 275 0.674 823 0.417 278
AUC 0.691 833 0.744 060 0.766 958 0.683 812 0.800 580 0.697 389 0.725 070 0.721 943 0.594 925

Ecoli3
F-M 0.436 652 0.505 780 0.538 696 0.474 945 0.575 198 0.519 686 0.513 131 0.552 585 0.534 887
G-M 0.778 663 0.846 429 0.868 974 0.820 141 0.886 917 0.865 521 0.836 960 0.876 219 0.852 733
AUC 0.799 525 0.852 683 0.872 639 0.831 038 0.889 262 0.869 306 0.843 947 0.879 284 0.857 105

Ilpd
F-M 0.556 796 0.568 248 0.566 032 0.560 267 0.565 164 0.553 269 0.558 290 0.560 685 0.564 265
G-M 0.614 951 0.634 785 0.631 428 0.623 446 0.635 256 0.613 727 0.619 612 0.622 717 0.637 195
AUC 0.679 356 0.692 635 0.690 220 0.684 164 0.688 953 0.676 882 0.681 748 0.684 175 0.688 930

Heart
F-M 0.820 148 0.811 612 0.820 031 0.819 730 0.821 077 0.820 968 0.816 641 0.818 033 0.824 975
G-M 0.837 840 0.830 104 0.837 897 0.836 446 0.837 334 0.837 387 0.834 707 0.835 739 0.842 185
AUC 0.838 276 0.830 731 0.838 276 0.836 652 0.837 530 0.837 530 0.834 987 0.835 864 0.842 443

Liver disorders2
F-M 0.409 303 0.404 563 0.424 769 0.415 193 0.401 602 0.400 243 0.426 514 0.397 700 0.413 093
G-M 0.427 289 0.453 305 0.489 620 0.450 340 0.444 083 0.449 047 0.458 026 0.449 125 0.469 329
AUC 0.520 278 0.519 444 0.548 333 0.530 278 0.514 444 0.515 000 0.544 167 0.512 500 0.531 389

Liver disorders4
F-M 0.240 762 0.278 479 0.260 661 0.264 386 0.273 366 0.264 478 0.244 441 0.269 838 0.283 549
G-M 0.407 270 0.484 687 0.470 993 0.473 079 0.523 571 0.497 473 0.442 441 0.487 275 0.519 918
AUC 0.477 222 0.535 000 0.512 222 0.512 222 0.536 944 0.520 833 0.485 833 0.526 111 0.548 611

Pima2
F-M 0.547 570 0.550 409 0.556 164 0.539 910 0.550 126 0.541 306 0.555 083 0.551 332 0.563 640
G-M 0.729 104 0.732 563 0.734 107 0.730 484 0.734 527 0.733 970 0.733 161 0.732 823 0.742 681
AUC 0.732 461 0.735 360 0.737 684 0.732 724 0.736 824 0.735 188 0.736 572 0.735 360 0.745 936

Segment
F-M 0.481 369 0.482 577 0.482 894 0.472 092 0.436 648 0.435 348 0.479 383 0.480 721 0.480 994
G-M 0.794 299 0.795 966 0.795 843 0.783 563 0.742 439 0.744 212 0.793 147 0.791 630 0.791 519
AUC 0.805 256 0.807 510 0.807 014 0.792 216 0.744 712 0.747 931 0.804 760 0.800 494 0.799 998

Tic-tac-toe
F-M 0.437 575 0.435 789 0.431 762 0.434 024 0.432 149 0.450 205 0.430 968 0.420 254 0.445 793
G-M 0.416 158 0.465 035 0.468 068 0.472 304 0.517 304 0.500 811 0.476 358 0.487 673 0.520 611
AUC 0.498 893 0.520 742 0.521 133 0.523 720 0.529 920 0.529 363 0.530 252 0.529 676 0.549 589

Winequality-red-4
F-M 0.131 406 0.104 350 0.104 415 0.102 687 0.121 150 0.115 523 0.102 375 0.106 528 0.115 048
G-M 0.627 736 0.621 106 0.621 522 0.620 205 0.585 697 0.607 544 0.617 265 0.627 608 0.645 387
AUC 0.649 211 0.631 720 0.632 042 0.629 782 0.629 076 0.633 591 0.629 038 0.637 041 0.654 174

Wdbc
F-M 0.902 657 0.907 750 0.904 793 0.917 330 0.926 669 0.920 888 0.902 657 0.911 713 0.911 947
G-M 0.919 784 0.924 505 0.921 029 0.936 901 0.945 502 0.942 120 0.919 784 0.927 363 0.927 287
AUC 0.920 599 0.925 316 0.922 003 0.937 161 0.945 625 0.942 382 0.920 599 0.928 109 0.928 125
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Yeast1
F-M 0.592 368 0.592 131 0.581 181 0.588 900 0.584 872 0.576 488 0.593 156 0.590 803 0.596 054
G-M 0.713 346 0.713 843 0.705 003 0.709 820 0.701 247 0.692 685 0.714 714 0.712 832 0.717 396
AUC 0.714 461 0.715 402 0.705 799 0.713 628 0.710 064 0.701 789 0.716 163 0.714 406 0.718 483

Yeast3
F-M 0.671 487 0.661 126 0.671 183 0.614 135 0.626 888 0.575 565 0.665 148 0.668 794 0.677 518
G-M 0.906 631 0.890 026 0.899 324 0.905 097 0.900 683 0.893 496 0.897 850 0.901 446 0.898 952
AUC 0.907 212 0.890 506 0.899 807 0.906 600 0.901 438 0.896 096 0.898 138 0.901 794 0.899 401

Yeast5
F-M 0.487 323 0.495 966 0.493 059 0.492 150 0.501 350 0.433 877 0.467 972 0.498 103 0.503 425
G-M 0.967 164 0.968 239 0.967 881 0.967 885 0.968 957 0.957 730 0.964 281 0.968 600 0.969 319
AUC 0.967 708 0.968 750 0.968 403 0.968 403 0.969 444 0.958 681 0.964 931 0.969 097 0.969 792

Pima
F-M 0.676 214 0.661 902 0.663 558 0.654 307 0.671 824 0.658 444 0.663 527 0.672 284 0.671 133
G-M 0.748 418 0.736 703 0.738 310 0.730 347 0.744 003 0.732 103 0.738 494 0.745 400 0.744 304
AUC 0.749 940 0.738 612 0.739 478 0.731 075 0.744 866 0.733 134 0.739 478 0.746 403 0.745 672

Glass0
F-M 0.649 787 0.662 953 0.662 596 0.654 503 0.650 612 0.658 080 0.654 341 0.662 953 0.668 139
G-M 0.636 695 0.649 333 0.648 893 0.617 743 0.615 245 0.622 282 0.647 167 0.649 333 0.660 019
AUC 0.714 461 0.721 814 0.725 286 0.711 397 0.707 925 0.715 278 0.718 342 0.721 814 0.732 230

Haberman
F-M 0.441 240 0.433 730 0.430 352 0.416 802 0.458 551 0.459 494 0.435 317 0.457 352 0.468 581
G-M 0.579 542 0.573 780 0.572 188 0.559 309 0.599 428 0.596 414 0.574 643 0.597 680 0.610 503
AUC 0.626 982 0.623 042 0.620 849 0.614 482 0.636 842 0.639 482 0.624 530 0.636 803 0.642 685

Vehicle1
F-M 0.692 512 0.696 358 0.696 701 0.688 481 0.707 012 0.705 141 0.698 989 0.696 667 0.695 970
G-M 0.745 186 0.745 669 0.760 113 0.753 700 0.773 932 0.779 834 0.746 416 0.752 276 0.754 094
AUC 0.777 648 0.782 176 0.786 267 0.781 495 0.801 638 0.805 376 0.779 998 0.783 062 0.784 554

Vehicle3
F-M 0.645 242 0.645 182 0.656 978 0.651 763 0.661 518 0.681 340 0.669 321 0.645 753 0.655 155
G-M 0.713 410 0.719 744 0.723 238 0.716 800 0.720 371 0.729 039 0.733 066 0.712 103 0.727 605
AUC 0.751 473 0.756 941 0.762 479 0.760 101 0.760 917 0.775 859 0.770 351 0.753 811 0.764 818

Glass-0-1-2-3 vs 4-5-6
F-M 0.739 797 0.781 917 0.782 399 0.744 398 0.775 010 0.821 882 0.768 846 0.743 954 0.799 921
G-M 0.821 315 0.851 598 0.851 892 0.830 478 0.848 660 0.896 149 0.839 201 0.823 035 0.863 703
AUC 0.834 909 0.860 313 0.860 313 0.841 551 0.857 264 0.899 167 0.850 698 0.838 034 0.873 053

Vehicle0
F-M 0.907 931 0.911 645 0.911 645 0.903 730 0.908 021 0.848 079 0.894 209 0.911 437 0.914 718
G-M 0.963 438 0.963 495 0.963 495 0.962 004 0.963 574 0.941 985 0.955 549 0.963 497 0.967 576
AUC 0.963 801 0.963 671 0.963 671 0.962 308 0.963 852 0.943 401 0.955 765 0.963 671 0.967 900

Ecoli1
F-M 0.771 700 0.747 271 0.755 952 0.761 996 0.790 773 0.784 675 0.765 418 0.772 630 0.769 159
G-M 0.839 339 0.822 935 0.832 183 0.842 877 0.869 705 0.864 350 0.835 094 0.840 279 0.841 206
AUC 0.853 680 0.837 304 0.845 477 0.857 193 0.879 936 0.872 243 0.849 353 0.854 338 0.854 308

Ecoli3
F-M 0.561 027 0.603 521 0.599 024 0.553 674 0.605 588 0.589 680 0.586 079 0.614 486 0.616 453
G-M 0.875 045 0.889 053 0.889 106 0.881 495 0.888 942 0.894 011 0.885 688 0.892 399 0.894 259
AUC 0.877 018 0.890 263 0.890 285 0.884 262 0.890 285 0.895 885 0.886 974 0.893 618 0.895 263

Ilpd
F-M 0.562 560 0.566 082 0.576 328 0.571 439 0.558 329 0.553 462 0.572 568 0.562 131 0.574 120
G-M 0.639 392 0.647 703 0.657 334 0.647 780 0.634 284 0.628 180 0.649 217 0.635 958 0.659 075
AUC 0.688 177 0.690 763 0.700 966 0.696 696 0.681 482 0.677 249 0.697 970 0.685 248 0.699 845

Heart
F-M 0.818 424 0.811 556 0.813 251 0.799 889 0.808 144 0.827 710 0.803 223 0.808 167 0.821 585
G-M 0.836 829 0.830 491 0.831 536 0.819 464 0.825 719 0.844 010 0.822 917 0.827 216 0.838 914
AUC 0.837 577 0.830 909 0.831 697 0.819 986 0.825 818 0.844 109 0.823 364 0.827 531 0.839 065

Liver disorders2
F-M 0.450 104 0.446 553 0.431 227 0.421 169 0.449 695 0.398 329 0.404 643 0.430 548 0.467 003
G-M 0.602 826 0.589 149 0.551 726 0.560 439 0.593 400 0.531 377 0.533 357 0.569 691 0.594 609
AUC 0.607 500 0.595 833 0.572 222 0.569 444 0.598 333 0.545 000 0.549 444 0.576 944 0.611 111

Liver disorders4
F-M 0.368 846 0.357 452 0.381 826 0.378 776 0.333 571 0.242 191 0.299 029 0.351 667 0.387 227
G-M 0.615 953 0.610 874 0.646 806 0.639 850 0.566 946 0.465 268 0.521 900 0.617 224 0.650 434
AUC 0.634 722 0.627 222 0.656 111 0.658 889 0.598 056 0.501 389 0.559 444 0.629 722 0.670 278

Pima2
F-M 0.550 264 0.518 469 0.549 494 0.523 274 0.527 983 0.535 752 0.557 247 0.542 289 0.548 858
G-M 0.736 702 0.708 609 0.736 243 0.722 478 0.719 777 0.730 171 0.738 545 0.732 339 0.736 923
AUC 0.738 389 0.712 784 0.738 289 0.723 642 0.721 814 0.731 642 0.741 490 0.734 289 0.738 177

Segment
F-M 0.641 972 0.642 479 0.641 955 0.631 502 0.632 087 0.612 918 0.642 782 0.646 316 0.647 629
G-M 0.899 813 0.898 413 0.898 123 0.895 871 0.895 336 0.886 025 0.899 237 0.900 075 0.900 622
AUC 0.904 031 0.902 263 0.902 011 0.900 739 0.899 991 0.891 657 0.903 283 0.903 778 0.904 283

Tic-tac-toe
F-M 0.447 417 0.450 643 0.441 412 0.451 107 0.450 734 0.441 919 0.467 160 0.454 993 0.462 661
G-M 0.375 374 0.416 403 0.388 171 0.386 118 0.484 603 0.469 514 0.466 263 0.406 388 0.388 969
AUC 0.491 412 0.502 660 0.486 441 0.500 281 0.513 803 0.496 946 0.522 584 0.499 097 0.507 446

Winequality-red-4
F-M 0.139 225 0.134 963 0.141 861 0.132 388 0.204 639 0.184 780 0.205 321 0.155 597 0.159 273
G-M 0.705 717 0.687 058 0.696 039 0.685 211 0.641 563 0.652 654 0.711 038 0.702 645 0.713 418
AUC 0.710 055 0.695 016 0.703 105 0.692 754 0.684 233 0.683 974 0.728 409 0.708 100 0.717 992

Wdbc
F-M 0.962 548 0.969 261 0.964 581 0.949 967 0.951 637 0.892 277 0.964 397 0.969 297 0.973 980
G-M 0.970 696 0.974 925 0.971 117 0.961 968 0.963 518 0.919 298 0.970 061 0.974 870 0.978 706
AUC 0.970 881 0.975 095 0.971 332 0.962 454 0.963 859 0.921 833 0.970 362 0.975 079 0.978 842
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Table 5 Experimental results obtained on 21 datasets by using SVM classifier.
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(a) KNN

(b) NB

(c) SVM

Fig. 8 Average results of nine sampling methods on 21
datasets achieved by (a) KNN classifier, (b) NB classifier, and
(c) SVM classifier.

is only lower than the STL method in the F-measure
metric, lower than the SMOTE, STL, and MWMOTE
methods in the G-mean metric, and lower than the
SMOTE and STL methods in the AUC metric, but still
ranked in the top from an overall perspective.

To more intuitively compare the performance of
SPMSC with the other eight sampling methods, the
average rank of each method on 21 datasets is calculated.
As shown in Fig. 9, the lower average rank values
represent a higher rank, and from Fig. 9, we can get that
SPMSC method ranks the highest on three classifiers.

(a) KNN

(b) NB

(c) SVM

Fig. 9 Average rank results of nine sampling methods on 21
datasets achieved by (a) KNN classifier, (b) NB classifier, and
(c) SVM classifier.
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4.4.3 Contrastive analysis of performance
improvement

Further, to compare the classification performance
improvement of the data processed using the sampling
method compared to the original data, we select the
AUC metric from the results obtained on KNN, NB,
and SVM classifiers for comparison. Table 6 shows
the AUC results obtained by directly classifying 21
datasets with the three classifiers. Figure 10 describes
the difference between the AUC values of each dataset
in Tables 3–5 and the AUC values of each dataset
in Table 6. As shown in Fig. 10, a positive value
indicates that the data processed by the sampling
method on the same classifier have better classification
performance than the original data, and a negative
value indicates that the data processed by the sampling
method on the same classifier have lower classification
performance than the original data. It is not difficult
to find that the SPMSC method obtains the highest
number of maximum differences, which indicates that
the SPMSC outperforms the other eight comparison
sampling methods. It is also observed that when KNN
and NB classifiers are used, the AUC differences between
the data processed using sampling methods and the
original data are positive and negative. Yet when SVM

Table 6 AUC results obtained for the original dataset on
KNN, NB, and SVM classifiers.

Dataset
AUC result

KNN classifer NB classifer SVM classifer
0.594 0490.517 1420.735 060Yeast1
0.809 6650.583 5550.922 960Yeast3
0.500 0000.804 1670.947 159Yeast5
0.713 3880.709 6420.767 299Pima
0.601 3070.705 8820.829 668Glass0
0.504 7620.566 4470.630 394Haberman
0.575 0650.687 0850.787 479Vehicle1
0.516 5090.679 9020.811 017Vehicle3

Glass-0-1-2-3 vs 0.834 1990.824 1750.876 0734-5-6
0.948 3780.723 7810.981 349Vehicle0
0.808 6140.725 9090.863 790Ecoli1
0.498 3330.774 4150.921 444Ecoli3
0.500 0000.680 5580.626 836Ilpd
0.836 0000.845 7330.877 359Heart

Liver 0.500 0000.508 0560.521 250disorders2
Liver 0.500 0000.511 3890.585 833disorders4

0.611 1250.686 9710.730 111Pima2
0.743 9400.804 5070.979 645Segment
0.500 0000.525 8650.717 654Tic-tac-toe
0.500 0000.527 6120.600 756Winequality-red-4
0.970 8130.920 5990.991 241Wdbc

classifier is used, almost all the differences are positive. It
shows that the performance of the same sampling method
varies for different classifiers.

4.4.4 Wilcoxon signed rank test
In this subsection, from the perspective of statistical
analysis, we use a nonparametric test called the
Wilcoxon signed rank test[46] to verify the statistical
significance of the proposed method with the other
eight sampling methods. The results are shown in
Table 7. When using the KNN classifier, the p-values
of all three measures are below the significance level
˛ D 0:05. Therefore, all null hypotheses are rejected,
which indicates a significant improvement of SPMSC
compared to the other eight sampling methods. When
using the NB classifier, the null hypothesis cannot be
rejected as follows: STL and B1-SMOTE under F-
measure, STL under G-mean, and STL, B1-SMOTE,
and MWMOTE under AUC, indicating that SPMSC
does not have a significant improvement in comparison
with these methods. Except for these cases, all null
hypotheses are rejected, indicating that SPMSC has
a significant improvement in comparison with other
methods. When using the SVM classifier, SPMSC has
significant improvement compared to other methods
except for B2-SMOTE under G-mean measure.

4.4.5 Running time comparison
In this subsection, from the perspective of running time,
we compare the time cost of the SPMSC method with
the comparison method, and the results are shown in
Table 8. From the results, it can be found that random
oversampling has the shortest running time and SMOTE
ranks the second due to their simple implementation
mechanism. Compared to the original method SMOTE,
some SMOTE variants such as ADASYN, B1-SMOTE,
B2-SMOTE, etc., require some additional time for
weighting the samples and deciding the boundary
samples. Specifically, the SPMSC method requires some
additional running time compared to the comparison
method due to the computation of the distance matrix
and the discrimination of the boundary minority samples.
But, this extra computing time of a few or tens of seconds
is acceptable, especially for offline computing.

In summary, the comparison and analysis of the
experimental results can be concluded that the SPMSC
method outperforms the comparison method on most
datasets. Furthermore, a statistical analysis method
called the Wilcoxon sign rank test is used to further
demonstrate a significant difference between the SPMSC
method and the comparison method.
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(a) KNN

(b) NB

(c) SVM

Fig. 10 Performance difference between the dataset processed using the sampling method and the original dataset on the three
classifiers.

5 Conclusion

In this paper, we propose a joint sample position
based noise filtering and mean shift clustering (SPMSC)
method to deal with imbalanced data. The advantages
of SPMSC are that it can adequately filter noisy
samples by utilizing information about the position
and distribution of minority samples relative to the
majority; it uses a mean shift algorithm to cluster
minority samples to prevent duplicate data from being
generated at the sample synthesis stage due to the
creation of inappropriate class clusters; and it uses a
data cleaning method to further eliminate class overlap
in the processed dataset. For evaluating the proposed
method, 21 datasets with different imbalance ratios and
eight popular sampling algorithms are used, and the
experimental results show the effectiveness of SPMSC.
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