
TSINGHUA SCIENCE AND TECHNOLOGY
ISSNll1007-0214 10/22 pp112–126
DOI: 10 .26599 /TST.2022 .9010065
Volume 29, Number 1, February 2024

C The author(s) 2024. The articles published in this open access journal are distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

Monte Carlo Simulation-Based Robust Workflow Scheduling
for Spot Instances in Cloud Environments

Quanwang Wu, Jianzhao Fang, Jie Zeng�, Junhao Wen, and Fengji Luo

Abstract: When deploying workflows in cloud environments, the use of Spot Instances (SIs) is intriguing as they are

much cheaper than on-demand ones. However, SIs are volatile and may be revoked at any time, which results in a

more challenging scheduling problem involving execution interruption and hence hinders the successful handling of

conventional cloud workflow scheduling techniques. Although some scheduling methods for SIs have been proposed,

most of them are no more applicable to the latest SIs, as they have evolved by eliminating bidding and simplifying the

pricing model. This study focuses on how to minimize the execution cost with a deadline constraint when deploying a

workflow on volatile SIs in cloud environments. Based on Monte Carlo simulation and list scheduling, a stochastic

scheduling method called MCLS is devised to optimize a utility function introduced for this problem. With the Monte

Carlo simulation framework, MCLS employs sampled task execution time to build solutions via deadline distribution

and list scheduling, and then returns the most robust solution from all the candidates with a specific evaluation

mechanism and selection criteria. Experimental results show that the performance of MCLS is more competitive

compared with traditional algorithms.

Key words: constrained optimization; Monte Carlo simulation; robustness; Spot Instances (SIs); workflow scheduling

1 Introduction

Cloud computing has already been a mainstream
paradigm for providing computing resources in the
industry. It provides a highly scalable pool of
computation resources to execute real-world applications
faster than ever. Moreover, it is of paramount importance

�Quanwang Wu and Jianzhao Fang are with the College of
Computer Science, Chongqing University, Chongqing 400044,
China. E-mail: fwqw, fangjianzhaog@cqu.edu.cn.
� Jie Zeng is with the National Experimental Teaching

Demonstration Center, Chongqing University, Chongqing
400044, China. E-mail: zj0101@cqu.edu.cn.
� Junhao Wen is with the College of Big Data and Software

Engineering, Chongqing University, Chongqing 400044, China.
E-mail: jhwen@cqu.edu.cn.
� Fengji Luo is with the School of Civil Engineering, The

University of Sydney, Sydney 2006, Australia. E-mail: fengji.
luo@sydney.edu.au.
�To whom correspondence should be addressed.

Manuscript received: 2022-11-02; revised: 2022-12-02;
accepted: 2022-12-15

for computation-intensive workflow applications, such
as astronomy and genetic science, as it can substantially
advance such applications and their corresponding
domain sciences. Resorting to cloud computing, users
can dynamically lease and end the use of computing
resources to their needs and pay according to actual
usage. Moreover, because there are usually diverse
computing resources available, users can easily trade off
the performance and execution costs of cloud resources
by optimizing resource scheduling[1].

Generally, three pricing models are utilized for cloud
resources, namely, on-demand, reserved, and spot, such
as the ones in Amazon EC2. With On-demand Instances
(OIs), users pay for the computation capacity by the hour,
depending on the type of instances. Reserved instances
provide a capacity reservation and some discounts based
on a long-term commitment compared with on-demand
pricing. Spot Instances (SIs) are introduced to encourage
users to take advantage of the spare cloud capacity as
volatile resources. From the perspective of users, the

Quanwang Wu et al.: Monte Carlo Simulation-Based Robust Workflow Scheduling for Spot Instances in Cloud : : : 113

spot model is intriguing owing to its steeper discount
compared with other models, but it is daunting for its
instability. Specifically, SIs are much cheaper than OIs
(e.g., the cost ratio between SIs and OIs can be as low
as 10%), but they are volatile and may be revoked at any
time[2, 3].

When SIs were first introduced at the end of 2009, they
were run through an auction-like mechanism. The spot
price was set by a provider, and it fluctuated periodically
depending on the real-time demand and supply of cloud
resources. Users needed to bid for spot resources by
specifying the maximum price that they would pay. The
bid is fulfilled when the bid price is higher than the
current market price, and the SIs being used may be
revoked any time when the current market price increases
and exceeds the bid price. With the development of cloud
computing, SIs have evolved by eliminating bidding and
simplifying purchasing for the sake of easier usage, such
as Amazon’s latest EC2 SIs� and Google’s spot virtual
machines�[4]. SI prices are set by providers and gradually
adjusted based on long-term trends in the supply and
demand for SI capacity. Consequently, the present prices
of SIs are smooth and predictable. Nevertheless, SIs may
still be interrupted and revoked when the provider needs
them back for repurposing capacity, host maintenance,
or other reasons. Hence, previously, the largest challenge
in the use of SIs was how to bid appropriately, but at
present, the obstacle is how to tackle the interruption,
which is unpredictable.

SIs are quite promising for fault-tolerant and nonreal-
time large scientific and business applications, such as
big data analytics and media processing applications.
These applications can be usually represented as a
workflow through a direct acyclic graph, where a vertex
stands for a task and an edge stands for a precedence
dependency among tasks. When deploying workflows
to cloud resources, the makespan of workflows and the
total economic cost are two crucial user requirements,
and several studies have been performed to optimize
them[5]. However, these traditional workflow scheduling
techniques are mainly targeted for OIs and cannot
be directly applied to SIs because they are oblivious
to resource interruption in runtime. Although some
scheduling methods for SIs have been proposed[6], they
are mainly targeted at the bidding strategies of SIs, which
are no more applicable. Hence, an effective workflow
scheduling approach for SIs is in an imperative demand.

� http://aws.amazon.com/ec2/spot/
� https://cloud.google.com/spot-vms

This study focuses on how to effectively deploy
workflows on volatile SIs in cloud environments with
awareness of usage costs and soft deadline constraint.
A stochastic workflow scheduling model for SIs is
developed, and a utility function is introduced to assess
the user utility with regard to usage costs and deadline
constraint satisfaction. Based on Monte Carlo simulation
and list scheduling, we propose a stochastic scheduling
method called MCLS to optimize the utility function.
According to the Monte Carlo simulation framework,
MCLS employs sampled task execution time to produce
solutions via deadline distribution and list scheduling. It
then puts promising solutions to the candidate pool and
returns the best one as the output depending on a specific
solution evaluation mechanism and selection criteria. In
the experiments, we compare MCLS with several state-
of-the-art scheduling methods, and the experimental
results demonstrate that the performance of MCLS is
very competitive. In each setting, it achieves the lowest
monetary cost and a relatively high success ratio for
meeting deadlines.

The remainder of this paper is organized as follows.
Section 2 presents a literature review. Section 3
describes the scheduling model and problem formulation.
Section 4 proposes MCLS. Section 5 gives the
experimental evaluations. Finally, Section 6 concludes
this paper.

2 Related Work

In this section, we first present a review of representative
works on workflow scheduling in stable and volatile
clouds. Then, we review the literature on robust
workflow scheduling in distributed systems.

2.1 Workflow scheduling in stable clouds

Stable cloud resources, such as OIs, are highly reliable
in general. When deploying workflows in a stable
cloud, there are generally three ways to compromise the
cost and makespan: deadline-constrained scheduling,
budget-constrained scheduling, and multiobjective
scheduling[5, 7].

Deadline-constrained workflow scheduling aims to
optimize the cost as much as possible under a deadline
condition. Deadline distribution is a widely used method
for this end. Based on the concept of the Partial
Critical Path (PCP), Abrishami et al.[8] proposed two
algorithms called IaaS Cloud PCP (IC-PCP) and IC-PCP
with Deadline Distribution (IC-PCPD2) for scheduling
workflows in the cloud. The former distributes the overall

114 Tsinghua Science and Technology, February 2024, 29(1): 112–126

deadline to PCPs, whereas the latter further distributes
the deadline to each task in proportion to its minimum
execution time. Then, the cheapest resources can meet
the latest completion time of the task for the partition,
and task is selected. Arabnejad et al.[9] introduced a
tunable cost-time trade-off for heterogeneous instances
and proposed a novel approach that satisfies budget and
deadline constraints. Experiments show that it achieves
a 20% higher success rate than other algorithms. In
Ref. [10], a width-changing trend-aware look-ahead
workflow scheduling algorithm (namely W-LA) was
proposed. Metaheuristics were also utilized to address
deadline-constrained scheduling. For example, particle
swarm optimization was used in Ref. [11], a particle’s
position was encoded to represent mappings between
tasks and computation resources, and then a schedule
generation method was designed to convert a particle’s
position into a schedule solution. The List and Ant
Colony Optimization (L-ACO) method was proposed
in Ref. [12] for deadline-constrained cost optimization,
where an ant constructs an ordered task list according to
the pheromone trail and local heuristic information, and
then builds a solution based on it.

Budget-constrained scheduling aims to minimize the
makespan under a budget constraint. For example,
Faragardi et al.[13] ranked resources by their efficiency
rate, and based on the classic list scheduling heuristic
Heterogeneous Earliest Finish Time (HEFT)[14], they
proposed the greedy resource provisioning-HEFT
method to minimize the makespan while meeting the
user-specified budget constraint. Ghafouri et al.[15]

proposed a scheduling algorithm named constrained
budget-decreased time, where the scheduling of critical
and noncritical tasks is combined with a backtracking
heuristic to obtain a small completion time. A fair
budget-constrained workflow scheduling algorithm was
proposed in Ref. [16], where a cost-saving mechanism
was introduced to save the budget by adjusting the cost-
time efficient factor.

Multiobjective scheduling aims to optimize the
makespan and economic cost by producing a set of
tradeoff optimal solutions. It has received increasing
research attention these years. In Ref. [17], Durillo
and Prodan extended the HEFT for multiobjective
optimization, and a set of nondominated partial solutions
was kept in each task allocation step. In Ref. [18], a
multiobjective evolutionary list scheduling was proposed
for minimizing costs and makespan, where a list
scheduling heuristic and an evolutionary algorithm

were seamlessly combined to have complementary
advantages. In Ref. [19], Zhou et al. proposed a new
list scheduling algorithm to solve the multiobjective
workflow scheduling problem, where fuzzy dominance
was applied to measure the relative fitness of solutions
in a multiobjective solution space.

2.2 Workflow scheduling in volatile clouds

Aside from stable cloud resources, cloud providers also
provide their spare resources to users in a volatile form
at a low price (i.e., SIs). Cheap but volatile SIs can
be revoked by providers at any time. Up to present,
much research efforts have been devoted to SIs due
to their extraordinary nature. For instance, the pricing
mechanism of a spot market in cloud computing was
investigated in Ref. [20], and the Amazon EC2 SI pricing
was deconstructed in Ref. [21]. Researchers in Refs.
[2, 22, 23] focused on how to predict the spot price and
bid for SIs, and those in Ref. [24] studied how to make
use of checkpoints to alleviate the loss resulting from SI
interruption. In Refs. [25–27], researchers investigated
how to use SIs for Internet-based services, machine
learning, and SARS-CoV-2 DNA sequence comparison,
respectively.

Some research efforts have also examined running
workflows on SIs. Xu et al.[28] proposed a cost-effective
transient server provisioning framework called iSpot
to achieve a predictable performance in the cloud. It
adopts a price prediction method based on long short-
term memory for automatic job profiling to improve
the reliability of workflow execution. A deadline-
constrained workflow scheduling method was proposed
in Ref. [29]. It uses OIs to perform critical path tasks
and SIs to perform highly concurrent fine-grained tasks.
When a workflow is interrupted in runtime, some SIs
used to excute it may be replaced by OIs. Martinez et
al.[30] constructed a Markov decision process for the
workflow execution and search for the optimal policy
by considering user preferences in time and cost. The
optimal solution is produced offline before execution,
and actions selected on-the-fly depend on the occurrence
of instance revocations and the actual task completion
time. Ghavamipoor et al.[31] employed an artificial
neural network to define a failure prediction module
for SIs, and proposed a reliability-aware scheduling
algorithm for minimizing the makespan of workflows
considering a minimum ensured reliability rate. Some
studies combined multiple strategies to address the
volatility when executing workflows in SIs. For example,
in Ref. [6], task duplication and resubmission techniques

Quanwang Wu et al.: Monte Carlo Simulation-Based Robust Workflow Scheduling for Spot Instances in Cloud : : : 115

were adopted to mitigate the side effect resulting from
SI failures.

The above studies on workflow scheduling are targeted
at the out-of-date bidding-based SIs, and they mainly
focus on how to predict the performance and how to bid,
even though some papers were published after bidding-
based SIs have become obsolete. In these days, SIs
have evolved by eliminating bidding and simplifying
purchasing for the sake of easy usage, and their prices
are smooth and predictable[32].

Some recent studies have been conducted for the latest
cloud spot market. Cost-minimizing reservation and SI
scheduling were studied in Ref. [4], and two algorithms
were proposed with and without the assumption of
known future demands. An optimization framework
FarSpot for workflow applications was proposed in
Ref. [33] to minimize the cost within the performance
constraints. By assigning a sub-deadline to each task,
FarSpot migrates tasks dynamically among SIs to reduce
the cost based on the assumption that the live migration
function is always available for SIs, which usually does
not hold in reality because of business reasons. Teylo et
al.[34] presented a hibernation-aware dynamic scheduler,
which schedules bag-of-task applications with deadline
constraints in SIs and OIs for minimizing monetary
costs. It employs a dynamic scheduling module that
applies task migration and work-stealing techniques to
address the issue of SI failures. Pham and Fahringer[35]

considered the fulfillment and interruption rates of
volatile resources to model the instability of SIs, and
employed an evolutionary algorithm to generate a set of
tradeoff solutions.

2.3 Robust workflow scheduling

Robust scheduling (also known as proactive scheduling)
aims to develop a schedule that can cope with
uncertainties during execution. To enhance the
robustness of executing workflows in a volatile
distributed system, the main techniques include
replication, checkpointing, and statistics[5]. Moreover,
reactive scheduling mechanisms, such as resubmission,
are often employed as a supplement. Because robust
workflow scheduling is not only limited to SIs,
we reviewed it in a broader sense (i.e., distributed
computing) below.

For replication, a task in the workflow may be
replicated on multiple computation resources for
execution more than once. Hence, it is also known as a
redundancy-based scheduling. In Ref. [36], a two-step
scheduling method was proposed for a heterogeneous

distributed computing environment, in which a schedule
was first produced to minimize the makespan, and then
tasks, which are on the critical path, were replicated
to enhance reliability. In Ref. [37], the concept of
the weighted average makespan was introduced for
improving the reliability of executing workflows in a
multiprocessor system. Two scheduling algorithms were
presented for fault-tolerant scheduling based on task
replication and simulated annealing. In Ref. [6], how to
enhance the reliability of workflow execution using task
replication and SIs was investigated. In Ref. [38], a fault-
tolerant scheduling algorithm was proposed for meeting
the soft deadline of a workflow in cloud systems, where
resubmission and replication are combined together to
play their respective advantages for fault tolerance, while
trying to meet the soft deadline. The side effect of this
technology is that it inevitably leads to higher costs.

Checkpointing saves the states of a running task
periodically to reliable storage, and with this technique,
the task can be restarted from its last checkpoint
or the saved state after a failure[24]. By employing
checkpointing as a fault-tolerant strategy, a robustness
metric called tolerance time was introduced in Ref. [39],
which indicates the amount of time that a workflow
can be delayed without violating the deadline constraint.
Then, a robust scheduling algorithm was devised based
on IC-PCP to optimize the cost and robustness. Zhou
et al.[40] built a fault-tolerant framework combining the
checkpointing mechanism and optimized the bidding
strategy for SIs.

The statistics-based methods aim to produce a robust
solution based on statistical information that absorbs
some uncertainties during execution. In Ref. [41],
Canon and Jeannot introduced a makespan distribution
evaluation method for workflow applications, and then
devised different strategies to optimize the makespan
and robustness with an evolutionary metaheuristic. In
Ref. [42], Zheng and Sakellariou proposed a Monte
Carlo algorithm to schedule workflows in heterogeneous
computing systems using random sampling to cope with
unavoidable uncertainties in individual task execution
times. In Ref. [43], a stochastic HEFT scheduling
algorithm for grids was proposed, which incorporates
the expected value and variance of the stochastic
execution time into scheduling. In Ref. [44], Li et
al. built a stochastic parallel application scheduling
model for heterogeneous cluster systems, and proposed
a Stochastic Dynamic Level Scheduling (SDLS)
algorithm, which handles task time randomness based

116 Tsinghua Science and Technology, February 2024, 29(1): 112–126

on stochastic scheduling attributes, such as stochastic
bottom levels and stochastic dynamic levels.

This study designs a robust workflow scheduling
method to optimize the cost within a deadline, for the
latest SI market-this has not been resolved by the existing
studies. To address the execution uncertainty, a Monte
Carlo simulation framework is developed to yield a
robust base schedule with OIs and adjust it through
resubmission with SIs.

3 Scheduling Model

This section first describes the cloud workflow
scheduling model, and then formulates the problem
studied in this work.

3.1 Workflow and cloud resource model

A workflow application is usually represented by
a directed acyclic graph, DAG D .V;E/, where
vertices V denote tasks in the workflow and directed
edges E denote precedence dependencies between
tasks. Each task ti 2 V stands for an indivisible
individual application with computation workload wi . A
precedence dependency ei;j 2 E implies that task tj
can start only when task ti finishes. The source and
destination of ei;j are called the parent and child tasks
(also known as predecessor and successor), respectively.
A non-negative weight di;j is associated with the edge
ei;j , which represents the amount of data that ti sends
to tj . When di;j is 0; tj is executed once ti finishes, and
when it is larger than 0, tj can be executed after the data
from ti have been received. Two dummy tasks tentry and
texit with no computation workload are set on the start
and end of a workflow, respectively, and hence DAG
is generalized with exactly one entry and one exit. A
workflow sample is shown in Fig. 1, where the number
in each task node indicates its computation workload,
and the number on each edge indicates its data amount.

In cloud environments, a commercial cloud provider
offers to its clients “infinite” virtualized computation

Fig. 1 Sample of workflow applications.

resources in different types, and each type specifies the
processing capability and usage cost. As mentioned
above, there are three pricing models for cloud resources
in general: on-demand, reserved, and spot. In this
work, we focus on how to take advantage of SIs to
execute workflows for reducing expenses. Because SIs
are volatile and may be revoked by providers at any
time, we additionally employ OIs as a supplement for
improving reliability. Hence, the cloud infrastructure we
consider is a combination of SIs (volatile resources) and
OIs (stable resources). Let R D

˚
r1; r2; : : : ; rjRj

	
be a

set of cloud resources used for executing workflows. For
every rl , we use sl to represent its processing capability
and pl to represent the price of each billing interval ˚ .

For an OI, users are charged depending on the
number of time intervals that they have used cloud
resources, and any partial utilization of an interval is
rounded to a full one. SIs are volatile and may be
revoked at any time when the provider needs them back
because of repurposing capacity, host maintenance, or
violating constraints. Such a reclaim is called an SI
interruption, and from the perspective of spot users, they
are generally agnostic on when SIs are revoked and
how long a deployed SI will run in total before being
interrupted[32, 45]. That is, the time point when an SI is
interrupted from the lease start time cannot be predicted,
and it can only be treated as a random variable. We
denote this interruption time point as Xl , and when it is
less than its lease end time, Xl is interrupted before the
user finishes leasing it. When an SI is interrupted and
revoked by the provider, the last partial utilization of a
time interval is free of charge. Hence, given that rl is
leased to a user during the period from LSTl (lease start
time) to LETl (lease end time), then the usage cost can
be calculated as

cl D

8̂̂̂̂
<̂
ˆ̂̂:
d.LETl � LSTl/ =˚e � pl ;

if rl is OI or .rl is SI and Xl > LETl/ I

b.Xl � LSTl/ =˚c � pl ;

if rl is SI and Xl < LETl
(1)

3.2 Problem formulation

When task ti is allocated to an OI rl , its execution time
can be calculated as wi=sl . For an SI, the situation
is more complicated as it may be interrupted during
execution. When an SI is recycled, the supply of SIs
may not be so sufficient at the moment. As the makespan
is a crucial user requirement for workflows, it is better to
restart the interrupted task on a stable OI for reliability

Quanwang Wu et al.: Monte Carlo Simulation-Based Robust Workflow Scheduling for Spot Instances in Cloud : : : 117

instead of trying SIs again. Specifically, we stipulate that
an OI with the same machine type as the revoked SI is
used for re-execution.

Assume that task ti is allocated to an SI rl , and that it
starts execution at the time point STi . When Xl � STi
is greater than the required execution time wi=sl , ti can
normally finish. Otherwise, its execution is interrupted
at Xl , and then it has to be restarted on an OI. Therefore,
ti ’s execution time on a cloud computation resource rl
can be calculated as

ETi;lD

8̂̂̂̂
<̂
ˆ̂̂:
wi=sl ;

if rl is OI or .rl is SI and Xl�STi>wi=sl/I

wi=slCXl�STi ;

if rl is OI and Xl � STi < wi=sl
(2)

Assume that tasks ti and tj are deployed on rl and rm,
respectively, and that there is a dependency ei;j with a
data amount of di;j between them. The transfer time of
ei;j depends on di;j and the bandwidth b, and it becomes
zero when rm and rn refer to the same resource, as shown
in the following:

T Ti;j D

(
di;j =b; if rl ¤ rmI

0; if rl D rm
(3)

Let RTl be the earliest time at which resource rl is
ready to execute ti . Task ti can start execution on rl
when rl and the data from its parents are ready, and
thus the start time and finish time of task ti on rl can be
calculated as follows:

STi D max
�
RTl ; max

tj2ti’s parents

˚
F Tj C T Ti;j

	�
(4)

F Ti D STi CETi;l (5)

Let S be a schedule solution for a workflow, which
specifies how each task in the workflow is allocated to a
certain time slice of computation resources for execution.
The makespan of a workflow is its overall execution time
and based on S , it can be calculated as

M.S/ D max
ti2V
fF Tig (6)

Let
.S/ represent all the used resources in S , and the
total required cost can be acquired via

C.S/ D
X

rl2
.S/

cl (7)

The makespan M.S/ and total cost C.S/ are two
crucial metrics when users deploy a workflow in the
cloud. A general way for users to address the tradeoff
between them is to minimize the usage cost under a
deadline constraint. Conventional studies, which merely
consider stable cloud resources, usually set a hard

deadline constraint that a schedule solution has to meet.
However, for volatile resources, M.S/ and C.S/ are
random variables, and a hard constraint means that it
needs to be met in all cases, including some extreme
ones, which is inconsistent with the user’s motivation
of using SIs for reducing costs. By contrast, with a
stochastic setting, it is much more reasonable and
practical to set a soft deadline constraint, indicating
that the probability of constraint satisfaction should be
maximized.

To have an effective evaluation of S , the execution
of S is simulated by sampling the random arrival time
of interruption and recording the makespan, cost, and
whether the user-specified deadline is met each time.
Given that the simulation is repeated N times, the
average cost C.S/ and deadline satisfaction ratio R.S/
of a solution S are calculated. Then, a utility function is
introduced to obtain an overall evaluation of S in terms
of the cost and deadline constraint satisfaction, as shown
below:

U.S/ D R.S/�=C .S/ (8)

where � 2 .0;1/ is the user’s preference degree for
constraint satisfaction, and a greater value indicates
a higher preference. Maximizing the utility function
signifies that the deadline constraint is met with a high
probability and the expected cost is low. Next, we present
a stochastic scheduling method to optimize this utility
function.

4 Methodology

Workflow scheduling is a well-known NP-hard
problem[46, 47]. This section presents the scheduling
method MCLS for deadline-constrained cost
optimization in volatile SIs. In the rest of this
section, we present an interruption-oblivious stochastic
list scheduling heuristic to build a schedule solution.
Then, we evaluate a solution with known interruption
time points in runtime. We also provide the details of
MCLS.

4.1 Stochastic list scheduling heuristic

List scheduling is a widely used heuristic for workflow
scheduling when the execution time of tasks on resources
is fixed and known a priori[10, 12, 13]. It consists of two
phases: construct a task list by assigning task priorities
and allocate each task from this list to the resources in
sequence. Below, we introduce two methods to generate
stochastic task sequences, and then present the detail for

118 Tsinghua Science and Technology, February 2024, 29(1): 112–126

resource allocation.

4.1.1 Task list generation
Several task properties have been proposed to rank
tasks in a workflow, such as the upward rank and static
level[5]. We choose to use the probabilistic upward rank
�i from Ref. [12] to order tasks as it is aware that data
transmission time may become zero when calculating
the transfer time in Eq. (3). Specifically, it is defined as
follows:
�i D max

tj2ti ’s children

˚
�j C �j � di;j =b

	
C wi=s

� (9)

where s� is the processing capability of the fastest
computation resource and �j is a Boolean variable
denoting whether the transmission time to tj is
considered when calculating �i . It is defined as

�j D

(
0; if 1 � '�ccrj < rand . /I

1; otherwise
(10)

where rand. / is a function returning a random number
in Œ0; 1/, ' is a parameter larger than 1, and ccrj is
the computation to the communication ratio of tj , i.e.,
.wj =s

�/=.di;j =b/. Hence, a smaller ccrj indicates that
the probability that �j returns 0 is greater, and vice versa.
Because �i may be different for each invocation, our
first method to construct a stochastic task sequence is
ordering tasks based on �i .

To enhance the search space and yield a good solution
for MCLS, we introduce the second stochastic task
sequence generation method. Precisely, it is designed
based on Kahn’s topological sort algorithm to ensure
that the precedency dependencies between tasks are
respected, and its detail is shown in Algorithm 1.

In Algorithm 1, M represents the set of ready tasks.
A task is ready when it has no precedence dependencies
from other tasks (i.e., incoming edges). In the beginning,
only the entry task tentry is ready. When M is not empty,
a task ti from M is randomly chosen and then removed
from M (Line 4). It is then appended to L, and all its
outgoing edges are removed (Lines 5–7). For ti ’s child
tasks whose incoming edges have all been removed, they
also become ready and are added toM (Lines 8–10). By
doing this, the precedency dependencies are respected
in L.

4.1.2 Resource allocation
In the resource allocation step, each task from the list
is sequentially allocated to a resource by comparing
all the candidate resources. Although the computation
resources offered by the cloud provider are claimed to be
infinite, it is unnecessary to try each of them for resource

Algorithm 1 Topological sort-based list generation
Input: workflow graph
Output: task list L

1: L ∅;M ∅;
2: Add tentry into M ;
3: while M ¤ ∅ do
4: ti choose and remove a task from M randomly;
5: Add ti to the tail of L;
6: for each edge ei;k from ti to tk do
7: Remove edge ei;k from the graph;
8: if tk has no incoming edge then
9: Add tk into M ;

10: end if
11: end for
12: end while
13: return L

selection as the unused resources of the same type can
be regarded as the same. Hence, the resource candidates
that need to be considered include all the resources that
have been used in the current solution and those that
have not been used but can be added at any time (one
resource for each type).

For traditional workflow scheduling models aiming to
optimize the makespan, the resource allocation criterion
is usually set to select a resource from all the resource
candidates, which allows the earliest finish time (e.g.,
HEFT[13] and PEFT[48]). The considered model aims
to achieve deadline-constrained cost optimization, and
the resource allocation step should be aware of the
deadline constraint and cost. To this end, the user-
specified deadline D for the workflow is first distributed
to each workflow task, and the criterion for selecting a
resource for task ti is updated as follows: meet ti ’s sub-
deadline and minimize the cost increment of adding ti .
Specifically, the sub-deadline of each task is calculated
based on �i via

ıi D D �
�entry � �i C wi=s

�

�entry
(11)

When no candidate resource meets the sub-deadline,
the selection criterion turns to minimizing the finish time
of the task instead. By doing so, the probability for the
whole workflow to meet the overall deadline is increased.

For brevity, the stochastic list scheduling heuristic
employing a �i -based task ordering before resource
allocation is denoted as SLS-I, and the one employing a
topological sort based ordering is denoted as SLS-II. A
topological sort based ordering has greater uncertainty
than a �i -based one, as the latter’s uncertainty only
comes from whether to calculate transfer time.

Quanwang Wu et al.: Monte Carlo Simulation-Based Robust Workflow Scheduling for Spot Instances in Cloud : : : 119

4.2 Solution evaluation with the predicted
interruption time

Given the predicted interruption time ˝ in runtime
for the used SIs in a schedule solution S , the actual
makespan M.S/ and cost C.S/ for the solution can be
acquired. The detail is given in Algorithm 2, where the
actual start time and finish time of each task are calculated
individually based on the task list (Lines 1–6). For each
task, the actual start time ASTi is first calculated via
Eq. (4) based on the actual finish time of its parent tasks
and the actual ready time of the resource rl where it is
allocated (Lines 2&3).

When ASTi C wi=sl is less than the predicted
interruption time Xl of SI rl obtained from ˝, rl can
finish executing ti without interruption. Otherwise, the
execution is interrupted, and ti is moved to an OI for
re-execution. If there is an OI that has been launched
and is currently free and it is not slower than rl , ti is
moved to this OI; otherwise, a new OI is launched for
re-executing ti . Then, ti ’s execution time and its actual
finish time AF Ti are calculated via Eqs. (2) and (5),
respectively. After traversing all the tasks in a workflow,
its actual makespan and cost are calculated and returned.

4.3 MCLS

The main procedure of MCLS follows the Monte
Carlo simulation framework, a popular approach for
various problems which involve stochastic factors and
are generally infeasible to resolve via deterministic
computations. MCLS consists of two main phases,
that is, “producing” and “selecting”. In the producing
phase, an independent sample is randomly taken from
the domain space for each random variable Xl , a list
scheduling method is leveraged to generate a schedule
solution based on random samples, and the above
steps are repeated until adequate candidate solutions
are generated. Then, in the selecting phase, candidate

Algorithm 2 Evaluate a solution
Input: solution S , predicted interruption time ˝
Output: actual makespan and cost

1: for each task ti in a task list do
2: Get the resource rl in S where ti is allocated;
3: Calculate ti ’s actual start time ASTi via Eq. (4);
4: Get the interruption time Xl of rl from ˝;
5: Calculate ti ’s execution time via Eq. (2), and actual finish

time AF Ti via Eq. (5);
6: end for
7: Calculate M.S/ via Eq. (6) and C.S/ via Eq. (7);
8: return M.S/ and C.S/

solutions are evaluated, and the best one is returned. The
whole algorithm of MCLS is described in Algorithm 3.

First, an empty solution pool P is created, and SLS-I
is performed to obtain a schedule solution S , which is
added to P (Lines 1&2). In the producing phase withNp
iterations, a sample of Xl is taken for all used SIs in S
based on their distribution functions, which is denoted as
˝, and then S is evaluated based on ˝ via Algorithm 2
to compute its makespan and cost values (Lines 3&4).

Next, SLS-II is performed to produce a new solution
S 0. The makespan and cost of S 0 are calculated based
on ˝. A new solution S 0 is regarded as better than S if
they both meet the deadline constraint and S 0 incurs less
cost or if one of them does not meet the deadline and
the makespan of S 0 is less than S . S 0 is added into P
if it is better than S . Based on the samples ˝, Nd new
solutions are built and evaluated, and this procedure is
repeated for Np times.

In the selecting phase, when jP j > Pmin, Ns samples
are taken from their distribution functions to evaluate
the candidate solutions in P (Lines 14–17). Then, for
each solution, its satisfaction rate and average cost are
calculated, and then the utility value is obtained (Line
18). Then, solutions in P whose ranks in terms of utility
value are lower than jP j=2 are removed. By doing

Algorithm 3 MCLS
Input: workflow and distribution function of Xl

Output: schedule solution
1: Create an empty solution pool P ;
2: Perform SLS-I to obtain solution S , and add it into P ;
3: while Np ! 0 do
4: Take a sample of Xl for used SIs in S , denoted as ˝;
5: Evaluate S based on ˝;
6: while Nd ! 0 do
7: Perform SLS-II to obtain S 0;
8: Evaluate S 0 based on ˝;
9: Add S 0 into P if S 0 is better than S ;

10: end while
11: Reset Nd ;
12: end while
13: while jP j > Pmin do
14: while Ns ! 0 do
15: Take a sample of Xl for used SIs, denoted as ˝;
16: Evaluate each solution S in P based on ˝;
17: end while
18: Calculate utility values of solutions in P via Eq. (8);
19: Sort solutions in P according to utility ascendingly;
20: Remove solutions from P with a rank 6 jP j=2;
21: Reset Ns ;
22: end while
23: return solution in P with the highest utility value

120 Tsinghua Science and Technology, February 2024, 29(1): 112–126

so, half of the solutions in P survive the evaluation
in the next round. When jP j 6 Pmin, the solution
with the highest average utility value is returned as the
final solution. The selection phase guarantees that the
performance of the returned solution is robust toward
various execution situations in runtime as it is the best
one validated by a large number of samplings and
evaluations.

MCLS builds Np � Nd schedule solutions in
total. To build each solution via list scheduling, the
computational complexity is O.n � .n C t //, where
n is the number of tasks in a workflow and t is
the number of resource types. As t is usually much
less than n, it can be simplified as O

�
n2
�
. The

computational complexity of the producing phase is
O.Np � Nd � n

2/. The computational complexity
of the selecting phase is O.log2 jP j � jP j � Ns �
n/ because P can be cut for log2 jP j times at
most, and an O.n/ time complexity is required for a
solution evaluation. Combining the above analysis, the
computational complexity of MCLS can be deduced, i.e.,
O
�
Np �Nd � n

2 C log2 jP j � jP j �Ns � n
�
.

5 Performance Evaluation

This section reports the experiments conducted to
validate the proposed method and discusses the key
findings.

5.1 Experimental setup

Experiments were conducted to evaluate the
performance of MCLS[49]. Specifically, experiments
were conducted on a PC with Intel Core i7 2.9 GHz,
16 GB RAM, Windows 10, and Java 10. We tested the
performance of MCLS through extensive evaluations
using four realistic scientific workflows, i.e., Montage,
Epigenomics, CyberShake, and SIPHT. These workflow
applications differ in terms of structure, communication
data, and computational characteristics, and they were
derived from the Pegasus project, which publishes
several realistic scientific workflow applications.
Figure 2 illustrates the general structures of these
workflows.

Because there is no existing method that completely
handles the same problem as this study, we mainly
adopted three deadline-constrained cost optimization
approaches for comparison, namely, IC-PCP[8], L-
ACO[12], and W-LA[10], which are originally designed
for OIs, and a robust workflow scheduling approach,
i.e., SDLS[44], which schedules precedence constrained
stochastic tasks. Precisely, they were adapted to use SIs,
and when an SI interruption occurred, an OI was used
for resubmission. Moreover, the original L-ACO, which
only uses OIs, was also compared (denoted as OD). The
parameters of these methods were set as suggested in
the literature. The parameters for MCLS were set based

Fig. 2 Structure of four real-world workflow applications.

Quanwang Wu et al.: Monte Carlo Simulation-Based Robust Workflow Scheduling for Spot Instances in Cloud : : : 121

on parameter tunings: Pmin is 4, Np is 20, Nd is 40, and
Ns is 100. Moreover, the Mersenne Twister was adopted
to simulate pseudorandom numbers for Monte Carlo
simulations. In our experiments, we assumed the use
of a data center offering nine types of cloud resources
with different processing capacities and costs. Each type
of cloud resource was provisioned in the on-demand
and spot pricing models. In the current SI market, SI
prices are smooth and predictable and do not change
in the short term. Hence, we consider a fixed cost for
SIs, and the SI price (denoted as costSI) is one-fourth
of that of OIs in the same type (denoted as costOI). A
long-term price prediction mechanism can be directly
incorporated, and the rationale of experiments remains
the same. The details of the cloud resources are listed
in Table 1, where the speed we used to characterize
the resources is represented as a multiple of the speed
of the standard resource, because tasks in the above
datasets are characterized by runtime on a standard
computation resource instead of task workloads. The
average bandwidth between computation resources was
set to 500 MBps, which is the approximate average
bandwidth in Amazon EC2 after it announced to increase
the instance network bandwidth. The time interval to
charge was set to 1 hour, also the same as that in Amazon
EC2.

SIs may be recycled by cloud providers at any time,
and we assume that the SI interruption follows an
exponential distribution with a rate parameter as it is the
maximum entropy probability distribution for a random
variable, which is not less than zero and with a fixed
expected value, and it is also the most widely used model
for describing the inter-arrival time length. Although the
rate parameter may change in a long-term trend, it can be
regarded as a fixed value in the short term. For the sake
of simplicity and focus, we introduce the parameter �
to represent the expected number of interruptions when
executing a workflow W on SIs. Let L be the total

Table 1 Capabilities and costs of available resource types.
Type Speed CostOI .$/ CostSI .$/

Type1 1.0 0.120 0.030 00
Type2 1.5 0.195 0.048 75
Type3 2.0 0.280 0.070 00
Type4 2.5 0.375 0.093 75
Type5 3.0 0.480 0.120 00
Type6 3.5 0.595 0.148 75
Type7 4.0 0.720 0.180 00
Type8 4.5 0.855 0.213 75
Type9 5.0 1.000 0.250 00

execution time of all tasks in W with the slowest type of
cloud resource. Accordingly, the rate parameter of the
exponential distribution is �=L.

To specify a deadline for each workflow, we introduce
two benchmarks: (1) cheap schedule, where only one OI
of the cheapest type is used, the workflow is scheduled
by the HEFT, and the resultant makespan is denoted as
MC ; and (2) fast schedule, where only the fastest type
of OIs is used, the workflow is also scheduled by the
HEFT, and the resultant makespan is denoted as MF. We
introduce the deadline factor ˇ.ˇ 2 Œ0; 1�/ to represent
the looseness degree of deadlines, and the deadline of
a workflow is determined based on ˇ as shown in the
following:

D DMF C .MC �MF / � ˇ (12)

Due to the randomness of experiments, all the
approaches were repeated 100 times in each case, and
the average result is reported here.

5.2 Results

To test the performance of MCLS in different settings,
we first fixed the parameters � to 1.0 and ˇ to 0.03, and
set � to 0.5, 1, and 2. The utility, SR, and cost values of
each approach for each workflow are listed in Table 2,
where the best result of utility in each case is highlighted
in bold.

In Table 2, the utility, SR, and cost values vary largely
for different workflows. For example, the utility value of
each approach is less than 0.1 for Montage but may be
larger than 1 for Epigenomics, and the cost is less than
2 for Epigenomics but larger than 10 for Montage and
CyberShake. The OD achieves the highest SR among
all the peers, but it incurs a very high cost because
of the use of OIs. Its utility value is the lowest for
all workflows except SIPHT, verifying that it is quite
effective to improve the user utility by using OIs and SIs.
The SDLS performs similarly to OD: a high SR value
and a high cost. The utility values of L-ACO and IC-PCP
are higher than those of the SDLS and OD but lower than
that of MCLS. MCLS achieves the highest utility value
in each case, indicating that it achieves the best tradeoff
between the SR and cost. Concretely, MCLS attains the
lowest monetary cost and a relatively high success ratio.
When � D 2, it obtains an SR value only 5% lower than
that of the OD on average, but the cost is reduced by 74%
in return. Moreover, with the increase in � for MCLS,
the SR arises with the expense of the cost value.

Then, we fixed the parameters � to 1 and ˇ to 0.005,
and varied � from 0.2 to 3.0 at a step of 0.2. The utility

122 Tsinghua Science and Technology, February 2024, 29(1): 112–126

Table 2 Utility, SR, and cost of each approach with respect to���.

Application Method
� D 0:5 � D 1:0 � D 2:0

Utility SR Cost ($) Utility SR Cost ($) Utility SR Cost ($)

Montage

MCLS 0.054 0.95 18.075 0.053 0.97 18.054 0.051 0.98 18.114
L-ACO 0.051 0.95 19.254 0.052 0.98 19.974 0.048 0.96 19.084
IC-PCP 0.044 1.00 22.963 0.044 1.00 22.773 0.044 1.00 22.912
W-LA 0.042 0.99 23.418 0.044 1.00 22.960 0.043 1.00 23.012
SDLS 0.017 1.00 59.146 0.017 1.00 59.417 0.017 1.00 59.500

OD 0.014 1.00 71.973 0.014 1.00 73.155 0.014 1.00 72.095

Epigenomics

MCLS 2.465 0.91 0.387 2.239 0.92 0.441 2.191 0.94 0.403
L-ACO 2.217 0.91 0.430 2.049 0.92 0.449 2.017 0.94 0.438
IC-PCP 2.029 0.92 0.473 1.909 0.93 0.487 1.964 0.97 0.479
W-LA 1.794 0.92 0.535 1.642 0.91 0.554 1.641 0.94 0.539
SDLS 1.048 0.97 0.940 1.015 0.97 0.956 0.993 0.97 0.948

OD 0.658 1.00 1.520 0.646 1.00 1.548 0.650 1.00 1.548

CyberShake

MCLS 0.078 0.93 12.44 0.079 0.94 11.894 0.082 0.96 11.208
L-ACO 0.067 0.87 13.842 0.068 0.90 13.232 0.068 0.94 13.019
IC-PCP 0.067 0.96 14.574 0.064 0.90 13.965 0.068 0.97 13.799
W-LA 0.063 0.91 15.246 0.062 0.89 14.291 0.061 0.93 14.115
SDLS 0.022 0.98 45.917 0.021 0.95 45.896 0.220 0.99 45.208

OD 0.021 1.00 47.992 0.021 1.00 48.512 0.021 1.00 48.403

SIPHT

MCLS 0.507 0.78 1.741 0.557 0.84 1.509 0.481 0.85 1.502
L-ACO 0.463 0.72 1.831 0.498 0.79 1.586 0.401 0.80 1.594
IC-PCP 0.344 0.79 2.586 0.335 0.84 2.505 0.283 0.84 2.491
W-LA 0.441 0.79 2.017 0.476 0.84 1.764 0.410 0.84 1.720
SDLS 0.050 0.88 18.700 0.048 0.89 18.508 0.041 0.87 18.585

OD 0.210 0.99 4.740 0.208 0.98 4.710 0.214 1.00 4.679

value of each method for different workflows is depicted
in Fig. 3. OD is not included here as it is only used
for OIs. The first impression we can derive from Fig. 3
is that with the increase of �, the utility value in each
case generally falls down with a little fluctuation. This
is because when there are more interruptions during the
execution of a workflow, the required makespan and cost
become larger, and the SR value becomes lower. For
each workflow and each case of �, MCLS achieves the
highest utility value among all the methods, indicating
that it performs the best in terms of the required cost and
success rate.

Afterward, we varied ˇ from 0.01 to 0.05 with a step
of 0.005, and the experimental result is depicted in Fig. 4.
The SDLS is not included here as it is oblivious to ˇ. In
Fig. 4, the utility value rises up with the increase in ˇ in
most cases. That is because when the deadline becomes
looser, the required cost declines, and the success rate
grows. In general, MCLS outperforms L-ACO, and the
latter outperforms IC-PCP in terms of utility value. For
example, when ˇ is 0.02, the utility value of MCLS is
close to 2.0 for Epigenomics, whereas those of L-ACO
and IC-PCP are lower than 1.8. The results verify that

MCLS can find more competitive solutions with a high
success rate and low cost in volatile cloud resources.

6 Conclusion

In this paper, we present a robust workflow scheduling
method called MCLS to minimize the execution cost
under a user-specified soft deadline for SIs in cloud
environments. Based on a Monte Carlo simulation
framework, the MCLS employs a sampled task execution
time to produce candidate solutions based on deadline
distribution and list scheduling. It returns the most
robust one as the output from the solution pool with
a specific evaluation mechanism and selection criteria.
Experimental results show that the MCLS achieves
higher utility values than some traditional algorithms.
The results also verify that it is very promising to
combine SIs with OIs for executing workflows, as the
monetary cost is largely reduced at the expense of
a slight decrease in the success ratio. In the future,
we plan to design scheduling techniques for running
more diverse applications in SIs, e.g., bag-of-tasks. We
are also interested in designing long-term scheduling
strategies for SIs where the long-term price change of
SIs should be considered.

Quanwang Wu et al.: Monte Carlo Simulation-Based Robust Workflow Scheduling for Spot Instances in Cloud : : : 123

Fig. 3 Utility value of each approach with respect to ���.

Fig. 4 Utility value of each approach with respect to ˇ̌̌ .

Acknowledgment

This work was supported by the National Natural Science
Foundation of China (Nos. 62172065 and 62072060)

and the Natural Science Foundation of Chongqing (No.
cstc2020jcyj-msxmX0137).

124 Tsinghua Science and Technology, February 2024, 29(1): 112–126

References

[1] J. Sahni and D. P. Vidyarthi, A cost-effective deadline-
constrained dynamic scheduling algorithm for scientific
workflows in a cloud environment, IEEE Trans. Cloud
Comput., vol. 6, no. 1, pp. 2–18, 2018.

[2] L. Zheng, C. Joe-Wong, C. W. Tan, M. Chiang, and X. Y.
Wang, How to bid the cloud, ACM SIGCOMM Comput.
Commun. Rev., vol. 45, no. 4, pp. 71–84, 2015.

[3] B. Javadi, R. K. Thulasiram, and R. Buyya, Characterizing
spot price dynamics in public cloud environments, Future
Gener. Comput. Syst., vol. 29, no. 4, pp. 988–999, 2013.

[4] S. Mandal, G. Maji, S. Khatua, and R. K. Das,
Cost minimizing reservation and scheduling algorithms
for public clouds, IEEE Trans. Cloud Comput., doi:
10.1109/TCC.2021.3133464.

[5] M. Adhikari, T. Amgoth, and S. N. Srirama, A survey on
scheduling strategies for workflows in cloud environment
and emerging trends, ACM Comput. Surv., vol. 52, no. 4, p.
68, 2019.

[6] D. Poola, K. Ramamohanarao, and R. Buyya, Enhancing
reliability of workflow execution using task replication and
spot instances, ACM Trans. Auton. Adapt. Syst., vol. 10, no.
4, p. 30, 2016.

[7] D. W. Wei, H. S. Ning, F. F. Shi, Y. L. Wan, J. B. Xu, S.
K. Yang, and L. Zhu, Dataflow management in the internet
of things: Sensing, control, and security, Tsinghua Science
and Technology, vol. 26, no. 6, pp. 918–930, 2021.

[8] S. Abrishami, M. Naghibzadeh, and D. H. J. Epema,
Deadline-constrained workflow scheduling algorithms for
infrastructure as a service clouds, Future Gener. Comput.
Syst., vol. 29, no. 1, pp. 158–169, 2013.

[9] V. Arabnejad, K. Bubendorfer, and B. Ng, Budget and
deadline aware e-science workflow scheduling in clouds,
IEEE Trans. Parallel Distrib. Syst., vol. 30, no. 1, pp. 29–44,
2019.

[10] L. W. Yang, L. J. Ye, Y. Q. Xia, and Y. F. Zhan, Look-ahead
workflow scheduling with width changing trend in clouds,
Future Gener. Comput. Syst., vol. 139, pp. 139–150, 2023.

[11] M. A. Rodriguez and R. Buyya, Deadline based
resource provisioningand scheduling algorithm for scientific
workflows on clouds, IEEE Trans. Cloud Comput., vol. 2,
no. 2, pp. 222–235, 2014.

[12] Q. W. Wu, F. Ishikawa, Q. S. Zhu, Y. N. Xia, and J. H.
Wen, Deadline-constrained cost optimization approaches
for workflow scheduling in clouds, IEEE Trans. Parallel
Distrib. Syst., vol. 28, no. 12, pp. 3401–3412, 2017.

[13] H. R. Faragardi, M. R. S. Sedghpour, S. Fazliahmadi,
T. Fahringer, and N. Rasouli, GRP-HEFT: A budget-
constrained resource provisioning scheme for workflow
scheduling in IaaS clouds, IEEE Trans. Parallel Distrib.
Syst., vol. 31, no. 6, pp. 1239–1254, 2020.

[14] H. Topcuoglu, S. Hariri, and M. Y. Wu, Performance-
effective and low-complexity task scheduling for
heterogeneous computing, IEEE Trans. Parallel Distrib.
Syst., vol. 13, no. 3, pp. 260–274, 2002.

[15] R. Ghafouri, A. Movaghar, and M. Mohsenzadeh, A budget
constrained scheduling algorithm for executing workflow
application in infrastructure as a service clouds, Peer-to-
Peer Netw. Appl., vol. 12, no. 1, pp. 241–268, 2019.

[16] N. Rizvi and D. Ramesh, Fair budget constrained workflow
scheduling approach for heterogeneous clouds, Cluster
Comput., vol. 23, no. 4, pp. 3185–3201, 2020.

[17] J. J. Durillo and R. Prodan, Multi-objective workflow
scheduling in Amazon EC2, Cluster Comput., vol. 17, no.
2, pp. 169–189, 2014.

[18] Q. W. Wu, M. C. Zhou, Q. S. Zhu, Y. N. Xia, and J. H.
Wen, MOELS: Multiobjective evolutionary list scheduling
for cloud workflows, IEEE Trans. Autom. Sci. Eng., vol. 17,
no. 1, pp. 166–176, 2020.

[19] X. M. Zhou, G. X. Zhang, J. Sun, J. L. Zhou, T. Q. Wei,
and S. Y. Hu, Minimizing cost and makespan for workflow
scheduling in cloud using fuzzy dominance sort based
HEFT, Future Gener. Comput. Syst., vol. 93, pp. 278–289,
2019.

[20] L. Dierks and S. Seuken, Cloud pricing: The spot market
strikes back, Manage. Sci., vol. 68, no. 1, pp. 105–122,
2022.

[21] O. A. Ben-Yehuda, M. Ben-Yehuda, A. Schuster, and D.
Tsafrir, Deconstructing Amazon EC2 spot instance pricing,
ACM Trans. Econ. Comput., vol. 1, no. 3, p. 16, 2013.

[22] G. J. Portella, G. N. Rodrigues, E. Y. Nakano, A. Boukerche,
and A. C. M. Melo, A novel statistical and neural network
combined approach for the cloud spot market, IEEE Trans.
Cloud Comput., doi: 10.1109/TCC.2021.3091936.

[23] J. Li, Y. M. Zhu, J. D. Yu, C. N. Long, G. T. Xue, and S. Y.
Qian, Online auction for IaaS clouds: Towards elastic user
demands and weighted heterogeneous VMs, IEEE Trans.
Parallel Distrib. Syst., vol. 29, no. 9, pp. 2075–2089, 2018.

[24] W. Voorsluys and R. Buyya, Reliable provisioning of spot
instances for compute-intensive applications, in Proc. 2012
IEEE 26th Int. Conf. Advanced Information Networking and
Applications, Fukuoka, Japan, 2012, pp. 542–549.

[25] X. He, P. Shenoy, R. Sitaraman, and D. Irwin, Cutting the
cost of hosting online services using cloud spot markets,
in Proc. 24th Int. Symp. High-Performance Parallel and
Distributed Computing, Portland, OR, USA, 2015, pp. 207–
218.

[26] S. Yang, S. Khuller, S. Choudhary, S. Mitra, and K.
Mahadik, Scheduling ML training on unreliable spot
instances, in Proc. 14th IEEE/ACM Int. Conf. Utility and
Cloud Computing Companion, Leicester, UK, 2021, p. 29.

[27] L. Teylo, A. L. Nunes, A. C. M. A. Melo, C. Boeres, L. M.
de A. Drummond, and N. F. Martins, Comparing SARS-
CoV-2 sequences using a commercial cloud with a spot
instance based dynamic scheduler, in Proc. 2021 IEEE/ACM
21st Int. Symp. Cluster, Cloud and Internet Computing
(CCGrid), Melbourne, Australia, 2021, pp. 247–256.

[28] F. Xu, H. Y. Zheng, H. Jiang, W. J. Shao, H. K. Liu,
and Z. Zhou, Cost-effective cloud server provisioning for
predictable performance of big data analytics, IEEE Trans.
Parallel Distrib. Syst., vol. 30, no. 5, pp. 1036–1051, 2019.

Quanwang Wu et al.: Monte Carlo Simulation-Based Robust Workflow Scheduling for Spot Instances in Cloud : : : 125

[29] S. J. Cao, K. F. Deng, K. J. Ren, X. Y. Li, T. F. Nie,
and J. Q. Song, An optimizing algorithm for deadline
constrained scheduling of scientific workflows in IaaS
clouds using spot instances, in Proc. 2019 IEEE Int. Conf.
Parallel and Distributed Processing with Applications,
Big Data and Cloud Computing, Sustainable Computing
and Communications, Social Computing and Networking
(ISPA/BDCloud/SocialCom/SustainCom), Xiamen, China,
2019, pp. 1421–1428.

[30] R. G. Martinez, A. Lopes, and L. Rodrigues, Planning
workflow executions when using spot instances in the cloud,
in Proc. 34th ACM/SIGAPP Symp. Applied Computing,
Limassol, Cyprus, 2019, pp. 310–317.

[31] H. Ghavamipoor, S. A. K. Mousavi, H. R. Faragardi, and
N. Rasouli, A reliability aware algorithm for workflow
scheduling on cloud spot instances using artificial neural
network, in Proc. 2020 10th Int. Symp. Telecommunications
(IST), Tehran, Iran, 2020, pp. 67–71.

[32] G. George, R. Wolski, C. Krintz, and J. Brevik, Analyzing
AWS spot instance pricing, in Proc. 2019 IEEE Int. Conf.
Cloud Engineering (IC2E), Prague, Czech Republic, 2019,
pp. 222–228.

[33] A. C. Zhou, J. M. Lao, Z. B. Ke, Y. Wang, and R. Mao,
FarSpot: Optimizing monetary cost for HPC applications in
the cloud spot market, IEEE Trans. Parallel Distrib. Syst.,
vol. 33, no. 11, pp. 2955–2967, 2022.

[34] L. Teylo, L. Arantes, P. Sens, and L. M. A. Drummond, A
dynamic task scheduler tolerant to multiple hibernations in
cloud environments, Cluster Comput., vol. 24, no. 2, pp.
1051–1073, 2021.

[35] T. P. Pham and T. Fahringer, Evolutionary multi-objective
workflow scheduling for volatile resources in the cloud,
IEEE Trans. Cloud Comput., vol. 10, no. 3, pp. 1780–1791,
2022.

[36] F. Cao and M. X. Zhu, A fault-tolerant workflow
mapping algorithm under end-to-end delay constraint, in
2011 IEEE Int. Conf. High Performance Computing and
Communications, Banff, Canada, 2011, pp. 575–580.

[37] H. Youness, A. Omar, and M. Moness, An optimized
weighted average makespan in fault-tolerant heterogeneous
MPSoCs, IEEE Trans. Parallel Distrib. Syst., vol. 32, no. 8,
pp. 1933–1946, 2021.

[38] G. S. Yao, Y. S. Ding, and K. R. Hao, Using imbalance
characteristic for fault-tolerant workflow scheduling in
cloud systems, IEEE Trans. Parallel Distrib. Syst., vol. 28,
no. 12, pp. 3671–3683, 2017.

[39] D. Poola, S. K. Garg, R. Buyya, Y. Yang, and K.
Ramamohanarao, Robust scheduling of scientific workflows
with deadline and budget constraints in clouds, in
Proc. 2014 IEEE 28th Int. Conf. Advanced Information
Networking and Applications, Victoria, Canada, 2014, pp.
858–865.

[40] J. Zhou, Y. Zhang, and W. F. Wong, Fault tolerant stencil
computation on cloud-based GPU spot instances, IEEE
Trans. Cloud Comput., vol. 7, no. 4, pp. 1013–1024, 2019.

[41] L. C. Canon and E. Jeannot, Evaluation and optimization
of the robustness of DAG schedules in heterogeneous
environments, IEEE Trans. Parallel Distrib. Syst., vol. 21,
no. 4, pp. 532–546, 2010.

[42] W. Zheng and R. Sakellariou, Stochastic DAG scheduling
using a Monte Carlo approach, J. Parallel Distrib. Comput.,
vol. 73, no. 12, pp. 1673–1689, 2013.

[43] X. Y. Tang, K. L. Li, G. P. Liao, K. Fang, and F. Wu, A
stochastic scheduling algorithm for precedence constrained
tasks on grid, Future Gener. Comput. Syst., vol. 27, no. 8,
pp. 1083–1091, 2011.

[44] K. L. Li, Li, X. Y. Tang, B. Veeravalli, and K. Q. Li,
Scheduling precedence constrained stochastic tasks on
heterogeneous cluster systems, IEEE Trans. Comput., vol.
64, no. 1, pp. 191–204, 2015.

[45] T. P. Pham, S. Ristov, and T. Fahringer, Performance and
behavior characterization of amazon EC2 spot instances,
in Proc. 2018 IEEE 11th Int. Conf. Cloud Computing
(CLOUD), San Francisco, CA, USA, 2018, pp. 73–81.

[46] H. Wang, L. Cai, X. Hao, J. Ren, and Y. H. Ma, ETS-
TEE: An energy-efficient task scheduling strategy in a
mobile trusted computing environment, Tsinghua Science
and Technology, vol. 28, no. 1, pp. 105–116, 2023.

[47] Z. Y. Hu and D. S. Li, Improved heuristic job scheduling
method to enhance throughput for big data analytics,
Tsinghua Science and Technology, vol. 27, no. 2, pp. 344–
357, 2022.

[48] H. Arabnejad and J. G. Barbosa, List scheduling algorithm
for heterogeneous systems by an optimistic cost table, IEEE
Trans. Parallel Distrib. Syst., vol. 25, no. 3, pp. 682–694,
2014.

[49] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De
Rose, and R. Buyya, CloudSim: A toolkit for modeling and
simulation of cloud computing environments and evaluation
of resource provisioning algorithms, Softw.: Pract. Exper.,
vol. 41, no. 1, pp. 23–50, 2011.

Quanwang Wu received the BEng, MEng,
and PhD degrees in computer science from
Chongqing University, China in 2007, 2010,
and 2013, respectively. He was a special
researcher at the Digital Content and Media
Sciences Research Division of the National
Institute of Informatics (NII) in Tokyo,
Japan from 2014 to 2015. He is currently an

associate professor at Chongqing University, Chongqing, China.
His main research interests include service-oriented computing,
cloud computing, and data mining.

Jianzhao Fang received the BEng degree
from Harbin University of Science and
Technology, China in 2017. He is currently
a master student in computer science
and engineering at Chongqing University.
His main research interests include cloud
computing, computational intelligence, and
data mining.

126 Tsinghua Science and Technology, February 2024, 29(1): 112–126

Jie Zeng received the MEng degree from
Chongqing University, China in 2016. She
is currently a researcher at the National
Experimental Teaching Demonstration
Center, Chongqing University, China.
Her main research interests include
environmental data analysis and intelligent
scheduling.

Junhao Wen received the PhD degree
from Chongqing University, China in 2008,
where he is a professor at the College
of Big Data and Software Engineering.
His research interests include service
computing, cloud computing, and software
dependable engineering. He has published
over 80 refereed journal and conference

papers in the above areas. He has over 30 research and industrial
grants, and developed many commercial systems and software
tools.

Fengji Luo received the BEng and MEng
degrees in software engineering from
Chongqing University, China in 2006 and
2009, respectively, and the PhD degree in
electrical engineering from The University
of Newcastle, Australia in 2014. Currently,
he is a lecturer and academic fellow at
the School of Civil Engineering, The

University of Sydney, Australia. His research interests include
smart grid, energy informatics, and computational intelligence.

