
TSINGHUA SCIENCE AND TECHNOLOGY
ISSNll1007-0214 11/22 pp127–142
DOI: 10 .26599 /TST.2023 .9010005
Volume 29, Number 1, February 2024

C The author(s) 2024. The articles published in this open access journal are distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

Malware Evasion Attacks Against IoT and Other Devices:
An Empirical Study

Yan Xu, Deqiang Li, Qianmu Li�, and Shouhuai Xu

Abstract: The Internet of Things (IoT) has grown rapidly due to artificial intelligence driven edge computing. While

enabling many new functions, edge computing devices expand the vulnerability surface and have become the target

of malware attacks. Moreover, attackers have used advanced techniques to evade defenses by transforming their

malware into functionality-preserving variants. We systematically analyze such evasion attacks and conduct a

large-scale empirical study in this paper to evaluate their impact on security. More specifically, we focus on two

forms of evasion attacks: obfuscation and adversarial attacks. To the best of our knowledge, this paper is the first to

investigate and contrast the two families of evasion attacks systematically. We apply 10 obfuscation attacks and 9

adversarial attacks to 2870 malware examples. The obtained findings are as follows. (1) Commercial Off-The-Shelf

(COTS) malware detectors are vulnerable to evasion attacks. (2) Adversarial attacks affect COTS malware detectors

slightly more effectively than obfuscated malware examples. (3) Code similarity detection approaches can be

affected by obfuscated examples and are barely affected by adversarial attacks. (4) These attacks can preserve the

functionality of original malware examples.

Key words: Android malware; obfuscation; adversarial examples

1 Introduction

Incorporating edge devices and Artificial Intelligence
(AI) has facilitated important advances in the Internet
of Things (IoT) domain[1, 2]. The wide employment
of IoT devices generates considerable amounts of
data[3–6]; thus, traditional cloud computing fails to
meet the corresponding demands because of insufficient
communication bandwidths and privacy issues. The

�Yan Xu and Qianmu Li are with School of Computer
Science and Engineering, Nanjing University of Science
and Technology, Nanjing 210094, China. E-mail: fxuyan,
qianmug@njust.edu.cn.
�Deqiang Li is with School of Computer Science, Nanjing

University of Posts and Telecommunications, Nanjing 210023,
China. E-mail: lideqiang@njupt.edu.cn.
� Shouhuai Xu is with Department of Computer Science,

University of Colorado Colorado Springs, Colorado Springs,
CO 80918, USA. E-mail: sxu@uccs.edu.

* To whom correspondence should be addressed.
Manuscript received: 2022-12-01; revised: 2023-01-05;
accepted: 2023-01-25

notion of edge computing can be leveraged to offload
tasks from data centers to edge devices, such as cell
phones[7, 8] and personal computers[9, 10], to address the
aforementioned issues. Correspondingly, AI algorithms
have been adapted to edge devices[11], which may
only have limited computational power, unstable
networking capabilities, and rapidly changing context
environments[11–15].

Similar to other kinds of computer systems, edge
computing devices are equally vulnerable to various
attacks[16–19]. With the increasing storage and use of
enterprise data on edge computing devices, these devices
will be the major targets of attacks (if not already). One
family of cyber threats against edge computing devices
is malware. As reported in Ref. [20], the number of
malware attacks that target IoT devices reached 56.9
million in 2020, demonstrating an increase of 66%
over 2019. Efforts to mitigate the impact of malware,
including various Machine Learning (ML) based[21, 22]

malware detectors, already exist. However, attackers

128 Tsinghua Science and Technology, February 2024, 29(1): 127–142

can intentionally transform or manipulate malware
examples into some variants, which can evade malware
detectors effectively. These attacks are known as evasion
attacks[23, 24].

Two major families or classes of evasion attacks
are available: obfuscation and adversarial examples.
(1) Obfuscation attempts to transform malware
examples, preserving functionality but complicating
the analysis or understanding of codes[23, 25–30]. There
are many readily usable obfuscation tools that can
automatically obfuscate software code (e.g., reflection
and renaming[25, 26]). Obfuscated malware examples may
be effective against detectors that leverage static analysis
techniques but not against those that leverage dynamic
analysis techniques. (2) Adversarial malware examples
have become a popular approach to evading ML-based
detectors[24, 31–33]. This approach is often conducted by
perturbing a malware example in the feature space and
then generating a variant malware example according to
the manipulated feature values.

Some studies have analyzed the effectiveness of these
attacks[23, 29, 30, 34]. However, there is no systematic study
comparing and contrasting the effectiveness of the two
classes of attacks. We attempt to fill this void in this
paper.

1.1 Our contributions

We empirically evaluate how the two aforementioned
classes of attacks may affect IoT and edge computing
security. Specifically, we focus on addressing the
following questions: (1) How effective are these attacks
against Commercial Off-The-Shelf (COTS) malware
detectors? (2) How effective are these attacks against
code similarity detection approaches? (3) Do these
attacks preserve the functionality of the original malware
examples?

In order to answer these questions, we use Android
malware to conduct our empirical study because Android
is a major platform for mobile devices and many
applications can be achieved by leveraging Android
devices and edge computing devices. Specifically, we
consider 10 obfuscation techniques and 9 adversarial
malware attacks. The 10 obfuscation techniques are as
follows: Class Renaming (CR), Field Renaming (FR),
Control Flow (CF), String Encryption (SE), reflection
(namely RFL), NOP insertion (namely NOP), Method
Renaming (MR), API insertion (namely AINS), Class
Insertion (CI), and Permission Insertion (PI). These
techniques are scattered in software tools or reported in

Refs. [23, 25, 26, 29, 30]. Nine adversarial malware
attacks include: Bit Coordinate Ascent (BCA)[35],
Bit Gradient Ascent (BGA)[35], Projected Gradient
Descent (PGD)[36, 37], Jacobian-based Saliency Map
Attack (JSMA)[33, 38], Grosse[32], Gradient Descent with
Kernel Density Estimation (GDKDE)[39], Pointwise[40],
Salt+Pepper[40], and Mimicry[41].

We analyze the aforementioned obfuscation and
adversarial attack techniques considering two Android
malware datasets[42]: Drebin[21] and Androzoo[43].
From the Drebin dataset, we randomly select 1108
Android malware examples and use the aforementioned
techniques to generate 10 410 obfuscated and 9564
adversarial examples. From the Androzoo dataset,
we randomly select 1762 Android malware examples
and similarly generate 17 530 obfuscated examples
and 15 854 adversarial examples. Our findings are
presented as follows. (1) COTS malware detectors
offered by VirusTotal can be evaded by evasion attacks.
(2) Adversarial malware examples are slightly more
effective in evading COTS malware detectors than
their obfuscated counterparts. The effectiveness can
be attributed to the learning process, which enables
adversarial attacks to explore more evasive features
than obfuscation attacks. (3) Code similarity detection
approaches can be affected by obfuscation attacks but
are slightly affected by adversarial attacks. This means
that the degree of perturbations incurred by adversarial
attacks is smaller than its counterpart incurred by
obfuscation techniques. This finding also suggests that
using global representation is more reasonable to defend
against adversarial attacks than obfuscated examples,
which could be leveraged to design future malware
detectors. (4) Obfuscated and adversarial malware
examples preserve the functionality of original malware
to a similar extent.

1.2 Paper outline

The rest of the paper is organized as follows. We review
some background knowledge in Section 2. We describe
our empirical study design in Section 3. We present our
experiments and results in Section 4. Section 5 discusses
the results and Section 6 presents the threats to validity.
We conclude the paper in Section 7.

2 Background Knowledge

We review Android applications, malware detectors, and
evasion attacks (including obfuscated and adversarial
attacks) in this section.

Yan Xu et al.: Malware Evasion Attacks Against IoT and Other Devices: An Empirical Study 129

2.1 Android applications

An Android app is a set of binary files that can
be decompiled (and then recompiled) by using an
appropriate reverse engineering tool (e.g., Apktool�. An
Android app often contains the following.
� Dalvik bytecodes are files in the .dex format.

These files contain bytecodes implementing the
functionalities of the app and can be recognized by an
Android virtual machine (e.g., Android Runtime).
� AndroidManifest. xml states the necessary

information required by an app, including the package
name, Android components, permissions, and hardware
supports.
� Resources are located in the res folder and are

related to the layout and strings of an app.
� Assets are stored in the assets folder and contain

the files (e.g., web pages) that are not compiled when
building an app.
� Libraries are stored in the lib folder, and

comprise complied and platform-dependent libraries.
Attackers can edit an Android app via reverse

engineering tools without having access to the
source code. For example, Apktool can decode
AndroidManifest.xml and disassemble Dalvik bytecodes
into smali codes, which is a simplified format for
reading disassembled bytecode. The modifications are
performed in a certain way such that the modified files
can be recompiled to a new APK.

2.2 Android malware detectors

Let Z denote the set of possible Android apps, Y D
f0; 1g denote the label space, where “0” (“1”) means
an app is benign (malicious). Let X denote the feature
representation space of Android apps, � W Z ! X
denote the feature extractor that maps an app z 2 Z to
the representation space X ; that is, �.z/ D x for some
x 2 X . Let f W Z ! Y denote an ML-based malware
detector, which takes as input an Android app z 2 Z and
outputs a label y 2 Y . An ML-based malware detector
is a classifier,

f D arg max
j2Y

F� .�.z//j (1)

where F� W X ! RjYj has a learnable parameter set �
and outputs a confidence score F� .x/j corresponding to
the label j 2 Y .

2.3 Modeling obfuscation and adversarial example
attacks

Let M be the set of possible transformations in the

� https://ibotpeaches.github.io/Apktool/.

feature space that can be applied to a malicious app
without changing its functionality. Given a malware
example z and a target malware detector f , an evasion
attack attempts to manipulate z into z0; therefore f will
predict z0 as benign. That is,

z0 z ˚ ı;

s.t., .f .z0/ D 0/ ^ .f .z/ D 1/ ^ .ı �M/ (2)

where˚ denotes the operator of applying perturbation ı
to z.

We consider two classes of evasion attacks:
obfuscation attacks versus adversarial attacks. An
obfuscation attack transforms an app into a functionally
equivalent one. For example, many obfuscation tools
(or obfuscators) are available, which may conduct class
renaming, string encryption, and/or debug information
removal[23, 25, 26]. Let Mo � M denote the set of
possible obfuscation transformations. An obfuscation
attack can then be denoted as

z0 z ˚ ıo (3)

where 9 ıo �Mo:

By contrast, an adversarial attack transforms an app
into a functionally equivalent variant, to evade certain
specified malware detectors (e.g., f). In particular, the
attacker learns a surrogate model Of of detector f [41]

to facilitate the generation of an adversarial example,
where Of D f if the attacker has access to f . Let
Ma � M denote the set of possible adversarial
example transformations. An adversarial example attack
can be described as follows:

z0 z ˚ ıa;

s.t., . Of .z0/ D 0/ ^ . Of .z/ D 1/ ^ .ıa �Ma/ (4)

Comparison results of Formulas (3) and (4) reveal
that obfuscation and adversarial attacks are different
in two aspects: (1) they use different transformation
sets, namely Mo vs. Ma; (2) they utilize different
strategies to select specific operations and contents
for modifications. Considering the transformation set,
Table 1 summarizes the transformation sets Mo and
Ma which have been proposed in Refs. [23, 25, 26,
29, 30, 32, 33, 36, 41, 44–47]. Results show that 9
transformations apply to both attacks, but the other 10
transformations only apply to one of the two attacks.

Specifically, Mo is often performed on
AndroidManifest. xml (e.g., PI), classes. dex (e.g., SE)
and other files (e.g., NCE), but Ma is only conducted
on AndroidManifest. xml and/or classes. dex. Moreover,
some transformations (e.g., RE and NOP) are popular

130 Tsinghua Science and Technology, February 2024, 29(1): 127–142

Table 1 Summary of the transformations that have been used by obfuscation attacks and/or adversarial attacks reported
in Refs. [23, 25, 26, 29, 30, 32, 33, 36, 41, 44–47]. “Abbr.” stands for “Abbrevation”. One transformation can manipulate
AndroidManifest. xml (dubbed “X” for short), classes.dex (dubbed “D” for short), or other files (dubbed “O” for short) by using
either an insertion operation (dubbed “I” for short), removal operation (“R”), or both. We use “XXX” (“���”) to indicate that a
specific transformation is (not) applicable to accomplishing an “I” or “R” operation of a certain file. We list the references of
obfuscation/adversarial attacks that apply the specific transformation. We use “ııı” to indicate that the specific transformation is
not implemented by an obfuscation/adversarial attack.

Transformation Abbr. Description
Operation File Obfuscation

attack
Adversarial

attackI R X D O
Manifest randomization ManR Randomize entries in AndroidManifest. xml X X X � � Ref. [26] ı

Hardware insertion HI Add unused hardware X � X � � ı Ref. [32]
Permission insertion PI Add unused permission X � X � � Ref. [25] Refs. [41, 47]
Component insertion CompI Declare new component X � X � � Ref. [25] Ref. [32]

Intent insertion IntI Declare new intent X � X � � Ref. [23] Refs. [32, 47]
Class insertion CI Insert dead class X � X � � Ref. [25] Ref. [33]
API insertion AINS Insert API X � � X � Ref. [25] Refs. [33, 47]

String insertion SI Insert string X � � X � Ref. [30] Refs. [33, 41]
NOP insertion NOP Insert “nop” instruction X � � X � Refs. [26, 29, 44] ı

Control flow CF Insert conditional/loop instruction X � � X � Refs. [29, 46] ı

Members reordering MBR Reorder variables/method X X � X � Refs. [26, 44] ı

Reflection RFL Replace invoke-type instruction by reflection X X � X � Refs. [29, 30] Ref. [36]
Field renaming FR Rename field X X � X � Ref. [44] ı

Method renaming MR Rename method X X � X � Ref. [26] ı

Class renaming CR Rename package and/or class X X X X � Refs. [26, 29] Ref. [36]
String encryption SE Encrypt string X X � X � Ref. [45] Refs. [36, 47]
Class encryption CE Encrypt class X X X X � Refs. [30, 44] ı

Resource encryption RE Encrypt resource X X � X X Ref. [26] ı

Native code encryption NCE Encrypt native code X X � X X Ref. [26] ı

for obfuscation but inapplicable to adversarial attacks.
In particular, Ma is often, if not always, specified in the
feature space. Considering attack strategy, obfuscation
and adversarial attacks are rule- and learning-based,
respectively. Specifically, obfuscation attacks rely on
expert-written rules for evasion. For example, some
obfuscation tools[25] apply API insertions because API-
based detection is a common detection technique. By
contrast, adversarial attacks usually learn perturbations
from a large set of features by minimizing the confidence
score corresponding to the malicious label of the target
model f (or the surrogate model Of). For instance,
experiments in Ref. [33] show that the insertion of
restricted API calls highly contributes to evading the
Drebin malware detector[21].

3 Empirical Study Design

This paper aims to investigate the comparative values of
obfuscation and adversarial example attacks empirically.
This study is decomposed into the following Research
Questions (RQs).
� RQ1: How effective are obfuscation and

adversarial example attacks against COTS malware
detectors? Understanding the effectiveness of the state-
of-the-art defenses is important in practice. The detection
of malware is complicated, and users usually depend
on COTS malware detectors to protect their devices.
Previous studies have made such an evaluation in
the context of obfuscation[23, 29]. To the best of our
knowledge, a large-scale evaluation of adversarial
attacks is unavailable.
� RQ2: How effective are obfuscation and

adversarial example attacks against the effectiveness
of code similarity detection algorithms? Code
similarity is a common approach to detecting repackaged
apps[34]. This approach can also be used to detect
malware examples as well (e.g., by computing the
similarities with known malware examples). Recent
studies have investigated the impact of obfuscation
attacks[34, 48, 49], but the evaluation of adversarial attacks
remains to be systematically investigated.
� RQ3: Do obfuscated and adversarial examples

preserve the functionalities of the original malware
examples? Addressing this question will help

Yan Xu et al.: Malware Evasion Attacks Against IoT and Other Devices: An Empirical Study 131

understand the side effects of these attacks because
a false obfuscation or adversarial perturbation may
undermine the invasive capability of resulting malware
variants (if executable at all).

We consider obfuscation and adversarial example
attacks in the literature to address these RQs.
We empirically select representative obfuscators and
adversarial attacks, and then produce malware variants,
respectively. Evaluation and comparison are performed
for each RQ. Figure 1 presents an overview of the study
design.

3.1 Selecting obfuscation attacks

We select obfuscation attacks according to the following
three criteria: (1) the attack is representative and
extensively studied; (2) the attack is open source; (3) the
attack can be executed by running a script automatically.
Therefore, we consider 10 obfuscation attacks of 2
obfuscation tools: Obfuscapk[26] and AVPASS[25], as
shown in Table 2. Obfuscapk and AVPASS decompile
the app, modify decompiled files, and then build a new
app. We introduce the 10 obfuscation attacks below.

(1) RFL[30]: This attack replace explicit invocations
of suitable methods (e.g., public methods but not
constructors) with implicit ones by using reflective
APIs[26].

(2) SE[30]: This attack replaces a plain string with its
encrypted version along with the decryption code snippet
(e.g., Obfuscapk[26] uses the AES encryption algorithm
for this purpose).

(3) NOP[29]: This attack inserts nop instructions
randomly into the dexcode.

(4) CR[23]: This attack replaces the name of a class
and/or package with some random string and modifies
its references correspondingly.

(5) MR[23]: This attack replaces a method’s name

App transformations

RFL SE

CI …

Common Obfuscation only

Adversarial
attacks only

Obfuscators

Adversarial
strategies

Malware
example

Obfuscated
malware
examples

Adversarial
malware
examples

Empirical Analysis

RQ1: Impact on COTS malware
detectors - Evasion rates

RQ2: Impact on repackaged apps
detectors - Similarity metrics

RQ3: Installability, runnability, and
semantics preservation

Obfuscation
attacks

Adversarial
attacks

Adversarial examples

Obfuscated examples

Malware
examples

Fig. 1 Overall methodology for evaluating obfuscation and
adversarial attacks.

Table 2 Selected obfuscation attacks.
RFL SE NOP CR MR FR CF AINS PI CI

AVPASS – – – – – – – X X X

Obfuscapk X X X X X X X – – –

with some random string and modifies its references
correspondingly.

(6) FR[28, 50]: This attack replaces the names of
fields and changes the corresponding references (e.g.,
Obfuscapk[26] renames a field with its MD5 hash value
while randomly adding 1–4 fields, and then updates the
references correspondingly).

(7) CF[28]: This attack inserts conditional/loop
instructions into dex codes (e.g., Obfuscapk inserts
goto instructions to each method).

(8) AINS[51]: This attack inserts APIs (e.g.,
AVPASS[25] adds the Android API DateFormat;->
<init> into the dexcode code).

(9) PI[23, 51]: This attack inserts permissions into
the manifest file (e.g., AVPASS[25] specifies a list of
permissions, and randomly selects 15 of them for
insertion into AndroidManifest. xml).

(10) CI[29]: This attack inserts some predefined
classes into the dexcode (e.g., AVPASS[25] encapsulates
several class files and inserts them into the app).

3.2 Selecting adversarial example attacks

An adversarial attack usually contains the following
three steps: (1) training an ML-based model, (2)
perturbing features in the feature space by using an
adversarial algorithm, and (3) modifying apps in the
problem space accordingly. We use the following criteria
to select adversarial example attacks: (1) an attack
outputs Android apps; (2) an attack is effective in
evading ML-based malware detectors, as reported in the
literature. Therefore, we consider 9 adversarial example
attacks against the Drebin detection model.

First, the Drebin detection model is selected because
the feature sets contain multiple features, which allows
for using multiple transformations. Table 3 presents the
Drebin feature sets, along with allowed perturbations

Table 3 Overview of Drebin feature sets, along with the
manipulations that are used in this paper, where “0 !!! 1”
means feature insertion, “1!!! 0” means feature removal, and
“XXX” (“���”) indicates that flipping is (not) allowed.

Feature set 0! 1 1! 0

Manifest

S1 Hardware feature X �

S2 Requested permission X �

S3 App component X X

S4 Filtered intent X �

Dexcode

S5 Restricted API call X X

S6 Used permission � �

S7 Suspicious API call X X

S8 Network addresse X X

132 Tsinghua Science and Technology, February 2024, 29(1): 127–142

in the feature space. The surrogate model is evaluated
by two standard metrics. (1) Accuracy (Acc) is the
percentage of examples that are classified correctly. (2)
F1-score is the weighted average of “precision” and
“recall”, where “precision” is the percentage of true-
positives among the true-positives and false-positives,
and “recall” is the percentage of the true-positives among
the true-positives and false-negatives.

Second, Nine adversarial example attacks that perturb
examples in the feature space are as follows.

(1) BCA[35]: This attack flips a feature value from 0 to
1 if the partial derivative of the loss function with respect
to the input is not smaller than a predetermined threshold
value, which is the `2 norm of the derivatives divided by
p
m, where m is the number of dimensions of the input

vector. This process is repeated until the predetermined
perturbation limit is reached or an adversarial example
is successfully generated.

(2) BGA[35]: This attack flips a feature value from 0
to 1 if it corresponds to the max value of the partial
derivative of the loss function with respect to the
input. This process is repeated until the predetermined
perturbation limit is reached or a successful adversarial
example is identified.

(3) PGD[36, 37]: This attack searches for perturbations
via

ı D Proj.ı C ˛ � rı l.f .x C ıi /; y// (5)

where ı is the perturbation and Proj is the projection
onto the ball interest[37]. This process is repeated until
the predetermined perturbation limit is reached or a
successful adversarial example is identified.

(4) JSMA[33, 38]: This attack flips a feature value
from 0 to 1 if this feature is the most important to
the prediction of a certain class (e.g., a malicious class
for malware detection). This process is repeated until
the predetermined perturbation limit is reached or a
successful adversarial example is identified.

(5) Grosse[32]: This attack computes the gradient of
F� .x/ with respect to input x and then flips a feature
value from 0 to 1 if the maximal positive gradient is
realized. This process is repeated until the predetermined
perturbation limit is reached or a successful adversarial
example is identified.

(6) GDKDE[39]: This attack produces an adversarial
example by solving the following optimization problem:

arg max
x

g.x/ D F� .x/ �
�

n

X
i jf .xi /D0

k
�x � xi

h

�
(6)

where h is the bandwidth parameter of the Kernel

Density Estimation (KDE), k is a kernel function, and n
is the number of benign examples.

(7) Mimicry[41]: This attack manipulates a malware
example to make it resemble a benign app as much as
possible.

(8) Salt+Pepper[40]: This attack perturbs feature
vectors with some salt and pepper noises[52].

(9) Pointwise[40]: This attack attempts to reduce the
degree of manipulations to a perturbed example while
evading the detector.

Third, each perturbation can be implemented by
transformations in the problem space. Corresponding
elements (i.e., hardware request, permission
request, components, and intents) are inserted in
AndroidManifest.xml to flip the value of S1 – S4 from 0
to 1. An app component is removed (i.e., S3: 1! 0)
by renaming the class name and modifying invocations
accordingly. A restricted/suspicious API call is inserted
(i.e., S5 or S7: 0! 1) by incorporating the invocation
in a dead code (e.g., after the “return” statement).A
restricted/suspicious API call is removed (i.e., S5 or S7:
1! 0) by replacing the direct invocation to a reflective
one. A network address is inserted in the code, which
will be used to flip the value of S8 from 0 to 1; we
encrypt a network address to flip the value of S8 from 1
to 0.

3.3 Evaluating produced variants

We evaluate obfuscation and adversarial attacks using
their impacts on three aspects: malware detection (RQ1),
code similarity detection (RQ2), and functionality
preservation (RQ3).

In RQ1, we aim to evaluate the effectiveness of
obfuscation and adversarial attacks to evade malware
detection. The ultimate goal of evasion attacks is to
thwart malware detection. Thus, whether an attack can
deceive a malware detector is the most concerning,
motivating the measurement and comparison of the
effectiveness of these attacks. We propose using Evasion
Rate (ER), which is the percentage of variants that are
misclassified by a detector, to measure the effectiveness.
There are two criteria for the selection of target detectors:
(1) the target detector is black-box in order that compares
these attacks fairly; (2) the target detector can detect
Android malware examples effectively in the absence of
attacks; otherwise, the evaluation will be meaningless.
We consider COTS malware detectors with unknown
defense strategies based on criterion (1). We refer to
the VirusTotal service� because it offers possibly the

Yan Xu et al.: Malware Evasion Attacks Against IoT and Other Devices: An Empirical Study 133

most comprehensive list of COTS malware detectors.
We submit original malware examples to VirusTotal and
compute the detection accuracy (i.e., the percentage of
detected malware) to achieve criterion (2). The detectors
with high accuracy values are selected. Section 4.3
presents additional details.

In RQ2, we aim to evaluate the effectiveness of these
attacks to affect code similarity detection approaches.
Code similarity detection is the process of marking
two apps as a repackaged pair; it is also important for
mitigating security threats[34, 50].

In the literature, researchers usually consider the
obfuscation resilience of their approaches. To the best of
our knowledge, none of the aformentioned literature has
considered adversarial attacks. Therefore, in comparison
to the impact of obfuscation attacks, we evaluate
the impact of adversarial attacks on existing code
similarity detection approaches. Specifically, we focus
on similarity-based approaches, which are the most
common methodology[34]. We compare a malware with
its obfuscated/adversarial versions and then observe the
average similarity scores to measure their impact. A
large similarity indicates a slight impact of the attack;
a small similarity indicates a considerable impact�. We
use Mann–Whitney–Wilcoxon (MWW) to compare the
effectiveness of obfuscation and adversarial attacks
and investigate if the distributions of their respective
similarity scores are statistically significantly different.
We also use Cliff’s Delta to measure their differences.

We then consider two criteria to select similarity
approaches: (1) it is performed statically because
we aim to compute similarity scores at a large
scale; (2) only AndroidManifest.xml and the codes
are considered because our attacks only manipulate
these files. Therefore, we select three code similarity
detection approaches: Androsim[48], SimiDroid[53], and
DroidSim[49]. These approaches compute the similarity
between two apps, and mark them as a repackaged pair
if the similarity is larger than a threshold (e.g., 0.8 in
Ref. [34]).

The Androsim approach[48] measures method-level
similarity and scores as follows. First, three kinds of
relationships between the two methods are defined: (1)
“identical” means that they have the same SHA256 value;

� https://www.virustotal.com/.
�We do not consider a threshold and metrics like recall in Ref. [34],

because there is not a commonly accepted threshold. Instead, it is more
straightforward to observe similarity values.

(2) “similar” means that their Normalized Compression
Distance (NCD)[54] is smaller than or equal to a
threshold; (3) “deleted” means that their NCD is
higher than the threshold mentioned above. Second, let
.am; bm/ denote any two similar methods of apps A and
B . Let dNCD.am; bm/ denote the NCD between am and
bm. The similarity score is

Androsim D

#identicalC
P

8.am;bm/

.1 � dNCD.am; bm//

#identicalC #similarC #deleted
(7)

where #identical, #similar, and #deleted denote the
number of identical, similar, and deleted methods,
respectively.

The DroidSim approach[49] measures component-wise
similarity based on the Component-Based Control Flow
Graph (CB-CFG), where nodes and edges represent
Android APIs and the control flow precedence of APIs,
respectively. Specifically, let jAcj and jBcj respectively
denote the number of CB-CFGs of apps A and B .
For each CB-CFG bc of app B , let jbcj D 1 if it is
isomorphic to any CB-CFG of A, and jbcj D 0 otherwise.
The similarity score is as follows:

DroidSim .A;B/ D

P
8bc

jbcj

min.jAcj; jBcj/
(8)

SimiDroid[53] computes the similarity between the
methods of the two apps as follows. A method is
represented by a key/value mapping, where a key is
the name of a method and the corresponding value is
the combination of the types of statements (e.g., “if”
statement) and constants in the method. Let map1 and
map2 denote the key/value mapping of apps A and B ,
respectively. The similarity between the two methods
is as follows: (1) “identical” if map1 D map2; (2)
“similar” if map1 and map2 have the same key but not
different values; (3) “different” if map1 ¤ map2. The
three kinds of similarities lead to the following: the
number of methods that are used in B but not in A is
denoted by #new. Meanwhile, the number of methods
that are used in A but not in B is denoted by #deleted.
Then,

SimiDroid D

max
�

#identical
#total � #new

;
#identical

#total � #deleted

�
(9)

where #total D #identicalC#similarC#newC#deleted.
In RQ3, we evaluate to what extent these attacks

preserve the functionality of original malware examples.

134 Tsinghua Science and Technology, February 2024, 29(1): 127–142

We first justify whether the functionality of a
modified malware example is preserved. We consider
installability, runnability, and semantics-preservation.
(1) A malware example is installable if it can be
installed on an Android device. (2) A malware example
is runnable if it can be executed without crashing. (3) A
malware example preserves the semantics of the original
malware if it shows identical behaviors as its original
version. We consider display activities and exceptions
to measure behaviors. The former is important because
display activities are directly observed by a user, and any
difference in such activities may draw the attention of a
user. The latter is important because many apps throw
and log exceptions to identify errors; thus, preserving
exceptions would not alert a user.

4 Experiment and Result

4.1 Datasets

Our empirical study is based on two datasets: the Drebin
dataset[21] and the Androzoo dataset[43].

Drebin. This dataset contains 5560 malware examples
and 123 453 (SHA256 checksums of) benign apps,
which were collected between August 2010 and October
2012. This dataset is old but has been widely used in
adversarial malware detection studies[32, 33, 36, 41]. These
apps are fed to the VirusTotal service to improve their
ground truth quality. If at least five scanners label an app
as malicious, then we treat it as malware; if no scanner
labels an app as malicious, then we treat it as benign (as
in previous studies such as Ref. [41]); otherwise, we
disregard the app in question. This condition leads to
5560 malware examples (i.e., all the malicious examples
in the dataset are malicious) and 37 587 benign apps
while disregarding the rest of the apps.

Androzoo. The Drebin dataset is old; therefore, we
build an Androzoo dataset based on Refs. [22, 24] as
follows. (1) We collect Android examples dated between
July 2019 to Dec 2019 from the Androzoo repository[43].
(2) We then determine the ground truth of these examples
in the same fashion as in the case of the Drebin dataset.
(3) We control the malware ratio to be 10% each month,
which is a common practice in Refs. [22, 24]. This
condition leads to 9514 malware and 85 658 benign apps.

4.2 Producing original, obfuscated, and
adversarial examples

We randomly split each dataset into training, validation,
and test sets, demonstrating a 6:2:2 ratio. Figure 2 shows

Malware examples
in the test set

Filter

Original malware
examples

Obfuscation
attacks

Adversarial
example attacks

Obfuscated
malware examples

Adversarial
malware examples

Fig. 2 Generation of original, obfuscated, and adversarial
malware examples.

the use of the test set to generate original, obfuscated,
and adversarial examples. Specifically, we select the
malware examples from each test set that can be
successfully repackaged and parsed by Androguard[48].
We refer to the resulting malware examples as the
original malware examples to avoid failure of attacks
due to the example itself. On the Drebin dataset, 4
examples are filtered from malware examples in the
test set, resulting in 1108 original malware examples;
on the Andorzoo dataset, 141 examples are filtered
from malware examples in the test set, leading to
1762 original malware examples. We then utilize these
original malware examples to generate obfuscated
malware examples by using the 10 obfuscation attacks
(Table 2). Similarly, we use these original malware
examples to generate adversarial malware examples by
applying the 9 adversarial attacks (Section 3.2). The
training and validation sets are used to train the surrogate
model of adversarial attacks. The features are normalized
by min-max normalization[55]. On the Drebin dataset,
the Acc and F1-score values are 99.18% and 96.64%,
respectively. On the Androzoo dataset, the Acc and F1
values are 99.19% and 95.86%, respectively.

Table 4 summarizes the number of original,
obfuscated, and adversarial malware examples. From
the Drebin test set, we obtain 1108 original malware
examples and generate 10 410 obfuscated malware
examples and 9564 adversarial malware examples. From
the Androzoo test set, we get 1762 original malware
examples and generate 17 530 obfuscated malware
examples and 15 854 adversarial malware examples.

We observe that these attacks may fail in producing
malware variants. We randomly inspect some failures
of these attacks and some observations are briefly
introduced herein. The AINS obfuscation attack fails
when signing the repackaged apps using “jarsigner”,
and the message is “unable to open jar file”. The CR
obfuscation attack encounters errors when compiling the
repackaged apps because the attack has modified the
names of classes but disregarded the associated files in

Yan Xu et al.: Malware Evasion Attacks Against IoT and Other Devices: An Empirical Study 135

Table 4 Number of original, obfuscated, and adversarial
malware examples, where “–” means no attack is applied.

Example Attack Drebin Androzoo
Original malware – 1108 1762

Obfuscated malware

AINS 949 1727
CI 1108 1762
PI 1108 1728
CR 986 1757
MR 915 1761
FR 919 1758
SE 1108 1751

RFL 1105 1762
NOP 1104 1762
CF 1108 1762

Adversarial malware

BCA 1108 1762
BGA 700 1758
JSMA 1108 1762
Grosse 1108 1762
PGD 1108 1762

GDKDE 1108 1762
Mimicry 1108 1762
Pointwise 1108 1762

Salt+Pepper 1108 1762

the “res” folder.

4.3 Answering RQ1

We evaluate evasion rates of obfuscated and adversarial
examples against 20 COTS malware detectors that
are offered by the VirusTotal service, as shown in
Table 5, to answer RQ1. We select these detectors
because they outperform the others in detecting original
malware examples (i.e., they achieve high Acc values).
Notably, we ignore 9 COTS malware detectors when
evaluating the ERs of Androzoo malware variants
because the accuracy of these detectors on Androzoo
original malware examples is lower than 50% (see Table
A1 in Appendix). Evaluating ERs on these detectors
would be meaningless.

We submit the obfuscated and adversarial malware
examples to VirusTotal for each dataset. We then collect
their classification results. Table 6 presents the ERs of

Table 5 Twenty COTS malware detectors from
VirusTotal service considered to answer RQ1. The
full name of “SymantecMobile” in VirusTotal is
“SymantecMobileInsight”; the full name of “McAfee-GW” is
“McAfee-GW-Edition”.

AVG Ikarus ESET-NOD32 Fortinet
Jiangmin K7GW SymantecMobile MaxSecure
Trustlook Zillya CAT-QuickHeal Antiy-AVL

Cyren AhnLab-V3 McAfee-GW Symantec
McAfee MAX BitDefenderFalx Cynet

Table 6 Evasion rates of obfuscated (Obf) examples and
adversarial (Adv) examples against each COTS malware
detector. The full name of “SymantecMobile” in VirusTotal
is “SymantecMobileInsight”; the full name of “McAfee-GW”
is “McAfee-GW-Edition”; “–” denotes that the evasion rates
are ignored because these detectors cannot effectively detect
the Androzoo original malware and the evasion rates are
meaningless.

(%)

Detector
Drebin dataset Androzoo dataset

Obf set Adv set Obf set Adv set
AVG 4.54 2.75 0 0
Ikarus 0.20 0 0.09 0.01

Fortinet 6.51 1.03 1.05 0.30
ESET-NOD32 2.45 0.74 0.22 0.19

Jiangmin 79.02 84.07 0.10 0.12
K7GW 12.43 0.00 8.32 0.04

SymantecMobile 9.41 9.42 99.12 97.36
MaxSecure 30.58 27.86 23.94 15.57
Trustlook 0.50 0.02 22.52 0.15

Zillya 65.93 81.61 98.27 94.58
Antiy-AVL 62.15 72.15 93.86 93.39

CAT-QuickHeal 3.66 2.76 – –
Cyren 15.18 13.26 – –

BitDefenderFalx 0.03 0.17 – –
Symantec 65.73 74.11 – –

McAfee-GW 68.66 89.79 – –
McAfee 61.68 65.30 – –
MAX 80.96 90.88 – –

AhnLab-V3 0.88 0 – –
Cynet 1.08 2.24 – –

Average 28.58 30.91 31.59 27.43

obfuscated and adversarial examples.
First, some COTS malware detectors are heavily

evaded when obfuscation or adversarial attacks are
applied despite their capability to detect original
malware effectively. For example, on the Drebin dataset,
MAX can detect original malware with 99.10% accuracy.
Meanwhile, MAX is evaded by obfuscated examples
with ER = 80.96% and is evaded by adversarial examples
with ER = 90.88%. On average, the ERs of obfuscated
and adversarial examples are 28.58% and 30.91%, and
31.59% and 27.43% on the Drebin and Androzoo
datasets, respectively.

Finding 1: Obfuscation and adversarial attacks can
evade COTS malware detectors, with a 30% evasion rate
on average.

Second, we observe significant differences of evasion
rates among COTS malware detectors. For example,
considering the Drebin dataset, ERs of obfuscation and
adversarial attacks against Trustlook are 0.50% and
0.02%, respectively; ERs of obfuscation and adversarial

136 Tsinghua Science and Technology, February 2024, 29(1): 127–142

attacks against Antiy-AVL are 62.15% and 72.15%,
respectively. These discrepancies can be attributed to the
different defense strategies used by these COTS malware
detectors. The results indicate that some COTS malware
detectors (e.g., Trustlook and Ikarus) adopt effective
defense strategies against evasion attacks while others
(e.g., Antiy-AVL and Zillya) do not. Moreover, some
detectors (e.g., MAX and Antiy-AVL) are vulnerable to
both kinds of attacks, while some detectors (e.g., Ikarus
and K7GW) are robust against both kinds of attacks.

Finding 2: Obfuscation and adversarial attacks have
a similar effect on COTS malware detectors.

In addition, adversarial examples achieve a slightly
higher evasion rate than obfuscated malware examples.
For instance, adversarial examples of the Drebin
dataset evade Antiy-AVL with an ER of 72.15%,
while obfuscation malware examples achieve 62.15%.
This finding may be attributed to the evasive
perturbations learned by the adversarial attacks,
which are not considered by obfuscation attacks. For
instance, the ER of PI obfuscation against Antiy-
AVL is 8.49%, and that of BCA is 76.62%. The
main difference is that BCA adversarial attack
inserts android.permission.LOCATION while
PI obfuscation attack does not. An obfuscator reasonably
disregards inserting this permission because a human
may be careful with the permission request. By contrast,
BCA finds that the permission helps evade the surrogate
model, which also works on Antiy-AVL.

Finding 3: Adversarial malware examples evade
COTS malware detectors slightly more often than their
obfuscated malware examples.

We observe that adversarial attacks trigger suspicions
similarly to obfuscation attacks. For example, AhnLab-
V3 fails to detect 14 original malware examples in the
Drebin dataset, but can detect their variants produced by
all the 9 adversarial attacks and the 3 obfuscation attacks
(i.e., NOP, SE, and RFL).

Finding 4: Obfuscation and adversarial attacks can
trigger suspicions of COTS malware detectors.

We observe temporal differences in the evasion rates.
For example, SymantecMobileInsight is barely evaded
by variants of malware examples in the Drebin dataset
(ER < 9.5%) but is largely evaded by the malware
examples in the Androzoo dataset (ER > 97%). On the
contrary, Jiangmin is vulnerable to malware examples in
the Drebin dataset (ER > 79%) but is robust against the
malware examples in the Androzoo dataset (ER < 1%).
This finding indicates that the defense strategies of these

COTS malware detectors are temporally evolving.
Finding 5: Evasion effectiveness of obfuscation and

adversarial attacks against COTS malware detectors
evolves with time.

We further inspect the evasion rates of each attack
considering the Drebin dataset. Figure 3a depicts the
evasion rates corresponding to the Drebin dataset
and the 19 attacks against the 20 COTS malware
detectors. We observe that the average evasion rate
of the obfuscation attacks ranges from 19.91% to
45.04%. More specifically, SE is the most evasive,
with an average evasion rate of 45.04% and a median
value of 32.67%; NOP achieves an average evasion
rate of 36.79%. For the adversarial attacks, GDKDE
and Mimicry outperform the other attacks by achieving
an average evasion rate of 37.89% and 37.58%,
respectively.

Figure 3b presents the evasion rates of the same
obfuscated examples and adversarial malware examples
to the same 20 COTS malware detectors two months
later. We then resubmit these examples to VirusTotal
to observe if detectors are adaptive to attacks over
time. We observe that these COTS malware detectors
can be adaptive to obfuscated and adversarial malware
examples. Specifically, the evasion rates of 16 attacks

(a) Result of the first submission

(b) Result of the second submission after two months

Fig. 3 Drebin dataset: the evasion rates of 19 attacks (i.e.,
10 obfuscation attacks and 9 adversarial example attacks) on
the 20 COTS malware detectors, where a black box indicates
one obfuscation attack, a gray box indicates an adversarial
attack, a red line denotes the median value, and a green circle
indicates the mean value.

Yan Xu et al.: Malware Evasion Attacks Against IoT and Other Devices: An Empirical Study 137

are markedly reduced two months later; for example,
the average evasion rate of the SE attack drops to
3.20%, while its 3rd quantile value decreases from
88.41% to 4.83%. Meanwhile, the average evasion rate
of the Mimicry attack decreases to 2.57% while its
3rd quantile value decreases from 84.70% to 2.45%.
By contrast, three adversarial attacks, namely BCA,
GDKDE, and Pointwise, still achieve average evasion
rate of 26.64%, 30.75%, and 36.56%, respectively, while
their 3rd quantile values are larger than 50%. Thus,
adversarial attacks are more robust than obfuscation
attacks considering their evasion capabilities against
COTS malware detectors.

Finding 6: Among all of these attacks, SE
obfuscation is the most evasive and then two adversarial
attacks (i.e., GDKDE and Mimicry).

4.4 Answering RQ2

We compare original malware examples with their
obfuscated version and adversarial examples by applying
the three similarity-based approaches reviewed above
(i.e., DroidSim, Androsim, and SimiDroid). Figure 4
depicts the distribution of similarity scores.

First, DroidSim shows that the obfuscated and
adversarial examples are similar to their respective
original examples. For obfuscated examples, the mean
similarity scores are 0.97 and 0.98 on the Drebin and
Androzoo dataset, respectively; for adversarial examples,
the mean value is similarity score 0.99 for both datasets.
Nevertheless, using MWW, we fail to reject the null
hypothesis that the obfuscation attacks affect DroidSim
differently from adversarial example attacks (p D 9:52�

10�262 and p D 0 on the Drebin and Androzoo datasets,
respectively).

The Cliff’s Delta presents a negligible difference,
mainly due to the CF obfuscation attack. CF obfuscation
can slightly affect DroidSim, with an average similarity
of 0.83 on both datasets. This finding is due to the
insertion of goto instructions to dexcode by CF, thereby
changing the CB-CFG representation. For example,
Fig. 5 shows how CF changes a subgraph of app
0A3BE4 (with an SHA256 checksum of 0a3b****397b)
by adding two nodes and edges.

Second, the distribution plot depicts that obfuscation
attacks affect the Androsim approach worse than
adversarial attacks. The mean and median similarity
scores for obfuscated examples are 0.65 and 0.69 on
the Drebin dataset, while those on the Androzoo dataset
are 0.68 and 0.81, respectively. Meanwhile, the mean
and median similarity scores for adversarial attacks are
0.95 and 0.99 on the Drebin dataset, while those on the
Androzoo dataset are 0.82 and 0.83, respectively.

The MWW test showed that Androsim obtained
different scores when applying obfuscation and
adversarial attacks on both datasets (p D 0 on the
Drebin dataset; p D 4:50 � 10�233 on the Androzoo
dataset). Cliff’s Delta suggests that the difference is
both medium on the Drebin and Androzoo datasets.
This finding can be attributed to the vulnerability of
Androsim to a large number of perturbations in methods;
the similarity scores of AINS, CI, and NOP are lower
than 0.52 on average. BGA markedly perturbs original
malware examples and achieves 0.63 and 0.17 similarity
scores on the Drebin and Androzoo datasets, respectively.

Fig. 4 Distribution of similarity scores given by DroidSim, Androsim, and SimiDroid.

138 Tsinghua Science and Technology, February 2024, 29(1): 127–142

The other adversarial attacks slightly perturb original
malware examples, and the similarity scores are all larger
than 0.8.

Third, the distribution plot depicts that obfuscation
attacks affect the SimiDroid approach worse than
adversarial attacks, and Cliff’s Delta indicates large
differences between these attacks on both datasets.
This finding is mainly attributed to the key-mapping
principle of SimiDroid, which increase the sensitivity
of the SimiDroid approach to CR and MR; for example,
CR obfuscation causes 0 similarities on both datasets.
By contrast, the adversarial attacks barely rename app
components despite being allowed to perform such an
approach. In particular, the adversarial attacks learn
small perturbations for evasion from the surrogate model
(i.e., the Drebin model). The learned perturbations
may be effective when thwarting local representation
for malware detection, but they are substantially less
sufficient to disturb the global expression of an app.

Finding 7: Obfuscation attacks affect code similarity
detection approaches more than adversarial attacks
owing to a large degree of perturbations of obfuscation
attacks. Adversarial attacks are less capable of affecting
the global representation of apps.

4.5 Answering RQ3

To answer RQ3, we install and run the original,
obfuscated, and adversarial malware examples on an
Android emulator to observe whether the original
functionality of a malware example is changed by the
attacks. We randomly selected 100 malware examples
from the test set of the Drebin dataset. We use these
examples to generate 1000 obfuscated examples and 900
adversarial examples. We install and run these examples
on an Android emulatorz, which is built on Android
API version 6.0.1. We automatically run the examples
by Monkey test. Similar to Ref. [23], each example is

(a) Original malware example (b) Obfuscated example

Fig. 5 DroidSim subgraphs of an original malware example
and its obfuscated example generated by the Control Flow
(CF) attack.

z https://mumu.163.com/.

executed with 1000 events as input. We set the same seed
value for each pair of examples: an original malware
example and its manipulated variant. Because the seed
value decides the randomness of the Monkey test (i.e.,
the same seed value leads to the same sequences of
events). We use the command tool logcat to capture
and store the logs during runtime.

Table 7 summarizes the experimental results,
obtaining the following four observations. (1) All of
the obfuscated and adversarial examples can be installed
successfully. (2) Most attacks can produce runnable
malware examples; for instance, 83 of the 100 AINS-
incurred examples are runnable. Whereas, some attacks
produce few runnable examples; for instance, 19 out
of the 100 BGA-incurred examples are runnable. We
randomly check the runtime log of 10 BGA-incurred
examples. “RuntimeException” occurs to 7 of the
examples by failing in instantiating activities. The 3
other examples crash due to VerifyError caused by
a bad method. (3) BCA, JSMA, and NOP generate
examples that behave similarly to the original version;
this phenomenon can be attributed to the insertion-only
manipulations. (4) The experimental results of Mimicry,
GDKDE, CR, and MR attacks might be inaccurate
owing to the renaming transformations. For instance, we
compare the logs of the app B9C2A7 (with an SHA256

Table 7 Number of examined, installable, runnable, and
semantics-preserved malware examples generated by 10
obfuscation attacks and 9 adversarial attacks.

Attack Examined Installable Runnable Semantics-
preserved

BCA 100 100 86 79
BGA 100 100 19 19
JSMA 100 100 75 71
Grosse 100 100 87 75
PGD 100 100 75 71

GDKDE 100 100 81 29
Mimicry 100 100 77 28
Pointwise 100 100 80 56

Salt+Pepper 100 100 82 77
AINS 100 100 85 83

CI 100 100 82 66
PI 100 100 84 80
CR 100 100 70 17
MR 100 100 83 70
FR 100 100 82 77
SE 100 100 82 62

RFL 100 100 85 73
NOP 100 100 83 73
CF 100 100 86 82

Yan Xu et al.: Malware Evasion Attacks Against IoT and Other Devices: An Empirical Study 139

checksum of b9c2****9189) and the Mimicry-incurred
version, and find that they display the same activities but
with different class names.

Finding 8: Obfuscated malware examples generally
preserve the functionality of their original malware
examples, similarly to adversarial examples.

5 Discussion

This study aims to investigate the impact of adversarial
attacks from three aspects empirically (i.e., malware
detection, code similarity detection, and functionality
preservation) by comparing them with the impact of
obfuscation attacks. Through RQ1, our study provides
some suggestions for the COTS malware detector
vendors to improve COTS malware detectors in general.
Obfuscation and adversarial attacks evade COTS
malware detectors with approximately 30% evasion
rates on average (Finding 1). Among all the attacks,
two obfuscation attacks (i.e., SE and NOP) and two
adversarial attacks (i.e., GDKDE and Mimicry) are the
most effective (Finding 6). Besides, COTS malware
detectors that are robust against obfuscation attacks
can also defend against adversarial attacks (Finding 2).
However, additional attention to adversarial attacks is
required because they can explore more perturbations
than obfuscation attacks, resulting in slightly higher
evasion rates (Finding 3). Moreover, the robustness of
some COTS malware detectors is temporal-based. Some
detectors are robustness against attacks considering
old examples, while some are vulnerable considering
new examples (Finding 5). Both attacks may also
raise suspicion of COTS malware detectors (Finding
4), which may be leveraged by the developers to
improve the detection performance. Through RQ2, our
study provides researchers additional sights to inspect
evasion attacks. On the one hand, the code similarity
detection approaches must provide more attention to
obfuscation attacks than adversarial attacks; on the
other hand, clustering can be leveraged to design future
malware detectors against adversarial attacks (Finding
7). Through RQ3, obfuscation and adversarial attacks
preserve functionality to a similar extent (Finding 8).
Thus, both attacks must manipulate apps carefully,
especially when using renaming transformations.

6 Threats to Validity

We now discuss the threats to the external, internal, and
construct validity of the present study.

First, external validity means the extent to which our
results are applicable to other settings. Android malware
examples are evolving, and the findings may be specific
to malware example datasets. Therefore, considering the
aforementioned issue, we employ two datasets, which
were collected during two different periods (i.e., August
2010–October 2012 for Drebin; July 2019–Dec 2019 for
Androzoo). We observe different results from the two
datasets. For instance, SymantecMobileInsight is robust
against both obfuscated and adversarial examples in the
Drebin dataset but is vulnerable to their counterparts
from the Androzoo dataset. The external validity of
our study may also be limited by our use of only 2870
original malware examples, which is slightly small.
Future research should consider large datasets.

Second, internal validity refers to the effectiveness
of the experimental results in supporting the obtained
findings. For example, our generation of adversarial
examples may not be optimal. Thus, we tune the
hyperparameters of adversarial examples to optimize
the attack effectiveness against the surrogate models to
mitigate this issue.

Third, construct validity refers to the effectiveness of
measurements in meeting the theoretical requirements
for quantification. We measure semantics preservation
according to display activities and exception behaviors
because users often provide considerable attention to the
UI and may not notice differences in the background.
Two programs generally have the same semantics.
However, defining additional quantitative metrics to
measure the semantic similarity of the two programs
might be possible.

7 Conclusion

We empirically quantify the difference between
obfuscated malware examples and adversarial malware
variants, both resulting from the same original malware
examples. The following findings are presented. (1)
Adversarial malware examples can evade COTS
malware detectors slightly more often than their
obfuscated malware examples. (2) Obfuscated malware
examples negatively affect the code similarity detection
approaches more than adversarial malware examples.
(3) Obfuscation attacks and adversarial examples attacks
preserve the functionality of original malware examples
to a similar extent. We hope this study will motivate
additional studies of defending against malware attacks,
especially in the context of evasion attacks.

140 Tsinghua Science and Technology, February 2024, 29(1): 127–142

Appendix

Accuracy of COTS Malware Detectors

Table A1 represents the accuracy of each COTS malware
detection to detect the original malware on the Drebin
and Androzoo datasets. Most detectors work well
in detecting Drebin malware examples because these
examples are old and widely studied. By contrast, only
a few COTS detectors can distinguish the malware in
the Androzoo dataset because the examples are new and
much less studied.

Table A1 Accuracy of selected COTS malware detectors to
identify original malware examples.

(%)
Detector Drebin dataset Androzoo dataset

AVG 86.53 100.00
Ikarus 99.35 99.40

Fortinet 98.74 99.26
ESET-NOD32 98.19 98.80

Jiangmin 93.76 95.61
K7GW 99.10 89.66

SymantecMobileInsight 99.72 89.06
MaxSecure 62.04 75.01
Trustlook 95.93 55.15

Zillya 38.28 52.35
Antiy-AVL 98.92 50.27

CAT-QuickHeal 99.91 46.55
Cyren 98.47 23.06

BitDefenderFalx 99.39 10.16
Symantec 98.91 9.77

McAfee-GW-Edition 99.91 5.64
McAfee 99.64 3.78
MAX 99.10 3.55

AhnLab-V3 98.74 3.35
Cynet 98.00 3.26

References

[1] Y. Zhang, K. Wang, Q. He, F. Chen, S. Deng, Z. Zheng, and
Y. Yang, Covering-based web service quality prediction via
neighborhood-aware matrix factorization, IEEE Trans. Serv.
Comput., vol. 14, no. 5, pp. 1333–1344, 2021.

[2] H. Dai, J. Yu, M. Li, W. Wang, A. X. Liu, J. Ma, L. Qi,
and G. Chen, Bloom filter with noisy coding framework
for multi-set membership testing, IEEE Trans. Knowl. Data
Eng., vol. 35, no. 7, pp. 6710–6724, 2023.

[3] S. Wu, S. Shen, X. Xu, Y. Chen, X. Zhou, D. Liu, X.
Xue, and L. Qi, Popularity-aware and diverse web APIs
recommendation based on correlation graph, IEEE Trans.
Comput. Soc. Syst., vol. 10, no. 2, pp. 771–782, 2023.

[4] J. Zhou, M. Zhang, J. Sun, T. Wang, X. Zhou, and S. Hu,
DRHEFT: Deadline-constrained reliability-aware HEFT
algorithm for real-time heterogeneous MPSoC systems,
IEEE Trans. Rel., vol. 71, no. 1, pp. 178–189, 2022.

[5] Q. Wang, C. Zhu, Y. Zhang, H. Zhong, J. Zhong, and V.
S. Sheng, Short text topic learning using heterogeneous
information network, IEEE Trans. Knowl. Data Eng., vol.
35, no. 5, pp. 5269–2581, 2023.

[6] Y. Zhang, G. Cui, S. Deng, F. Chen, Y. Wang, and
Q. He, Efficient query of quality correlation for service
composition, IEEE Trans. Serv. Comput., vol. 14, no. 3, pp.
695–709, 2021.

[7] L. Qi, Y. Liu, Y. Zhang, X. Xu, M. Bilal, and H. Song,
Privacy-aware point-of-interest category recommendation
in internet of things, IEEE Internet Things J., vol. 9, no. 21,
pp. 21398–21408, 2022.

[8] Y. Liu, H. Wu, K. Rezaee, M. R. Khosravi, O. I. Khalaf,
A. A. Khan, D. Ramesh, and L. Qi, Interaction-enhanced
and time-aware graph convolutional network for successive
point-of-interest recommendation in traveling enterprises,
IEEE Trans. Ind. Inform., vol. 19, no. 1, pp. 635–643, 2023.

[9] D. Zhou, X. Xue, and Z. Zhou, SLE2: The improved social
learning evolution model of cloud manufacturing service
ecosystem, IEEE Trans. Ind. Inform., vol. 18, no. 12, pp.
9017–9026, 2022.

[10] X. Xue, S. Wang, L. Zhang, Z. Feng, and Y. Guo, Social
learning evolution (SLE): Computational experiment-based
modeling framework of social manufacturing, IEEE Trans.
Ind. Inform., vol. 15, no. 6, pp. 3343–3355, 2019.

[11] J. Zhou, L. Li, A. Vajdi, X. Zhou, and Z. Wu, Temperature-
constrained reliability optimization of industrial cyber-
physical systems using machine learning and feedback
control, IEEE Trans. Automat. Sci. Eng., vol. 20, no. 1,
pp. 20–31, 2023.

[12] R. Gu, Y. Chen, S. Liu, H. Dai, G. Chen, K. Zhang, Y.
Che, and Y. Huang, Liquid: Intelligent resource estimation
and network-efficient scheduling for deep learning jobs
on distributed GPU clusters, IEEE Trans. Parallel Distrib.
Syst., vol. 33, no. 11, pp. 2808–2820, 2022.

[13] H. Dai, C. Wu, X. Wang, W. Dou, and Y. Liu, Placing
wireless chargers with limited mobility, in Proc. the IEEE
INFOCOM 2020 – IEEE Conf. Computer Communications,
Toronto, Canada, 2020, pp. 2056–2065.

[14] J. Zhou, K. Cao, X. Zhou, M. Chen, T. Wei, and S. Hu,
Throughput-conscious energy allocation and reliability-
aware task assignment for renewable powered in-situ server
systems, IEEE Trans. Comput. Aided Des. Integr. Circuits
Syst., vol. 41, no. 3, pp. 516–529, 2022.

[15] J. Gao, X. Liu, Y. Chen, and F. Xiong, MHGCN: Multiview
highway graph convolutional network for cross-lingual
entity alignment, Tsinghua Science and Technology, vol.
27, no. 4, pp. 719–728, 2022.

[16] Y. Yang, X. Yang, M. Heidari, M. A. Khan, G. Srivastava,
M. Khosravi, and L. Qi, ASTREAM: Data-stream-driven
scalable anomaly detection with accuracy guarantee in
IIoT environment, IEEE Trans. Netw. Sci. Eng., doi:
10.1109/TNSE.2022.3157730.

[17] L. Qi, Y. Yang, X. Zhou, W. Rafique, and J. Ma, Fast
anomaly identification based on multiaspect data streams
for intelligent intrusion detection toward secure industry
4.0, IEEE Trans. Ind. Inform., vol. 18, no. 9, pp. 6503–6511,
2022.

Yan Xu et al.: Malware Evasion Attacks Against IoT and Other Devices: An Empirical Study 141

[18] F. Wang, G. Li, Y. Wang, W. Rafique, M. R. Khosravi,
G. Liu, Y. Liu, and L. Qi, Privacy-aware traffic flow
prediction based on multi-party sensor data with zero
trust in smart city, ACM Trans. Internet Technol.,
https://doi.org/10.1145/3511904 , 2022.

[19] Y. Zhang, J. Pan, L. Qi, and Q. He, Privacy-preserving
quality prediction for edge-based IoT services, Future
Gener. Comput. Syst., vol. 114, pp. 336–348, 2021.

[20] E. Shein, Malware is down, but IoT and ransomware
attacks are up, https://www.techradar.com/news/iot-
malware-attacks-saw-a-huge-rise-last-year, 2020.

[21] D. Arp, M. Spreitzenbarth, M. Hübner, H. Gascon,
and K. Rieck, Drebin: Effective and explainable
detection of android malware in your pocket, in
Proc. 21st Annu. Network and Distributed System
Security Symposium (NDSS), San Diego, CA, USA, doi:
10.14722/ndss.2014.23247.

[22] F. Pendlebury, F. Pierazzi, R. Jordaney, J. Kinder, and L.
Cavallaro, TESSERACT: Eliminating experimental bias in
malware classification across space and time, in Proc. 28th

USENIX Security Symp., Santa Clara, CA, USA, 2019, pp.
729–746.

[23] M. Hammad, J. Garcia, and S. Malek, A large-scale
empirical study on the effects of code obfuscations on
Android apps and anti-malware products, in Proc. 40th Int.
Conf. Software Engineering, Gothenburg, Sweden, 2018,
pp. 421–431.

[24] F. Pierazzi, F. Pendlebury, J. Cortellazzi, and L. Cavallaro,
Intriguing properties of adversarial ML attacks in the
problem space, in Proc. 2020 IEEE Symp. Security and
Privacy, San Francisco, CA, USA, 2020, pp. 1332–1349.

[25] J. Jung, C. Jeon, M. Wolotsky, I. Yun, and T. Kim,
AVPASS: Leaking and bypassing antivirus detection model
automatically, https://github.com/sslab-gatech/avpass, 2022.

[26] S. Aonzo, G. C. Georgiu, L. Verderame, and A. Merlo,
Obfuscapk: An open-source black-box obfuscation tool for
Android apps, SoftwareX, vol. 11, p. 100403, 2020.

[27] M. Saleh, E. P. Ratazzi, and S. Xu, Instructions-based
detection of sophisticated obfuscation and packing, in Proc.
2014 IEEE Military Communications Conf., Baltimore, MD,
USA, 2014, pp. 1–6.

[28] M. Zheng, P. P. C. Lee, and J. C. S. Lui, ADAM: An
automatic and extensible platform to stress test android
anti-virus systems, in Proc. 9th Int. Conf. Detection of
Intrusions and Malware, and Vulnerability Assessment,
Heraklion, Greece, 2012, pp. 82–101.

[29] V. Rastogi, Y. Chen, and X. Jiang, DroidChameleon:
Evaluating android anti-malware against transformation
attacks, in Proc. 8th ACM SIGSAC Symp. Information,
Computer and Communications Security, Hangzhou, China,
2013, pp. 329–334.

[30] D. Maiorca, D. Ariu, I. Corona, M. Aresu, and G. Giacinto,
Stealth attacks: An extended insight into the obfuscation
effects on Android malware, Comput. Secur., vol. 51, pp.
16–31, 2015.

[31] D. Li, Q. Li, Y. F. Ye, and S. Xu, Arms race in adversarial
malware detection: A survey, ACM Comput. Surv., vol. 55,
no. 1, p. 15, 2021.

[32] K. Grosse, N. Papernot, P. Manoharan, M. Backes, and P.
McDaniel, Adversarial examples for malware detection,
in Proc. 22nd European Symp. Research in Computer
Security, Oslo, Norway, 2017, pp. 62–79.

[33] X. Chen, C. Li, D. Wang, S. Wen, J. Zhang, S. Nepal, Y.
Xiang, and K. Ren, Android HIV: A study of repackaging
malware for evading machine-learning detection, IEEE
Trans. Inform. Forensic. Secur., vol. 15, pp. 987–1001,
2020.

[34] L. Li, T. F. Bissyandé, and J. Klein, Rebooting research
on detecting repackaged android apps: Literature review
and benchmark, IEEE Trans. Softw. Eng., vol. 47, no. 4, pp.
676–693, 2021.

[35] A. Al-Dujaili, A. Huang, E. Hemberg, and U. M. O’Reilly,
Adversarial deep learning for robust detection of binary
encoded malware, in Proc. 2018 IEEE Security and Privacy
Workshops (SPW), San Francisco, CA, USA, 2018, pp. 76–
82.

[36] D. Li and Q. Li, Adversarial deep ensemble: Evasion
attacks and defenses for malware detection, IEEE Trans.
Inform. Forensic. Secur., vol. 15, pp. 3886–3900, 2020.

[37] Z. Kolter and A. Madry, Adversarial robustness: Theory
and practice, https://adversarial-ml-tutorial.org/, 2021.

[38] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B.
Celik, and A. Swami, The limitations of deep learning in
adversarial settings, in Proc. 2016 IEEE European Symp.
Security and Privacy (EuroS&P), Saarbrücken, Germany,
2016, pp. 372–387.

[39] B. Biggio, I. Corona, D. Maiorca, B. Nelson, N. Šrndić, P.
Laskov, G. Giacinto, and F. Roli, Evasion attacks against
machine learning at test time, in Proc. European Conf.
Machine Learning and Knowledge Discovery in Databases,
Prague, Czech Republic, 2013, pp. 387–402.

[40] L. Schott, J. Rauber, M. Bethge, and W. Brendel,
Towards the first adversarially robust neural network
model on MNIST, in Proc. 7th Int. Conf. Learning
Representations (ICLR), New Orleans, LA, USA,
https://openreview.net/forum?id=S1EHOsC9tX, 2019.

[41] A. Demontis, M. Melis, B. Biggio, D. Maiorca, D. Arp, K.
Rieck, I. Corona, G. Giacinto, and F. Roli, Yes, machine
learning can be more secure! A case study on android
malware detection, IEEE Trans. Depend. Secure Comput.,
vol. 16, no. 4, pp. 711–724, 2019.

[42] R. Gu, K. Zhang, Z. Xu, Y. Che, B. Fan, H. Hou, H. Dai,
L. Yi, Y. Ding, G. Chen, and Y. Huang, Fluid: Dataset
abstraction and elastic acceleration for cloud-native deep
learning training jobs, in Proc. 2022 IEEE 38th Int. Conf.
Data Engineering (ICDE), Kuala Lumpur, Malaysia, 2022,
pp. 2182–2195.

[43] K. Allix, T. F. Bissyandé, J. Klein, and Y. Le Traon,
AndroZoo: Collecting millions of android apps for the
research community, in Proc. 2016 IEEE/ACM 13th

Working Conf. Mining Software Repositories (MSR), Austin,
TX, USA, 2016, pp. 468–471.

[44] V. Sihag, M. Vardhan, and P. Singh, A survey of android
application and malware hardening, Comput. Sci. Rev., vol.
39, p. 100365, 2021.

[45] A. Kovacheva, Efficient code obfuscation for android, in

142 Tsinghua Science and Technology, February 2024, 29(1): 127–142

Proc. 6th Int. Conf. Advances in Information Technology,
Bangkok, Thailand, 2013, pp. 104–119.

[46] V. Balachandran, Sufatrio, D. J. J. Tan, and V. L. L. Thing,
Control flow obfuscation for Android applications, Comput.
Secur., vol. 61, pp. 72–93, 2016.

[47] L. Chen, S. Hou, and Y. Ye, SecureDroid: Enhancing
security of machine learning-based detection against
adversarial android malware attacks, in Proc. 33rd Annu.
Computer Security Applications Conf., Orlando, FL, USA,
2017, pp. 362–372.

[48] A. Desnos, Android: Static analysis using similarity
distance, in Proc. 2012 45th Hawaii Int. Conf. System
Sciences, Maui, HI, USA, 2012, pp. 5394–5403.

[49] X. Sun, Y. Zhongyang, Z. Xin, B. Mao, and L. Xie,
Detecting code reuse in android applications using
component-based control flow graph, in Proc. 29th IFIP TC
11 Int. Conf. ICT Systems Security and Privacy Protection,
Marrakech, Morocco, 2014, pp. 142–155.

[50] J. Park, H. Kim, Y. Jeong, S. Cho, S. Han, and M. Park,
Effects of code obfuscation on android app similarity
analysis, J. Wirel. Mob. Netw. Ubiquit. Comput. Depend.
Appl., vol. 6, no. 4, pp. 86–98, 2015.

[51] Y. Zhang, G. Xiao, Z. Zheng, T. Zhu, I. W. Tsang,
and Y. Sui, An empirical study of code deobfuscations
on detecting obfuscated android piggybacked apps, in
Proc. 2020 27th Asia-Pacific Software Engineering Conf.
(APSEC), Singapore, 2020, pp. 41–50.

[52] W. Brendel, J. Rauber, and M. Bethge, Decision-
based adversarial attacks: Reliable attacks against black-
box machine learning models, in Proc. 6th Int. Conf.
Learning Representations (ICLR), Vancouver, Canada,
https://openreview.net/forum?id=SyZI0GWCZ, 2018.

[53] L. Li, T. F. Bissyandé, and J. Klein, SimiDroid: Identifying
and explaining similarities in android apps, in Proc. 2017
IEEE Trustcom/BigDataSE/ICESS, Sydney, Australia, 2017,
pp. 136–143.

[54] R. Cilibrasi and P. M. Vitanyi, Clustering by compression,
IEEE Trans. Inform. Theory, vol. 51, no. 4, pp. 1523–1545,
2005.

[55] H. Huang, Z. Zeng, D. Yao, X. Pei, and Y. Zhang,
Spatial-temporal ConvLSTM for vehicle driving intention
prediction, Tsinghua Science and Technology, vol. 27, no.
3, pp. 599–609, 2022.

Yan Xu received the BEng degree in
software engineering from the Nanjing
University of Science and Technology,
China in 2017, where she is currently a
PhD candidate in computer science and
technology. Her research interests include
malware detection and adversarial attacks.

Deqiang Li received the MEng degree
in software engineering and the PhD
degree in computer science and technology
from Nanjing University of Science and
Technology, China in 2017 and 2021,
respectively. He is currently a lecturer
at Nanjing University of Posts and
Telecommunications. His research interests

include adversarial malware detection, adversarial machine
learning, and applied data mining techniques in malware
detection.

Qianmu Li received the BEng and PhD
degrees in computer application technology
from Nanjing University of Science and
Technology, China in 2001 and 2005,
respectively. He worked as a postdoctoral
researcher at Nanjing University from 2005
to 2007. He is currently a full professor
and member of the Academic Committee at

Nanjing University of Science and Technology, the director of

informatization division; the vice chairman of Jiangsu Provincial
Science Association. His research interests include big data
analysis, cyberspace security, and software systems. He has
published more than 110 scientific articles and received many
research grants from China’s national and provincial programs.
He has received many Best Paper Awards from ISKE, AAAI,
ICCC, EAI, etc.

Shouhuai Xu received the PhD degree in
computer science from Fudan University,
China in 2000. He is the Gallogly
Chair Professor in cybersecurity at
the Department of Computer Science,
University of Colorado Colorado
Springs (UCCS), USA. He pioneered
the cybersecurity dynamics approach as

foundation for the emerging science of cybersecurity, with three
pillars: first-principle cybersecurity modeling and analysis (the
x-axis); cybersecurity data analytics (the y-axis, to which the
present paper belongs); and cybersecurity metrics (the z-axis).
He co-initiated the International Conference on Science of Cyber
Security and is serving as its steering committee chair. He
is/was an associate editor of IEEE Transactions on Dependable
and Secure Computing (IEEE TDSC), IEEE Transactions
on Information Forensics and Security (IEEE T-IFS), IEEE
Transactions on Network Science and Engineering (IEEE TNSE),
and Scientific Reports. More information about his research can
be found at https://xu-lab.org.

