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Time-Aware LSTM Neural Networks for Dynamic Personalized
Recommendation on Business Intelligence

Xuan Yang and James A. Esquivel�

Abstract: Personalized recommendation plays a critical role in providing decision-making support for product and

service analysis in the field of business intelligence. Recently, deep neural network-based sequential recommendation

models gained considerable attention. However, existing approaches pay little attention to users’ dynamically evolving

interests, which are influenced by product attributes, especially product category. To overcome these challenges, we

propose a dynamic personalized recommendation model: DynaPR. Specifically, we first embed product information

and attribute information into a unified data space. Then, we exploit long short-term memory (LSTM) networks

to characterize sequential behavior over multiple time periods and seize evolving interests by hierarchical LSTM

networks. Finally, similarity values between users are measured through pairwise interest features, and personalized

recommendation lists are generated. A series of experiments reveal the superiority of the proposed method compared

with other advanced methods.
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1 Introduction

Business intelligence refers to technologies, systems,
practices, and applications that are used to analyze
critical business data, which provide business managers
and analysts with the ability to manipulate and
transform business data, such as developing strategies
to optimize business data[1–3]. Nowadays, with the
rapid development of Web 3.0, people are creating a
substantial amount of content, such as weblogs and
product reviews, in a variety of practical business
applications[4].

The data generated by users in such applications
contain numerous valuable and useful information
�Xuan Yang is with Graduate School, Angeles University

Foundation, Angeles City 2009, Philippines, and also with
Shandong Provincial University Laboratory for Protected
Horticulture, Weifang University of Science and Technology,
Weifang 262700, China. E-mail: yang. xuan@auf.edu.ph.
� James A. Esquivel is with Graduate School, Angeles University

Foundation, Angeles City 2009, Philippines. E-mail:
esquivel.james@auf.edu.ph.
�To whom correspondence should be addressed.

Manuscript received: 2023-02-22; revised: 2023-03-20;
accepted: 2023-03-30

that can reveal the intentions, needs, and interests of
users[5–7]. Therefore, it has become necessary to model
user data from these commercial applications by using
mathematical statistical models and machine learning
methods[8–10]. Recently, personalized recommendation
methods based on machine learning have gained
significant attention. These methods model the user’s
behavioral data and intelligently recommend services
to reduce the decision burden of users in various
commercial activities[11]. For example, the Amazon
platform uses personalized intelligent recommendation
algorithms to recommend the right products to
consumers, which increases the economic revenue of
the platform.

To date, two main popular paradigms are used
for personalized recommendation methods based on
business intelligence: matrix factorization-based
recommendation methods[12–15] and sequential
recommendation methods[16–19]. The matrix factorization-
based recommendation approach mainly decomposes
the user-product matrix into a user matrix and a
product matrix, which together assist in predicting
unpurchased products. However, given the uniformity
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of matrix decomposition, these approaches fail to
integrate multiple product attributes, such as product
category information, which reduces the sensitivity
of capturing user interest. Meanwhile, the sequential
recommendation is devoted to modeling the sequence
of user-product interactions over time sequences and
recommending to users the next product moment[20, 21].
However, such approaches are only able to explore
users’ short-term interests, but not sufficiently explore
the evolution of users’ purchasing interests in long-term
behaviors.

The purchasing interests of users are dynamic and
evolving. As shown in Fig. 1, each user purchases a
wide variety of products. The target user utar purchases
Great Expectations, computers, guitars, etc., at time
T . We cannot fully explore the user’s interests due to
the sparsity of the user’s purchase history in a short
period of time. At time T C 1; utar purchased Anna
Karenina, food, flowers, and other products. Meanwhile,
the categories of products Great Expectations and Anna
Karenina are books, which may be a long-term reading
behavior of the user. From the purchase order of multiple
time periods, the user’s long-term interest may be in
books. Thus, the attribute information of the product,
such as category, can not only reflect the real demand of
the user, but also indicate the purchase interest of the user.
Moreover, the purchase sequence over multiple time
periods not only contributes to uncovering users’ long-
and short-term interests, but also helps to supplement
the sparse purchase records.

Driven by the above observations, we propose a time-
aware long short-term memory (LSTM)-based dynamic
personalized recommendations for business intelligence,
named DynaPR. For better modeling of users’ purchase
records, the DynaPR framework contains two key
components that correlate to the fusing of attribute
information and the fusion of time-aware information to

better model the user’s purchase history. First, to cope
with the uniformity of product information and attribute
information, we employ an embedding mechanism to
fuse product features and attribute features that belong
to different data types and then transform them into
the same data space. Through linear transformation, the
embedding mechanism possesses a powerful learning
ability to map sparse matrices into continuous dense
matrices. Secondly, to fuse time-aware sequence
information and extract continuous relevance, we adopt
LSTM[22] to mine users’ purchase records in multiple
time periods, where users’ long-term interests are
extracted. Finally, we employ scalar product to measure
the similarity of any two users for predicting the
sequence of products that users have not purchased.

The main contributions of the paper are as follows.
(1) For unification of product and attribute

information, we propose the use of an embedding
mechanism to convert user information of multiple
data types into the same data space and obtain user
representations.

(2) To extract the long- and short-term interests
of users, we propose the employment of the LSTM
mechanism to mine the sequences of products purchased
by users across multiple time periods and seize evolving
interests by hierarchical LSTM networks.

(3) A series of experiments are performed on a real
dataset, and the experimental results show that DynaPR
outperforms other state-of-the-art methods.

The rest of the paper is structured as follows: Section 2
is an introduction and summary of the approaches
regarding personalized recommendation; Section 3
describes the problem definition and research goals
of the proposed approach; Section 4 presents the
proposed model DynaPR in detail; Section 5 validates
the effectiveness of the DynaPR approach with a large
number of experiments. Section 6 concludes the work.

Fig. 1 Research motivation case.
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2 Related Work

Personalized recommendations for business intelligence
have attracted extensive attention. Here, we focus
on matrix factorization-based and sequential
recommendation methods.

2.1 Matrix factorization-based recommendation
methods

Given their high scalability, matrix-factorization-based
recommendation methods have gained widespread
attention from scholars. The traditional matrix
factorization-based approach first constructs the user-
product rating matrix and decomposes it into user matrix
and product matrix, which learn the user latent vector
and product latent vector according to the objective
function[12]. However, the decomposition of rating data
cannot explicitly portray users’ preferences, list-wise
probabilistic matrix factorization (ListPMF) model
was proposed by Liu et al.[13] ListPMF maximizes the
predicted preference order with the actual preference
order by log posterior, which yields an accurate list of
recommendations. Alternatively, Salakhutdinov et al.[14]

proposed the probabilistic matrix factorization (PMF)
model that extends a finite set of unbalanced ratings
linearly to obtain user preference features.

The objective function, as an essential part of
matrix decomposition, plays a key role in the accuracy
of recommendation results. Cui et al.[15] proposed
a multi-objective optimal recommendation model to
optimize multiple objectives, such as novelty and
diversity. By restricting the regularization parameters,
multi-objective evolutionary algorithm is empolyed
to ensure the validity of the recommendation results.
Further, considering the uncertainty and multilevel of
recommendation information, Ye and Liu[23] developed
a dynamic three-way recommendation model that uses
a matrix decomposition framework, such as singular
value decomposition (SVD), to construct the granularity
structure of recommendation information based on user
preferences and behavior.

Considering the data sparsity of user-product rating
matrices, social relationships between users (e.g.,
trust relationships) are introduced into the matrix
factorization-based approach. Xu et al.[24] decomposed
user-user trust matrices by using matrix decomposition
and combine user preferences with the trust strength
between users to predict ratings. Although the matrix
decomposition-based approaches are capable obtaining

user preferences, the above approach ignores the
influence of product attribute information on user long-
and short-term interest.

2.2 Sequential recommendation methods

Sequential recommendation is a crucial task in
recommender systems that analyzes the development
of user behavior and discovers changes in user interests
to foretell the user’s subsequent behavior.

To predict users’ behavior in the future, it is
essential to consider both their long-term behavioral
preferences and short-term, dynamic preferences in their
behavior sequences. To address this challenge, He and
MeAuley[17] proposed a mixed matrix decomposition
and Markov chain model that can capture both of
these preferences. Meanwhile, Xie et al.[18] utilized
a personalized transition graph model, based on
underlying Markov chains, to estimate the transition
probabilities of users purchasing the same products at
different moments. However, the matrix decomposition
approach may struggle to fully incorporate long user
behavior sequences, leading to potentially suboptimal
performance. As a solution, Hidasi et al.[19] proposed
an recurrent neural network (RNN)-based personalized
sequence recommendation approach. They suggested
modifying the RNN structure and utilizing a ranking
loss function to enhance the model’s ability to cope with
specific tasks.

Based on the fact that product description information
can also influence users’ purchase interest, Tuan and
Phuong[25] proposed a 3D convolutional neural network
(CNN) based model that enhances the accuracy of
recommendation results by combining product content
features. With 3D architectures, spatio-temporal patterns
of user behavior are captured. However, since CNN
architectures allow only modelling to obtain local
information about the whole sequence, while the
correlation between sequences is ignored. You et al.[26]

combined temporal convolutional network (TCN) with
gate recurrent unit (GRU) to build recommendation
models. As a result, the local information of the
sequences can be captured by the CNN, while the overall
properties of the sequence are maintained by the RNN.

Most existing sequence recommendation methods
focus on feature engineering based on the whole
sequence, but tend to overlook the potential interactions
between attributes of the products within sequences.
Therefore, modeling the interaction information between
user behavior sequences remains a challenging task.
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3 Problem Definition

As shown in business websites, users create multiple
forms of purchase records, such as products ids, ratings
of products, category of the product and so on. Here, we
will model the behavioral records left by users.
� U = fu1; u2; : : : ; uM g denotes the set of users on

the business website, where utar is one of the elements
in U.
� P = fp1; p2; : : : ; pN g denotes the set of n products.
For each user in the business website, the purchase

behavior of each user can be modeled. Particularly, the
purchase history of utar across multiple time periods
can be represented as follows:
� P(t) = fptar

1; t ; p
tar
2; t ; : : : ; p

tar
Q; tg denotes the set of

products purchased by utar during the t .1 6 t 6 T /

time period.
� S(t / D fRtar.t/; Ctar.t/g denotes product attribute

information.
� Rtar.t/Dfr

tar
1; t ; r

tar
2; t ; : : : ; r

tar
Q; tg denotes the rating

set of products purchased by utar during the t .1 6 t 6
T / time period.
� Ctar.t/ D fctar

1; t ; c
tar
2; t ; : : : ; c

tar
Q; tg denotes the

category set of products purchased by utar during the t
.1 6 t 6 T / time period.

Due to the presence of thousands of products on
business websites, the purchase history of each user is
dynamic and sparse. Hence, it is necessary to incorporate
product attribute information to compensate for the effect
of sparse data, while also exploring the multiple interests

and preferences of users. However, it is a challenge to
fuse multiple data types to form a user representation. We
adopt two main mechanisms to address these challenges.

(1) Embedding mechanism[27]: Embedding
mechanism can convert a sparse matrix into a
dense and continuous matrix by linearity. Moreover,
multiple data types can be transformed into a uniform
data space.

(2) LSTM mechanism: LSTM mechanism with its
inherent “gate” design can effectively extract the features
and correlations of multiple time sequences. Such
network structure helps to explore the long- and short-
term interests of users.

With these two mechanisms, the challenges in user
modeling are effectively solved. Here, the goal of the
DynaPR model is to sketch the behavior sequence of
the target user and to recommend products that have not
been purchased.

4 DynaPR Model

For each user who leaves multiple time periods of
purchase records on business websites, we utilize a
deep learning approach to maximize the extraction of
each user’s feature representation. Figure 2 illustrates
our proposed network model. Firstly, the embedding
mechanism is utilized to preserve the original user
purchase records of the products, while obtaining
product embeddings and attributing embeddings.
Secondly, the LSTM mechanism is utilized to extract

Fig. 2 DynaPR model.
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the purchase records of users over multiple time
periods, and allows the long-term purchase interest to
be analyzed. Finally, similarity measures are used to
generate recommendation results for the target users,
where collaborative information of similar friends is
considered.

4.1 Embedding representation

In business websites, there are a great variety of product
attribute information, such as categories. With the
process of user interaction with the platform, users
will browse/purchase a large number of products,
which generate a large number of behavioral records,
such as ratings[28, 29]. On the one hand, the attribute
information of the products can effectively reflect the
usage of the products, which in turn reflects the potential
interest of users. On the other hand, ratings reflect
the quality evaluation of the product by users. The
combination of these two types of information helps to
seek the characteristics of users’ interest in the purchased
products. However, product and attribute information
are different. It is necessary to find an integrated way
to blend these two kinds of information. Notably, the
embedding mechanism can not only effectively preserve
the user’s initial purchase behavior information, but
also transform the information of different data types
into the same data space. In particular, the embedding
mechanism is applied in the following equations:

Etar
p; t  f .Ptar.t// (1)

Etar
r; t  f .Rtar.t// (2)

Etar
c; t  f .Ctar.t// (3)

In the above equations, f .�/ denotes the embedding
transformation function. Etar

p; t 2 RQ�e; Etar
r; t 2 RQ�e;

Etar
c; t 2 RQ�e denote the product embedding matrix,

the product rating embedding matrix, and the product
category embedding matrix, respectively, which are the
purchase behavior feature of utar at t time period.

Etar
t  Etar

p; t k E
tar
r; t k E

tar
c; t (4)

where k denotes concatenation operation. Etar
t denotes

the behavior embedding of utar at time period t . Thus,
the product embedding is combined with attribute
features to represent the linear transformation of the
user’s purchase behavior records.

Here, the embedding mechanism possesses the
following two main capabilities. (1) Multiple types of
product information can be converted into the same
data space. Thus, a unified feature representation of the
user can be achieved and fused. (2) The fused product

features and attribute features provide a technical basis
for analyzing the long-term interests of users.

4.2 Long short-term interest exaction

LSTM mechanism is the most widely applied framework
for time series analysis, which is a special kind of
RNN to learn long-term dependencies[30, 31]. It is mainly
designed to solve the problem of gradient disappearance
and gradient explosion during the training of long
sequences. In brief, it means that LSTM can have better
performance in long sequences compared to normal
RNNs.Therefore, the LSTM mechanism is suitable for
the research goal, which is to extract the long and
short-term purchase interests of users by their purchase
sequences over multiple time periods. For each LSTM
block, the specific structure is shown as the following
equations:

Qct  '.Etar
t Wc C ht�1Uc C bc/ (5)

it  �.Etar
t Wi C ht�1Ui C bi / (6)

f t  �.Etar
t Wf C ht�1Uf C bf / (7)

ot  �.Etar
t Wo C ht�1Uo C bo/ (8)

ct  f t ˇ ct�1 C it ˇ Qct (9)

ht  ot ˇ '.ct / (10)

The parameters in Formulas (5)–(10) represent
the flow of data in LSTM memory block, where
Wc ;Wi ;Wf , and Wo denote the weight transformation
matrices in the LSTM memory block, while bc ; bi ; bf ,
and bo denote the bias matrices, respectively. � denotes
the sigmoid transformation function. '.�/ denotes the
tanh function.ˇ denotes the multiplication of elements
between two matrices. ht denotes the output of the last
hidden layer in the whole LSTM mechanism. Purchase
behavior records of users over multiple time periods are
processed and mined through the LSTM mechanism,
which can effectively capture the long-term purchase
interest characteristics of users.

In the LSTM mechanism, three key gate control modes
are used to handle data flow. Through the input gate, the
input information from the input layer at each moment
will pass through first, and the switch of the input gate
will decide whether the information will be inputted
to the memory block at this moment. The output gate
determines whether information is outputted from the
memory block at each moment. The forgetting gate
validates whether critical information has been forgotten.
Through data processing and control by these three gates,
the feature values of the time sequence will be within a
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certain limit, which will help in the optimization of the
whole architecture.

Further, by adding the depth of the network, stacked
LSTMs are helpful in extracting multi-level user features.
Therefore, we increase the depth of the LSTM hidden
layer to extend the feature dimension of the extracted
time sequence. As a result, the combined long- and short-
term interest features of users are obtained. The specific
formulation is shown below.

Htar D

TX
tD1

hd
t =T (11)

where Htar denotes the long- and short-term purchase
interest features of utar . hd

t denotes the output of the
hidden layer of LSTMs when the depth is d and time
period is t . The outputs of the hidden layer for each
time period are considered and averaged to represent the
user’s interest features. After the stacked LSTM structure
is trained, multidimensional interest features of users are
obtained.

4.3 Similarity measurement

Based on the long- and short-term interest features of
each user obtained from the LSTM mechanism, we
feed such features into a feedforward neural network
(FNN) to capture the final user features[32–34]. In the FNN
structure, the input matrix is a, the weight transformation
matrix from input to output is W , b is the bias moment
corresponding to the weight matrix, and the final
output matrix is Z. The multilayer FNN framework is
structured as follows:

Z1 D a
1W1 C b

1 (12)

Zs D a
s�1W .s�1/

C b.s�1/; s D 2; 3; : : : ; S (13)

Z D aSW .S/
C b.S/; s D 2; 3; : : : ; S (14)

Consequently, the multilayer FNN features are
extracted. The final behavioral feature representation
corresponding to each user can be represented as follows:
Itar D .W

3
tar.W

2
tar.HtarW

1
tarCb

1
tar/Cb

2
tar/Cb

3
tar/

(15)
Ij D .W

3
j .W

2
j .HjW

1
j C b

1
j /C b

2
j /C b

3
j / (16)

where Itar and Ij represent the final user behavior
representation of utar and uj . In order to recommend
fresh products to the target users, we adopt similarity
measures to obtain similar friends of the target users.
The recommendation list is enriched with the help of
friends’ purchase behavior records. Specifically, we use
scalar product to measure the similarity between users.

M.utar ; uj / D jItar jjIj j cos � (17)

whereM.utar ; uj / denotes the similarity value between
utar and uj that measures the similarity of their
behavioral records. Low similarity value shows the
dissimilarity of users, so we set the similarity threshold
to discover similar friends. In Eq. (17), we use the scalar
product formula to calculate the similarity between
users, which can effectively capture the interdependence
between user-item ratings and facilitate the prediction
of unobserved ratings. Usim denotes the set of similar
friends with similarity value greater than 0.5 to the target
user. The ratings prediction of the unpurchased products
by target user is as follows:

rtar D
1

jUsimj
�

X
uj2Usim

rn; uj
(18)

where rn; uj
denotes the rating of the product pn

purchased by uj . By combining the purchase records of
numerous similar friends, we can explore the products
that the user may be interested in and predict the
corresponding ratings to generate the optimal product
recommendation list for the target user. Here, we
put users whose similarity value to the target user is
greater than 0.6 into set Usim. Products that have been
purchased by similar users are leveraged to generate
fresh products for the target user.

Furthermore, the training of model parameters should
be improved. We utilize the mean squared error (MSE)
loss function in order to optimize the parameter
regression for each layer of the neural network[35, 36].
The concrete formulation is shown below.

NLL.x; y/ D
1

2
�

NX
iD1

.rtar � Ortar/
2 (19)

where rtar represents the real rating of the product
purchased by the user and Ortar represents the predicted
rating after the model has been trained. The MSE loss
function is a popular regression loss function for neural
network models. Furthermore, the specific process of
DynaPR model is shown in Algorithm 1.

5 Experiment

Datasets. We validated the performance of the
DynaPR model with the Epinions dataset, which is a
typical dataset in the real-world recommendation field.
It includes 7450 users and 6100 products. Users who
purchased less than 5 products and products with less
than 8 ratings were filtered out to obtain a high quality
dataset.

Competitive approaches. The model has been
trained for numerous rounds, it is necessary to check
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Algorithm 1 DynaPR model
Input: User set: U = fu1; u2; : : : ; uM g; Product set: P =
fp1; p2; : : : ; pN g; Attribute information: Rating set R.t/
and Category set C.t/.1 6 t 6 T /;

Output: Set of recommended products Ptar =
fP 1

tar ; P
2
tar ; : : : ; P

j
targ;

1: for user utar 2 U do
2: for product pi 2 P do
3: Embedding Projection Etar

p; t , Etar
r; t , Etar

c; t  use
4: Eqs. (1)–(3);
5: Embedding concatenation Etar

t  use Eq. (4) ;
6: End for;
7: End for;
8: for Epo 2 Epochs do
9: for uj ; utar in U do

10: obtain interest feature Htar  use Eqs. (5)–(11)
11: obtain interest feature Hj  use Eqs. (5)–(11)
12: obtain behavior featureHtar , Hj  use Eqs. (12)–(16)
13: Parameters Regression use Eq. (19);
14: End for;
15: End for;
16: Calculate the similarity value M.utar ; uj / use Eq. (17);
17: Obtain the set of similar friends Usim;
18: Return the set of recommended products Ptar = fP 1

tar ;

P 2
tar ; : : : ; P

j
targ.

the validity of the proposed model. We compare the
proposed model with other state-of-the-art competitive
methods. The competitive methods are described as
follows.
� LSTM[37]. This method is capable of converting

a user’s purchase records over multiple time periods
into multiple time series that are embedded in an LSTM
network. The similarity values between the target user
and similar friends are then calculated.
� JC[38]. Jaccard coefficient is a frequently used

similarity measure in recommender systems. Here we
consider the intersection of the purchase records of the
target user and similar friends. The similarity value is
then calculated.

� Random[39]. We randomly draw the user’s
purchase history for the product, without considering
the user’s dynamic long-term interest over multiple time
periods. In this case, scalar product is applied as a
similarity measure formula to discover similar friends of
the target user.

Metrics. Metrics can optimize the goals of a
recommendation system, and check the effectiveness
of the model architecture, which in turn measures
the strengths and weaknesses of the recommendation
algorithm. As common metrics in recommender systems,
precision[40–43] and recall[44–46] are used as metrics to test
the effectiveness of DynaPR models.

5.1 Experiments results

We first consider the personalized recommendation
effect of the proposed DynaPR model. Figure 3 shows
the accuracy of rating predictions, i.e., precision
and recall[47–50]. We have the following exploratory
observations.

Effectiveness of the DynaPR model. In this
section, the DynaPR model is compared with three other
state-of-the-art methods.
� As shown in Fig. 3a, the random method exhibits

the poorest precision compared with the other three
methods, whose average precision remains at 50% across
five dataset densities. This phenomenon is due to the
fact that the randomly selected purchase sequences
are unordered and unregularised, while the other three
methods are able to regularise users’ historical product
purchase records[51, 52].
� The JC method is able to extract “common

ratings” and “common categories” of users’ purchases
over multiple time periods, thus effectively extracting
changes in users’ interests over time. The JC method
performs better than the Random method in comparing
the differences and similarities between two users’
individual purchases.

Fig. 3 Performance comparison of DynaPR model with competitive approaches.
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� The LSTM mechanism[53–55] is suitable for training
the correlation of purchase sequences over multiple
time periods and extracting the corresponding purchase
sequence features. After multiple rounds of recurrence
and looping of the neural network, the long and short-
term interests of users can be obtained[56].
� As shown in Figs. 3a and 3b, the DynaPR model

provides the best performance compared to other
baseline methods from the perspective of precision and
recall. Firstly, the DynaPR model exploits the product
and attribute profiles of each user’s purchase sequence,
which compensates for the effects of data sparsity as
well as obtain a rich representation of the user[57, 58].
Secondly, the advanced framework components in the
DynaPR model such as embedding and LSTM are able
to capture the long-term and short-term interests of users
as they evolve over multiple time periods. Finally, the
semantic representation of richness can be measured by
similarity measures.

In summary, the experimental results indicate
that: (1) Attribute information can complement
product information and contribute to a rich user
feature representation; (2) Optimisation of neural
network components can enhance the effectiveness of
personalized recommendations; (3) DynaPR has the best
results compared to other superior baseline methods.

5.2 Ablation experiments

Ablation experiments with different traing sizes. To
further verify which part of the user data plays a pivotal
role in the DynaPR model, we investigate ablation
experiments to confirm the validity of the data. As shown
in Table 1, the DynaPR–PF method indicates that the
input data in the DynaPR model are only product features
while the DynaPR–AF method indicates that the input
data in the DynaPR model are only attribute features (as
shown in Fig. 1). The performance of the three methods
is presented under different metrics from 40% to 80%

Table 1 Effectiveness of ablation experiments.
Metric Training ratio DynaPR–PF DynaPR–AF DynaPR

Precision

40% 0.6787 0.6890 0.7065
50% 0.8371 0.7868 0.7668
60% 0.8435 0.8526 0.8410
70% 0.8538 0.8261 0.8581
80% 0.8616 0.8462 0.8668

Recall

40% 0.7205 0.6499 0.7313
50% 0.7048 0.7541 0.7920
60% 0.7916 0.7555 0.8591
70% 0.8562 0.8102 0.8637
80% 0.8563 0.8455 0.8763

training size. On the one hand, the accuracy of the
three models gradually increases as the training size
increases, and DynaPR achieves the best results at 80%
of the training set. On the other hand, the recall of
the three models performs relatively smoothly under
different training sizes. Collectively, the DynaPR model
performs the best, which combines product features and
attribute features. Single product features or attribute
features fail to represent user features effectively.

Convergence of ablation experiments. As shown
in Fig. 4. We track the performance of the three models
during the network training. All models perform best
when the three models were trained up to 30 epochs.
When the models start training, the performance of
the three models is fluctuating before training up to 15
epochs, which is due to the difficulty in finding effective
feature information. The three models converge to
smoothness at 25 to 30 epochs, and there is no significant
change in the accuracy performance. Meanwhile, this
phenomenon indicates that the network structure of
the models is capable of capturing user features
correctly[59–61].

5.3 Parameter effect of the DynaPR model

In this section we focus on parameters effect of the
model’s components on rating prediction.

Fig. 4 Convergence comparison of ablation experiments.
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Effect of embedding dimension. As a technique for
processing the input information to the proposed model,
embedding techniques can transform and fuse multiple
types of data, while embedding dimensions can scale
the original data. Different embedding dimensions can
represent different levels of dense vectors.

To explore the effect of embedding dimension on the
model, we increase the embedding dimension from 32
to 96 with an increment of 16. As shown in Fig. 5,
the precision of our model increases progressively as
the embedding dimension increases from 32 to 48.
As the embedding dimension increases from 64 to
96, the precision tends to decrease. The recall metric
are also taken into account to validate the effect of
embedding dimensionality in combination[62, 63]. When
the embedding dimensions are 48 and 64, the model
has a similar recall performance. Among a couple of
experiments, the proposed model performs best when the
embedding dimension is 48. In general, it is difficult to
achieve the best performance with both overly large and
undersized embedding dimensions[64], and it is necessary
to test multiple levels of embedding dimensions to
achieve the optimal model performance.

Effect of LSTM depth. The LSTM mechanism,
as an important component of the DynaPR model,
allows for feature extraction of users’ purchase sequence
over multiple time periods. With the flexibility and
controllability of the LSTM network, we explore the
effect of the LSTM depths on the whole framework. the
depth of the LSTM is set to f2, 3, 4, 5, 6g. As shown in
Fig. 6, when the depth of the LSTM is set to 2, 3, and 4,
the precision of our model gradually increases to 0.8734,
and then the precision of the model gradually decreases
at depths from 5 to 6. From a recall perspective, our

Fig. 5 Effect of embedding dimension.

Fig. 6 Effect of LSTM depth.

model performs relatively consistently and maintains a
high stability. This phenomenon shows that our model
is always able to find the most like-minded friends
and make the best recommendations regardless of the
LSTM depth[65]. From the above experimental results,
our proposed model has the most optimal performance
when the LSTM depth is 4.

In summary, the network parameters have a significant
impact on the model. It is quite essential to examine the
effect of parameter changes on the prediction results for
the task.

6 Conclusion

We propose a time-aware LSTM neural network
personalized recommendation model for business
intelligence. Specifically, we design a comprehensive
framework that combines both product features
and attribute features using embedding and LSTM
mechanisms. Then, users’ long-term and short-term
interests are extracted. Finally, the similarity values
between users are measured by pairwise FNN. The
scalable experiments show that our proposed model can
discover the most similar friends and give the optimal
recommendation results.

Moreover, the DynaPR model only considers the
users’ behavioral interaction sequences over multiple
time periods while ignoring the social relationships
between users (e.g., friends, family). Research shows
that users are more likely to trust the recommendations of
trusted friends[29, 44]. In future work, we will explore the
impact of friendships on personalized recommendations
for business intelligence to make more accurate rating
predictions.
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