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Dynamic Scene Graph Generation of Point Clouds with
Structural Representation Learning

Chao Qi, Jianqin Yin�, Zhicheng Zhang, and Jin Tang

Abstract: Scene graphs of point clouds help to understand object-level relationships in the 3D space. Most graph

generation methods work on 2D structured data, which cannot be used for the 3D unstructured point cloud data.

Existing point-cloud-based methods generate the scene graph with an additional graph structure that needs labor-

intensive manual annotation. To address these problems, we explore a method to convert the point clouds into

structured data and generate graphs without given structures. Specifically, we cluster points with similar augmented

features into groups and establish their relationships, resulting in an initial structural representation of the point cloud.

Besides, we propose a Dynamic Graph Generation Network (DGGN) to judge the semantic labels of targets of

different granularity. It dynamically splits and merges point groups, resulting in a scene graph with high precision.

Experiments show that our methods outperform other baseline methods. They output reliable graphs describing the

object-level relationships without additional manual labeled data.
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1 Introduction

Scene graph generation of the point cloud aims to
recognize the objects and their contextual relationships
from massive 3D points, which can be used in different
tasks such as object retrieval in a 3D scene[1]. This
task’s core is extracting the structural information with
semantics from the 3D point cloud. However, the point
cloud is unstructured and contains millions or even tens
of millions of discrete points[2]. It poses challenges for
extracting structured relationships used for scene graph
generations.

Scene graph generations have been widely explored
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in image-based tasks[3–5]. These works detect objects
and establish relationships by analyzing patterns in
the images. Unlike the images, which are regular
data representing 2D scenes, the point clouds are
irregular data representing 3D scenes. Thus, the image-
based approaches cannot be directly used in the graph
generation of point-cloud-based scenes.

In recent years, scene graph generations from 3D point
clouds have been studied. These works focus on learning
the semantic labels of nodes and edges on a given
class-agnostic graph structure of the point cloud[6, 7].
Specifically, a manually annotated graph records the
points-to-node mapping relationships and the connection
states between nodes (with or without connection). This
given graph structure promotes the effectiveness of the
final graph generation. However, manual annotation is
labor-intensive and strongly dependent on experience.
Thus, it is urgent to explore an automatic way to extract
the class-agnostic graph structure from the original point
cloud.

In summary, the problems of current graph generation
methods motivate us to explore a way to achieve graph
generation from original point clouds without the help
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of additional data.
Point clouds record the geometric characteristics of

3D objects, and points with geometric continuity in
a local region belong to the same category. Thus, we
can treat points with similar geometric characteristics
as one unit and establish relationships between units,
resulting in the conversion from unstructured 3D
points to structured data. Through learning the context
propagation in structured data from observations, we
can predict the labels of units and adjust the graph
structure due to the semantics. It results in a scene graph
to describe the object-level relationships in the scene.

Specifically, we introduce more features to augment
the geometric characteristics of 3D points. Thus, points
with geometric continuity can be clustered into the same
group, and the point cloud is converted into several point
groups. Through modeling the relationships between
groups, the initial structural representation is established.

A Dynamic Graph Generation Network (DGGN)
is proposed to generate scene graphs according to
the initial structural representation of point clouds.
DGGN is a multi-level network and can adjust the
graph structure dynamically. The group-level module
predicts the semantic labels of groups with relationships
by using Gated Recurrent Units (GRUs) to propagate
contexts between groups. The point-level module further
classifies points inner in ambiguous regions (the mixed
group containing points of different categories). The
DGGN splits and merges point groups according to
the predicted semantics, finally generating a graph to
describe the point-cloud-based scene.

The main contributions of this work can be
summarized as follows:
� We first propose the framework to realize the graph

generation of point clouds without using additional
manually labeled graph structures. It represents the
unstructured point cloud as structured data and generates
scene graphs to describe the object-level relationships in
the 3D scene.
� We propose DGGN to achieve the semantic

prediction of targets with different granularity. It
dynamically adjusts the graph structure according to
the predicted semantics, resulting in a precise graph
generation.

2 Related Work

2.1 Scene graph generation

The scene graph was first proposed in image-based

tasks[5]. A graph is used to describe the semantic label of
objects and their relationships in the image, and it helps
applications such as image retrieval. Later, there are lines
of works promoting the study of scene graph generations
in 2D computer vision[4, 8, 9]. Different approaches are
proposed to generate scene graphs according to the
understanding of images, such as a variant of Graph
Convolutional Network (GCN)[10] and Long Short-Term
Memory (LSTM)-based MotifNet[11]. Most of these
methods tackled the 2D graph generation problem
with a pixel-level object detector extracting node/edge
features. These detectors cannot be directly used for
graph generation in a scene of 3D points.

Only a few works explored the graph generations in
scenes of 3D points due to the lack of datasets. Reference
[12] solved this problem and proposed 3RScan as the
benchmark dataset for 3D scene graph representation
learning[6, 7]. Reference [6] took use of PointNet and
GCN to regress a graph from the scene of 3D points.
After that, Ref. [7] put forward an improved Edge-
oriented Graph Convolutional Network (EdgeGCN) to
exploit multi-dimensional edge features for modeling
object-level relationships in a 3D scene. All these
works promote scene graph generation in point clouds.
However, all these generation methods rely on the
manually annotated class-agnostic graph structure given
in the dataset. These methods do not work in the dataset
without the graph structure. Thus, we explore solving
this problem and achieving the scene graph generation
from original 3D points without any other labeled graph
structure.

2.2 Points-to-group mapping in structural
representation

Points-to-group mapping is the basis of structural
information extraction from unstructured 3D points.
Relevant methods can be mainly divided into four
categories: region-growing, edge-based, voxel-based,
and clustering-based[13, 14].

The region-growing methods[15, 16] randomly select
seeds for region growing. Regions with similar spatial
features or surface properties are merged into the same
group. This kind of method depends on seed selection
excessively and demands a lot of computation. The
edge-based methods[17, 18] map the points inside the
same boundary obtained by edge detection as a group.
These methods work well in simple scanned scenes.
However, discontinuous boundaries often occur in large-
scale scenes of 3D points. The voxel-based methods[19]
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divide the point cloud into a few small voxels. This
kind of work is of low efficiency because it needs
so many voxels to describe a scene without losing
geometrical characteristics. It requires very high
computing resources for further graph generation. The
clustering-based method[20, 21] effectively overcomes the
other kinds of methods’ shortcomings. It clusters points
with similar features into the same group adaptively and
automatically, which inspires us a lot.

3 Approach

A multi-level framework of point cloud graph generation
is shown in Fig. 1. A clustering-based method
converts the points into groups, resulting in an initial
structural representation of the point cloud. Next,
DGGN with multi-level semantic prediction and node
splitting/merging functions outputs the final scene graph.

3.1 Initial structural representation

Structural representation of 3D point clouds is the basis
of scene graph generation. To achieve this goal, we first
enhance the geometric characteristics of every 3D point
so that targets with similar features can be clustered
together. Based on this, point groups with contextual
relationships form the initial structural representation of
the point cloud.

3.1.1 Feature augment
The original point cloud only provides discrete features,
which cannot sufficiently describe the geometric
characteristics of 3D points. To address this problem, we
add the features illustrated in Table 1 to each 3D point.

In Table 1, F1, F2, and F3 are widely used in the
semantic or individual segmentation of outdoor scenes
with obvious boundaries between objects[22], where �1,
�2, and �3 (�1 > �2 > �3) are the eigenvalues of
the covariance matrix formed by the coordinates of
every point’s k-nearest neighbors[17]. However, they
do not work well in the segmentations of scenes with
ambiguous boundaries. Reference [23] introduced F4,
F5, and F6 to enlarge the feature difference between
objects of different categories, which helps to solve this
problem. F4 and F5 represent the directionality of the
local region around every point, where �3x , �3y , and �3z

Table 1 Geometric features.
Name Formula Description
F1 .�1 � �2/=�1 Linearity
F2 .�2 � �3//=�1 Planarity
F3 �3=�1 Scattering
F4

1

e�.�3z=�3x /C1
Directionality

F5
1

e�.�3z=�3y /C1
Directionality

F6 �3=.�1 C �2 C �3/ Change of curvature
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Fig. 1 Overall framework of our method consists of an initial structural representation module and a dynamic graph generation
module. A point cloud is considered as the input, and the scene graph is the output. Points with similar geometric features are
clustered into the same group, and the initial graph of the point cloud is achieved by establishing the relationships between
groups. The group-level module predicts the group labels and judges whether the group is mixed (containing points of different
categories or not). Every point in the mixed group is classified again with the point-level module. The final scene graph is
generated through graph refinements.
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are the x-component, y-component, and z-component
of �3, respectively. F6 represents the curving degree of
the local region.

3.1.2 Points clustering and relationship modeling
This section discusses how to establish the initial
structural representation of the point cloud. In other
words, how to cluster points with similar geometric
features into the same group and model the relationships
between groups.

The original point cloud can be expressed as a feature
metric f 2 RV�6, where V is the total number of points,
and 6 is the number of geometric features. fi 2 R6

indicates the feature vector of the i-th point. We aim
to calculate an adjustable feature metric h 2 RV�6 to
describe the point groups, and hi 2 R6 indicates the
feature vector of the i-th point. On the one hand, the
distance between h and f should be minimized, thus
retaining the point cloud’s geometric features. It can
be denoted as min

P
i2V khi � fik

2, where khi � fik
2

indicates the distance between hi and fi . On the other
hand, the feature vector of adjacent points in h should
be as same as possible, which means the adjacent
ones can be clustered together. Minimizing the Iverson
bracket function ı.�/ helps to achieve this goal, where
ı .hi �hj ¤ 0/ D 0 when hi equals to its adjacent point
hj . In summary, point clustering can be denoted as an
optimization problem[24] as follows:
h� D arg min

h2RV�6

X
i2V

khi � fik
2
C�

X
.i;j /2e

ı.hi � hj ¤ 0/

(1)
where � is the weight coefficient used to balance
the first and second parts of the equation. In solving
this minimization problem, the first part promotes the
solution h� to approach f , and the second part promotes
adjacent targets to have the same feature vector. `0-cut

pursuit algorithm[25] helps to solve this problem.
In Eq. (1), .i; j / 2 e represents that point i is linked

to point j with edge e. As the basis of the graph
generation, every point should be able to route to any
other point through the point-level relationships. If not,
a point cloud will be split into several parts, resulting
in several isolated graphs to represent a whole scene
in the final generation. Delaunay triangulation[26] helps
to establish these connecting relationships between
points. It is widely used because of its efficient and
stable data representation. This algorithm converts the
whole point cloud into lots of edge-sharing triangles, in
which the points correspond to the vertexes of triangles.
On the one hand, triangles’ edges represent the point-
level relationship; on the other hand, all the points are
within a whole. After points clustering, two groups
are considered connected if the points in one group
are linked to the other. Figure 2 illustrates the initial
structural representation of a scene of the point cloud.

3.2 Dynamic graph generation

The initial structural representation achieves the group-
level relationship establishment without semantics.
Based on this, this section discusses establishing the
semantical object-level relationship, namely the graph
generation. We introduce multi-level modules to judge
the semantic label of point groups; Then, groups with
semantics are split and merged again, resulting in the
final graph representation (see Fig. 3).

3.2.1 Multi-level semantic prediction
(1) Group-level semantic prediction

Each group contains a different number of points. It
is necessary to have an expression of each group with a
fixed dimension. To achieve this purpose, we introduce
a simplified PointNet[27] to obtain a 32-dimensional

(a) (b) (c)

Fig. 2 Initial structural representation of a scene of the point cloud. (a) Original point cloud, (b) points after grouping (points
in the same group with the same color), and (c) structural representation (a yellow dot indicates a point group, and a gray line
indicates a connection relationship).
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Fig. 3 Semantic prediction of different levels in DGGN. (a) Group-level semantic prediction. The structure embedding
is calculated firstly. Then, GRU modules update the structure’s state, considering the group embeddings and relationship
embeddings. MultiLayer Perceptrons (MLPs) cooperate with Softmax to output the structures with semantics. (b) Point-level
semantic prediction. For the points in the mixed group, the group embedding is concatenated to every point for the point-level
semantic predictions. c denotes the category of class labels.

embedding describing every point group. We also
introduce the shape-based, size-based, and point-
based features proposed by Ref. [22] to describe the
relationships between groups, cooperating with MLP to
get a 32-dimensional relationship embedding.

For each point group, the semantic label is decided
not only by itself but also by the effects of neighbors.
We introduce GRU modules[28] to update the group state
based on these factors, achieving the semantic prediction
of each point group. Specifically, at each time step t ,
GRU updates the target’s hidden state h<t>, considering
the hidden state h<t�1> at step t � 1 and xt as input,
which can be denoted as

h<t> D f .h<t�1>; xt /;

where f . / indicates the GRU module. If we treat
h<t> as the embedding of the target group itself and
represent xt as the neighbor effects, the GRUs can
update the target’s embedding step by step. Figure 3
illustrates the details; we use the mean value of the dot
product of the group embedding and the relationship
embedding to represent the neighbor effects. The group
embeddings are updated iteratively, resulting in semantic
prediction. Note that the group-level module also judges
whether the group is mixed (containing points of more

than two categories) or not, which supports the following
point-level semantic prediction.

(2) Point-level semantic prediction
As discussed above, the point grouping module

aims to cluster points with similar semantic labels.
However, several groups inevitably contain points of
different categories. It introduces errors to the final
graph generation if treating the mixed group as a whole
for semantic prediction. To address this problem, we
introduce a simplified PointNet to predict the semantic
label of each point again. The simplified PointNet retains
the main body of the original PointNet[27], like the MLPs
for point-wise feature learning and the Max-Pooling for
global feature representation. Some auxiliary modules,
such as the input/feature transformation, are removed.
The point-level module only works on the points of
the mixed group, accounting for a very small part of
the whole point cloud. The performance improvement
brought by the input/feature transformation modules is
limited[27], influencing little to the final scene graph
generation. The global feature of the point group
obtained by the simplified PointNet is concatenated to
every point, and MLPs work with Softmax to achieve
point-level semantic label prediction.
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(3) Loss function
Unlike the unsupervised initial structural

representation, graph generation is a supervised
process. Two cross-entropy loss functions guide the
training of the group-level and the point-level module
individually.

3.2.2 Graph refinement
A graph representation of point clouds with semantic
labels has been established through multi-level semantic
prediction. This section further discusses refining the
graph, resulting in a plausible representation of given
scenes. Adjacent point groups with the same label belong
to the same object; points in the mixed group are of
different categories. Thus, it is necessary to split and
merge the point groups again. Besides, edge labels, as
an important part of the graph representation, are needed
to explain the relationships between objects.

As shown in Fig. 4, we first split the mixed group into
different parts according to the semantic labels. Then,

we merge groups with the same semantic label. Figure 5
illustrates the point group splitting and merging on a
point cloud scene with our method. Based on this, we
label the edges by querying the dictionary, which records
the real-world relationship between adjacent objects,
such as “a table standing on the floor”. As a result,
a reasonable final graph representation of a scene of the
point cloud is established.

4 Experiment

4.1 Datasets

We introduce S3DIS, 3DSSG-O27R16, and Paris-Lille-
3D to verify the performance of our methods, ranging
from indoor to outdoor point cloud scenes.

(1) S3DIS[29] is a set of real-world indoor scenes of
the point cloud, which contains 271 rooms belonging to
6 areas. This dataset includes 13 class labels and also
records the points-to-object relationships. To achieve
the supervised training and the testing evaluation for the
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Fig. 4 Graph refinement. It splits mixed groups and merges groups with the same label. The final scene graph is obtained by
introducing edge labels using the dictionary query.

(a) (b)

(c) (d)

Mixed 
group

Fig. 5 Visualizations of point group splitting and merging. (a) An outdoor scene of the point cloud. Due to the lack of RGB
information in the dataset, the points are colored according to the ground-truth labels for visual display. (b) The initial state of
point groups with predicted labels. Dots with different colors denote point groups with different predicted labels, the red ones
are for the mixed groups; The gray lines indicate the relationships between groups. (c) The mixed groups are split, then merged
into the neighbor groups. (d) Groups with the same predicted label are further merged.
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generation tasks, we make the scene graphs, in which
nodes are labeled according to the semantic information
of the corresponding objects, and the edges are labeled
manually. Data in Area 5 are used for testing, while
others for training.

(2) 3DSSG-O27R16[6, 7, 12] is widely used as the
benchmark for graph generation tasks in point clouds. It
contains 1318 scenes of 3D points and the corresponding
scene graphs, including 27 object class labels and 16
relationship class labels. Our method aims at generating
a scene graph, which records the precise relationships.
Thus, we remove the ambiguous relationships in the
dataset, such as “close by”, retaining the precise contact
relationships, such as “standing on”. Random choosing
255 scenes for testing, while others for training.

(3) Paris-Lille-3D[30] is a large-scale urban outdoor
point cloud dataset acquired by a mobile laser scanning
system in France. It covers about 2 km of streets,
containing more than 140 million points with 10
semantic classes. As same as the processing on S3DIS,
the ground-truth scene graphs are labeled manually for
the supervised training. Two scenes, Lille1 and Lille2,
are used for training, while the scene Paris is for testing.

4.2 Implementation details

The weight coefficient � in Eq. (1) is set to 0.06. The
training batch of DGGN is 2, and it is end-to-end
trained by using back-propagation and Adam optimizer
solver with a learning rate of 0.01. The point-level
module works after ten epochs because it is easy to
misclassify the mixed group early in training. The model
is conducted by Pytorch on a single GeForce GTX 1080
Ti and an Intel (R) Core (TM) i7-7800X CPU. The point
group of the training dataset is labeled as mixed if no
more than 90% of the contained points belong to the
same class. Otherwise, its label follows that of included
points with the highest proportion.

4.3 Evaluation metrics

(1) Grouping Accuracy (GA) is designed to evaluate the
accuracy of point grouping. It is defined in the following:

GA D

NX
iD1

Ci=T (2)

where Ci equals the number of points belonging to
the class with the largest proportion. T and N are the
numbers of points and point groups, respectively.

(2) Mean IoU (mIoU) denotes the mean intersection
over a union of the containing 3D points of each node,
which evaluates the performance of node generations.

(3) Top-k recall of relationship prediction (R@k-Rel)
indicates the fraction of times of correct predictions in
the top-k confident relationship predictions[31], which
evaluates the performance of edge generations.

(4) Maximum Mean Discrepancy (MMD)[10, 32]

indicates the distance between two data distributions.
We introduce MMD based on degrees and clustering
coefficients to quantify the similarity of the structures
of generated graphs and those of the ground truths (the
smaller, the better). It can be used to judge the rationality
of the structure of the generated graphs.

4.4 Comparison with baselines

4.4.1 Baselines
Existing scene graph generation methods rely on given
graph structure data, which are unfair to be treated as
baseline methods. To address this problem, we embed
the PointNet[27], KPConv[33], and GCN[34] into our
framework as baselines. These widely used methods
cooperate with our initial structural representation
module to generate scene graphs for comparison.

Specifically, PointNet is a point MLP network, and
KPConv is a point convolution one. They are all the
neural networks for point-wise semantic prediction in
point clouds. Thus, we use them to predict the semantic
label of all the points in each point group, and each
group’s label follows that of included points with the
highest proportion. Then, the final scene graphs are
generated by splitting and merging groups, etc. Unlike
PointNet and KPConv, GCN can directly work on the
point clouds with structural representation. It replaces
our method’s multi-level semantic prediction module to
generate scene graphs for comparison.

4.4.2 Quantitative results
(1) Results on S3DIS

Table 2 illustrates that our method outperforms the
baseline methods in terms of all the metrics (compared
with the 2nd ranking GCN: +2.0 mIoU, +3.7 R@20-Rel,
– 0.05 MMD for degree, and + 0.02 MMD for cluster).

From the results, we can see that the point-based
networks PointNet and KPConv perform worse than
the graph-based networks (Ours and GCN). It is because

Table 2 Comparison results on S3DIS.
Embedded

method
mIoU (%) R@20-Rel(%)

MMD
Degree Cluster

PointNet 49.7 57.1 0.72 0.32
KPConv 52.4 63.2 0.65 0.22

GCN 53.3 63.8 0.51 0.17
DGGN (Ours) 55.3 67.5 0.46 0.19
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the point-based methods work independently on each
point, which ignores the initial structural representation.
The graph-based methods fully explored the contextual
relationships using the structural information, thus
leading to better graph generation results. Besides, our
method performs the best due to the semantic modeling
of different granularity. However, the GCN can only
model the semantic information at the granularity of the
point group, resulting in relatively poor performance.

(2) Results on 3DSSG-O27R16
Table 3 shows that our method performs the best

(compared with the 2nd ranking GCN: + 1.5 mIoU, + 0.4
R@20-Rel, – 0.02 MMD for degree, and – 0.26 MMD
for cluster) and also verifies the conclusions obtained
from Table 2. Besides, there is a significant decline
in all the metrics on 3DSSG-O27R16 than on S3DIS.
3DSSG-O27R16 contains more categories of objects and
object-level relationships than S3DIS, posing much more
difficulties in modeling structures and semantics of point-
cloud-based scenes. Thus, it results in performance
degradation of all the methods.

(3) Results on Paris-Lille-3D
Table 4 shows that our method performs best in

Table 3 Comparison results on 3DSSG-O27R16.
Embedded

method
mIoU (%) R@20-Rel (%)

MMD
Degree Cluster

PointNet 38.6 42.9 0.83 0.65
KPConv 41.5 41.7 0.98 0.54

GCN 42.1 47.8 0.80 0.72
DGGN (Ours) 43.6 48.2 0.78 0.46

terms of MMD. However, it does not work as well
as the KPConv in terms of mIoU and R@20-Rel
(compared with the KPConv: – 0.4 mIoU, – 0.5 R@20-
Rel, – 0.02 MMD for degree, and – 0.14 MMD for
cluster). The complexity of outdoor scenes poses
challenges to graph generation, thus leading to obvious
performance degradation for lots of methods.

The structural representation becomes complicated
due to the scenes’ complexity, as shown in Fig. 5.
Besides, the variety of outdoor scenes cause the
diversities of representations. All these characteristics
bring difficulties for the methods based on the structural
representation of point clouds. It makes our method
misjudge the labels of lots of groups, leading to a decline
in mIoU and R@20-Rel. However, our graph-based
network focuses on learning the contextual relationships
between groups, retaining a good semantic continuity
between point groups. It cooperates with the group
splitting and merging function to obtain good graph
structures, thus, performing well in terms of MMD.

4.4.3 Qualitative results
Figure 6 shows the graph generations of several

Table 4 Comparison results on Paris-Lille-3D.
Embedded

method
mIoU (%) R@20-Rel (%)

MMD
Degree Cluster

PointNet 35.4 37.5 0.98 0.72
KPConv 47.1 52.2 0.73 0.66

GCN 41.3 49.3 0.93 0.75
DGGN (Ours) 46.7 51.7 0.71 0.52
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Fig. 6 Graph generations from several scenes in S3DIS (0: attached to; 1: standing on; 2: hanging on; 3: connect to). (a)
Point-cloud-based 3D scene, (b) graph generations using our method, and (c) ground truth.
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randomly selected scenes in S3DIS Area 5. These graphs
describe the objects with relationships in the point cloud
scene, such as “a bookcase connected to the wall”. Our
generation is similar to the ground truth of the scene
in the first row. However, mistakes happen in the more
complex scene in the second row. For example, our
generated graph contains only one bookcase, but there
are two in the point cloud scene. The reasons may be
as follows: the initial structural representation splits
the point cloud into several groups, and groups with
bookcase points are similar to those with wall points. It
makes our DGGN misjudge the semantic information
of these groups, resulting in only one bookcase in the
generated graph.

Figure 7 illustrates the graph generation from a split
scene of Paris-Lille-3D. The graphs are more complex
than those generated from indoor scenes. The structure
of the generated graph is similar to the ground truth.
However, the labels of some objects are misjudged
or missing, such as some pedestrians are missing in
the scene graph. As we explain above, our method
misjudges some point groups’ labels, leading to mistakes
in the final scene graph.

To explore the effectiveness of our method in
unfamiliar items, we conduct new experiments on scenes
of the point cloud collected by our 3D laser scanner.
Figure 8 gives the scene graphs generated by our method,
denoting the objects that existed in the office and the
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Fig. 8 Graph generations from unfamiliar scenes. “Walls”, “doors”, and “windows”, are removed for brief visualizations (1:
standing on; 2: lying on; 3: connect to). (a) Point-cloud-based 3D scene, (b) graph generations using our method, and (c) ground
truth.
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relationships between them. However, they are not as
precise as the ground truth scene graphs. For example,
the object-level relationship “office supply lying on the
table” is misjudged as “cluster lying on the table”. The
difference in object semantics between training and test
scenes causes this problem. Specifically, in the training
phase, our method has never observed the objects labeled
as “office supplies”. Thus, our method misjudges many
objects in the testing phase, leading to many ambiguous
object-level relationships in the final generated graphs.

4.5 Ablation study

We remove or change several designs individually,
exploring their effect on the initial structural
representation and the final graph generation.

4.5.1 Effect of geometric features
Table 5 illustrates that using all the features achieves the
best point grouping performance. Randomly dropping
the features lead to a decline in the accuracy of point
grouping. It indicates that these geometric features help
cluster points with similar semantic labels better, which
will benefit the performance of final graph generation.

4.5.2 Effect of the weight coefficient in Eq. (1)
Table 6 denotes that setting � to 0.06 achieves a good
balance between the grouping accuracy and the mean
group numbers. Setting � to 0.04 obtains the best
accuracy due to a weakened strength to cluster more
points into a group. However, it increases the number
of point groups and will result in high computational

Table 5 Ablation study of the geometric features on point
grouping for S3DIS.

Features selection
GA (%)

F1, F2, F3 F4 F5 F6

X – – – 76.5
X X – – 80.1
X – X – 77.5
X – – X 83.2
X – X X 83.7
X X – X 90.3
X X X – 88.4
X X X X 91.9

Table 6 Ablation study of the weight coefficient in Eq. (1)
on point grouping for S3DIS.

� GA (%)
Mean group

number
0.04 93.5 3824
0.06 91.9 1211
0.08 89.6 417

resources for graph generations. Setting � to 0.08
shows the opposite situation. Thus, 0.06 is a more
appropriate approach scheme for point grouping in the
initial structural representation learning.

4.5.3 Effect of the group-level module in DGGN
The group-level module updates the states of point
groups for semantic prediction by propagating
information among neighbors. To approve its
effectiveness, we remove this module and only
use the point-level module to judge the semantic label
of nodes. Table 7 shows that removing the group-level
module achieves poor graph generation performance
(compared with the original network: –11.7 mIoU, –14.6
R@20-Rel, + 0.35 MMD for degree, and + 0.41 MMD
for cluster). It indicates that modeling the contextual
relationships between point groups contribute a lot to the
graph generation, verifying the effect of the group-level
module.

4.5.4 Effect of the point-level module in DGGN
The point-level module helps to reduce the errors
introduced by the initial structural representation
learning. Table 7 illustrates that removing the point-
level module also leads to a decline in the graph
generation performance (compared with the original
network: – 1.2 mIoU, – 0.3 R@20-Rel, C 0:03 MMD
for degree,C 0:09 MMD for cluster). The impact of the
point-level module on graph generation is not as large
as that of the point-level one. It only works on limited
point groups, resulting in a limited performance increase.
However, it helps to improve the precision of generated
graphs.

5 Conclusion

This paper presents a method to generate the graph of
scenes of the point cloud. Unlike other works of scene
graph generation on the point clouds, which rely on
the manually labeled graph structure data. Our method
automatically outputs scene graphs without additional
data. It models the geometric features and clusters

Table 7 Ablation study of the group-level module and the
point-level module in DGGN. RGM stands for removing the
group-level module, and RPM stands for removing the point-
level module.

Embedded
method

mIoU (%) R@20-Rel (%)
MMD

Degree Cluster
RGM 43.6 52.9 0.81 0.60
RPM 54.1 67.2 0.49 0.28

Original 55.3 67.5 0.46 0.19
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3D points into groups, resulting in an initial structure
representation of the point cloud. Besides, a DGGN
network containing different levels of modules achieves
the final graph construction of point-cloud-cased scenes.
Experiments prove that our method outperforms other
baseline methods, outputting reliable graphs to describe
3D scenes. Our method can be used to promote point-
cloud-based applications, such as object retrieval in a 3D
space.
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